1
|
Chien RC, Lin M, Duan N, Denton S, Kawahara J, Rikihisa Y. RipE expression correlates with high ATP levels in Ehrlichia, which confers resistance during the extracellular stage to facilitate a new cycle of infection. Front Cell Infect Microbiol 2024; 14:1416577. [PMID: 39411319 PMCID: PMC11473500 DOI: 10.3389/fcimb.2024.1416577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Ehrlichiosis is a potentially life-threatening disease caused by infection with the obligatory intracellular bacteria Ehrlichia species. Ehrlichia japonica infection of mice provides an animal model of ehrlichiosis as it recapitulates full-spectrum and lethal ehrlichiosis in humans. The E. japonica transposon mutant of EHF0962, which encodes a previously uncharacterized hypothetical protein, is attenuated in both infection and virulence in mice. EHF0962 was hence named here as resistance-inducing protein of Ehrlichia (RipE). Using this ΔripE mutant, we studied how RipE protein contributes to Ehrlichia pathogenesis. Ehrlichia species have an intracellular developmental cycle and a brief extracellular stage to initiate a new cycle of infection. Majority of RipE proteins were expressed on the surface of the smaller infectious dense-core stage of bacteria. Extracellular ΔripE E. japonica contained significantly less adenosine triphosphate (ATP) and lost infectivity more rapidly in culture compared with wild-type (WT) E. japonica. Genetic complementation in the ΔripE mutant or overexpression of ripE in WT E. japonica significantly increased bacterial ATP levels, and RipE-overexpressing E. japonica was more virulent in mice than WT E. japonica. RipE is conserved among Ehrlichia species. Immunization of mice with recombinant RipE induced an in vitro infection-neutralizing antibody, significantly prolonged survival time after a lethal dose of E. japonica challenge, and cross-protected mice from infection by Ehrlichia chaffeensis, the agent of human monocytic ehrlichiosis. Our findings shed light on the extracellular stage of Ehrlichia, highlighting the importance of RipE and ATP levels in Ehrlichia for extracellular resistance and the next cycle of infection. Thus, RipE is a critical Ehrlichia protein for infection as such can be a potential vaccine target for ehrlichiosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Zhang T, Chien RC, Budachetri K, Lin M, Boyaka P, Huang W, Rikihisa Y. Ehrlichia effector TRP120 manipulates bacteremia to facilitate tick acquisition. mBio 2024; 15:e0047624. [PMID: 38501870 PMCID: PMC11005420 DOI: 10.1128/mbio.00476-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Ehrlichia species are obligatory intracellular bacteria that cause a potentially fatal disease, human ehrlichiosis. The biomolecular mechanisms of tick acquisition of Ehrlichia and transmission between ticks and mammals are poorly understood. Ehrlichia japonica infection of mice recapitulates the full spectrum of human ehrlichiosis. We compared the pathogenicity and host acquisition of wild-type E. japonica with an isogenic transposon mutant of E. japonica that lacks tandem repeat protein 120 (TRP120) (ΔTRP120). Both wild-type and ΔTRP120 E. japonica proliferated similarly in cultures of mammalian and tick cells. Upon inoculation into mice, both wild-type and ΔTRP120 E. japonica multiplied to high levels in various tissues, with similar clinical chemistry and hematologic changes, proinflammatory cytokine induction, and fatal disease. However, the blood levels of ΔTRP120 E. japonica were almost undetectable within 24 h, whereas the levels of the wild type increased exponentially. Greater than 90% of TRP120 was released from infected cells into the culture medium. Mouse blood monocytes exposed to native TRP120 from culture supernatants showed significantly reduced cell surface expression of the transmigration-related markers Ly6C and CD11b. Larval ticks attached to mice infected with either wild-type or ΔTRP120 E. japonica imbibed similar amounts of blood and subsequently molted to nymphs at similar rates. However, unlike wild-type E. japonica, the ΔTRP120 mutant was minimally acquired by larval ticks and subsequent molted nymphs and, thus, failed to transmit to naïve mice. Thus, TRP120 is required for bacteremia but not disease. These findings suggest a novel mechanism whereby an obligatory intracellular bacterium manipulates infected blood monocytes to sustain the tick-mammal transmission cycle. IMPORTANCE Effective prevention of tick-borne diseases such as human ehrlichiosis requires an understanding of how disease-causing organisms are acquired. Ehrlichia species are intracellular bacteria that require infection of both mammals and ticks, involving cycles of transmission between them. Mouse models of ehrlichiosis and tick-mouse transmission can advance our fundamental understanding of the pathogenesis and prevention of ehrlichiosis. Herein, a mutant of Ehrlichia japonica was used to investigate the role of a single Ehrlichia factor, named tandem repeat protein 120 (TRP120), in infection of mammalian and tick cells in culture, infection and disease progression in mice, and tick acquisition of E. japonica from infected mice. Our results suggest that TRP120 is necessary only for Ehrlichia proliferation in circulating mouse blood and ongoing bacteremia to permit Ehrlichia acquisition by ticks. This study provides new insights into the importance of bacterial factors in regulating bacteremia, which may facilitate tick acquisition of pathogens.
Collapse
Affiliation(s)
- Tsian Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Rory C. Chien
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Khemraj Budachetri
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Prosper Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Weiyan Huang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Gillespie JJ, Salje J. Orientia and Rickettsia: different flowers from the same garden. Curr Opin Microbiol 2023; 74:102318. [PMID: 37080115 DOI: 10.1016/j.mib.2023.102318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Recent discoveries of basal extracellular Rickettsiales have illuminated divergent evolutionary paths to host dependency in later-evolving lineages. Family Rickettsiaceae, primarily comprised of numerous protist- and invertebrate-associated species, also includes human pathogens from two genera, Orientia and Rickettsia. Once considered sister taxa, these bacteria form distinct lineages with newly appreciated lifestyles and morphological traits. Contrasting other rickettsial human pathogens in Family Anaplasmataceae, Orientia and Rickettsia species do not reside in host-derived vacuoles and lack glycolytic potential. With only a few described mechanisms, strategies for commandeering host glycolysis to support cytosolic growth remain to be discovered. While regulatory systems for this unique mode of intracellular parasitism are unclear, conjugative transposons unique to Orientia and Rickettsia species provide insights that are critical for determining how these obligate intracellular pathogens overtake eukaryotic cytosol.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, USA.
| | - Jeanne Salje
- Department of Biochemistry, Department of Pathology, and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Gordon JL, Oliva Chavez AS, Martinez D, Vachiery N, Meyer DF. Possible biased virulence attenuation in the Senegal strain of Ehrlichia ruminantium by ntrX gene conversion from an inverted segmental duplication. PLoS One 2023; 18:e0266234. [PMID: 36800354 PMCID: PMC9937504 DOI: 10.1371/journal.pone.0266234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/16/2022] [Indexed: 02/18/2023] Open
Abstract
Ehrlichia ruminantium is a tick-borne intracellular pathogen of ruminants that causes heartwater, a disease present in Sub-saharan Africa, islands in the Indian Ocean and the Caribbean, inducing significant economic losses. At present, three avirulent strains of E. ruminantium (Gardel, Welgevonden and Senegal isolates) have been produced by a process of serial passaging in mammalian cells in vitro, but unfortunately their use as vaccines do not offer a large range of protection against other strains, possibly due to the genetic diversity present within the species. So far no genetic basis for virulence attenuation has been identified in any E. ruminantium strain that could offer targets to facilitate vaccine production. Virulence attenuated Senegal strains have been produced twice independently, and require many fewer passages to attenuate than the other strains. We compared the genomes of a virulent and attenuated Senegal strain and identified a likely attenuator gene, ntrX, a global transcription regulator and member of a two-component system that is linked to environmental sensing. This gene has an inverted partial duplicate close to the parental gene that shows evidence of gene conversion in different E. ruminantium strains. The pseudogenisation of the gene in the avirulent Senegal strain occurred by gene conversion from the duplicate to the parent, transferring a 4 bp deletion which is unique to the Senegal strain partial duplicate amongst the wild isolates. We confirmed that the ntrX gene is not expressed in the avirulent Senegal strain by RT-PCR. The inverted duplicate structure combined with the 4 bp deletion in the Senegal strain can explain both the attenuation and the faster speed of attenuation in the Senegal strain relative to other strains of E. ruminantium. Our results identify nrtX as a promising target for the generation of attenuated strains of E. ruminantium by random or directed mutagenesis that could be used for vaccine production.
Collapse
Affiliation(s)
- Jonathan L. Gordon
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | - Adela S. Oliva Chavez
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | | | | | - Damien F. Meyer
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
5
|
Liang Q, Yan J, Zhang S, Yang N, Li M, Jin Y, Bai F, Wu W, Cheng Z. CtrA activates the expression of glutathione S-transferase conferring oxidative stress resistance to Ehrlichia chaffeensis. Front Cell Infect Microbiol 2022; 12:1081614. [PMID: 36579340 PMCID: PMC9791040 DOI: 10.3389/fcimb.2022.1081614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Ehrlichia chaffeensis, the causative agent of human monocytic ehrlichiosis (HME), is a Gram-negative obligatory intracellular bacterium, which infects and multiplies in human monocytes and macrophages. Host immune cells produce reactive oxygen species (ROS) to eliminate E. chaffeensis upon infection. E. chaffeensis global transcriptional regulator CtrA activates the expression of GshA and GshB to synthesize glutathione (GSH), the most potent natural antioxidant, upon oxidative stress to combat ROS damage. However, the mechanisms exploited by E. chaffeensis to utilize GSH are still unknown. Here, we found that in E. chaffeensis CtrA activated the expression of glutathione S-transferase (GST) upon oxidative stress, and E. chaffeensis GST utilizes GSH to eliminate ROS and confers the oxidative stress resistance to E. chaffeensis. We found that CtrA bound to the promoter regions of 211 genes, including gst, in E. chaffeensis using chromatin immunoprecipitation coupled to deep sequencing (ChIP-seq). Recombinant E. chaffeensis CtrA directly bound to the gst promoter region determined with electrophoretic mobility shift assay (EMSA), and activated the gst expression determined with reporter assay. Recombinant GST showed GSH conjugation activity towards its typical substrate 2,4-dinitrochlorobenzene (CDNB) in vitro and peptide nucleic acid (PNA) transfection of E. chaffeensis, which can knock down the gst transcription level, reduced bacterial survival upon oxidative stress. Our results demonstrate that E. chaffeensis CtrA regulates GSH utilization, which plays a critical role in resistance to oxidative stress, and aid in the development of new therapeutics for HME.
Collapse
|
6
|
Liu H, Knox CA, Jakkula LUMR, Wang Y, Peddireddi L, Ganta RR. Evaluating EcxR for Its Possible Role in Ehrlichia chaffeensis Gene Regulation. Int J Mol Sci 2022; 23:12719. [PMID: 36361509 PMCID: PMC9657007 DOI: 10.3390/ijms232112719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 04/14/2024] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted intraphagosomal bacterium, is the causative agent of human monocytic ehrlichiosis. The pathogen also infects several other vertebrate hosts. E. chaffeensis has a biphasic developmental cycle during its growth in vertebrate monocytes/macrophages and invertebrate tick cells. Host- and vector-specific differences in the gene expression from many genes of E. chaffeensis are well documented. It is unclear how the organism regulates gene expression during its developmental cycle and for its adaptation to vertebrate and tick host cell environments. We previously mapped promoters of several E. chaffeensis genes which are recognized by its only two sigma factors: σ32 and σ70. In the current study, we investigated in assessing five predicted E. chaffeensis transcription regulators; EcxR, CtrA, MerR, HU and Tr1 for their possible roles in regulating the pathogen gene expression. Promoter segments of three genes each transcribed with the RNA polymerase containing σ70 (HU, P28-Omp14 and P28-Omp19) and σ32 (ClpB, DnaK and GroES/L) were evaluated by employing multiple independent molecular methods. We report that EcxR binds to all six promoters tested. Promoter-specific binding of EcxR to several gene promoters results in varying levels of gene expression enhancement. This is the first detailed molecular characterization of transcription regulators where we identified EcxR as a gene regulator having multiple promoter-specific interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
7
|
Yan J, Liang Q, Chai Z, Duan N, Li X, Liu Y, Yang N, Li M, Jin Y, Bai F, Wu W, Cheng Z. Glutathione Synthesis Regulated by CtrA Protects Ehrlichia chaffeensis From Host Cell Oxidative Stress. Front Microbiol 2022; 13:846488. [PMID: 35432225 PMCID: PMC9005958 DOI: 10.3389/fmicb.2022.846488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Ehrlichia chaffeensis, a small Gram-negative obligatory intracellular bacterium, infects human monocytes or macrophages, and causes human monocytic ehrlichiosis, one of the most prevalent, life-threatening emerging zoonoses. Reactive oxygen species are produced by the host immune cells in response to bacterial infections. The mechanisms exploited by E. chaffeensis to resist oxidative stress have not been comprehensively demonstrated. Here, we found that E. chaffeensis encodes two functional enzymes, GshA and GshB, to synthesize glutathione that confers E. chaffeensis the oxidative stress resistance, and that the expression of gshA and gshB is upregulated by CtrA, a global transcriptional regulator, upon oxidative stress. We found that in E. chaffeensis, the expression of gshA and gshB was upregulated upon oxidative stress using quantitative RT-PCR. Ehrlichia chaffeensis GshA or GshB restored the ability of Pseudomonas aeruginosa GshA or GshB mutant to cope with oxidative stress, respectively. Recombinant E. chaffeensis CtrA directly bound to the promoters of gshA and gshB, determined with electrophoretic mobility shift assay, and activated the expression of gshA and gshB determined with reporter assay. Peptide nucleic acid transfection of E. chaffeensis, which reduced the CtrA protein level, inhibited the oxidative stress-induced upregulation of gshA and gshB. Our findings provide insights into the function and regulation of the two enzymes critical for E. chaffeensis resistance to oxidative stress and may deepen our understanding of E. chaffeensis pathogenesis and adaptation in hosts.
Collapse
Affiliation(s)
- Jiaqi Yan
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qi'an Liang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhouyi Chai
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Nan Duan
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoxiao Li
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yajing Liu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Nan Yang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Meifang Li
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Beasley EA, Pessôa-Pereira D, Scorza BM, Petersen CA. Epidemiologic, Clinical and Immunological Consequences of Co-Infections during Canine Leishmaniosis. Animals (Basel) 2021; 11:3206. [PMID: 34827938 PMCID: PMC8614518 DOI: 10.3390/ani11113206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Canine leishmaniosis (CanL) is a vector-borne, parasitic disease. CanL is endemic in the Mediterranean basin and South America but also found in Northern Africa, Asia, and the U.S. Regions with both competent sand fly vectors and L. infantum parasites are also endemic for additional infectious diseases that could cause co-infections in dogs. Growing evidence indicates that co-infections can impact immunologic responses and thus the clinical course of both CanL and the comorbid disease(s). The aim for this review is to summarize epidemiologic, clinical, and immunologic factors contributing to eight primary co-infections reported with CanL: Ehrlichia spp., Anaplasma spp., Borrelia spp., Babesia spp., Trypanosoma cruzi, Toxoplasma gondii, Dirofilaria immitis, Paracoccidioides braziliensis. Co-infection causes mechanistic differences in immunity which can alter diagnostics, therapeutic management, and prognosis of dogs with CanL. More research is needed to further explore immunomodulation during CanL co-infection(s) and their clinical impact.
Collapse
Affiliation(s)
- Erin A. Beasley
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Danielle Pessôa-Pereira
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Breanna M. Scorza
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Christine A. Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Lin M, Xiong Q, Chung M, Daugherty SC, Nagaraj S, Sengamalay N, Ott S, Godinez A, Tallon LJ, Sadzewicz L, Fraser C, Dunning Hotopp JC, Rikihisa Y. Comparative Analysis of Genome of Ehrlichia sp. HF, a Model Bacterium to Study Fatal Human Ehrlichiosis. BMC Genomics 2021; 22:11. [PMID: 33407096 PMCID: PMC7789307 DOI: 10.1186/s12864-020-07309-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The genus Ehrlichia consists of tick-borne obligatory intracellular bacteria that can cause deadly diseases of medical and agricultural importance. Ehrlichia sp. HF, isolated from Ixodes ovatus ticks in Japan [also referred to as I. ovatus Ehrlichia (IOE) agent], causes acute fatal infection in laboratory mice that resembles acute fatal human monocytic ehrlichiosis caused by Ehrlichia chaffeensis. As there is no small laboratory animal model to study fatal human ehrlichiosis, Ehrlichia sp. HF provides a needed disease model. However, the inability to culture Ehrlichia sp. HF and the lack of genomic information have been a barrier to advance this animal model. In addition, Ehrlichia sp. HF has several designations in the literature as it lacks a taxonomically recognized name. RESULTS We stably cultured Ehrlichia sp. HF in canine histiocytic leukemia DH82 cells from the HF strain-infected mice, and determined its complete genome sequence. Ehrlichia sp. HF has a single double-stranded circular chromosome of 1,148,904 bp, which encodes 866 proteins with a similar metabolic potential as E. chaffeensis. Ehrlichia sp. HF encodes homologs of all virulence factors identified in E. chaffeensis, including 23 paralogs of P28/OMP-1 family outer membrane proteins, type IV secretion system apparatus and effector proteins, two-component systems, ankyrin-repeat proteins, and tandem repeat proteins. Ehrlichia sp. HF is a novel species in the genus Ehrlichia, as demonstrated through whole genome comparisons with six representative Ehrlichia species, subspecies, and strains, using average nucleotide identity, digital DNA-DNA hybridization, and core genome alignment sequence identity. CONCLUSIONS The genome of Ehrlichia sp. HF encodes all known virulence factors found in E. chaffeensis, substantiating it as a model Ehrlichia species to study fatal human ehrlichiosis. Comparisons between Ehrlichia sp. HF and E. chaffeensis will enable identification of in vivo virulence factors that are related to host specificity, disease severity, and host inflammatory responses. We propose to name Ehrlichia sp. HF as Ehrlichia japonica sp. nov. (type strain HF), to denote the geographic region where this bacterium was initially isolated.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| | - Qingming Xiong
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sean C Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sushma Nagaraj
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Al Godinez
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Claire Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| |
Collapse
|
10
|
Lindsey ARI. Sensing, Signaling, and Secretion: A Review and Analysis of Systems for Regulating Host Interaction in Wolbachia. Genes (Basel) 2020; 11:E813. [PMID: 32708808 PMCID: PMC7397232 DOI: 10.3390/genes11070813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Wolbachia (Anaplasmataceae) is an endosymbiont of arthropods and nematodes that resides within host cells and is well known for manipulating host biology to facilitate transmission via the female germline. The effects Wolbachia has on host physiology, combined with reproductive manipulations, make this bacterium a promising candidate for use in biological- and vector-control. While it is becoming increasingly clear that Wolbachia's effects on host biology are numerous and vary according to the host and the environment, we know very little about the molecular mechanisms behind Wolbachia's interactions with its host. Here, I analyze 29 Wolbachia genomes for the presence of systems that are likely central to the ability of Wolbachia to respond to and interface with its host, including proteins for sensing, signaling, gene regulation, and secretion. Second, I review conditions under which Wolbachia alters gene expression in response to changes in its environment and discuss other instances where we might hypothesize Wolbachia to regulate gene expression. Findings will direct mechanistic investigations into gene regulation and host-interaction that will deepen our understanding of intracellular infections and enhance applied management efforts that leverage Wolbachia.
Collapse
Affiliation(s)
- Amelia R I Lindsey
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
11
|
Bekebrede H, Lin M, Teymournejad O, Rikihisa Y. Discovery of in vivo Virulence Genes of Obligatory Intracellular Bacteria by Random Mutagenesis. Front Cell Infect Microbiol 2020; 10:2. [PMID: 32117791 PMCID: PMC7010607 DOI: 10.3389/fcimb.2020.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/06/2020] [Indexed: 11/13/2022] Open
Abstract
Ehrlichia spp. are emerging tick-borne obligatory intracellular bacteria that cause febrile and sometimes fatal diseases with abnormal blood cell counts and signs of hepatitis. Ehrlichia HF strain provides an excellent mouse disease model of fatal human ehrlichiosis. We recently obtained and established stable culture of Ehrlichia HF strain in DH82 canine macrophage cell line, and obtained its whole genome sequence and annotation. To identify genes required for in vivo virulence of Ehrlichia, we constructed random insertional HF strain mutants by using Himar1 transposon-based mutagenesis procedure. Of total 158 insertional mutants isolated via antibiotic selection in DH82 cells, 74 insertions were in the coding regions of 55 distinct protein-coding genes, including TRP120 and multi-copy genes, such as p28/omp-1, virB2, and virB6. Among 84 insertions mapped within the non-coding regions, seven are located in the putative promoter region since they were within 50 bp upstream of the seven distinct genes. Using limited dilution methods, nine stable clonal mutants that had no apparent defect for multiplication in DH82 cells, were obtained. Mouse virulence of seven mutant clones was similar to that of wild-type HF strain, whereas two mutant clones showed significantly retarded growth in blood, livers, and spleens, and the mice inoculated with them lived longer than mice inoculated with wild-type. The two clones contained mutations in genes encoding a conserved hypothetical protein and a staphylococcal superantigen-like domain protein, respectively, and both genes are conserved among Ehrlichia spp., but lack homology to other bacterial genes. Inflammatory cytokine mRNA levels in the liver of mice infected with the two mutants were significantly diminished than those infected with HF strain wild-type, except IL-1β and IL-12 p40 in one clone. Thus, we identified two Ehrlichia virulence genes responsible for in vivo infection, but not for infection and growth in macrophages.
Collapse
Affiliation(s)
| | | | | | - Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
13
|
Lin M, Bachman K, Cheng Z, Daugherty SC, Nagaraj S, Sengamalay N, Ott S, Godinez A, Tallon LJ, Sadzewicz L, Fraser C, Dunning Hotopp JC, Rikihisa Y. Analysis of complete genome sequence and major surface antigens of Neorickettsia helminthoeca, causative agent of salmon poisoning disease. Microb Biotechnol 2017; 10:933-957. [PMID: 28585301 PMCID: PMC5481527 DOI: 10.1111/1751-7915.12731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/09/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neorickettsia helminthoeca, a type species of the genus Neorickettsia, is an endosymbiont of digenetic trematodes of veterinary importance. Upon ingestion of salmonid fish parasitized with infected trematodes, canids develop salmon poisoning disease (SPD), an acute febrile illness that is particularly severe and often fatal in dogs without adequate treatment. We determined and analysed the complete genome sequence of N. helminthoeca: a single small circular chromosome of 884 232 bp encoding 774 potential proteins. N. helminthoeca is unable to synthesize lipopolysaccharides and most amino acids, but is capable of synthesizing vitamins, cofactors, nucleotides and bacterioferritin. N. helminthoeca is, however, distinct from majority of the family Anaplasmataceae to which it belongs, as it encodes nearly all enzymes required for peptidoglycan biosynthesis, suggesting its structural hardiness and inflammatory potential. Using sera from dogs that were experimentally infected by feeding with parasitized fish or naturally infected in southern California, Western blot analysis revealed that among five predicted N. helminthoeca outer membrane proteins, P51 and strain-variable surface antigen were uniformly recognized. Our finding will help understanding pathogenesis, prevalence of N. helminthoeca infection among trematodes, canids and potentially other animals in nature to develop effective SPD diagnostic and preventive measures. Recent progresses in large-scale genome sequencing have been uncovering broad distribution of Neorickettsia spp., the comparative genomics will facilitate understanding of biology and the natural history of these elusive environmental bacteria.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Katherine Bachman
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Zhihui Cheng
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Sean C Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sushma Nagaraj
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Al Godinez
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Claire Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| |
Collapse
|
14
|
Abstract
Human ehrlichiosis and anaplasmosis are acute febrile tick-borne infectious diseases caused by various members from the genera Ehrlichia and Anaplasma. Ehrlichia chaffeensis is the major etiologic agent of human monocytotropic ehrlichiosis (HME), while Anaplasma phagocytophilum is the major cause of human granulocytic anaplasmosis (HGA). The clinical manifestations of HME and HGA ranges from subclinical to potentially life-threatening diseases associated with multi-organ failure. Macrophages and neutrophils are the major target cells for Ehrlichia and Anaplasma, respectively. The threat to public health is increasing with newly emerging ehrlichial and anaplasma agents, yet vaccines for human ehrlichioses and anaplasmosis are not available, and therapeutic options are limited. This article reviews recent advances in the understanding of HME and HGA.
Collapse
|
15
|
Fernández I, Cornaciu I, Carrica MDC, Uchikawa E, Hoffmann G, Sieira R, Márquez JA, Goldbaum FA. Three-Dimensional Structure of Full-Length NtrX, an Unusual Member of the NtrC Family of Response Regulators. J Mol Biol 2017; 429:1192-1212. [PMID: 28088479 DOI: 10.1016/j.jmb.2016.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
Bacteria sense and adapt to environmental changes using two-component systems. These signaling pathways are formed by a histidine kinase that phosphorylates a response regulator (RR), which finally modulates the transcription of target genes. The bacterium Brucella abortus codes for a two-component system formed by the histidine kinase NtrY and the RR NtrX that participates in sensing low oxygen tension and generating an adaptive response. NtrX is a modular protein with REC, AAA+, and DNA-binding domains, an architecture that classifies it among the NtrC subfamily of RRs. However, it lacks the signature GAFTGA motif that is essential for activating transcription by the mechanism proposed for canonical members of this subfamily. In this article, we present the first crystal structure of full-length NtrX, which is also the first structure of a full-length NtrC-like RR with all the domains solved, showing that the protein is structurally similar to other members of the subfamily. We also report that NtrX binds nucleotides and the structures of the protein bound to ATP and ADP. Despite binding ATP, NtrX does not have ATPase activity and does not form oligomers in response to phosphorylation or nucleotide binding. We also identify a nucleotide sequence recognized by NtrX that allows it to bind to a promoter region that regulates its own transcription and to establish a negative feedback mechanism to modulate its expression. Overall, this article provides a detailed description of the NtrX RR and supports that it functions by a mechanism different to classical NtrC-like RRs.
Collapse
Affiliation(s)
- Ignacio Fernández
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Irina Cornaciu
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | | | - Emiko Uchikawa
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Guillaume Hoffmann
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Rodrigo Sieira
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - José Antonio Márquez
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| |
Collapse
|
16
|
Abstract
Ehrlichia chaffeensis is an obligatory intracellular and cholesterol-dependent bacterium that has evolved special proteins and functions to proliferate inside leukocytes and cause disease. E. chaffeensis has a multigene family of major outer membrane proteins with porin activity and induces infectious entry using its entry-triggering protein to bind the human cell surface protein DNase X. During intracellular replication, three functional pairs of two-component systems are sequentially expressed to regulate metabolism, aggregation, and the development of stress-resistance traits for transmission. A type IV secretion effector of E. chaffeensis blocks mitochondrion-mediated host cell apoptosis. Several type I secretion proteins are secreted at the Ehrlichia-host interface. E. chaffeensis strains induce strikingly variable inflammation in mice. The central role of MyD88, but not Toll-like receptors, suggests that Ehrlichia species have unique inflammatory molecules. A recent report about transient targeted mutagenesis and random transposon mutagenesis suggests that stable targeted knockouts may become feasible in Ehrlichia.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
17
|
Lina TT, Farris T, Luo T, Mitra S, Zhu B, McBride JW. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy. Front Cell Infect Microbiol 2016; 6:58. [PMID: 27303657 PMCID: PMC4885862 DOI: 10.3389/fcimb.2016.00058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023] Open
Abstract
Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.
Collapse
Affiliation(s)
- Taslima T Lina
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Tierra Farris
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Shubhajit Mitra
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Bing Zhu
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Jere W McBride
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical BranchGalveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
18
|
De Bolle X, Crosson S, Matroule JY, Letesson JJ. Brucella abortus Cell Cycle and Infection Are Coordinated. Trends Microbiol 2015; 23:812-821. [PMID: 26497941 DOI: 10.1016/j.tim.2015.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/09/2015] [Accepted: 09/24/2015] [Indexed: 12/29/2022]
Abstract
Brucellae are facultative intracellular pathogens. The recent development of methods and genetically engineered strains allowed the description of cell-cycle progression of Brucella abortus, including unipolar growth and the ordered initiation of chromosomal replication. B. abortus cell-cycle progression is coordinated with intracellular trafficking in the endosomal compartments. Bacteria are first blocked at the G1 stage, growth and chromosome replication being resumed shortly before reaching the intracellular proliferation compartment. The control mechanisms of cell cycle are similar to those reported for the bacterium Caulobacter crescentus, and they are crucial for survival in the host cell. The development of single-cell analyses could also be applied to other bacterial pathogens to investigate their cell-cycle progression during infection.
Collapse
Affiliation(s)
- Xavier De Bolle
- University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Sean Crosson
- University of Chicago, Gordon Center for Integrative Science W125, 929 E. 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
19
|
Fernández I, Otero LH, Klinke S, Carrica MDC, Goldbaum FA. Snapshots of Conformational Changes Shed Light into the NtrX Receiver Domain Signal Transduction Mechanism. J Mol Biol 2015; 427:3258-3272. [DOI: 10.1016/j.jmb.2015.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/11/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
|
20
|
Comparative analysis of wolbachia genomes reveals streamlining and divergence of minimalist two-component systems. G3-GENES GENOMES GENETICS 2015; 5:983-96. [PMID: 25809075 PMCID: PMC4426382 DOI: 10.1534/g3.115.017137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied Caulobacter crescentus system, which carries dozens of these pairs, the streamlined bacterial endosymbiont Wolbachia pipientis encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from C. crescentus, the related Anaplasmataceae species Anaplasma phagocytophilum and Ehrlichia chaffeensis, and 12 sequenced Wolbachia strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within Wolbachia and these other Anaplasmataceae. Genes involved in two-component signaling were positioned differently within the various Wolbachia genomes, whereas the local context of each gene was conserved. Unlike Anaplasma and Ehrlichia, Wolbachia two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in Wolbachia, although residues that specify cognate pairing diverged substantially from other Anaplasmataceae. These findings indicate that Wolbachia two-component signaling pairs share considerable functional overlap with other α-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk.
Collapse
|
21
|
Ehrlichia chaffeensis proliferation begins with NtrY/NtrX and PutA/GlnA upregulation and CtrA degradation induced by proline and glutamine uptake. mBio 2014; 5:e02141. [PMID: 25425236 PMCID: PMC4251998 DOI: 10.1128/mbio.02141-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
How the obligatory intracellular bacterium Ehrlichia chaffeensis begins to replicate upon entry into human monocytes is poorly understood. Here, we examined the potential role of amino acids in initiating intracellular replication. PutA converts proline to glutamate, and GlnA converts glutamate to glutamine. E. chaffeensis PutA and GlnA complemented Escherichia coli putA and glnA mutants. Methionine sulfoximine, a glutamine synthetase inhibitor, inhibited E. chaffeensis GlnA activity and E. chaffeensis infection of human cells. Incubation of E. chaffeensis with human cells rapidly induced putA and glnA expression that peaked at 24 h postincubation. E. chaffeensis took up proline and glutamine but not glutamate. Pretreatment of E. chaffeensis with a proline transporter inhibitor (protamine), a glutamine transporter inhibitor (histidine), or proline analogs inhibited E. chaffeensis infection, whereas pretreatment with proline or glutamine enhanced infection and upregulated putA and glnA faster than no treatment or glutamate pretreatment. The temporal response of putA and glnA expression was similar to that of NtrY and NtrX, a two-component system, and electrophoretic mobility shift assays showed specific binding of recombinant E. chaffeensis NtrX (rNtrX) to the promoter regions of E. chaffeensis putA and glnA. Furthermore, rNtrX transactivated E. chaffeensis putA and glnA promoter-lacZ fusions in E. coli. Growth-promoting activities of proline and glutamine were also accompanied by rapid degradation of the DNA-binding protein CtrA. Our results suggest that proline and glutamine uptake regulates putA and glnA expression through NtrY/NtrX and facilitates degradation of CtrA to initiate a new cycle of E. chaffeensis growth. Human monocytic ehrlichiosis (HME) is one of the most prevalent, life-threatening emerging infectious zoonoses in the United States. HME is caused by infection with E. chaffeensis, an obligatory intracellular bacterium in the order Rickettsiales, which includes several category B/C pathogens, such as those causing Rocky Mountain spotted fever and epidemic typhus. The limited understanding of the mechanisms that control bacterial growth within eukaryotic cells continues to impede the identification of new therapeutic targets against rickettsial diseases. Extracellular rickettsia cannot replicate, but rickettsial replication ensues upon entry into eukaryotic host cells. Our findings will provide insights into a novel mechanism of the two-component system that regulates E. chaffeensis growth initiation in human monocytes. The result is also important because little is known about the NtrY/NtrX two-component system in any bacteria, let alone obligatory intracellular bacteria. Our findings will advance the field’s current conceptual paradigm on regulation of obligatory intracellular nutrition, metabolism, and growth.
Collapse
|
22
|
Herrera-Martínez A, Ruiz-Medrano R, Galván-Gordillo SV, Toscano-Morales R, Gómez-Silva L, Valdés M, Hinojosa-Moya J, Xoconostle-Cázares B. A 2-component system is involved in the early stages of the Pisolithus tinctorius-Pinus greggii symbiosis. PLANT SIGNALING & BEHAVIOR 2014; 9:e28604. [PMID: 24704731 PMCID: PMC4091502 DOI: 10.4161/psb.28604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
Ectomycorrhizal symbiosis results in profound morphological and physiological modifications in both plant and fungus. This in turn is the product of differential gene expression in both co-symbionts, giving rise to specialized cell types capable of performing novel functions. During the precolonization stage, chemical signals from root exudates are sensed by the ectomycorrizal fungus, and vice versa, which are in principle responsible for the observed change in the developmental symbionts program. Little is known about the molecular mechanisms involved in the signaling and recognition between ectomycorrhizal fungi and their host plants. In the present work, we characterized a novel lactone, termed pinelactone, and identified a gene encoding for a histidine kinase in Pisolithus tictorius, which function is proposed to be the perception of the aforementioned metabolites. In this study, the use of closantel, a specific inhibitor of histidine kinase phosphorylation, affected the capacity for fungal colonization in the symbiosis between Pisolithus tinctorius and Pinus greggii, indicating that a 2-component system (TCS) may operate in the early events of plant-fungus interaction. Indeed, the metabolites induced the accumulation of Pisolithus tinctorius mRNA for a putative histidine kinase (termed Pthik1). Of note, Pthik1 was able to partially complement a S. cerevisiae histidine kinase mutant, demonstrating its role in the response to the presence of the aforementioned metabolites. Our results indicate a role of a 2-component pathway in the early stages of ectomycorrhizal symbiosis before colonization. Furthermore, a novel lactone from Pinus greggii root exudates may activate a signal transduction pathway that contributes to the establishment of the ectomycorrhizal symbiosis.
Collapse
Affiliation(s)
- Aseneth Herrera-Martínez
- Departamento de Biotecnología y Bioingeniería; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco, México, D.F
- Facultad de Ingeniería; Universidad Autónoma de Baja California; Mexicali B.C. México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco, México, D.F
| | - Santiago Valentín Galván-Gordillo
- Departamento de Biotecnología y Bioingeniería; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco, México, D.F
| | - Roberto Toscano-Morales
- Departamento de Biotecnología y Bioingeniería; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco, México, D.F
| | | | - María Valdés
- Escuela Nacional de Ciencias Biológicas; IPN; México D.F
| | - Jesús Hinojosa-Moya
- Facultad de Ingeniería Química; Benemérita Universidad Autónoma de Puebla; Ciudad Universitaria; Puebla, México
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco, México, D.F
| |
Collapse
|
23
|
Dunphy PS, Luo T, McBride JW. Ehrlichia moonlighting effectors and interkingdom interactions with the mononuclear phagocyte. Microbes Infect 2013; 15:1005-16. [PMID: 24141087 PMCID: PMC3886233 DOI: 10.1016/j.micinf.2013.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 01/19/2023]
Abstract
Ehrlichia chaffeensis is an obligately intracellular gram negative bacterium with a small genome that thrives in mammalian mononuclear phagocytes by exploiting eukaryotic processes. Herein, we discuss the latest findings on moonlighting tandem repeat protein effectors and their secretion mechanisms, and novel molecular interkingdom interactions that provide insight into the intracellular pathobiology of ehrlichiae.
Collapse
Affiliation(s)
- Paige Selvy Dunphy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
24
|
Van der Henst C, de Barsy M, Zorreguieta A, Letesson JJ, De Bolle X. The Brucella pathogens are polarized bacteria. Microbes Infect 2013; 15:998-1004. [PMID: 24141086 DOI: 10.1016/j.micinf.2013.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Abstract
Brucella pathogens are responsible for brucellosis, a worldwide zoonosis. They are facultative intracellular pathogens characterized by their asymmetric division and their unipolar growth. This growth modality generates poles with specialized functions (through polar recruitment of polar adhesins or of cell cycle regulators) and progeny cells with potentially different fates.
Collapse
Affiliation(s)
- Charles Van der Henst
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Characterization of an ntrX mutant of Neisseria gonorrhoeae reveals a response regulator that controls expression of respiratory enzymes in oxidase-positive proteobacteria. J Bacteriol 2013; 195:2632-41. [PMID: 23564168 DOI: 10.1128/jb.02062-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.
Collapse
|
26
|
Abstract
Brucella strains encounter oxygen deprivation during their intracellular replication in host cells, and the capacity of these bacteria to utilize NO(3) as an alternative electron acceptor for respiration plays an important role in their successful adaption to their intracellular niche. In this issue of Molecular Microbiology, Carrica et al (2012). report that NtrY and NtrX comprise a redox-responsive two-component regulator in Brucella abortus 2308 that responds to decreasing levels of O(2) and induces the expression of this strain's denitrification genes. Thus, NtrYX joins the increasing number of genetic regulators that contribute to the metabolic versatility required for the virulence of Brucella strains in their mammalian hosts.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | |
Collapse
|
27
|
Cheng Z, Miura K, Popov VL, Kumagai Y, Rikihisa Y. Insights into the CtrA regulon in development of stress resistance in obligatory intracellular pathogen Ehrlichia chaffeensis. Mol Microbiol 2011; 82:1217-34. [PMID: 22014113 DOI: 10.1111/j.1365-2958.2011.07885.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium that causes human monocytic ehrlichiosis. Ehrlichiae have a biphasic developmental cycle consisting of dense-cored cells (DCs) and reticulate cells (RCs). Isolated DCs are more stress resistant and infectious than RCs. Here, we report that a response regulator, CtrA was upregulated in human monocytes at the late growth stage when DCs develop. E. chaffeensis CtrA bound to the promoters of late-stage transcribed genes: ctrA, ompA (peptidoglycan-associated lipoprotein), bolA (stress-induced morphogen) and surE (stationary-phase survival protein), which contain CtrA-binding motifs, and transactivated ompA, surE and bolA promoter-lacZ fusions in Escherichia coli. OmpA was predominantly expressed in DCs. E. chaffeensis binding to and subsequent infection of monocytes were inhibited by anti-OmpA IgG. E. chaffeensis BolA bound to the promoters of genes encoding outer surface proteins TRP120 and ECH_1038, which were expressed in DCs, and transactivated trp120 and ECH_1038 promoter-lacZ fusions. E. chaffeensis bolA complemented a stress-sensitive E. coli bolA mutant. E. coli expressing E. chaffeensis SurE exhibited increased resistance to osmotic stress. Our results suggest that E. chaffeensis CtrA plays a role in co-ordinating development of the stress resistance for passage from the present to the next host cells through its regulon.
Collapse
Affiliation(s)
- Zhihui Cheng
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
28
|
Troese MJ, Kahlon A, Ragland SA, Ottens AK, Ojogun N, Nelson KT, Walker NJ, Borjesson DL, Carlyon JA. Proteomic analysis of Anaplasma phagocytophilum during infection of human myeloid cells identifies a protein that is pronouncedly upregulated on the infectious dense-cored cell. Infect Immun 2011; 79:4696-707. [PMID: 21844238 PMCID: PMC3257945 DOI: 10.1128/iai.05658-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/02/2011] [Indexed: 01/31/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that invades neutrophils to cause the emerging infectious disease human granulocytic anaplasmosis. A. phagocytophilum undergoes a biphasic developmental cycle, transitioning between an infectious dense-cored cell (DC) and a noninfectious reticulate cell (RC). To gain insights into the organism's biology and pathogenesis during human myeloid cell infection, we conducted proteomic analyses on A. phagocytophilum organisms purified from HL-60 cells. A total of 324 proteins were unambiguously identified, thereby verifying 23.7% of the predicted A. phagocytophilum proteome. Fifty-three identified proteins had been previously annotated as hypothetical or conserved hypothetical. The second most abundant gene product, after the well-studied major surface protein 2 (P44), was the hitherto hypothetical protein APH_1235. APH_1235 homologs are found in other Anaplasma and Ehrlichia species but not in other bacteria. The aph_1235 RNA level is increased 70-fold in the DC form relative to that in the RC form. Transcriptional upregulation of and our ability to detect APH_1235 correlate with RC to DC transition, DC exit from host cells, and subsequent DC binding and entry during the next round of infection. Immunoelectron microscopy pronouncedly detects APH_1235 on DC organisms, while detection on RC bacteria minimally, at best, exceeds background. This work represents an extensive study of the A. phagocytophilum proteome, discerns the complement of proteins that is generated during survival within human myeloid cells, and identifies APH_1235 as the first known protein that is pronouncedly upregulated on the infectious DC form.
Collapse
Affiliation(s)
| | | | | | - Andrew K. Ottens
- Anatomy and Neurobiology
- Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | | | - Kristina T. Nelson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia
| | - Naomi J. Walker
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California 95616
| | - Dori L. Borjesson
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine, Davis, California 95616
| | | |
Collapse
|
29
|
New insight into immunity and immunopathology of Rickettsial diseases. Clin Dev Immunol 2011; 2012:967852. [PMID: 21912565 PMCID: PMC3170826 DOI: 10.1155/2012/967852] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/17/2011] [Indexed: 02/01/2023]
Abstract
Human rickettsial diseases comprise a variety of clinical entities caused by microorganisms belonging to the genera Rickettsia, Orientia, Ehrlichia, and Anaplasma. These microorganisms are characterized by a strictly intracellular location which has, for long, impaired their detailed study. In this paper, the critical steps taken by these microorganisms to play their pathogenic roles are discussed in detail on the basis of recent advances in our understanding of molecular Rickettsia-host interactions, preferential target cells, virulence mechanisms, three-dimensional structures of bacteria effector proteins, upstream signalling pathways and signal transduction systems, and modulation of gene expression. The roles of innate and adaptive immune responses are discussed, and potential new targets for therapies to block host-pathogen interactions and pathogen virulence mechanisms are considered.
Collapse
|
30
|
Cyclic dimeric GMP signaling regulates intracellular aggregation, sessility, and growth of Ehrlichia chaffeensis. Infect Immun 2011; 79:3905-12. [PMID: 21788390 DOI: 10.1128/iai.05320-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cyclic dimeric GMP (c-di-GMP), a bacterial second messenger, is known to regulate bacterial biofilm and sessility. Replication of an obligatory intracellular pathogen, Ehrlichia chaffeensis, is characterized by formation of bacterial aggregates called morulae inside membrane-bound inclusions. When E. chaffeensis matures into an infectious form, morulae become loose to allow bacteria to exit from host cells to infect adjacent cells. E. chaffeensis expresses a sensor kinase, PleC, and a cognate response regulator, PleD, which can produce c-di-GMP. A hydrophobic c-di-GMP antagonist, 2'-O-di(tert-butyldimethysilyl)-c-di-GMP (CDGA) inhibits E. chaffeensis internalization into host cells by facilitating degradation of some bacterial surface proteins via endogenous serine proteases. In the present study, we found that PleC and PleD were upregulated synchronously during exponential growth of bacteria, concomitant with increased morula size. While CDGA did not affect host cells, when infected cells were treated with CDGA, bacterial proliferation was inhibited, morulae became less compact, and the intracellular movement of bacteria was enhanced. Concurrently, CDGA treatment facilitated the extracellular release of bacteria with lower infectivity than those spontaneously released from sham-treated cells. Addition of CDGA to isolated inclusions induced dispersion of the morulae, degradation of an inclusion matrix protein TRP120, and bacterial intrainclusion movement, all of which were blocked by a serine protease inhibitor. These results suggest that c-di-GMP signaling regulates aggregation and sessility of E. chaffeensis within the inclusion through stabilization of matrix proteins by preventing the serine protease activity, which is associated with bacterial intracellular proliferation and maturation.
Collapse
|
31
|
A novel sensor kinase is required for Bordetella bronchiseptica to colonize the lower respiratory tract. Infect Immun 2011; 79:3216-28. [PMID: 21606184 DOI: 10.1128/iai.00005-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacterial virulence is influenced by the activity of two-component regulator systems (TCSs), which consist of membrane-bound sensor kinases that allow bacteria to sense the external environment and cytoplasmic, DNA-binding response regulator proteins that control appropriate gene expression. Respiratory pathogens of the Bordetella genus require the well-studied TCS BvgAS to control the expression of many genes required for colonization of the mammalian respiratory tract. Here we describe the identification of a novel gene in Bordetella bronchiseptica, plrS, the product of which shares sequence homology to several NtrY-family sensor kinases and is required for B. bronchiseptica to colonize and persist in the lower, but not upper, respiratory tract in rats and mice. The plrS gene is located immediately 5' to and presumably cotranscribed with a gene encoding a putative response regulator, supporting the idea that PlrS and the product of the downstream gene may compose a TCS. Consistent with this hypothesis, the PlrS-dependent colonization phenotype requires a conserved histidine that serves as the site of autophosphorylation in other sensor kinases, and in strains lacking plrS, the production and/or cellular localization of several immune-recognized proteins is altered in comparison to that in the wild-type strain. Because plrS is required for colonization and persistence only in the lower respiratory tract, a site where innate and adaptive immune mechanisms actively target infectious agents, we hypothesize that its role may be to allow Bordetella to resist the host immune response.
Collapse
|
32
|
Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y. Global proteomic analysis of two tick-borne emerging zoonotic agents: anaplasma phagocytophilum and ehrlichia chaffeensis. Front Microbiol 2011; 2:24. [PMID: 21687416 PMCID: PMC3109344 DOI: 10.3389/fmicb.2011.00024] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Anaplasma phagocytophilum and Ehrlichia chaffeensis are obligatory intracellular α-proteobacteria that infect human leukocytes and cause potentially fatal emerging zoonoses. In the present study, we determined global protein expression profiles of these bacteria cultured in the human promyelocytic leukemia cell line, HL-60. Mass spectrometric (MS) analyses identified a total of 1,212 A. phagocytophilum and 1,021 E. chaffeensis proteins, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively. Nearly all bacterial proteins (≥99%) with known functions were expressed, whereas only approximately 80% of “hypothetical” proteins were detected in infected human cells. Quantitative MS/MS analyses indicated that highly expressed proteins in both bacteria included chaperones, enzymes involved in biosynthesis and metabolism, and outer membrane proteins, such as A. phagocytophilum P44 and E. chaffeensis P28/OMP-1. Among 113 A. phagocytophilum p44 paralogous genes, 110 of them were expressed and 88 of them were encoded by pseudogenes. In addition, bacterial infection of HL-60 cells up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down-regulated some pattern recognition receptors involved in innate immunity. Our proteomics data represent a comprehensive analysis of A. phagocytophilum and E. chaffeensis proteomes, and provide a quantitative view of human host protein expression profiles regulated by bacterial infection. The availability of these proteomic data will provide new insights into biology and pathogenesis of these obligatory intracellular pathogens.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University Columbus, OH, USA
| | | | | | | | | |
Collapse
|
33
|
Molecular and cellular pathobiology of Ehrlichia infection: targets for new therapeutics and immunomodulation strategies. Expert Rev Mol Med 2011; 13:e3. [PMID: 21276277 DOI: 10.1017/s1462399410001730] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ehrlichia are small obligately intracellular bacteria in the order Rickettsiales that are transmitted by ticks and associated with emerging life-threatening human zoonoses. Vaccines are not available for human ehrlichiosis, and therapeutic options are limited to a single antibiotic class. New technologies for exploring host-pathogen interactions have yielded recent advances in understanding the molecular interactions between Ehrlichia and the eukaryotic host cell and identified new targets for therapeutic and vaccine development, including those that target pathogen virulence mechanisms or disrupt the processes associated with ehrlichial effector proteins. Animal models have also provided insight into immunopathological mechanisms that contribute significantly to understanding severe disease manifestations, which should lead to the development of immunomodulatory approaches for treating patients nearing or experiencing severe disease states. In this review, we discuss the recent advances in our understanding of molecular and cellular pathobiology and the immunobiology of Ehrlichia infection. We identify new molecular host-pathogen interactions that can be targets of new therapeutics, and discuss prospects for treating the immunological dysregulation during acute infection that leads to life-threatening complications.
Collapse
|
34
|
McBride JW, Walker DH. Progress and obstacles in vaccine development for the ehrlichioses. Expert Rev Vaccines 2010; 9:1071-82. [PMID: 20822349 DOI: 10.1586/erv.10.93] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ehrlichia are tick-borne obligately intracellular bacteria that cause significant diseases in veterinary natural hosts, including livestock and companion animals, and are now considered important zoonotic pathogens in humans. Vaccines are needed for these veterinary and zoonotic human pathogens, but many obstacles exist that have impeded their development. These obstacles include understanding genetic and antigenic variability, influence of the host on the pathogen phenotype and immunogenicity, identification of the ehrlichial antigens that stimulate protective immunity and those that elicit immunopathology, development of animal models that faithfully reflect the immune responses of the hosts and understanding molecular host-pathogen interactions involved in immune evasion or that may be blocked by the host immune response. We review the obstacles and progress in addressing barriers associated with vaccine development to protect livestock, companion animals and humans against these host defense-evasive and cell function-manipulative, vector-transmitted pathogens.
Collapse
Affiliation(s)
- Jere W McBride
- Department of Pathology, Center for Emerging Infectious Diseases and Biodefense, Sealy Center for Vaccine Development, and the Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | |
Collapse
|
35
|
Klippel N, Cui S, Groebe L, Bilitewski U. Deletion of the Candida albicans histidine kinase gene CHK1 improves recognition by phagocytes through an increased exposure of cell wall beta-1,3-glucans. MICROBIOLOGY-SGM 2010; 156:3432-3444. [PMID: 20688824 DOI: 10.1099/mic.0.040006-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathogenic fungus Candida albicans is able to cover its most potent proinflammatory cell wall molecules, the β-glucans, underneath a dense mannan layer, so that the pathogen becomes partly invisible for immune cells such as phagocytes. As the C. albicans histidine kinases Chk1p, Cos1p and CaSln1p had been reported to be involved in virulence and cell wall biosynthesis, we investigated whether deletion of the respective genes influences the activity of phagocytes against C. albicans. We found that among all histidine kinase genes, CHK1 plays a prominent role in phagocyte activation. Uptake of the deletion mutant Δchk1 as well as the acidification of Δchk1-carrying phagosomes was significantly increased compared with the parental strain. These improved activities could be correlated with an enhanced accessibility of the mutant β-1,3-glucans for immunolabelling. In addition, any inhibition of β-1,3-glucan-mediated phagocytosis resulted in a reduced uptake of Δchk1, while ingestion of the parental strain was hardly affected. Moreover, deletion of CHK1 caused an enhanced release of interleukins 6 and 10, indicating a stronger activation of the β-1,3-glucan receptor dectin-1. In conclusion, the Chk1p protein is likely to be involved in masking β-1,3-glucans from immune recognition. As there are no homologues of fungal histidine kinases in mammals, Chk1p has to be considered as a promising target for new antifungal agents.
Collapse
Affiliation(s)
- Nina Klippel
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Shuna Cui
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lothar Groebe
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Ursula Bilitewski
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
36
|
Cyclic di-GMP signaling regulates invasion by Ehrlichia chaffeensis of human monocytes. J Bacteriol 2010; 192:4122-33. [PMID: 20562302 DOI: 10.1128/jb.00132-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a bacterial second messenger produced by GGDEF domain-containing proteins. The genome of Ehrlichia chaffeensis, an obligatory intracellular bacterium that causes human monocytic ehrlichiosis, encodes a single protein that contains a GGDEF domain, called PleD. In this study, we investigated the effects of c-di-GMP signaling on E. chaffeensis infection of the human monocytic cell line THP-1. Recombinant E. chaffeensis PleD showed diguanylate cyclase activity as it generated c-di-GMP in vitro. Because c-di-GMP is not cell permeable, the c-di-GMP hydrophobic analog 2'-O-di(tert-butyldimethylsilyl)-c-di-GMP (CDGA) was used to examine intracellular c-di-GMP signaling. CDGA activity was first tested with Salmonella enterica serovar Typhimurium. CDGA inhibited well-defined c-di-GMP-regulated phenomena, including cellulose synthesis, clumping, and upregulation of csgD and adrA mRNA, indicating that CDGA acts as an antagonist in c-di-GMP signaling. [(32)P]c-di-GMP bound several E. chaffeensis native proteins and two E. chaffeensis recombinant I-site proteins, and this binding was blocked by CDGA. Although pretreatment of E. chaffeensis with CDGA did not reduce bacterial binding to THP-1 cells, bacterial internalization was reduced. CDGA facilitated protease-dependent degradation of particular, but not all, bacterial surface-exposed proteins, including TRP120, which is associated with bacterial internalization. Indeed, the serine protease HtrA was detected on the surface of E. chaffeensis, and TRP120 was degraded by treatment of E. chaffeensis with recombinant E. chaffeensis HtrA. Furthermore, anti-HtrA inhibited CDGA-induced TRP120 degradation. Our results suggest that E. chaffeensis invasion is regulated by c-di-GMP signaling, which stabilizes some bacterial surface-exposed proteins against proteases.
Collapse
|
37
|
Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 2010; 8:328-39. [PMID: 20372158 DOI: 10.1038/nrmicro2318] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anaplasma spp. and Ehrlichia spp. cause several emerging human infectious diseases. Anaplasma phagocytophilum and Ehrlichia chaffeensis are transmitted between mammals by blood-sucking ticks and replicate inside mammalian white blood cells and tick salivary-gland and midgut cells. Adaptation to a life in eukaryotic cells and transmission between hosts has been assisted by the deletion of many genes that are present in the genomes of free-living bacteria (including genes required for the biosynthesis of lipopolysaccharide and peptidoglycan), by the acquisition of a cholesterol uptake pathway and by the expansion of the repertoire of genes encoding the outer-membrane porins and type IV secretion system. Here, I review the specialized properties and other adaptations of these intracellular bacteria.
Collapse
|
38
|
Rikihisa Y. Molecular events involved in cellular invasion by Ehrlichia chaffeensis and Anaplasma phagocytophilum. Vet Parasitol 2009; 167:155-66. [PMID: 19836896 DOI: 10.1016/j.vetpar.2009.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ehrlichia chaffeensis and Anaplasma phagocytophilum are obligatory intracellular bacteria that preferentially replicate inside leukocytes by utilizing biological compounds and processes of these primary host defensive cells. These bacteria incorporate cholesterol from the host for their survival. Upon interaction with host monocytes and granulocytes, respectively, these bacteria usurp the lipid raft domain containing GPI-anchored protein to induce a series of signaling events that result in internalization of the bacteria. Monocytes and neutrophils usually kill invading microorganisms by fusion of the phagosomes containing the bacteria with granules containing both antimicrobial peptides and lysosomal hydrolytic enzymes and/or through sequestering vital nutrients. However, E. chaffeensis and A. phagocytophilum alter vesicular traffic to create a unique intracellular membrane-bound compartment that allows their replication in seclusion from lysosomal killing. These bacteria are quite sensitive to reactive oxygen species (ROS), so in order to survive in host cells that are primary mediators of ROS-induced killing, they inhibit activation of NADPH oxidase and assembly of this enzyme in their inclusion compartments. Moreover, host phagocyte activation and differentiation, apoptosis, and IFN-gamma signaling pathways are inhibited by these bacteria. Through reductive evolution, lipopolysaccharide and peptidoglycan that activate the innate immune response, have been eliminated from these gram-negative bacteria at the genomic level. Upon interaction with new host cells, bacterial genes encoding the Type IV secretion apparatus and the two-component regulatory system are up-regulated to sense and adapt to the host environment. Thus dynamic signal transduction events concurrently proceed both in the host cells and in the invading E. chaffeensis and A. phagocytophilum bacteria for successful establishment of intracellular infection. Several bacterial surface-exposed proteins and porins are recently identified. Further functional studies on Ehrlichia and Anaplasma effector or ligand molecules and cognate host cell receptors will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied towards treatment, diagnosis, and control of ehrlichiosis and anaplasmosis.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
39
|
Lin M, Zhang C, Gibson K, Rikihisa Y. Analysis of complete genome sequence of Neorickettsia risticii: causative agent of Potomac horse fever. Nucleic Acids Res 2009; 37:6076-91. [PMID: 19661282 PMCID: PMC2764437 DOI: 10.1093/nar/gkp642] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neorickettsia risticii is an obligate intracellular bacterium of the trematodes and mammals. Horses develop Potomac horse fever (PHF) when they ingest aquatic insects containing encysted N. risticii-infected trematodes. The complete genome sequence of N. risticii Illinois consists of a single circular chromosome of 879 977 bp and encodes 38 RNA species and 898 proteins. Although N. risticii has limited ability to synthesize amino acids and lacks many metabolic pathways, it is capable of making major vitamins, cofactors and nucleotides. Comparison with its closely related human pathogen N. sennetsu showed that 758 (88.2%) of protein-coding genes are conserved between N. risticii and N. sennetsu. Four-way comparison of genes among N. risticii and other Anaplasmataceae showed that most genes are either shared among Anaplasmataceae (525 orthologs that generally associated with housekeeping functions), or specific to each genome (>200 genes that are mostly hypothetical proteins). Genes potentially involved in the pathogenesis of N. risticii were identified, including those encoding putative outer membrane proteins, two-component systems and a type IV secretion system (T4SS). The bipolar localization of T4SS pilus protein VirB2 on the bacterial surface was demonstrated for the first time in obligate intracellular bacteria. These data provide insights toward genomic potential of N. risticii and intracellular parasitism, and facilitate our understanding of PHF pathogenesis.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
40
|
Nuclear translocated Ehrlichia chaffeensis ankyrin protein interacts with a specific adenine-rich motif of host promoter and intronic Alu elements. Infect Immun 2009; 77:4243-55. [PMID: 19651857 DOI: 10.1128/iai.00376-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichiae are obligately intracellular bacteria that reside and replicate in phagocytes by circumventing host cell defenses and modulating cellular processes, including host cell gene transcription. However, the mechanisms by which ehrlichiae influence host gene transcription have largely remained undetermined. Numerous ankyrin and tandem repeat-containing proteins associated with host-pathogen interactions have been identified in Ehrlichia species, but their roles in pathobiology are unknown. In this study, we determined by confocal immunofluorescence microscopy and by immunodetection in purified nuclear extracts that the ankyrin repeat-containing protein p200 is translocated to the nuclei of Ehrlichia-infected monocytes. Chromatin immunoprecipitation (ChIP) with DNA sequencing revealed an Ehrlichia chaffeensis p200 interaction located within host promoter and intronic Alu-Sx elements, the most abundant repetitive elements in the human genome. A specific adenine-rich (mid-A-stretch) motif within Alu-Sx elements was identified using electrophoretic mobility shift and NoShift assays. Whole-genome analysis with ChIP and DNA microarray analysis (ChIP-chip) determined that genes (n = 456) with promoter Alu elements primarily related to transcription, apoptosis, ATPase activity, and structural proteins associated with the nucleus and membrane-bound organelles were the primary targets of p200. Several p200 target genes (encoding tumor necrosis factor alpha, Stat1, and CD48) associated with ehrlichial pathobiology were strongly upregulated during infection, as determined by quantitative PCR. This is the first study to identify a nuclear translocation of bacterially encoded protein by E. chaffeensis and to identify a specific binding motif and genes that are primary targets of a novel molecular strategy to reprogram host cell gene expression to promote survival of the pathogen.
Collapse
|
41
|
bdhA-patD operon as a virulence determinant, revealed by a novel large-scale approach for identification of Legionella pneumophila mutants defective for amoeba infection. Appl Environ Microbiol 2009; 75:4506-15. [PMID: 19411431 DOI: 10.1128/aem.00187-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is an intracellular parasite of eukaryotic cells. In the environment, it colonizes amoebae. After being inhaled into the human lung, the bacteria infect and damage alveolar cells in a way that is mechanistically similar to the amoeba infection. Several L. pneumophila traits, among those the Dot/Icm type IVB protein secretion machinery, are essential for exploiting host cells. In our search for novel Legionella virulence factors, we developed an agar plate assay, designated the scatter screen, which allowed screening for mutants deficient in infecting Acanthamoeba castellanii amoebae. Likewise, an L. pneumophila clone bank consisting of 23,000 transposon mutants was investigated here, and 19 different established Legionella virulence genes, for example, dot/icm genes, were identified. Importantly, 70 novel virulence-associated genes were found. One of those is L. pneumophila bdhA, coding for a protein with homology to established 3-hydroxybutyrate dehydrogenases involved in poly-3-hydroxybutyrate metabolism. Our study revealed that bdhA is cotranscribed with patD, encoding a patatin-like protein of L. pneumophila showing phospholipase A and lysophospholipase A activities. In addition to strongly reduced lipolytic activities and increased poly-3-hydroxybutyrate levels, the L. pneumophila bdhA-patD mutant showed a severe replication defect in amoebae and U937 macrophages. Our data suggest that the operon is involved in poly-3-hydroxybutyrate utilization and phospholipolysis and show that the bdhA-patD operon is a virulence determinant of L. pneumophila. In summary, the screen for amoeba-sensitive Legionella clones efficiently isolated mutants that do not grow in amoebae and, in the case of the bdhA-patD mutant, also human cells.
Collapse
|
42
|
An Ehrlichia chaffeensis tandem repeat protein interacts with multiple host targets involved in cell signaling, transcriptional regulation, and vesicle trafficking. Infect Immun 2009; 77:1734-45. [PMID: 19273555 DOI: 10.1128/iai.00027-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes forming cytoplasmic membrane-bound microcolonies called morulae. To survive and replicate within phagocytes, E. chaffeensis exploits the host cell by modulating a number of host cell processes, but the ehrlichial effector proteins involved are unknown. In this study, we determined that p47, a secreted, differentially expressed, tandem repeat (TR) protein, interacts with multiple host proteins associated with cell signaling, transcriptional regulation, and vesicle trafficking. Yeast two-hybrid analysis revealed that p47 interacts with polycomb group ring finger 5 (PCGF5) protein, Src protein tyrosine kinase FYN (FYN), protein tyrosine phosphatase non-receptor type 2 (PTPN2), and adenylate cyclase-associated protein 1 (CAP1). p47 interaction with these proteins was further confirmed by coimmunoprecipitation assays and colocalization in HeLa cells transfected with p47-green fluorescent fusion protein (AcGFP1-p47). Moreover, confocal microscopy demonstrated p47-expressing dense-cored (DC) ehrlichiae colocalized with PCGF5, FYN, PTPN2, and CAP1. An amino-terminally truncated form of p47 containing TRs interacted only with PCGF5 and not with FYN, PTPN2, and CAP1, indicating differences in p47 domains that are involved in these interactions. These results demonstrate that p47 is involved in a complex network of interactions involving numerous host cell proteins. Furthermore, this study provides a new insight into the molecular and functional distinction of DC ehrlichiae, as well as the effector proteins involved in facilitating ehrlichial survival in mononuclear phagocytes.
Collapse
|
43
|
Cyclic Di-GMP (c-Di-GMP) goes into host cells--c-Di-GMP signaling in the obligate intracellular pathogen Anaplasma phagocytophilum. J Bacteriol 2008; 191:683-6. [PMID: 19047357 DOI: 10.1128/jb.01593-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
44
|
The Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic Di-GMP in host cell infection. J Bacteriol 2008; 191:693-700. [PMID: 18978058 DOI: 10.1128/jb.01218-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum, the etiologic agent of human granulocytic anaplasmosis (HGA), has genes predicted to encode three sensor kinases, one of which is annotated PleC, and three response regulators, one of which is PleD. Prior to this study, the roles of PleC and PleD in the obligatory intracellular parasitism of A. phagocytophilum and their biochemical activities were unknown. The present study illustrates the relevance of these factors by demonstrating that both pleC and pleD were expressed in an HGA patient. During A. phagocytophilum development in human promyelocytic HL-60 cells, PleC and PleD were synchronously upregulated at the exponential growth stage and downregulated prior to extracellular release. A recombinant PleC kinase domain (rPleCHKD) has histidine kinase activity; no activity was observed when the conserved site of phosphorylation was replaced with alanine. A recombinant PleD (rPleD) has autokinase activity using phosphorylated rPleCHKD as the phosphoryl donor but not with two other recombinant histidine kinases. rPleCHKD could not serve as the phosphoryl donor for a mutant rPleD (with a conserved aspartic acid, the site of phosphorylation, replaced by alanine) or two other A. phagocytophilum recombinant response regulators. rPleD had diguanylate cyclase activity to generate cyclic (c) di-GMP from GTP in vitro. UV cross-linking of A. phagocytophilum lysate with c-di-[(32)P]GMP detected an approximately 47-kDa endogenous protein, presumably c-di-GMP downstream receptor. A new hydrophobic c-di-GMP derivative, 2'-O-di(tert-butyldimethylsilyl)-c-di-GMP, inhibited A. phagocytophilum infection in HL-60 cells. Our results suggest that the two-component PleC-PleD system is a diguanylate cyclase and that a c-di-GMP-receptor complex regulates A. phagocytophilum intracellular infection.
Collapse
|
45
|
Four VirB6 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles. J Bacteriol 2008; 191:278-86. [PMID: 18952796 DOI: 10.1128/jb.01031-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type IV secretion system is an important virulence factor in several host cell-associated pathogens, as it delivers various bacterial macromolecules to target eukaryotic cells. Genes homologous to several virB genes and virD4 of Agrobacterium tumefaciens are found in an intravacuolar pathogen Ehrlichia chaffeensis, the tick-borne causative agent of human monocytic ehrlichiosis. In particular, despite its small genome size, E. chaffeensis has four tandem virB6 paralogs (virB6-1, -2, -3, and -4) that are 3- to 10-fold larger than A. tumefaciens virB6. The present study for the first time illustrates the relevance of the larger quadruple VirB6 paralogs by demonstrating the protein expression and interaction in E. chaffeensis. All four virB6 paralogs were cotranscribed in THP-1 human leukemia and ISE6 tick cell cultures. The four VirB6 proteins and VirB9 were expressed by E. chaffeensis in THP-1 cells, and amounts of these five proteins were similar in isolated E. chaffeensis-containing vacuoles and vacuole-free E. chaffeensis. In addition, an 80-kDa fragment of VirB6-2 was detected, which was strikingly more prevalent in E. chaffeensis-containing vacuoles than in vacuole-free E. chaffeensis. Coimmunoprecipitation analysis revealed VirB9 interaction with VirB6-1 and VirB6-2; VirB6-4 interaction with VirB6-1, VirB6-2, and VirB6-3; and VirB6-2 80-kDa fragment interaction with VirB6-3 and VirB6-4. The interaction of VirB9 and VirB6-2 was confirmed by far-Western blotting. The results suggest that E. chaffeensis VirB9, the quadruple VirB6 proteins, and the VirB6-2 80-kDa fragment form a unique molecular subassembly to cooperate in type IV secretion.
Collapse
|
46
|
Wassem R, Kobayashi H, Kambara K, Le Quéré A, Walker GC, Broughton WJ, Deakin WJ. TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol Microbiol 2008; 68:736-48. [PMID: 18363648 DOI: 10.1111/j.1365-2958.2008.06187.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infection of legumes by Rhizobium sp. NGR234 and subsequent development of nitrogen-fixing nodules are dependent on the coordinated actions of Nod factors, proteins secreted by a type III secretion system (T3SS) and modifications to surface polysaccharides. The production of these signal molecules is dependent on plant flavonoids which trigger a regulatory cascade controlled by the transcriptional activators NodD1, NodD2, SyrM2 and TtsI. TtsI is known to control the genes responsible for T3SS function and synthesis of a symbiotically important rhamnose-rich lipo-polysaccharide, most probably by binding to cis elements termed tts boxes. Eleven tts boxes were identified in the promoter regions of target genes on the symbiotic plasmid of NGR234. Expression profiles of lacZ fusions to these tts boxes showed that they are part of a TtsI-dependent regulon induced by plant-derived flavonoids. TtsI was purified and demonstrated to bind directly to two of these tts boxes. DNase I footprinting revealed that TtsI occupied not only the tts box consensus sequence, but also upstream and downstream regions in a concentration-dependent manner. Highly conserved bases of the consensus tts box were mutated and, although TtsI binding was still observed in vitro, gfp fusions were no longer transcribed in vivo. Random mutagenesis of a tts box-containing promoter revealed more nucleotides critical for transcriptional activity outside of the consensus.
Collapse
Affiliation(s)
- Roseli Wassem
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Sciences III, 30 Quai Ernest-Ansermet, Université de Genève, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
47
|
Regulation of type IV secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein. J Bacteriol 2008; 190:2096-105. [PMID: 18192398 DOI: 10.1128/jb.01813-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The type IV secretion (T4S) system is critical for the virulence of several pathogens. In the rickettsial pathogen Ehrlichia chaffeensis, the virBD genes are split into two operons, the virB3-virB6 (preceded by sodB) and virB8-virD4 operons. Between these two operons, there are duplications of virB4, virB8, and virB9. In this study we found that transcription of all five loci was downregulated prior to the release of E. chaffeensis from host THP-1 cells and was upregulated at the initiation of exponential growth. Electrophoretic mobility shift assays revealed an E. chaffeensis-encoded protein that specifically bound to the promoter regions upstream of the virBD loci. The protein was purified from the bacterial lysate by affinity chromatography using a biotinylated promoter region upstream of sodB. Mass spectrometry identified the protein as an E. chaffeensis 12.3-kDa hypothetical protein, which was designated EcxR. Recombinant EcxR bound to the promoter regions upstream of five individual virBD loci. EcxR also activated transcription of all five virBD loci in lacZ reporter constructs. The expression of ecxR was positively autoregulated by EcxR. These results suggest that the five virBD loci are coordinately regulated by EcxR to allow developmental stage-specific expression of the T4S system in E. chaffeensis.
Collapse
|