1
|
Pan J, Yao WL, Liu LP, Wang BS, Chai WZ, Huang Z, Fan XP, He WH, Wang WH, Zhang WD. Moniezia benedeni infection increases IgE + cells in sheep (Ovis aries) small intestine. Vet Parasitol 2024; 328:110169. [PMID: 38520755 DOI: 10.1016/j.vetpar.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
The concentration of immunoglobulin (Ig) E is the lowest among serum Igs, but it can induces type I hypersensitivity and plays an important role in anti-parasitic infection. The present study aimed to explore the residence characteristics of IgE+ cells in the sheep small intestine and the impact of Moniezia benedeni infection on them. The recombinant plasmids pET-28a-IgE were constructed and induced and expressed in Escherichia coli. BL21 (DE3). The rabbit anti-sheep IgE polyclonal antibody was prepared using the obtained recombinant protein as antigen. Finally, the levels of IgE+ cells in the small intestine of healthy (Control group) and naturally M. benedeni-infected (Infected group) sheep were detected analyzed. The results showed that the rabbit anti-sheep IgE polyclonal antibody with good immunogenicity (titer = 1: 128000) could specifically bind to the heavy chain of natural sheep IgE. In the Control group, the IgE+ cells were mainly distributed in lamina propria of the small intestine, and the densities were significantly decreased from duodenum to ileum (P<0.05), with respective values of (4.28 cells / 104 μm2, 1.80 cells / 104 μm2, and 1.44 cells / 104 μm2 in duodenum, jejunum, and ileum. In the Infected group, IgE+ cells density were 6.26 cells / 104 μm2, 3.01 cells / 104 μm2, and 2.09 cells / 104 μm2 in duodenum, jejunum and ileum respectively, which were significantly higher in all segments compared to the Control group (P<0.05), increasing by 46.26%, 67.22% and 45.14%, respectively. In addition, compared with the Control group, the IgE protein levels were significantly increased in all intestinal segments of the Infected group (P<0.01), however, there was no significant differences among the different intestinal segments within the same group (P>0.05). The results demonstrated that M. benedeni infection could significantly increase the content of IgE and the distribution density of its secreting cells in sheep small intestine. The intestinal mucosal immune system of sheep presented obvious specificity against M. benedeni infection. This lays a good foundation for further exploring molecular mechanisms of the intestinal mucosal immune system monitoring and responding to M. benedeni infection.
Collapse
Affiliation(s)
- Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Li-Ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Bao-Shan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wen-Zhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xi-Ping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wan-Hong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
2
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
3
|
Sakyi SA, Wilson MD, Adu B, Opoku S, Brewoo A, Larbi A, Baafour EK, Tchum SK, Saahene RO, Aniagyei W, Sewor C, Courtin D, Cappello M, Gyan B, Amoani B. Plasmodium falciparum coinfection is associated with improved IgE and IgG3 response against hookworm antigens. Health Sci Rep 2022; 5:e672. [PMID: 35734341 PMCID: PMC9195015 DOI: 10.1002/hsr2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/17/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Background Plasmodium falciparum and Hookworm infections are prevalent in West Africa and they cause iron deficiency anemia and protein malnutrition in Children. Immune response of these parasites interact and their interactions could have repercussions on vaccine development and efficacy. The current goal of hookworm eradication lies on vaccination. We evaluated the effect of P. falciparum coinfection and albendazole treatment on naturally acquired antibody profile against hookworm L3 stage larvae antigen. Methods In a longitudinal study, 40 individuals infected with Necator americanus only, 63 participants infected with N. americanus and P. falciparum, and 36 nonendemic controls (NECs) were recruited. The study was done in the Kintampo North Metropolis of Ghana. Stool and blood samples were taken for laboratory analyses. Serum samples were obtained before hookworm treatment and 3 weeks after treatment. Results The malaria-hookworm (N. americanus and P. falciparum) coinfected subjects had significantly higher levels of IgE (β = 0.30, 95% CI = [0.12, 0.48], p = 0.023) and IgG3 (β = 0.15, 95% CI = [0.02, 0.52], p = 0.004) compared to those infected with hookworm only (N. americanus). The N. americanus groups had significantly higher levels of IgG3 (β = 0.39, 95% CI = [0.14-0.62], p = 0.002) compared to the control group. Similarly, N. americanus and P. falciparum coinfected participants had significantly higher levels of IgE (β = 0.35, 95% CI = [0.70-0.39], p = 0.002) and IgG3 (β = 0.54, 95% CI = [0.22-0.76], p = 0.002). Moreover, albendazole treatment led to a significant reduction in IgE, IgA, IgM, and IgG3 antibodies against hookworm L3 stage larvae (p < 0.05). Conclusion P. falciparum is associated with improved IgE and IgG response against hookworm L3 stage larvae. Treatment with single dose of albendazole led to reduction in naturally acquired immune response against hookworm infection. Thus, P. falciparum infection may have a boosting effect on hookworm vaccine effectiveness.
Collapse
Affiliation(s)
- Samuel A. Sakyi
- Department of Molecular Medicine, School of Medical SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Michael D. Wilson
- Parasitology Department, Noguchi Memorial Institute for Medical ResearchCollege of Health Sciences, University of GhanaLegonGhana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical ResearchCollege of Health Sciences, University of GhanaLegonGhana
| | - Stephen Opoku
- Department of Molecular Medicine, School of Medical SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Center for Collaborative Research in Tropical MedicineKumasiGhana
| | - Antwi Brewoo
- Department of Microbiology and Immunology, School of Medical SciencesUniversity of Cape CoastCapeGhana
| | - Amma Larbi
- Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Emmanuel K. Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical ResearchCollege of Health Sciences, University of GhanaLegonGhana
| | - Samuel K. Tchum
- Kintampo Health Research Center, Ghana Health ServiceKintampo‐NorthGhana
| | - Roland O. Saahene
- Department of Microbiology and Immunology, School of Medical SciencesUniversity of Cape CoastCapeGhana
| | - Wilfred Aniagyei
- Department of Molecular Medicine, School of Medical SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Center for Collaborative Research in Tropical MedicineKumasiGhana
| | - Christian Sewor
- Department of Biomedical Sciences, School of Allied Health SciencesUniversity of Cape CoastCape CoastGhana
| | - David Courtin
- UMR 261 MERITInstitut de Recherche pour le Développement (IRD), Université de ParisParisFrance
| | - Michael Cappello
- Partnerships for Global Health, Department of Pediatrics, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Ben Gyan
- Department of Immunology, Noguchi Memorial Institute for Medical ResearchCollege of Health Sciences, University of GhanaLegonGhana
| | - Benjamin Amoani
- Department of Biomedical Sciences, School of Allied Health SciencesUniversity of Cape CoastCape CoastGhana
| |
Collapse
|
4
|
Pearson MS, Tedla BA, Becker L, Nakajima R, Jasinskas A, Mduluza T, Mutapi F, Oeuvray C, Greco B, Sotillo J, Felgner PL, Loukas A. Immunomics-Guided Antigen Discovery for Praziquantel-Induced Vaccination in Urogenital Human Schistosomiasis. Front Immunol 2021; 12:663041. [PMID: 34113343 PMCID: PMC8186320 DOI: 10.3389/fimmu.2021.663041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the enormous morbidity attributed to schistosomiasis, there is still no vaccine to combat the disease for the hundreds of millions of infected people. The anthelmintic drug, praziquantel, is the mainstay treatment option, although its molecular mechanism of action remains poorly defined. Praziquantel treatment damages the outermost surface of the parasite, the tegument, liberating surface antigens from dying worms that invoke a robust immune response which in some subjects results in immunologic resistance to reinfection. Herein we term this phenomenon Drug-Induced Vaccination (DIV). To identify the antigenic targets of DIV antibodies in urogenital schistosomiasis, we constructed a recombinant proteome array consisting of approximately 1,000 proteins informed by various secretome datasets including validated proteomes and bioinformatic predictions. Arrays were screened with sera from human subjects treated with praziquantel and shown 18 months later to be either reinfected (chronically infected subjects, CI) or resistant to reinfection (DIV). IgG responses to numerous antigens were significantly elevated in DIV compared to CI subjects, and indeed IgG responses to some antigens were completely undetectable in CI subjects but robustly recognized by DIV subjects. One antigen in particular, a cystatin cysteine protease inhibitor stood out as a unique target of DIV IgG, so recombinant cystatin was produced, and its vaccine efficacy assessed in a heterologous Schistosoma mansoni mouse challenge model. While there was no significant impact of vaccination with adjuvanted cystatin on adult worm numbers, highly significant reductions in liver egg burdens (45-55%, P<0.0001) and intestinal egg burdens (50-54%, P<0.0003) were achieved in mice vaccinated with cystatin in two independent trials. This study has revealed numerous antigens that are targets of DIV antibodies in urogenital schistosomiasis and offer promise as subunit vaccine targets for a drug-linked vaccination approach to controlling schistosomiasis.
Collapse
Affiliation(s)
- Mark S. Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Bemnet A. Tedla
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Al Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Takafira Mduluza
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA) at the University of Edinburgh based in Harare (TIBA Zimbabwe), Harare, Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology and infection Research, Ashworth Laboratories, Edinburgh, United Kingdom
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA) at the University of Edinburgh, Edinburgh, United Kingdom
| | - Claude Oeuvray
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA) at the University of Edinburgh, Edinburgh, United Kingdom
| | - Beatrice Greco
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA (Darmstadt, Germany), Eysins, Switzerland
| | - Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Philip L. Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
5
|
Molehin AJ. Current Understanding of Immunity Against Schistosomiasis: Impact on Vaccine and Drug Development. Res Rep Trop Med 2020; 11:119-128. [PMID: 33173371 PMCID: PMC7646453 DOI: 10.2147/rrtm.s274518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease inflicting significant morbidity in humans worldwide. The disease is caused by infections with a parasitic trematode belonging to the genus Schistosoma. Over 250 million people are currently infected globally, with an estimated disability-adjusted life-years of 1.9 million attributed to the disease. Current understanding, based on several immunological studies using experimental and human models of schistosomiasis, reveals that complex immune mechanisms play off each other in the acquisition of immune resistance to infection/reinfection. Nevertheless, the precise characteristics of these responses, the specific antigens against which they are elicited, and how these responses are intricately regulated are still being investigated. What is apparent is that immunity to schistosome infections develops slowly and over a prolonged period of time, augmented by the death of adult worms occurring naturally or by praziquantel therapy. In this review, aspects of immunity to schistosomiasis, host–parasite interactions and their impact on schistosomiasis vaccine development are discussed.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.,Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Reed SG, Carter D, Casper C, Duthie MS, Fox CB. Correlates of GLA family adjuvants' activities. Semin Immunol 2018; 39:22-29. [PMID: 30366662 PMCID: PMC6289613 DOI: 10.1016/j.smim.2018.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharide (LPS) is a well-defined agonist of Toll-like receptor (TLR) 4 that activates innate immune responses and influences the development of the adaptive response during infection with Gram-negative bacteria. Many years ago, Dr. Edgar Ribi separated the adjuvant activity of LPS from its toxic effects, an effort that led to the development of monophosphoryl lipid A (MPL). MPL, derived from Salmonella minnesota R595, has progressed through clinical development and is now used in various product-enabling formulations to support the generation of antigen-specific responses in several commercial and preclinical vaccines. We have generated several synthetic lipid A molecules, foremost glucopyranosyl lipid adjuvant (GLA) and second-generation lipid adjuvant (SLA), and have advanced these to clinical trial for various indications. In this review we summarize the potential and current positioning of TLR4-based adjuvant formulations in approved and emerging vaccines.
Collapse
Affiliation(s)
- Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Darrick Carter
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Corey Casper
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Malcolm S Duthie
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| | - Christopher B Fox
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA 98102 USA.
| |
Collapse
|
7
|
Ndombi EM, Abudho B, Kittur N, Carter JM, Korir H, Riner DK, Ochanda H, Lee YM, Secor WE, Karanja DM, Colley DG. Effect of four rounds of annual school-wide mass praziquantel treatment for schistosoma mansoni control on schistosome-specific immune responses. Parasite Immunol 2018; 40:e12530. [PMID: 29604074 PMCID: PMC6001474 DOI: 10.1111/pim.12530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
This study evaluated potential changes in antischistosome immune responses in children from schools that received 4 rounds of annual mass drug administration (MDA) of praziquantel (PZQ). In a repeated cross‐sectional study design, 210 schistosome egg‐positive children were recruited at baseline from schools in western Kenya (baseline group). Another 251 children of the same age range were recruited from the same schools and diagnosed with schistosome infection by microscopy (post‐MDA group). In‐vitro schistosome‐specific cytokines and plasma antibody levels were measured by ELISA and compared between the 2 groups of children. Schistosome soluble egg antigen (SEA) and soluble worm antigen preparation (SWAP) stimulated higher IL‐5 production by egg‐negative children in the post‐MDA group compared to the baseline group. Similarly, anti‐SEA IgE levels were higher in egg‐negative children in the post‐MDA group compared to the baseline group. Anti‐SEA and anti‐SWAP IgG4 levels were lower in egg‐negative children in the post‐MDA group compared to baseline. This resulted in higher anti‐SEA IgE/IgG4 ratios for children in the post‐MDA group compared to baseline. These post‐MDA immunological changes are compatible with the current paradigm that treatment shifts immune responses to higher antischistosome IgE:IgG4 ratios in parallel with a potential increase in resistance to reinfection.
Collapse
Affiliation(s)
- E M Ndombi
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya.,School of Biological Sciences, University of Nairobi, Nairobi, Kenya.,Department of Pathology, Kenyatta University, Nairobi, Kenya
| | - B Abudho
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya.,Department of Biomedical Sciences, Maseno University, Maseno, Kenya
| | - N Kittur
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - J M Carter
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - H Korir
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - D K Riner
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - H Ochanda
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Y-M Lee
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - W E Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - D M Karanja
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - D G Colley
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.,Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
8
|
Ondigo BN, Ndombi EM, Nicholson SC, Oguso JK, Carter JM, Kittur N, Secor WE, Karanja DMS, Colley DG. Functional Studies of T Regulatory Lymphocytes in Human Schistosomiasis in Western Kenya. Am J Trop Med Hyg 2018; 98:1770-1781. [PMID: 29692308 PMCID: PMC6086154 DOI: 10.4269/ajtmh.17-0966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Immunoregulation is considered a common feature of Schistosoma mansoni infections, and elevated levels of T regulatory (Treg) lymphocytes have been reported during chronic human schistosomiasis. We now report that the removal of Treg (CD4+/CD25hi/CD127low lymphocytes) from peripheral blood mononuclear cells (PBMCs) of S. mansoni–infected individuals leads to increased levels of phytohemagglutinin (PHA)-stimulated interferon gamma (IFNγ) production and decreased interleukin-10 (IL-10) responses. Exposure to schistosome antigens did not result in measurable IFNγ by either PBMC or Treg-depleted populations. Interleukin-10 responses to soluble egg antigens (SEA) by PBMC were unchanged by Treg depletion, but the depletion of Treg greatly decreased IL-10 production to soluble worm antigenic preparation (SWAP). Proliferative responses to PHA increased upon Treg removal, but responses to SEA or SWAP did not, unless only initially low responders were evaluated. Addition of anti-IL-10 increased PBMC proliferative responses to either SEA or SWAP, but did not alter responses by Treg-depleted cells. Blockade by anti-transforming growth factor-beta (TGF-β) increased SEA but not SWAP proliferative responses by PBMC, whereas anti-TGF-β increased both SEA- and SWAP-stimulated responses by Treg-depleted cultures. Addition of both anti-IL-10 and anti-TGF-β to PBMC or Treg-depleted populations increased proliferation of both populations to either SEA or SWAP. These studies demonstrate that Treg appear to produce much of the antigen-stimulated IL-10, but other cell types or subsets of Treg may produce much of the TGF-β. The elevated levels of Treg seen in chronic schistosomiasis appear functional and involve IL-10 and TGF-β in antigen-specific immunoregulation perhaps leading to regulation of immunopathology and/or possibly decreased immunoprotective responses.
Collapse
Affiliation(s)
- Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric M Ndombi
- Department of Pathology, Kenyatta University, Nairobi, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sarah C Nicholson
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - John K Oguso
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jennifer M Carter
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Nupur Kittur
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - W Evan Secor
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Diana M S Karanja
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Daniel G Colley
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia.,Department of Microbiology, University of Georgia, Athens, Georgia
| |
Collapse
|
9
|
The Interdependence between Schistosome Transmission and Protective Immunity. Trop Med Infect Dis 2017; 2:tropicalmed2030042. [PMID: 30270899 PMCID: PMC6082113 DOI: 10.3390/tropicalmed2030042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 01/14/2023] Open
Abstract
Mass drug administration (MDA) for control of schistosomiasis is likely to affect transmission dynamics through a combination of passive vaccination and reduction of local transmission intensity. This is indicated in phenomenological models of immunity and the impact of MDA, yet immunity parameters in these models are not validated by empirical data that reflects protective immunity to reinfection. There is significant empirical evidence supporting the role of IgE in acquired protective immunity. This is proposed to be a form of delayed concomitant immunity, driven at least in part by protective IgE responses to the tegument allergen-like (TAL) family of proteins. Specific questions have arisen from modeling studies regarding the strength and duration of the protective immune response. At present, field studies have not been specifically designed to address these questions. There is therefore a need for field studies that are explicitly designed to capture epidemiological effects of acquired immunity to elucidate these immunological interactions. In doing so, it is important to address the discourse between theoretical modelers and immuno-epidemiologists and develop mechanistic models that empirically define immunity parameters. This is of increasing significance in a climate of potential changing transmission dynamics following long-term implementation of MDA.
Collapse
|
10
|
Specific humoral response of hosts with variable schistosomiasis susceptibility. Immunol Cell Biol 2015; 94:52-65. [PMID: 26044065 DOI: 10.1038/icb.2015.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/11/2015] [Accepted: 05/29/2015] [Indexed: 01/08/2023]
Abstract
The schistosome blood flukes are some of the largest global causes of parasitic morbidity. Further study of the specific antibody response during schistosomiasis may yield the vaccines and diagnostics needed to combat this disease. Therefore, for the purposes of antigen discovery, sera and antibody-secreting cell (ASC) probes from semi-permissive rats and sera from susceptible mice were used to screen a schistosome protein microarray. Following Schistosoma japonicum infection, rats had reduced pathology, increased antibody responses and broader antigen recognition profiles compared with mice. With successive infections, rat global serological reactivity and the number of recognized antigens increased. The local antibody response in rat skin and lung, measured with ASC probes, increased after parasite migration and contributed antigen-specific antibodies to the multivalent serological response. In addition, the temporal variation of anti-parasite serum antibodies after infection and reinfection followed patterns that appear related to the antigen driving the response. Among the 29 antigens differentially recognized by the infected hosts were numerous known vaccine candidates, drug targets and several S. japonicum homologs of human schistosomiasis resistance markers-the tegument allergen-like proteins. From this set, we prioritized eight proteins that may prove to be novel schistosome vaccine and diagnostic antigens.
Collapse
|
11
|
Nalugwa A, Nuwaha F, Tukahebwa EM, Olsen A. Single Versus Double Dose Praziquantel Comparison on Efficacy and Schistosoma mansoni Re-Infection in Preschool-Age Children in Uganda: A Randomized Controlled Trial. PLoS Negl Trop Dis 2015; 9:e0003796. [PMID: 26011733 PMCID: PMC4444284 DOI: 10.1371/journal.pntd.0003796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/28/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Schistosoma mansoni infection is proven to be a major health problem of preschool-age children in sub-Saharan Africa, yet this age category is not part of the schistosomiasis control program. The objective of this study was to compare the impact of single and double dose praziquantel (PZQ) treatment on cure rates (CRs), egg reduction rates (ERRs) and re-infection rates 8 months later, in children aged 1-5 years living along Lake Victoria, Uganda. METHODOLOGY/PRINCIPAL FINDINGS Infected children (n= 1017) were randomized to receive either a single or double dose of PZQ. Initially all children were treated with a single standard oral dose 40 mg/kg body weight of PZQ. Two weeks later a second dose was administered to children in the double dose treatment arm. Side effects were monitored at 30 minutes to 24 hours after each treatment. Efficacy in terms of CRs and ERRs for the two treatments was assessed and compared 1 month after the second treatment. Re-infection with S. mansoni was assessed in the same children 8 months following the second treatment. CRs were non-significantly higher in children treated with two 40 mg/kg PZQ doses (85.5%; 290/339) compared to a single dose (83.2%; 297/357). ERRs were significantly higher in the double dose with 99.3 (95%CI: 99.2-99.5) compared with 98.9 (95%CI: 98.7-99.1) using a single dose, (P = 0.01). Side effects occurred more frequently during the first round of drug administration and were mild and short-lived; these included vomiting, abdominal pain and bloody diarrhea. Overall re-infection rate 8 months post treatment was 44.5%. CONCLUSIONS PZQ is efficacious and relatively safe to use in preschool-age children but there is still an unmet need to improve its formulation to suit small children. Two PZQ doses lead to significant reduction in egg excretion compared to a single dose. Re-infection rates with S. mansoni 8 months post treatment is the same among children irrespective of the treatment regimen.
Collapse
Affiliation(s)
- Allen Nalugwa
- Child Health and Development Centre, Makerere University, Kampala, Uganda
| | - Fred Nuwaha
- Disease Control and Prevention, Makerere University, Kampala, Uganda
| | | | - Annette Olsen
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
12
|
Alves CC, Araujo N, dos Santos VCF, Couto FB, Assis NRG, Morais SB, Oliveira SC, Fonseca CT. Sm29, but not Sm22.6 retains its ability to induce a protective immune response in mice previously exposed to a Schistosoma mansoni infection. PLoS Negl Trop Dis 2015; 9:e0003537. [PMID: 25723525 PMCID: PMC4344193 DOI: 10.1371/journal.pntd.0003537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
Background A vaccine against schistosomiasis would have a great impact in disease elimination. Sm29 and Sm22.6 are two parasite tegument proteins which represent promising antigens to compose a vaccine. These antigens have been associated with resistance to infection and reinfection in individuals living in endemic area for the disease and induced partial protection when evaluated in immunization trials using naïve mice. Methodology/principals findings In this study we evaluated rSm29 and rSm22.6 ability to induce protection in Balb/c mice that had been previously infected with S. mansoni and further treated with Praziquantel. Our results demonstrate that three doses of the vaccine containing rSm29 were necessary to elicit significant protection (26%–48%). Immunization of mice with rSm29 induced a significant production of IL-2, IFN-γ, IL-17, IL-4; significant production of specific antibodies; increased percentage of CD4+ central memory cells in comparison with infected and treated saline group and increased percentage of CD4+ effector memory cells in comparison with naïve Balb/c mice immunized with rSm29. On the other hand, although immunization with Sm22.6 induced a robust immune response, it failed to induce protection. Conclusion/significance Our results demonstrate that rSm29 retains its ability to induce protection in previously infected animals, reinforcing its potential as a vaccine candidate. The development of a vaccine against schistosomiasis together with chemotherapy would have a great impact in the disease control and elimination. Sm29 and Sm22.6 are two promising antigens that have been associated with resistance to infection/reinfection in humans and also successfully induce protection in trials using C57BL/6 naïve mice. Despite the great results observed in C57BL/6 naïve mice, rSm29 and rSm22.6 ability to induce protection has never been assessed in mice previously exposed to the parasite antigens. In the case of schistosomiasis, this is an important assessment to be done, since the residents of endemic areas, the population mostly affected by the disease, are exposed to several infections through life. Here we evaluated these antigens in immunization trials using mice that had been submitted to a previous infection and treatment with Praziquantel. Both antigens induced a robust immune response triggering both cellular and humoral responses, but only rSm29 was able to induce a significant reduction on parasite burden and increased percentage of CD4+ memory cells. Our date reinforce Sm29 potential to compose an anti-schistosomiasis vaccine.
Collapse
Affiliation(s)
- Clarice Carvalho Alves
- Laboratório de Esquistossomose, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Barro Preto, Belo Horizonte, Minas Gerais, Brasil
| | - Neusa Araujo
- Laboratório de Esquistossomose, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Barro Preto, Belo Horizonte, Minas Gerais, Brasil
| | | | - Flávia Bubula Couto
- Laboratório de Esquistossomose, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Barro Preto, Belo Horizonte, Minas Gerais, Brasil
| | - Natan R. G. Assis
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brasil
| | - Suellen B. Morais
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brasil
| | - Sérgio Costa Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brasil
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais (INCT-DT), CNPq, MCT, Salvador, Bahia, Brasil
| | - Cristina Toscano Fonseca
- Laboratório de Esquistossomose, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Barro Preto, Belo Horizonte, Minas Gerais, Brasil
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais (INCT-DT), CNPq, MCT, Salvador, Bahia, Brasil
- * E-mail:
| |
Collapse
|
13
|
Farnell EJ, Tyagi N, Ryan S, Chalmers IW, Pinot de Moira A, Jones FM, Wawrzyniak J, Fitzsimmons CM, Tukahebwa EM, Furnham N, Maizels RM, Dunne DW. Known Allergen Structures Predict Schistosoma mansoni IgE-Binding Antigens in Human Infection. Front Immunol 2015; 6:26. [PMID: 25691884 PMCID: PMC4315118 DOI: 10.3389/fimmu.2015.00026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/12/2015] [Indexed: 12/21/2022] Open
Abstract
The IgE response has been associated with both allergic reactions and immunity to metazoan parasites. Recently, we hypothesized that all environmental allergens bear structural homology to IgE-binding antigens from metazoan parasites and that this homology defines the relatively small number of protein families containing allergenic targets. In this study, known allergen structures (Pfam domains) from major environmental allergen families were used to predict allergen-like (SmProfilin, SmVAL-6, SmLipocalin, SmHSP20, Sm triosephosphate isomerase, SmThioredoxin, Sm superoxide dismutase, SmCyclophilin, and Sm phosphoglycerate kinase) and non-allergen-like [Sm dynein light chain (SmDLC), SmAldolase SmAK, SmUbiquitin, and Sm14-3-3] proteins in Schistosoma mansoni. Recombinant antigens were produced in Escherichia coli and IgG1, IgG4, and IgE responses against them measured in a cohort of people (n = 222) infected with S. mansoni. All allergen-like antigens were targeted by IgE responses in infected subjects, whilst IgE responses to the non-allergen-like antigens, SmAK, SmUbiquitin, and Sm14-3-3 were essentially absent being of both low prevalence and magnitude. Two new IgE-binding Pfam domain families, not previously described in allergen family databases, were also found, with prevalent IgE responses against SmDLC (PF01221) and SmAldolase (PF00274). Finally, it was demonstrated that immunoregulatory serological processes typically associated with allergens also occurred in responses to allergen-like proteins in S. mansoni infections, including the production of IgG4 in people responding with IgE and the down-regulation of IgE in response to increased antigen exposure from S. mansoni eggs. This study establishes that structures of known allergens can be used to predict IgE responses against homologous parasite allergen-like molecules (parallergens) and that serological responses with IgE/IgG4 to parallergens mirror those seen against allergens, supporting our hypothesis that allergenicity is rooted in expression of certain protein domain families in metazoan parasites.
Collapse
Affiliation(s)
- Edward J Farnell
- Department of Pathology, University of Cambridge , Cambridge , UK
| | - Nidhi Tyagi
- European Bioinformatics Institute , Cambridge , UK
| | - Stephanie Ryan
- Institute of Immunology and Infection Research, The University of Edinburgh , Edinburgh , UK
| | - Iain W Chalmers
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University , Aberystwyth , UK
| | | | - Frances M Jones
- Department of Pathology, University of Cambridge , Cambridge , UK
| | - Jakub Wawrzyniak
- Department of Pathology, University of Cambridge , Cambridge , UK
| | | | | | - Nicholas Furnham
- European Bioinformatics Institute , Cambridge , UK ; Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine , London , UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, The University of Edinburgh , Edinburgh , UK
| | - David W Dunne
- Department of Pathology, University of Cambridge , Cambridge , UK
| |
Collapse
|
14
|
Colley DG, Secor WE. Immunology of human schistosomiasis. Parasite Immunol 2014; 36:347-57. [PMID: 25142505 PMCID: PMC4278558 DOI: 10.1111/pim.12087] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/30/2013] [Indexed: 12/25/2022]
Abstract
There is a wealth of immunologic studies that have been carried out in experimental and human schistosomiasis that can be classified into three main areas: immunopathogenesis, resistance to reinfection and diagnostics. It is clear that the bulk of, if not all, morbidity due to human schistosomiasis results from immune-response-based inflammation against eggs lodged in the body, either as regulated chronic inflammation or resulting in fibrotic lesions. However, the exact nature of these responses, the antigens to which they are mounted and the mechanisms of the critical regulatory responses are still being sorted out. It is also becoming apparent that protective immunity against schistosomula as they develop into adult worms develops slowly and is hastened by the dying of adult worms, either naturally or when they are killed by praziquantel. However, as with anti-egg responses, the responsible immune mechanisms and inducing antigens are not clearly established, nor are any potential regulatory responses known. Finally, a wide variety of immune markers, both cellular and humoral, can be used to demonstrate exposure to schistosomes, and immunologic measurement of schistosome antigens can be used to detect, and thus diagnose, active infections. All three areas contribute to the public health response to human schistosome infections.
Collapse
Affiliation(s)
- D G Colley
- Department of Microbiology, Center for Tropical and Emerging Global Disease, The University of Georgia, Athens, GA, USA
| | | |
Collapse
|
15
|
Mbanefo EC, Huy NT, Wadagni AA, Eneanya CI, Nwaorgu O, Hirayama K. Host determinants of reinfection with schistosomes in humans: a systematic review and meta-analysis. PLoS Negl Trop Dis 2014; 8:e3164. [PMID: 25211227 PMCID: PMC4161334 DOI: 10.1371/journal.pntd.0003164] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022] Open
Abstract
Background Schistosomiasis is still a major public health burden in the tropics and subtropics. Although there is an effective chemotherapy (Praziquantel) for this disease, reinfection occurs rapidly after mass drug administration (MDA). Because the entire population do not get reinfected at the same rate, it is possible that host factors may play a dominant role in determining resistance or susceptibility to reinfection with schistosomes. Here, we systematically reviewed and meta-analyzed studies that reported associations between reinfection with the principal human-infecting species (S. mansoni, S. japonicum and S. haematobium) and host socio-demographic, epidemiological, immunological and genetic factors. Methodology/Principal Findings PubMed, Scopus, Google Scholar, Cochrane Review Library and African Journals Online public databases were searched in October 2013 to retrieve studies assessing association of host factors with reinfection with schistosomes. Meta-analysis was performed to generate pooled odds ratios and standardized mean differences as overall effect estimates for dichotomous and continuous variables, respectively. Quality assessment of included studies, heterogeneity between studies and publication bias were also assessed. Out of the initial 2739 records, 109 studies were included in the analyses, of which only 32 studies with 37 data sets were eligible for quantitative data synthesis. Among several host factors identified, strong positive association was found with age and pre-treatment intensity, and only slightly for gender. These factors are major determinants of exposure and disease transmission. Significant positive association was found with anti-SWA IgG4 level, and a negative overall effect for association with IgE levels. This reconfirmed the concept that IgE/IgG4 balance is a major determinant of protective immunity against schistosomiasis. Other identified determinants were reported by a small number of studies to enable interpretation. Conclusions Our data contribute to the understanding of host-parasite interaction as it affects reinfection, and is a potential tool to guide planning and tailoring of community interventions to target high-risk groups. One of the major challenges of schistosomiasis control is that disease prevalence reverts to baseline levels after mass drug administration due to high rate of reinfection. Host factors play a major role in determining resistance or susceptibility to reinfection with schistosomiasis and other diseases. We systematically searched and analyzed studies that identified potential host determinants of reinfection with schistosomes. Among demographic variables, age but not gender was strongly associated with reinfection with schistosomes. Pretreatment infection intensity was also identified as a major determinant of reinfection. Positive association with IgG4 levels and negative association with IgE levels reconfirmed the notion that IgE/IgG4 balance is the major factor controlling protective immunity against schistosomiasis. Other factors were reported by few studies to allow correct inferences. These results contribute to our understanding of host-parasite relationship as it affects reinfection, and will be useful for planning and targeting the limited resources for intervention on high-risk groups.
Collapse
Affiliation(s)
- Evaristus Chibunna Mbanefo
- Department of Parasitology and Entomology, Faculty of Bioscience, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
- * E-mail: ,
| | - Nguyen Tien Huy
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Anita Akpeedje Wadagni
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Christine Ifeoma Eneanya
- Department of Parasitology and Entomology, Faculty of Bioscience, Nnamdi Azikiwe University, Awka, Nigeria
| | - Obioma Nwaorgu
- Department of Parasitology and Entomology, Faculty of Bioscience, Nnamdi Azikiwe University, Awka, Nigeria
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| |
Collapse
|
16
|
Pontes-de-Carvalho L, Mengel J. A Question of Nature: Some Antigens are Bound to be Allergens. Front Immunol 2014; 5:373. [PMID: 25140169 PMCID: PMC4122158 DOI: 10.3389/fimmu.2014.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 07/21/2014] [Indexed: 01/11/2023] Open
Affiliation(s)
- Lain Pontes-de-Carvalho
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz , Salvador , Brazil ; Social Changes, Asthma and Allergy in Latin America - SCAALA - Program , Salvador , Brazil
| | - José Mengel
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz , Rio de Janeiro , Brazil ; Faculty of Medicine of Petropolis, FMP-FASE , Petrópolis , Brazil
| |
Collapse
|
17
|
El Ridi R, Tallima H, Dalton JP, Donnelly S. Induction of protective immune responses against schistosomiasis using functionally active cysteine peptidases. Front Genet 2014; 5:119. [PMID: 24847355 PMCID: PMC4021144 DOI: 10.3389/fgene.2014.00119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Each year schistosomiasis afflicts up to 600 million people in 74 tropical and sub-tropical countries, predominantly in the developing world. Yet we depend on a single drug, praziquantel, for its treatment and control. There is no vaccine available but one is urgently needed especially since praziquantel-resistant parasites are likely to emerge at some time in the future. The disease is caused by several worm species of the genus Schistosoma. These express several classes of papain-like cysteine peptidases, cathepsins B and L, in various tissues but particularly in their gastrodermis where they employ them as digestive enzymes. We have shown that sub-cutaneous injection of recombinant and functionally active Schistosoma mansoni cathepsin B1 (SmCB1), or a cathepsin L from a related parasite Fasciola hepatica (FhCL1), elicits highly significant protection (up to 73%) against an experimental challenge worm infection in murine models of schistosomiasis. The immune modulating properties of this subcutaneous injection can boost protection levels (up to 83%) when combined with other S. mansoni vaccine candidates, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH) and peroxiredoxin (PRX-MAP). Here, we discuss these data in the context of the parasite's biology and development, and provide putative mechanism by which the native-like cysteine peptidase induce protective immune responses.
Collapse
Affiliation(s)
- Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University Cairo, Egypt
| | - Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University Cairo, Egypt
| | - John P Dalton
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast Belfast, Northern Ireland
| | - Sheila Donnelly
- The i-three Institute, University of Technology at Sydney Ultimo, Sydney, NSW, Australia
| |
Collapse
|
18
|
Pinot de Moira A, Fitzsimmons CM, Jones FM, Wilson S, Cahen P, Tukahebwa E, Mpairwe H, Mwatha JK, Bethony JM, Skov PS, Kabatereine NB, Dunne DW. Suppression of basophil histamine release and other IgE-dependent responses in childhood Schistosoma mansoni/hookworm coinfection. J Infect Dis 2014; 210:1198-206. [PMID: 24782451 PMCID: PMC4176447 DOI: 10.1093/infdis/jiu234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The poor correlation between allergen-specific immunoglobulin E (asIgE) and clinical signs of allergy in helminth infected populations suggests that helminth infections could protect against allergy by uncoupling asIgE from its effector mechanisms. We investigated this hypothesis in Ugandan schoolchildren coinfected with Schistosoma mansoni and hookworm. METHODS Skin prick test (SPT) sensitivity to house dust mite allergen (HDM) and current wheeze were assessed pre-anthelmintic treatment. Nonspecific (anti-IgE), helminth-specific, and HDM-allergen-specific basophil histamine release (HR), plus helminth- and HDM-specific IgE and IgG4 responses were measured pre- and post-treatment. RESULTS Nonspecific- and helminth-specific-HR, and associations between helminth-specific IgE and helminth-specific HR increased post-treatment. Hookworm infection appeared to modify the relationship between circulating levels of HDM-IgE and HR: a significant positive association was observed among children without detectable hookworm infection, but no association was observed among infected children. In addition, hookworm infection was associated with a significantly reduced risk of wheeze, and IgG4 to somatic adult hookworm antigen with a reduced risk of HDM-SPT sensitivity. There was no evidence for S. mansoni infection having a similar suppressive effect on HDM-HR or symptoms of allergy. CONCLUSIONS Basophil responsiveness appears suppressed during chronic helminth infection; at least in hookworm infection, this suppression may protect against allergy.
Collapse
Affiliation(s)
| | | | - Frances M Jones
- Department of Pathology, University of Cambridge, United Kingdom
| | - Shona Wilson
- Department of Pathology, University of Cambridge, United Kingdom
| | - Pierre Cahen
- Department of Pathology, University of Cambridge, United Kingdom
| | | | | | - Joseph K Mwatha
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi
| | - Jeffrey M Bethony
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, DC
| | | | | | - David W Dunne
- Department of Pathology, University of Cambridge, United Kingdom
| |
Collapse
|
19
|
Hürlimann E, Yapi RB, Houngbedji CA, Schmidlin T, Kouadio BA, Silué KD, Ouattara M, N'Goran EK, Utzinger J, Raso G. The epidemiology of polyparasitism and implications for morbidity in two rural communities of Côte d'Ivoire. Parasit Vectors 2014; 7:81. [PMID: 24568206 PMCID: PMC3942297 DOI: 10.1186/1756-3305-7-81] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/17/2014] [Indexed: 12/31/2022] Open
Abstract
Background Polyparasitism is still widespread in rural communities of the developing world. However, the epidemiology of polyparasitism and implications for morbidity are poorly understood. We studied patterns of multiple species parasite infection in two rural communities of Côte d’Ivoire, including associations and interactions between infection, clinical indicators and self-reported morbidity. Methods Between August and September 2011, two purposely selected rural communities in southern Côte d’Ivoire were screened for helminth, intestinal protozoa and Plasmodium infection, using a suite of quality-controlled diagnostic methods. Additionally, participants were examined clinically and we measured haemoglobin level, height, weight and mid-upper arm circumference to determine nutritional status. An anamnestic questionnaire was administered to assess people’s recent history of diseases and symptoms, while a household questionnaire was administered to heads of household to collect socioeconomic data. Multivariate logistic regression models were applied for assessment of possible associations between parasitic (co-)infections and morbidity outcomes. Results 912/1,095 (83.3%) study participants had complete parasitological data and 852 individuals were considered for in-depth analysis. The rate of polyparasitism was high, with Plasmodium falciparum diagnosed as the predominant species, followed by Schistosoma haematobium, Schistosoma mansoni and hookworm. There were considerable differences in polyparasitic infection profiles among the two settings. Clinical morbidity such as anaemia, splenomegaly and malnutrition was mainly found in young age groups, while in adults, self-reported morbidity dominated. High parasitaemia of P. falciparum was significantly associated with several clinical manifestations such as anaemia, splenomegaly and fever, while light-intensity helminth infections seemed to have beneficial effects, particularly for co-infected individuals. Conclusions Clinical morbidity is disturbingly high in young age groups in rural communities of Côte d’Ivoire and mainly related to very high P. falciparum endemicity. Interactions between helminth infections and P. falciparum burden (parasitaemia and clinical morbidity) are evident and must be taken into account to design future interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Giovanna Raso
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P,O, Box, CH-4002, Basel, Switzerland.
| |
Collapse
|
20
|
The role of antibody in parasitic helminth infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 828:1-26. [PMID: 25253025 DOI: 10.1007/978-1-4939-1489-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|