1
|
Clyne M, Ó Cróinín T. Pathogenicity and virulence of Helicobacter pylori: A paradigm of chronic infection. Virulence 2025; 16:2438735. [PMID: 39725863 DOI: 10.1080/21505594.2024.2438735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Infection with Helicobacter pylori is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis. Most infected individuals are asymptomatic, but infection also causes gastric and duodenal ulceration, and gastric cancer. H. pylori possesses an arsenal of virulence factors, including a potent urease enzyme for protection from acid, flagella that mediate motility, an abundance of outer membrane proteins that can mediate attachment, several immunomodulatory proteins, and an ability to adapt to specific conditions in individual human stomachs. The presence of a type 4 secretion system that injects effector molecules into gastric cells and subverts host cell signalling is associated with virulence. In this review we discuss the interplay of H. pylori colonization and virulence factors with host and environmental factors to determine disease outcome in infected individuals.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine, University College Dublin, Dublin, Ireland
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Tadhg Ó Cróinín
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Jung MS, Piazuelo MB, Brackman LC, McClain MS, Algood HMS. Essential role of Helicobacter pylori apolipoprotein N-acyltransferase (Lnt) in stomach colonization. Infect Immun 2023; 91:e0036923. [PMID: 37937999 PMCID: PMC10715074 DOI: 10.1128/iai.00369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Bacterial lipoproteins are post-translationally modified with acyl chains, anchoring these proteins to bacterial membranes. In Gram-negative bacteria, three enzymes complete the modifications. Lgt (which adds two acyl chains) and LspA (which removes the signal peptide) are essential. Lnt (which adds a third acyl chain) is not essential in certain bacteria including Francisella tularensis, Neisseria gonorrhoeae, and Acinetobacter baumannii. Deleting lnt results in mild to severe physiologic changes. We previously showed lnt is not essential for Helicobacter pylori growth in vitro. Here, the physiologic consequences of deleting lnt in H. pylori and the role of Lnt in the host response to H. pylori were examined using in vitro and in vivo models. Comparing wild-type, Δlnt, and complemented mutant H. pylori, no changes in growth rates or sensitivity to acid or antibiotics were observed. Since deleting lnt changes the number of acyl chains on lipoproteins and the number of acyl chains on lipoproteins impacts the innate immune response through Toll-like receptor 2 (TLR2) signaling, primary human gastric epithelial cells were treated with a purified lipoprotein from wild-type or lnt mutant H. pylori. Differential gene expression analysis indicated that lipoprotein from the lnt mutant induced a more robust TLR2 response. In a complementary approach, we infected wild-type and Tlr2-/- mice and found that both the wild-type and complemented mutant strains successfully colonized the animals. However, the lnt mutant strain was unable to colonize either mouse strain. These results show that lnt is essential for H. pylori colonization and identifies lipoprotein synthesis as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew S. Jung
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lee C. Brackman
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology, Vanderbilt Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
4
|
Balendra V, Amoroso C, Galassi B, Esposto J, Bareggi C, Luu J, Scaramella L, Ghidini M. High-Salt Diet Exacerbates H. pylori Infection and Increases Gastric Cancer Risks. J Pers Med 2023; 13:1325. [PMID: 37763093 PMCID: PMC10533117 DOI: 10.3390/jpm13091325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer ranks as the fifth-leading contributor to global cancer incidence and the fourth-highest in terms of cancer-related mortality. Helicobacter pylori (H. pylori) infection leads to inflammation and ulceration, atrophic and chronic gastritis, and eventually, increases the risk of developing gastric adenocarcinoma. In this paper, we delve into the combined impact of a high-salt diet (HSD) and concurrent H. pylori infection, which act as predisposing factors for gastric malignancy. A multitude of mechanisms come into play, fostering the development of gastric adenocarcinoma due to the synergy between an HSD and H. pylori colonization. These encompass the disruption of mucosal barriers, cellular integrity, modulation of H. pylori gene expression, oxidative stress induction, and provocation of inflammatory responses. On the whole, gastric cancer patients were reported to have a higher median sodium intake with respect to healthy controls. H. pylori infection constitutes an additional risk factor, with a particular impact on the population with the highest daily sodium intake. Consequently, drawing from epidemiological discoveries, substantial evidence suggests that diminishing salt intake and employing antibacterial therapeutics could potentially lower the susceptibility to gastric cancer among individuals.
Collapse
Affiliation(s)
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.A.); (L.S.)
| | - Barbara Galassi
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (C.B.)
| | - Josephine Esposto
- Department of Environmental and Life Sciences, Trent University, Peterborough, ON K9L0G2, Canada;
| | - Claudia Bareggi
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (C.B.)
| | - Jennie Luu
- The University of the Incarnate Word School of Osteopathic Medicine, San Antonio, TX 78235, USA;
| | - Lucia Scaramella
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.A.); (L.S.)
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (C.B.)
| |
Collapse
|
5
|
McClain MS, Bryant KN, McDonald WH, Algood HMS, Cover TL. Identification of an Essential LolD-Like Protein in Helicobacter pylori. J Bacteriol 2023; 205:e0005223. [PMID: 36971548 PMCID: PMC10127691 DOI: 10.1128/jb.00052-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
The localization of lipoprotein (Lol) system is used by Gram-negative bacteria to export lipoproteins to the outer membrane. Lol proteins and models of how Lol transfers lipoproteins from the inner to the outer membrane have been extensively characterized in the model organism Escherichia coli, but in numerous bacterial species, lipoprotein synthesis and export pathways deviate from the E. coli paradigm. For example, in the human gastric bacterium Helicobacter pylori, a homolog of the E. coli outer membrane component LolB is not found, E. coli LolC and LolE correspond to a single inner membrane component (LolF), and a homolog of the E. coli cytoplasmic ATPase LolD has not been identified. In the present study, we sought to identify a LolD-like protein in H. pylori. We used affinity-purification mass spectrometry to identify interaction partners of the H. pylori ATP-binding cassette (ABC) family permease LolF and identified the ABC family ATP-binding protein HP0179 as its interaction partner. We engineered H. pylori to conditionally express HP0179 and showed that HP0179 and its conserved ATP binding and ATP hydrolysis motifs are essential for H. pylori growth. We then performed affinity purification-mass spectrometry using HP0179 as the bait and identified LolF as its interaction partner. These results indicate that H. pylori HP0179 is a LolD-like protein and provide a more complete understanding of lipoprotein localization processes in H. pylori, a bacterium in which the Lol system deviates from the E. coli paradigm. IMPORTANCE Lipoproteins are critical in Gram-negative-bacteria for cell surface assembly of LPS, insertion of outer membrane proteins, and sensing envelope stress. Lipoproteins also contribute to bacterial pathogenesis. For many of these functions, lipoproteins must localize to the Gram-negative outer membrane. Transporting lipoproteins to the outer membrane involves the Lol sorting pathway. Detailed analyses of the Lol pathway have been performed in the model organism Escherichia coli, but many bacteria utilize altered components or are missing essential components of the E. coli Lol pathway. Identifying a LolD-like protein in Helicobacter pylori is important to better understand the Lol pathway in diverse bacterial classes. This becomes particularly relevant as lipoprotein localization is targeted for antimicrobial development.
Collapse
Affiliation(s)
- Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Birato YC, Armand Masimango B, Katabana DM, Shindano TA. Risk factors of Helicobacter pylori infection in Bukavu, Democratic Republic of the Congo: a case-control study. Ann Med Surg (Lond) 2023; 85:727-731. [PMID: 37113886 PMCID: PMC10129276 DOI: 10.1097/ms9.0000000000000409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/07/2023] [Indexed: 04/29/2023] Open
Abstract
Helicobacter pylori (H. pylori) is the common etiology of gastric tumors. This study aimed to evaluate the risk factors associated with H. pylori infection in the eastern part of the Democratic Republic of the Congo (DR Congo), where these tumors seem to be more frequent than in its western part. Patients and Methods Between January and December 2021, the authors conducted a multicenter case-control study in three hospitals in Bukavu City involving 90 individuals with dyspeptic complaints. Risk factors for H. pylori infection were assessed in a participant interview and H. pylori status from stool antigen detection. Results Among the risk factors assessed, only history of H. pylori in the family and the habit of adding salt to already-seasoned food were found positively associated with the risk of H. pylori infection (adjusted odds ratio: 7, 95 CI: 2.742-17.867; P<0.0001 and 2.911, 95% CI: 1.010-8.526; P=0.048, respectively). On the other hand, low-temperature food storage seems to be protective with a negative association (adjusted odds ratio: 0.044, 95% CI: 0.009-0.206; P=0.0001). Conclusion This study demonstrated again the importance of lifestyle-related factors on the risk of acquisition of H. pylori. These findings call for preventive interventions for this group of individuals.
Collapse
Affiliation(s)
- Yannick C. Birato
- Faculty of Medicine, Université Officielle de Bukavu
- Department of Internal Medicine, Cliniques Universitaires de Bukavu
- Corresponding author. Address: Department of Internal Medicine, Faculty of Medicine, Official University of Bukavu, Bukavu, 571 Cyangugu, The Democratic Republic of the Congo. Tel: +243 978 130 782. E-mail address: (Y.C. Birato)
| | | | - Delphin M. Katabana
- Faculty of Medicine, Université Officielle de Bukavu
- Department of Internal Medicine, Cliniques Universitaires de Bukavu
| | - Tony A. Shindano
- Faculty of Medicine, Université Officielle de Bukavu
- Department of Internal Medicine, Cliniques Universitaires de Bukavu
- Department of Internal Medicine, Hôpital Provincial Général de Référence de Bukavu (HPGRB)
- Faculty of Medicine, Université Catholique de Bukavu (UCB), Bukavu
- University of Kindu, Kindu, Maniema, DR Congo
| |
Collapse
|
7
|
A Positively Selected fur-R88H Mutation Enhances Helicobacter pylori Fitness in a High-Salt Environment and Alters Fur-Dependent Regulation of Gene Expression. Infect Immun 2023; 91:e0042022. [PMID: 36633416 PMCID: PMC9933627 DOI: 10.1128/iai.00420-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Both Helicobacter pylori infection and a high-salt diet are risk factors for gastric cancer. We previously showed that a mutation in fur (encoding the ferric uptake regulator variant Fur-R88H) was positively selected in H. pylori strains isolated from experimentally infected Mongolian gerbils receiving a high-salt diet. In the present study, we report that continuous H. pylori growth in high-salt conditions in vitro also leads to positive selection of the fur-R88H mutation. Competition experiments with strains containing wild-type fur or fur-R88H, each labeled with unique nucleotide barcodes, showed that the fur-R88H mutation enhances H. pylori fitness under high-salt conditions but reduces H. pylori fitness under routine culture conditions. The fitness advantage of the fur-R88H mutant under high-salt conditions was abrogated by the addition of supplemental iron. To test the hypothesis that the fur-R88H mutation alters the regulatory properties of Fur, we compared the transcriptional profiles of strains containing wild-type fur or fur-R88H. Increased transcript levels of fecA2, which encodes a predicted TonB-dependent outer membrane transporter, were detected in the fur-R88H variant compared to those in the strain containing wild-type fur under both high-salt and routine conditions. Competition experiments showed that fecA2 contributes to H. pylori fitness under both high-salt and routine conditions. These results provide new insights into mechanisms by which the fur-R88H mutation confers a selective advantage to H. pylori in high-salt environments.
Collapse
|
8
|
Wroblewski LE, Peek RM. Clinical Pathogenesis, Molecular Mechanisms of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:25-52. [PMID: 38231214 PMCID: PMC10924282 DOI: 10.1007/978-3-031-47331-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human pathogen Helicobacter pylori is the strongest known risk factor for gastric disease and cancer, and gastric cancer remains a leading cause of cancer-related death across the globe. Carcinogenic mechanisms associated with H. pylori are multifactorial and are driven by bacterial virulence constituents, host immune responses, environmental factors such as iron and salt, and the microbiota. Infection with strains that harbor the cytotoxin-associated genes (cag) pathogenicity island, which encodes a type IV secretion system (T4SS) confer increased risk for developing more severe gastric diseases. Other important H. pylori virulence factors that augment disease progression include vacuolating cytotoxin A (VacA), specifically type s1m1 vacA alleles, serine protease HtrA, and the outer-membrane adhesins HopQ, BabA, SabA and OipA. Additional risk factors for gastric cancer include dietary factors such as diets that are high in salt or low in iron, H. pylori-induced perturbations of the gastric microbiome, host genetic polymorphisms, and infection with Epstein-Barr virus. This chapter discusses in detail host factors and how H. pylori virulence factors augment the risk of developing gastric cancer in human patients as well as how the Mongolian gerbil model has been used to define mechanisms of H. pylori-induced inflammation and cancer.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Kato S, Gold BD, Kato A. Helicobacter pylori-Associated Iron Deficiency Anemia in Childhood and Adolescence-Pathogenesis and Clinical Management Strategy. J Clin Med 2022; 11:7351. [PMID: 36555966 PMCID: PMC9781328 DOI: 10.3390/jcm11247351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Many epidemiological studies and meta-analyses show that persistent Helicobacter pylori infection in the gastric mucosa can lead to iron deficiency or iron deficiency anemia (IDA), particularly in certain populations of children and adolescents. Moreover, it has been demonstrated that H. pylori infection can lead to and be closely associated with recurrent and/or refractory iron deficiency and IDA. However, the pathogenesis and specific risk factors leading to this clinical outcome in H. pylori-infected children remain poorly understood. In general, most of pediatric patients with H. pylori-associated IDA do not show evidence of overt blood loss due to gastrointestinal hemorrhagic lesions. In adult populations, H. pylori atrophic gastritis is reported to cause impaired iron absorption due to impaired gastric acid secretion, which, subsequently, results in IDA. However, significant gastric atrophy, and the resultant substantial reduction in gastric acid secretion, has not been shown in H. pylori-infected children. Recently, it has been hypothesized that competition between H. pylori and humans for iron availability in the upper gastrointestinal tract could lead to IDA. Many genes, including those encoding major outer membrane proteins (OMPs), are known to be involved in iron-uptake mechanisms in H. pylori. Recent studies have been published that describe H. pylori virulence factors, including specific OMP genes that may be associated with the pathogenesis of IDA. Daily iron demand substantively increases in children as they begin pubertal development starting with the associated growth spurt, and this important physiological mechanism may play a synergistic role for the microorganisms as a host pathogenetic factor of IDA. Like in the most recent pediatric guidelines, a test-and-treat strategy in H. pylori infection should be considered, especially for children and adolescents in whom IDA is recurrent or refractory to iron supplementation and other definitive causes have not been identified. This review will focus on providing the evidence that supports a clear biological plausibility for H. pylori infection and iron deficiency, as well as IDA.
Collapse
Affiliation(s)
| | - Benjamin D. Gold
- Gi Care for Kids, Children’s Center for Digestive Healthcare, LLC, Atlanta, GA 30342, USA
| | - Ayumu Kato
- Department of General Pediatrics and Gastroenterology, Miyagi Children’s Hospital, Sendai 989-3126, Japan
| |
Collapse
|
10
|
Loh JT, Shuman JHB, Lin AS, Favret N, Piazuelo MB, Mallal S, Chopra A, McClain MS, Cover TL. Positive Selection of Mutations in the Helicobacter pylori katA 5' Untranslated Region in a Mongolian Gerbil Model of Gastric Disease. Infect Immun 2022; 90:e0000422. [PMID: 35652648 PMCID: PMC9302185 DOI: 10.1128/iai.00004-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
To evaluate potential effects of gastric inflammation on Helicobacter pylori diversification and evolution within the stomach, we experimentally infected Mongolian gerbils with an H. pylori strain in which Cag type IV secretion system (T4SS) activity is controlled by a TetR/tetO system. Gerbils infected with H. pylori under conditions in which Cag T4SS activity was derepressed had significantly higher levels of gastric inflammation than gerbils infected under conditions with repressed Cag T4SS activity. Mutations in the 5' untranslated region (UTR) of katA (encoding catalase) were detected in strains cultured from 8 of the 17 gerbils infected with Cag T4SS-active H. pylori and none of the strains from 17 gerbils infected with Cag T4SS-inactive H. pylori. Catalase enzymatic activity, steady-state katA transcript levels, and katA transcript stability were increased in strains with these single nucleotide polymorphisms (SNPs) compared to strains in which these SNPs were absent. Moreover, strains harboring these SNPs exhibited increased resistance to bactericidal effects of hydrogen peroxide, compared to control strains. Experimental introduction of the SNPs into the wild-type katA 5' UTR resulted in increased katA transcript stability, increased katA steady-state levels, and increased catalase enzymatic activity. Based on site-directed mutagenesis and modeling of RNA structure, increased katA transcript levels were correlated with higher predicted thermal stability of the katA 5' UTR secondary structure. These data suggest that high levels of gastric inflammation positively select for H. pylori strains producing increased levels of catalase, which may confer survival advantages to the bacteria in an inflammatory gastric environment.
Collapse
Affiliation(s)
- John T. Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jennifer H. B. Shuman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Natalie Favret
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Simon Mallal
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennesse, USA
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennesse, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Ma K, Lin Y, Zhang X, Fang F, Zhang Y, Li J, Yao Y, Ge L, Tan H, Wang F. Spatiotemporal Distribution and Evolution of Digestive Tract Cancer Cases in Lujiang County, China since 2012. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127451. [PMID: 35742697 PMCID: PMC9223376 DOI: 10.3390/ijerph19127451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
This study aims to analyze the spatiotemporal distribution and evolution of digestive tract cancer (DTC) in Lujiang County, China by using the geographic information system technology. Results of this study are expected to provide a scientific basis for effective prevention and control of DTC. The data on DTC cases in Lujiang County, China, were downloaded from the Data Center of the Center for Disease Control and Prevention in Hefei, Anhui Province, China, while the demographic data were sourced from the demographic department in China. Systematic statistical analyses, including the spatial empirical Bayes smoothing, spatial autocorrelation, hotspot statistics, and Kulldorff's retrospective space-time scan, were used to identify the spatial and spatiotemporal clusters of DTC. GM(1,1) and standard deviation ellipses were then applied to predict the future evolution of the spatial pattern of the DTC cases in Lujiang County. The results showed that DTC in Lujiang County had obvious spatiotemporal clustering. The spatial distribution of DTC cases increases gradually from east to west in the county in a stepwise pattern. The peak of DTC cases occurred in 2012-2013, and the high-case spatial clusters were located mainly in the northwest of Lujiang County. At the 99% confidence interval, two spatiotemporal clusters were identified. From 2012 to 2017, the cases of DTC in Lujiang County gradually shifted to the high-incidence area in the northwest, and the spatial distribution range experienced a process of "dispersion-clustering". The cases of DTC in Lujiang County will continue to move to the northwest from 2018 to 2025, and the predicted spatial clustering tends to be more obvious.
Collapse
Affiliation(s)
- Kang Ma
- Key Laboratory of Earth Surface Processes and Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China; (K.M.); (Y.L.); (Y.Y.); (L.G.); (H.T.); (F.W.)
| | - Yuesheng Lin
- Key Laboratory of Earth Surface Processes and Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China; (K.M.); (Y.L.); (Y.Y.); (L.G.); (H.T.); (F.W.)
| | - Xiaopeng Zhang
- Hefei Center for Disease Control and Prevention, Hefei 230022, China; (X.Z.); (J.L.)
| | - Fengman Fang
- Key Laboratory of Earth Surface Processes and Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China; (K.M.); (Y.L.); (Y.Y.); (L.G.); (H.T.); (F.W.)
- Correspondence: ; Tel.: +86-(0553)-5910687
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Jiajia Li
- Hefei Center for Disease Control and Prevention, Hefei 230022, China; (X.Z.); (J.L.)
| | - Youru Yao
- Key Laboratory of Earth Surface Processes and Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China; (K.M.); (Y.L.); (Y.Y.); (L.G.); (H.T.); (F.W.)
| | - Lei Ge
- Key Laboratory of Earth Surface Processes and Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China; (K.M.); (Y.L.); (Y.Y.); (L.G.); (H.T.); (F.W.)
| | - Huarong Tan
- Key Laboratory of Earth Surface Processes and Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China; (K.M.); (Y.L.); (Y.Y.); (L.G.); (H.T.); (F.W.)
| | - Fei Wang
- Key Laboratory of Earth Surface Processes and Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China; (K.M.); (Y.L.); (Y.Y.); (L.G.); (H.T.); (F.W.)
| |
Collapse
|
12
|
Waskito LA, Rezkitha YAA, Vilaichone RK, Wibawa IDN, Mustika S, Sugihartono T, Miftahussurur M. Antimicrobial Resistance Profile by Metagenomic and Metatranscriptomic Approach in Clinical Practice: Opportunity and Challenge. Antibiotics (Basel) 2022; 11:antibiotics11050654. [PMID: 35625299 PMCID: PMC9137939 DOI: 10.3390/antibiotics11050654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023] Open
Abstract
The burden of bacterial resistance to antibiotics affects several key sectors in the world, including healthcare, the government, and the economic sector. Resistant bacterial infection is associated with prolonged hospital stays, direct costs, and costs due to loss of productivity, which will cause policy makers to adjust their policies. Current widely performed procedures for the identification of antibiotic-resistant bacteria rely on culture-based methodology. However, some resistance determinants, such as free-floating DNA of resistance genes, are outside the bacterial genome, which could be potentially transferred under antibiotic exposure. Metagenomic and metatranscriptomic approaches to profiling antibiotic resistance offer several advantages to overcome the limitations of the culture-based approach. These methodologies enhance the probability of detecting resistance determinant genes inside and outside the bacterial genome and novel resistance genes yet pose inherent challenges in availability, validity, expert usability, and cost. Despite these challenges, such molecular-based and bioinformatics technologies offer an exquisite advantage in improving clinicians’ diagnoses and the management of resistant infectious diseases in humans. This review provides a comprehensive overview of next-generation sequencing technologies, metagenomics, and metatranscriptomics in assessing antimicrobial resistance profiles.
Collapse
Affiliation(s)
- Langgeng Agung Waskito
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia;
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Diseases, Universitas Airlangga, Surabaya 60115, Indonesia;
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Diseases, Universitas Airlangga, Surabaya 60115, Indonesia;
- Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya 60115, Indonesia
| | - Ratha-korn Vilaichone
- Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Thammasat University Hospital, Khlong Nueng 12120, Pathumthani, Thailand;
- Digestive Diseases Research Center (DRC), Thammasat University, Khlong Nueng 12121, Pathumthani, Thailand
- Department of Medicine, Chulabhorn International College of Medicine (CICM), Thammasat University, Khlong Nueng 12121, Pathumthani, Thailand
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia;
| | - I Dewa Nyoman Wibawa
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Sanglah General Hospital, Faculty of Medicine, Universitas Udayana, Denpasar 80232, Indonesia;
| | - Syifa Mustika
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Dr. Saiful Anwar Hospital, Malang 65112, Indonesia;
| | - Titong Sugihartono
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia;
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Diseases, Universitas Airlangga, Surabaya 60115, Indonesia;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia;
- Correspondence: ; Tel.: +62-31-502-3865; Fax: +62-31-502-3865
| |
Collapse
|
13
|
Interplay between Amoxicillin Resistance and Osmotic Stress in Helicobacter pylori. J Bacteriol 2022; 204:e0004522. [PMID: 35389254 DOI: 10.1128/jb.00045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rising antibiotic resistance rates are a growing concern for all pathogens, including Helicobacter pylori. We previously examined the association of specific mutations in PBP1 with amoxicillin resistance and fitness in H. pylori and found that V374L and N562Y mutations were associated with resistance, but also resulted in fitness defects. Furthermore, we found that hyperosmotic stress differentially altered the fitness of strains bearing these mutations; survival of the V374L strain was decreased by hyperosmotic stress, but the N562Y strain showed increased cell survival relative to that of wild-type G27. The finding that amoxicillin-resistant strains show environmentally dictated changes in fitness suggests a previously unexplored interaction between amoxicillin resistance and osmotic stress in H. pylori. Here, we further characterized the interaction between osmotic stress and amoxicillin resistance. Wild-type and isogenic PBP1 mutant strains were exposed to amoxicillin, various osmotic stressors, or combined antibiotic and osmotic stress, and viability was monitored. While subinhibitory concentrations of NaCl did not affect H. pylori viability, the combination of NaCl and amoxicillin resulted in synergistic killing; this was true even for the antibiotic-resistant strains. Moreover, similar synergy was found with other beta-lactams, but not with antibiotics that did not target the cell wall. Similar synergistic killing was also demonstrated when KCl was utilized as the osmotic stressor. Conversely, osmolar equivalent concentrations of sucrose antagonized amoxicillin-mediated killing. Taken together, our results support a previously unrecognized interaction between amoxicillin resistance and osmotic stress in H. pylori. These findings have interesting implications for the effectiveness of antibiotic therapy for this pathogen. IMPORTANCE Rising antibiotic resistance rates in H. pylori are associated with increased rates of treatment failure. Understanding how stressors impact antibiotic resistance may shed light on the development of future treatment strategies. Previous studies found that mutations in PBP1 that conferred resistance to amoxicillin were also associated with a decrease in bacterial fitness. The current study demonstrated that osmotic stress can enhance beta lactam-mediated killing of H. pylori. The source of osmotic stress was found to be important for these interactions. Given that relatively little is known about how H. pylori responds to osmotic stress, these findings fill important knowledge gaps on this topic and provide interesting implications for the effectiveness of antibiotic therapy for this pathogen.
Collapse
|
14
|
Helicobacter pylori BabA-SabA Key Roles in the Adherence Phase: The Synergic Mechanism for Successful Colonization and Disease Development. Toxins (Basel) 2021; 13:toxins13070485. [PMID: 34357957 PMCID: PMC8310295 DOI: 10.3390/toxins13070485] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Helicobacter pylori is a pathogenic microorganism that successfully inhabits the human stomach, colonizing it by producing several virulence factors responsible for preventing host self-defense mechanisms. The adherence mechanism to gastric mucosal tissue is one of the most important processes for effective colonization in the stomach. The blood group antigen-binding adhesion (BabA) and sialic acid-binding adherence (SabA) are two H. pylori outer membrane proteins able to interact with antigens in the gastroduodenal tract. H. pylori possesses several mechanisms to control the regulation of both BabA and SabA in either the transcriptional or translational level. BabA is believed to be the most important protein in the early infection phase due to its ability to interact with various Lewis antigens, whereas SabA interaction with sialylated Lewis antigens may prove important for the adherence process in the inflamed gastric mucosal tissue in the ongoing-infection phase. The adherence mechanisms of BabA and SabA allow H. pylori to anchor in the gastric mucosa and begin the colonization process.
Collapse
|
15
|
Rueda-Robles A, Rubio-Tomás T, Plaza-Diaz J, Álvarez-Mercado AI. Impact of Dietary Patterns on H. pylori Infection and the Modulation of Microbiota to Counteract Its Effect. A Narrative Review. Pathogens 2021; 10:875. [PMID: 34358024 PMCID: PMC8308520 DOI: 10.3390/pathogens10070875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the stomach and can induce gastric disease and intra-gastric lesions, including chronic gastritis, peptic ulcers, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. This bacterium is responsible for long-term complications of gastric disease. The conjunction of host genetics, immune response, bacterial virulence expression, diet, micronutrient availability, and microbiome structure influence the disease outcomes related to chronic H. pylori infection. In this regard, the consumption of unhealthy and unbalanced diets can induce microbial dysbiosis, which infection with H. pylori may contribute to. However, to date, clinical trials have reported controversial results and current knowledge in this field is inconclusive. Here, we review preclinical studies concerning the changes produced in the microbiota that may be related to H. pylori infection, as well as the involvement of diet. We summarize and discuss the last approaches based on the modulation of the microbiota to improve the negative impact of H. pylori infection and their potential translation from bench to bedside.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- School of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Julio Plaza-Diaz
- Children’s Hospital Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|
16
|
Delineation of the pH-Responsive Regulon Controlled by the Helicobacter pylori ArsRS Two-Component System. Infect Immun 2021; 89:IAI.00597-20. [PMID: 33526561 DOI: 10.1128/iai.00597-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/09/2021] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori encounters a wide range of pH within the human stomach. In a comparison of H. pylori cultured in vitro under neutral or acidic conditions, about 15% of genes are differentially expressed, and corresponding changes are detectable for many of the encoded proteins. The ArsRS two-component system (TCS), comprised of the sensor kinase ArsS and its cognate response regulator ArsR, has an important role in mediating pH-responsive changes in H. pylori gene expression. In this study, we sought to delineate the pH-responsive ArsRS regulon and further define the role of ArsR in pH-responsive gene expression. We compared H. pylori strains containing an intact ArsRS system with an arsS null mutant or strains containing site-specific mutations of a conserved aspartate residue (D52) in ArsR, which is phosphorylated in response to signals relayed by the cognate sensor kinase ArsS. We identified 178 genes that were pH-responsive in strains containing an intact ArsRS system but not in ΔarsS or arsR mutants. These constituents of the pH-responsive ArsRS regulon include genes involved in acid acclimatization (ureAB, amidases), oxidative stress responses (katA, sodB), transcriptional regulation related to iron or nickel homeostasis (fur, nikR), and genes encoding outer membrane proteins (including sabA, alpA, alpB, hopD [labA], and horA). When comparing H. pylori strains containing an intact ArsRS TCS with arsRS mutants, each cultured at neutral pH, relatively few genes are differentially expressed. Collectively, these data suggest that ArsRS-mediated gene regulation has an important role in H. pylori adaptation to changing pH conditions.
Collapse
|
17
|
Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization. Infect Immun 2021; 89:IAI.00641-20. [PMID: 33526568 DOI: 10.1128/iai.00641-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host colonization by a pathogen requires proper sensing and response to local environmental cues, to ensure adaptation and continued survival within the host. The ionic milieu represents a critical potential source of environmental cues, and indeed, there has been extensive study of the interplay between host and pathogen in the context of metals such as iron, zinc, and manganese, vital ions that are actively sequestered by the host. The inherent non-uniformity of the ionic milieu also extends, however, to "abundant" ions such as chloride and potassium, whose concentrations vary greatly between tissue and cellular locations, and with the immune response. Despite this, the concept of abundant ions as environmental cues and key players in host-pathogen interactions is only just emerging. Focusing on chloride and potassium, this review brings together studies across multiple bacterial and parasitic species that have begun to define both how these abundant ions are exploited as cues during host infection, and how they can be actively manipulated by pathogens during host colonization. The close links between ion homeostasis and sensing/response to different ionic signals, and the importance of studying pathogen response to cues in combination, are also discussed, while considering the fundamental insight still to be uncovered from further studies in this nascent area of inquiry.
Collapse
|
18
|
Dooyema SDR, Krishna US, Loh JT, Suarez G, Cover TL, Peek RM. Helicobacter pylori-Induced TLR9 Activation and Injury Are Associated With the Virulence-Associated Adhesin HopQ. J Infect Dis 2020; 224:360-365. [PMID: 33245103 DOI: 10.1093/infdis/jiaa730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is the strongest risk factor for gastric adenocarcinoma. The H. pylori cancer-associated cag pathogenicity island (cag-PAI) encodes a type IV secretion system (T4SS), which translocates microbial DNA and activates TLR9; however, most cag-PAI+-infected persons do not develop cancer and cag-PAI-independent regulators of pathogenesis, including strain-specific adhesins, remain understudied. We defined the relationships between H. pylori HopQ adhesin allelic type, gastric injury, and TLR9 activation. Type I hopQ alleles were significantly associated with magnitude of injury, cag-T4SS function, and TLR9 activation. Genetic deletion of hopQ significantly decreased H. pylori-induced TLR9 activation, implicating this adhesin in H. pylori-mediated disease.
Collapse
Affiliation(s)
- Samuel D R Dooyema
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Microbe-Host Interactions Training Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Uma S Krishna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John T Loh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Giovanni Suarez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy L Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Tennessee Valley Healthcare System, United States Department of Veteran Affairs, Nashville, Tennessee, USA
| | - Richard M Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Pathways of Gastric Carcinogenesis, Helicobacter pylori Virulence and Interactions with Antioxidant Systems, Vitamin C and Phytochemicals. Int J Mol Sci 2020; 21:ijms21176451. [PMID: 32899442 PMCID: PMC7503565 DOI: 10.3390/ijms21176451] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a class one carcinogen which causes chronic atrophic gastritis, gastric intestinal metaplasia, dysplasia and adenocarcinoma. The mechanisms by which H. pylori interacts with other risk and protective factors, particularly vitamin C in gastric carcinogenesis are complex. Gastric carcinogenesis includes metabolic, environmental, epigenetic, genomic, infective, inflammatory and oncogenic pathways. The molecular classification of gastric cancer subtypes has revolutionized the understanding of gastric carcinogenesis. This includes the tumour microenvironment, germline mutations, and the role of Helicobacter pylori bacteria, Epstein Barr virus and epigenetics in somatic mutations. There is evidence that ascorbic acid, phytochemicals and endogenous antioxidant systems can modify the risk of gastric cancer. Gastric juice ascorbate levels depend on dietary intake of ascorbic acid but can also be decreased by H. pylori infection, H. pylori CagA secretion, tobacco smoking, achlorhydria and chronic atrophic gastritis. Ascorbic acid may be protective against gastric cancer by its antioxidant effect in gastric cytoprotection, regenerating active vitamin E and glutathione, inhibiting endogenous N-nitrosation, reducing toxic effects of ingested nitrosodimethylamines and heterocyclic amines, and preventing H. pylori infection. The effectiveness of such cytoprotection is related to H. pylori strain virulence, particularly CagA expression. The role of vitamin C in epigenetic reprogramming in gastric cancer is still evolving. Other factors in conjunction with vitamin C also play a role in gastric carcinogenesis. Eradication of H. pylori may lead to recovery of vitamin C secretion by gastric epithelium and enable regression of premalignant gastric lesions, thereby interrupting the Correa cascade of gastric carcinogenesis.
Collapse
|
20
|
Holland RL, Bosi KD, Harpring GH, Luo J, Wallig M, Phillips H, Blanke SR. Chronic in vivo exposure to Helicobacter pylori VacA: Assessing the efficacy of automated and long-term intragastric toxin infusion. Sci Rep 2020; 10:9307. [PMID: 32518315 PMCID: PMC7283276 DOI: 10.1038/s41598-020-65787-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (Hp) secrete VacA, a diffusible pore-forming exotoxin that is epidemiologically linked to gastric disease in humans. In vitro studies indicate that VacA modulates gastric epithelial and immune cells, but the in vivo contributions of VacA as an important determinant of Hp colonization and chronic infection remain poorly understood. To identify perturbations in the stomachs of C57BL/6 or BALB/C mice that result specifically from extended VacA exposure, we evaluated the efficacy of administering purified toxin using automated infusion via surgically-implanted, intragastric catheters. At 3 and 30 days of interrupted infusion, VacA was detected in association with gastric glands. In contrast to previously-reported tissue damage resulting from short term exposure to Hp extracts administered by oral gavage, extended infusion of VacA did not damage stomach, esophageal, intestinal, or liver tissue. However, several alterations previously reported during Hp infection were detected in animals infused with VacA, including reduction of the gastric mucus layer, and increased vacuolation of parietal cells. VacA infusion invoked an immune response, as indicated by the detection of circulating VacA antibodies. These foundational studies support the use of VacA infusion for identifying gastric alterations that are unambiguously attributable to long-term exposure to toxin.
Collapse
Affiliation(s)
- Robin L Holland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristopher D Bosi
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Gregory H Harpring
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jiayi Luo
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Matthew Wallig
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Heidi Phillips
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Steven R Blanke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
21
|
Yoo JY, Cho HJ, Moon S, Choi J, Lee S, Ahn C, Yoo KY, Kim I, Ko KP, Lee JE, Park SK. Pickled Vegetable and Salted Fish Intake and the Risk of Gastric Cancer: Two Prospective Cohort Studies and a Meta-Analysis. Cancers (Basel) 2020; 12:cancers12040996. [PMID: 32316595 PMCID: PMC7225928 DOI: 10.3390/cancers12040996] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
An increased risk of gastric cancer for pickled vegetable and salted fish intake has been suggested, yet the lack of a dose-response association warrants a quantitative analysis. We conducted a meta-analysis, combining results from our analysis of two large Korean cohort studies and those from previous prospective cohort studies. We investigated the association of pickled vegetable and salted fish intake with gastric cancer in the Korean Genome Epidemiology Study and the Korean Multi-center Cancer Cohort Study using Cox proportional hazard models. We then searched for observational studies published until November 2019 and conducted both dose-response and categorical meta-analyses. The pooled relative risk (RR) of gastric cancer incidence was 1.15 (95% Confidence Interval (CI), 1.07–1.23) for 40 g/day increment in pickled vegetable intake in a dose-response manner (P for nonlinearity = 0.11). As for salted fish intake, the pooled risk of gastric cancer incidence was 1.17 (95% CI, 0.99–1.38) times higher, comparing the highest to the lowest intake. Our findings supported the evidence that high intake of pickled vegetable and salted fish is associated with elevated risk of gastric cancer incidence.
Collapse
Affiliation(s)
- Jin Young Yoo
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (J.Y.Y.); (H.J.C.)
| | - Hyun Jeong Cho
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (J.Y.Y.); (H.J.C.)
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (S.M.); (J.C.); (S.L.); (C.A.); (K.-Y.Y.); (S.K.P.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Interdisciplinary Program in Cancer Biology Major, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jeoungbin Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (S.M.); (J.C.); (S.L.); (C.A.); (K.-Y.Y.); (S.K.P.)
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, Korea
| | - Sangjun Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (S.M.); (J.C.); (S.L.); (C.A.); (K.-Y.Y.); (S.K.P.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, Korea
| | - Choonghyun Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (S.M.); (J.C.); (S.L.); (C.A.); (K.-Y.Y.); (S.K.P.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, Korea
| | - Keun-Young Yoo
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (S.M.); (J.C.); (S.L.); (C.A.); (K.-Y.Y.); (S.K.P.)
| | - Inah Kim
- Department of Occupational and Environmental Medicine, Hanyang University College of Medicine, Seoul 04763, Korea;
| | - Kwang-Pil Ko
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon 21565, Korea;
| | - Jung Eun Lee
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (J.Y.Y.); (H.J.C.)
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-6834
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (S.M.); (J.C.); (S.L.); (C.A.); (K.-Y.Y.); (S.K.P.)
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Department of Biomedical Science, Seoul National University Graduate School, Seoul 03080, Korea
| |
Collapse
|
22
|
Pohl D, Keller PM, Bordier V, Wagner K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J Gastroenterol 2019; 25:4629-4660. [PMID: 31528091 PMCID: PMC6718044 DOI: 10.3748/wjg.v25.i32.4629] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers, mucosa associated tissue lymphoma and gastric adenocarcinoma. In recent years, an alarming increase in antimicrobial resistance and subsequently failing empiric H. pylori eradication therapies have been noted worldwide, also in many European countries. Therefore, rapid and accurate determination of H. pylori’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important. Traditionally, detection of H. pylori and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time. Recent advances in diagnostics provide new tools, like real-time polymerase chain reaction (PCR) and line probe assays, to diagnose H. pylori infection and antimicrobial resistance to certain antibiotics, directly from clinical specimens. Moreover, high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome, thereby allowing identification of resistance mutations and associated antibiotic resistance. In the first part of this review, we will give an overview on currently available diagnostic methods for detection of H. pylori and its drug resistance and their implementation in H. pylori management. The second part of the review focusses on the use of next generation sequencing technology in H. pylori research. To this end, we conducted a literature search for original research articles in English using the terms “Helicobacter”, “transcriptomic”, “transcriptome”, “next generation sequencing” and “whole genome sequencing”. This review is aimed to bridge the gap between current diagnostic practice (histology, rapid urease test, H. pylori culture, PCR and line probe assays) and new sequencing technologies and their potential implementation in diagnostic laboratory settings in order to complement the currently recommended H. pylori management guidelines and subsequently improve public health.
Collapse
Affiliation(s)
- Daniel Pohl
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern 3010, Switzerland
| | - Valentine Bordier
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Karoline Wagner
- Institute of Medical Microbiology, University of Zurich, Zurich 8006, Switzerland
| |
Collapse
|
23
|
Caston RR, Loh JT, Voss BJ, McDonald WH, Scholz MB, McClain MS, Cover TL. Effect of environmental salt concentration on the Helicobacter pylori exoproteome. J Proteomics 2019; 202:103374. [PMID: 31063819 DOI: 10.1016/j.jprot.2019.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/20/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection and a high salt diet are each risk factors for gastric cancer. In this study, we tested the hypothesis that environmental salt concentration influences the composition of the H. pylori exoproteome. H. pylori was cultured in media containing varying concentrations of sodium chloride, and aliquots were fractionated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified proteins that were selectively released into the extracellular space, and we identified selectively released proteins that were differentially abundant in culture supernatants, depending on the environmental salt concentration. We also used RNA-seq analysis to identify genes that were differentially expressed in response to environmental salt concentration. The salt-responsive proteins identified by proteomic analysis and salt-responsive genes identified by RNA-seq analysis were mostly non-concordant, but the secreted toxin VacA was salt-responsive in both analyses. Western blot analysis confirmed that VacA levels in the culture supernatant were increased in response to high salt conditions, and quantitative RT-qPCR experiments confirmed that vacA transcription was upregulated in response to high salt conditions. These results indicate that environmental salt concentration influences the composition of the H. pylori exoproteome, which could contribute to the increased risk of gastric cancer associated with a high salt diet. SIGNIFICANCE: Helicobacter pylori-induced alterations in the gastric mucosa have been attributed, at least in part, to the actions of secreted H. pylori proteins. In this study, we show that H. pylori growth in high salt concentrations leads to increased levels of a secreted VacA toxin. Salt-induced alterations in the composition of the H. pylori exoproteome is relevant to the increased risk of gastric cancer associated with consumption of a high salt diet.
Collapse
Affiliation(s)
- Rhonda R Caston
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John T Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bradley J Voss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew B Scholz
- Vanderbilt Technologies for Advanced Genetics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
24
|
Bonsor DA, Sundberg EJ. Roles of Adhesion to Epithelial Cells in Gastric Colonization by Helicobacter pylori. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:57-75. [PMID: 31016628 DOI: 10.1007/5584_2019_359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori adherence to host epithelial cells is essential for its survival against the harsh conditions of the stomach and for successful colonization. Adherence of H. pylori is achieved through several related families of outer membrane proteins and proteins of a type IV secretion system (T4SS), which bridge H. pylori to host cells through protein-protein and other protein-ligand interactions. Local environmental conditions such as cell type, available host cell surface proteins and/or ligands, as well as responses by the host immune system force H. pylori to alter expression of these proteins to adapt quickly to the local environment in order to colonize and survive. Some of these host-pathogen interactions appear to function in a "catch-and-release" manner, regulated by reversible binding at varying pH and allowing H. pylori to detach itself from cells or debris sloughed off the gastric epithelial lining in order to return for subsequent productive interactions. Other interactions between bacterial adhesin proteins and host adhesion molecules, however, appear to function as a committed step in certain pathogenic processes, such as translocation of the CagA oncoprotein through the H. pylori T4SS and into host gastric epithelial cells. Understanding these adhesion interactions is critical for devising new therapeutic strategies, as they are responsible for the earliest stage of infection and its maintenance. This review will discuss the expression and regulation of several outer membrane proteins and CagL, how they engage their known host cell protein/ligand targets, and their effects on clinical outcome.
Collapse
Affiliation(s)
- Daniel A Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
25
|
Abstract
In this review, we highlight progress in the last year in characterizing known virulence factors like flagella and the Cag type IV secretion system with sophisticated structural and biochemical approaches to yield new insight on the assembly and functions of these critical virulence determinants. Several aspects of Helicobacter pylori physiology were newly explored this year and evaluated for their functions during stomach colonization, including a fascinating role for the essential protease HtrA in allowing access of H. pylori to the basolateral side of the gastric epithelium through cleavage of the tight junction protein E-cadherin to facilitate CagA delivery. Molecular biology tools standard in model bacteria, including regulated gene expression during animal infection and fluorescent reporter gene fusions, were newly applied to H. pylori to explore functions for urease beyond initial colonization and establish high salt consumption as a mediator of gene expression changes. New sequencing technologies enabled validation of long postulated roles for DNA methylation in regulating H. pylori gene expression. On the cell biology side, elegant work using lineage tracing in the murine model and organoid primary cell culture systems has provided new insights into how H. pylori manipulates gastric tissue functions, locally and at a distance, to promote its survival in the stomach and induce pathologic changes. Finally, new work has bolstered the case for genomic variation as an important mechanism to generate phenotypic diversity during changing environmental conditions in the context of diet manipulation in animal infection models and during human experimental infection after vaccination.
Collapse
Affiliation(s)
- Langgeng Agung Waskito
- Faculty of Medicine, Department of Environmental and Preventive Medicine, Oita University, Yufu-City, Oita, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nina R Salama
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yoshio Yamaoka
- Faculty of Medicine, Department of Environmental and Preventive Medicine, Oita University, Yufu-City, Oita, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, Texas
| |
Collapse
|