1
|
Wei J, Wang L, Wei C, Guang J, Wang H, Zhou J, Li H, Ma X, Yue B. Comparison of TLR4 Genotype and TLR4 Pathway-Related Cytokines in Different Strains of Mice in Response to Pertussis Toxin Challenge. Genes (Basel) 2024; 15:1435. [PMID: 39596635 PMCID: PMC11593472 DOI: 10.3390/genes15111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The genetic background of Toll-like receptor 4 (TLR4) proved to be important in the induction of immune protection against Bordetella pertussis infection in humans. Currently, the evaluation of the acellular pertussis (aP) vaccine depends largely on using different mouse strains, while the TLR4 genotype of different mouse strains in response to pertussis toxin (PT) is not carefully determined. The current study was designed to determine the differences in TLR4 genotype and TLR4 pathway-related cytokines in response to PT stimulation among mouse strains of ICR, NIH, and BALB/c. METHOD We first determined the single-nucleotide polymorphisms (SNPs) in the TLR4 gene by using first-generation sequencing. Then, the cellular response, including the TLR4 mRNA expression and TLR4 signaling-related cytokines, of immune cells from different mouse strains after PT stimulation was determined. RESULT Three missense mutation sites (rs13489092, rs13489093, rs13489097) of the TLR4 gene were found. ICR mice were homozygous without mutation, NIH mice were partially heterozygous, and BALB/c mice were homozygous with a missense mutation. The expression of TLR4 was repressed while the downstream cytokines were upregulated after PT stimulation differently among mouse strains. The IFN-β cytokine of the TRIF pathway was significantly increased in ICR mice (p < 0.05). The IL-6 cytokine of the MyD88-dependent pathway was significantly increased in BALB/c mice (p < 0.05). The identified SNPs of the TLR4 gene in different mouse strains might account for the differences in cytokines levels determined after PT stimulation. CONCLUSIONS Our studies might provide useful referees to reduce the mouse-derived difference in the determination of vaccine titer and increase the comparability of the vaccine from different origins, as different mouse strains were used for vaccine development in different countries.
Collapse
Affiliation(s)
- Jie Wei
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.W.); (J.G.); (H.W.); (J.Z.); (H.L.)
- China National Rodent Laboratory Animal Resources Center, Beijing 102629, China
| | - Lichan Wang
- Division of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institutes for Food and Drug Control, Beijing 102629, China
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing 102619, China
| | - Chen Wei
- Division of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institutes for Food and Drug Control, Beijing 102629, China
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing 102619, China
| | - Jiaona Guang
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.W.); (J.G.); (H.W.); (J.Z.); (H.L.)
- China National Rodent Laboratory Animal Resources Center, Beijing 102629, China
| | - Hong Wang
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.W.); (J.G.); (H.W.); (J.Z.); (H.L.)
- China National Rodent Laboratory Animal Resources Center, Beijing 102629, China
| | - Jiaqi Zhou
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.W.); (J.G.); (H.W.); (J.Z.); (H.L.)
- China National Rodent Laboratory Animal Resources Center, Beijing 102629, China
| | - Huan Li
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.W.); (J.G.); (H.W.); (J.Z.); (H.L.)
- China National Rodent Laboratory Animal Resources Center, Beijing 102629, China
| | - Xiao Ma
- Division of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institutes for Food and Drug Control, Beijing 102629, China
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing 102619, China
| | - Bingfei Yue
- Division of Laboratory Animal Monitoring, National Institutes for Food and Drug Control, Beijing 102629, China; (J.W.); (J.G.); (H.W.); (J.Z.); (H.L.)
- China National Rodent Laboratory Animal Resources Center, Beijing 102629, China
| |
Collapse
|
2
|
Lietz S, Sommer A, Sokolowski LM, Kling C, Rodríguez Alfonso AA, Preising N, Alpízar-Pedraza D, King J, Streit L, Schröppel B, van Erp R, Barth E, Schneider M, Münch J, Michaelis J, Ständker L, Wiese S, Barth H, Pulliainen AT, Scanlon K, Ernst K. Alpha-1 antitrypsin inhibits pertussis toxin. J Biol Chem 2024; 300:107950. [PMID: 39481600 DOI: 10.1016/j.jbc.2024.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Pertussis (whooping cough) is a vaccine-preventable but re-emerging, highly infectious respiratory disease caused by Bordetella pertussis. There are currently no effective treatments for pertussis, complicating care for nonvaccinated individuals, especially newborns. Disease manifestations are predominantly caused by pertussis toxin (PT), a pivotal virulence factor classified as an ADP-ribosylating AB-type protein toxin. In this work, an unbiased approach using peptide libraries, bioassay-guided fractionation and mass spectrometry revealed α1-antitrypsin (α1AT) as a potent PT inhibitor. Biochemistry-, cell culture-, and molecular modeling-based in vitro experimentation demonstrated that the α1AT mode of action is based on blocking PT-binding to the host target cell surface. In the infant mouse model of severe pertussis, α1AT expression was reduced upon infection. Further, systemic administration of α1AT significantly reduced B. pertussis-induced leukocytosis, which is a hallmark of infant infection and major risk factor for fatal pertussis. Taken together our data demonstrates that α1AT is a novel PT inhibitor and that further evaluation and development of α1AT as a therapeutic agent for pertussis is warranted. Importantly, purified α1AT is already in use clinically as an intravenous augmentation therapy for those with genetic α1AT deficiency and could be repurposed to clinical management of pertussis.
Collapse
Affiliation(s)
- Stefanie Lietz
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Anja Sommer
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Lena-Marie Sokolowski
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Carolin Kling
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | - Armando A Rodríguez Alfonso
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, Ulm, Germany; Core Unit Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, Ulm, Germany
| | - Nico Preising
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, Ulm, Germany
| | - Daniel Alpízar-Pedraza
- Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Nuevo Vedado, Cuba
| | - Jaylyn King
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lisa Streit
- Institute of Biophysics, Ulm University, Ulm, Germany
| | - Bernd Schröppel
- Internal Medicine Clinic, Nephrology Section Core Facility, Ulm University Medical Center, Ulm, Germany
| | - Rene van Erp
- Internal Medicine Clinic, Nephrology Section Core Facility, Ulm University Medical Center, Ulm, Germany
| | - Eberhard Barth
- Anesthesiology an Intensive Medicine Clinic, Ulm University Medical Center, Ulm, Germany
| | - Marion Schneider
- Anesthesiology an Intensive Medicine Clinic, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Ludger Ständker
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| | | | - Karen Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
3
|
Sedney CJ, Masters J, Callender M, Dewan K, Caulfield A, Harvill ET. Neonatal Neutrophil-mediated Control of Bordetella pertussis Is Disrupted by Pertussis Toxin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:ji2400363. [PMID: 39475256 PMCID: PMC11605672 DOI: 10.4049/jimmunol.2400363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
The increased susceptibility of infants and young children to some diseases has often been explained as the neonatal immune system (NIS) being incomplete and/or underdeveloped. However, our recent work demonstrated that neonatal mice could clear a Bordetella pertussis (Bp) strain lacking pertussis toxin (PTx) (BpΔptx) much more efficiently than adult mice, indicating that the NIS can be extremely effective, but this ability is highly sensitive to being blocked by PTx. In this article, we investigated immunological mechanisms by which neonates efficiently and rapidly clear BpΔptx to better understand how the NIS functions and how PTx disrupts it. Depleting neutrophils, or blocking their recruitment, inhibited pups' ability to rapidly clear BpΔptx, revealing a critical role for neutrophils. Pups deficient in complement (C3-/-) failed to recruit neutrophils and did not efficiently clear BpΔptx but recovered these abilities upon treatment with C3a. Neutrophil depletion in C3-/- pups led to further failure to control BpΔptx, suggesting that neutrophils and complement have independent roles in rapid clearance of BpΔptx. Depleting or disrupting neutrophils and complement had negligible effect on the rapid growth of wild-type Bp, indicating that PTx blocks these otherwise highly effective aspects of the NIS.
Collapse
Affiliation(s)
- Colleen J. Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Jillian Masters
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Maiya Callender
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Kalyan Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Amanda Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| |
Collapse
|
4
|
Xie T, Zhong LL. Association of serum pertussis antibodies with acute asthma attacks in children. Allergy Asthma Proc 2024; 45:e54-e61. [PMID: 38982606 DOI: 10.2500/aap.2024.45.240030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Objective: The aim of this study was to examine the serum antibody levels against pertussis toxin (PT) in children experiencing an acute asthma attack and to explore the potential association between these levels and asthma. Methods: A prospective investigation was conducted, which involved 107 children with acute asthma attacks and 77 children diagnosed with bronchitis. The serum immunoglobulin G (IgG) antibody levels specific to PT were measured by using an in-house enzyme-linked immunosorbent assay. Based on the serum PT-IgG antibody levels, the children with asthma were categorized into three groups: non-pertussis infected, suspected pertussis infected, and recent pertussis infected. The clinical manifestations and pulmonary function of pediatric patients diagnosed with asthma were assessed and compared across various groups. Results: Of the total asthma group, 25 patients tested positive for PT-IgG, whereas only six patients in the bronchitis group were PT-IgG positive. The prevalence of recent pertussis infection was observed to be higher in the asthma group compared with the bronchitis group. Within the asthma group, those with recent pertussis infection exhibited a higher likelihood of experiencing wheezing and impaired lung function in comparison with the non-pertussis infection group. Conclusion: Pertussis infection is relatively common in children with asthma and correlates with the severity of asthma.
Collapse
|
5
|
Kang KR, Kim JA, Cho GW, Kang HU, Kang HM, Kang JH, Seong BL, Lee SY. Comparative Evaluation of Recombinant and Acellular Pertussis Vaccines in a Murine Model. Vaccines (Basel) 2024; 12:108. [PMID: 38276680 PMCID: PMC10818713 DOI: 10.3390/vaccines12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Since the 2000s, sporadic outbreaks of whooping cough have been reported in advanced countries, where the acellular pertussis vaccination rate is relatively high, and in developing countries. Small-scale whooping cough has also continued in many countries, due in part to the waning of immune protection after childhood vaccination, necessitating the development of an improved pertussis vaccine and vaccination program. Currently, two different production platforms are being actively pursued in Korea; one is based on the aP (acellular pertussis) vaccine purified from B. pertussis containing pertussis toxoid (PT), filamentous hemagglutin (FHA) and pertactin (PRN), and the other is based on the recombinant aP (raP), containing genetically detoxified pertussis toxin ADP-ribosyltransferase subunit 1 (PtxS1), FHA, and PRN domain, expressed and purified from recombinant E. coli. aP components were further combined with diphtheria and tetanus vaccine components as a prototype DTaP vaccine by GC Pharma (GC DTaP vaccine). We evaluated and compared the immunogenicity and the protective efficacy of aP and raP vaccines in an experimental murine challenge model: humoral immunity in serum, IgA secretion in nasal lavage, bacterial clearance after challenge, PTx (pertussis toxin) CHO cell neutralization titer, cytokine secretion in spleen single cell, and tissue resident memory CD4+ T cell (CD4+ TRM cell) in lung tissues. In humoral immunogenicity, GC DTaP vaccines showed high titers for PT and PRN and showed similar patterns in nasal lavage and IL-5 cytokine secretions. The GC DTaP vaccine and the control vaccine showed equivalent results in bacterial clearance after challenge, PTx CHO cell neutralization assay, and CD4+ TRM cell. In contrast, the recombinant raP vaccine exhibited strong antibody responses for FHA and PRN, albeit with low antibody level of PT and low titer in PTx CHO neutralization assay, as compared to control and GC DTaP vaccines. The raP vaccine provided a sterile lung bacterial clearance comparable to a commercial control vaccine after the experimental challenge in murine model. Moreover, raP exhibited a strong cytokine response and CD4+ TRM cell in lung tissue, comparable or superior to the experimental and commercial DTaP vaccinated groups. Contingent on improving the biophysical stability and humoral response to PT, the raP vaccine warrants further development as an effective alternative to aP vaccines for the control of a pertussis outbreak.
Collapse
Affiliation(s)
- Kyu-Ri Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Ji-Ahn Kim
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Gyu-Won Cho
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Han-Ul Kang
- The Interdisciplinary Graduate Program in Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Hyun-Mi Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin-Han Kang
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
| | - Baik-Lin Seong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Young Lee
- The Vaccine Bio Research Institute, Annex to Seoul Saint Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea (J.-H.K.)
- Department of Pediatrics, Bucheon St. Mary’s Hospital, The Catholic University of Korea, Bucheon 14647, Republic of Korea
| |
Collapse
|
6
|
Jia J, Zoeschg M, Barth H, Pulliainen AT, Ernst K. The Chaperonin TRiC/CCT Inhibitor HSF1A Protects Cells from Intoxication with Pertussis Toxin. Toxins (Basel) 2024; 16:36. [PMID: 38251252 PMCID: PMC10819386 DOI: 10.3390/toxins16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Pertussis toxin (PT) is a bacterial AB5-toxin produced by Bordetella pertussis and a major molecular determinant of pertussis, also known as whooping cough, a highly contagious respiratory disease. In this study, we investigate the protective effects of the chaperonin TRiC/CCT inhibitor, HSF1A, against PT-induced cell intoxication. TRiC/CCT is a chaperonin complex that facilitates the correct folding of proteins, preventing misfolding and aggregation, and maintaining cellular protein homeostasis. Previous research has demonstrated the significance of TRiC/CCT in the functionality of the Clostridioides difficile TcdB AB-toxin. Our findings reveal that HSF1A effectively reduces the levels of ADP-ribosylated Gαi, the specific substrate of PT, in PT-treated cells, without interfering with enzyme activity in vitro or the cellular binding of PT. Additionally, our study uncovers a novel interaction between PTS1 and the chaperonin complex subunit CCT5, which correlates with reduced PTS1 signaling in cells upon HSF1A treatment. Importantly, HSF1A mitigates the adverse effects of PT on cAMP signaling in cellular systems. These results provide valuable insights into the mechanisms of PT uptake and suggest a promising starting point for the development of innovative therapeutic strategies to counteract pertussis toxin-mediated pathogenicity.
Collapse
Affiliation(s)
- Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Manuel Zoeschg
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
7
|
Kling C, Sommer A, Almeida-Hernandez Y, Rodríguez A, Perez-Erviti JA, Bhadane R, Ständker L, Wiese S, Barth H, Pupo-Meriño M, Pulliainen AT, Sánchez-García E, Ernst K. Inhibition of Pertussis Toxin by Human α-Defensins-1 and -5: Differential Mechanisms of Action. Int J Mol Sci 2023; 24:10557. [PMID: 37445740 DOI: 10.3390/ijms241310557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Whooping cough is a severe childhood disease, caused by the bacterium Bordetella pertussis, which releases pertussis toxin (PT) as a major virulence factor. Previously, we identified the human antimicrobial peptides α-defensin-1 and -5 as inhibitors of PT and demonstrated their capacity to inhibit the activity of the PT enzyme subunit PTS1. Here, the underlying mechanism of toxin inhibition was investigated in more detail, which is essential for developing the therapeutic potential of these peptides. Flow cytometry and immunocytochemistry revealed that α-defensin-5 strongly reduced PT binding to, and uptake into cells, whereas α-defensin-1 caused only a mild reduction. Conversely, α-defensin-1, but not α-defensin-5 was taken up into different cell lines and interacted with PTS1 inside cells, based on proximity ligation assay. In-silico modeling revealed specific interaction interfaces for α-defensin-1 with PTS1 and vice versa, unlike α-defensin-5. Dot blot experiments showed that α-defensin-1 binds to PTS1 and even stronger to its substrate protein Gαi in vitro. NADase activity of PTS1 in vitro was not inhibited by α-defensin-1 in the absence of Gαi. Taken together, these results suggest that α-defensin-1 inhibits PT mainly by inhibiting enzyme activity of PTS1, whereas α-defensin-5 mainly inhibits cellular uptake of PT. These findings will pave the way for optimization of α-defensins as novel therapeutics against whooping cough.
Collapse
Affiliation(s)
- Carolin Kling
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Anja Sommer
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yasser Almeida-Hernandez
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Armando Rodríguez
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Julio A Perez-Erviti
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Rajendra Bhadane
- Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mario Pupo-Meriño
- Departamento de Bioinformática, Centro de Matemática Computacional, Universidad de las Ciencias Informáticas (UCI), Havana 19370, Cuba
| | - Arto T Pulliainen
- Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland
| | - Elsa Sánchez-García
- Computational Bioengineering, Fakultät Bio- und Chemieingenieurwesen, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
8
|
Sedney CJ, Harvill ET. The Neonatal Immune System and Respiratory Pathogens. Microorganisms 2023; 11:1597. [PMID: 37375099 PMCID: PMC10301501 DOI: 10.3390/microorganisms11061597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Neonates are more susceptible to some pathogens, particularly those that cause infection in the respiratory tract. This is often attributed to an incompletely developed immune system, but recent work demonstrates effective neonatal immune responses to some infection. The emerging view is that neonates have a distinctly different immune response that is well-adapted to deal with unique immunological challenges of the transition from a relatively sterile uterus to a microbe-rich world, tending to suppress potentially dangerous inflammatory responses. Problematically, few animal models allow a mechanistic examination of the roles and effects of various immune functions in this critical transition period. This limits our understanding of neonatal immunity, and therefore our ability to rationally design and develop vaccines and therapeutics to best protect newborns. This review summarizes what is known of the neonatal immune system, focusing on protection against respiratory pathogens and describes challenges of various animal models. Highlighting recent advances in the mouse model, we identify knowledge gaps to be addressed.
Collapse
Affiliation(s)
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
9
|
Sedney CJ, Caulfield A, Dewan KK, Blas-Machado U, Callender M, Manley NR, Harvill ET. Novel murine model reveals an early role for pertussis toxin in disrupting neonatal immunity to Bordetella pertussis. Front Immunol 2023; 14:1125794. [PMID: 36855631 PMCID: PMC9968397 DOI: 10.3389/fimmu.2023.1125794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
The increased susceptibility of neonates to specific pathogens has previously been attributed to an underdeveloped immune system. More recent data suggest neonates have effective protection against most pathogens but are particularly susceptible to those that target immune functions specific to neonates. Bordetella pertussis (Bp), the causative agent of "whooping cough", causes more serious disease in infants attributed to its production of pertussis toxin (PTx), although the neonate-specific immune functions it targets remain unknown. Problematically, the rapid development of adult immunity in mice has confounded our ability to study interactions of the neonatal immune system and its components, such as virtual memory T cells which are prominent prior to the maturation of the thymus. Here, we examine the rapid change in susceptibility of young mice and define a period from five- to eight-days-old during which mice are much more susceptible to Bp than mice even a couple days older. These more narrowly defined "neonatal" mice display significantly increased susceptibility to wild type Bp but very rapidly and effectively respond to and control Bp lacking PTx, more rapidly even than adult mice. Thus, PTx efficiently blocks some very effective form(s) of neonatal protective immunity, potentially providing a tool to better understand the neonatal immune system. The rapid clearance of the PTx mutant correlates with the early accumulation of neutrophils and T cells and suggests a role for PTx in disrupting their accumulation. These results demonstrate a striking age-dependent response to Bp, define an early age of extreme susceptibility to Bp, and demonstrate that the neonatal response can be more efficient than the adult response in eliminating bacteria from the lungs, but these neonatal functions are substantially blocked by PTx. This refined definition of "neonatal" mice may be useful in the study of other pathogens that primarily infect neonates, and PTx may prove a particularly valuable tool for probing the poorly understood neonatal immune system.
Collapse
Affiliation(s)
- Colleen J. Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Amanda Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kaylan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Uriel Blas-Machado
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Maiya Callender
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Nancy R. Manley
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Holubova J, Stanek O, Juhasz A, Hamidou Soumana I, Makovicky P, Sebo P. The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model. PLoS Pathog 2022; 18:e1010402. [PMID: 35395059 PMCID: PMC9020735 DOI: 10.1371/journal.ppat.1010402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/20/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Pulmonary infections caused by Bordetella pertussis used to be the prime cause of infant mortality in the pre-vaccine era and mouse models of pertussis pneumonia served in characterization of B. pertussis virulence mechanisms. However, the biologically most relevant catarrhal disease stage and B. pertussis transmission has not been adequately reproduced in adult mice due to limited proliferation of the human-adapted pathogen on murine nasopharyngeal mucosa. We used immunodeficient C57BL/6J MyD88 KO mice to achieve B. pertussis proliferation to human-like high counts of 108 viable bacteria per nasal cavity to elicit rhinosinusitis accompanied by robust shedding and transmission of B. pertussis bacteria to adult co-housed MyD88 KO mice. Experiments with a comprehensive set of B. pertussis mutants revealed that pertussis toxin, adenylate cyclase toxin-hemolysin, the T3SS effector BteA/BopC and several other known virulence factors were dispensable for nasal cavity infection and B. pertussis transmission in the immunocompromised MyD88 KO mice. In contrast, mutants lacking the filamentous hemagglutinin (FhaB) or fimbriae (Fim) adhesins infected the nasal cavity poorly, shed at low levels and failed to productively infect co-housed MyD88 KO or C57BL/6J mice. FhaB and fimbriae thus appear to play a critical role in B. pertussis transmission. The here-described novel murine model of B. pertussis-induced nasal catarrh opens the way to genetic dissection of host mechanisms involved in B. pertussis shedding and to validation of key bacterial transmission factors that ought to be targeted by future pertussis vaccines.
Collapse
Affiliation(s)
- Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Attila Juhasz
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Illiassou Hamidou Soumana
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Peter Makovicky
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Ernst K. Novel Strategies to Inhibit Pertussis Toxin. Toxins (Basel) 2022; 14:187. [PMID: 35324684 PMCID: PMC8951090 DOI: 10.3390/toxins14030187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Pertussis, also known as whooping cough, is a respiratory disease caused by infection with Bordetella pertussis, which releases several virulence factors, including the AB-type pertussis toxin (PT). The characteristic symptom is severe, long-lasting paroxysmal coughing. Especially in newborns and infants, pertussis symptoms, such as leukocytosis, can become life-threatening. Despite an available vaccination, increasing case numbers have been reported worldwide, including Western countries such as Germany and the USA. Antibiotic treatment is available and important to prevent further transmission. However, antibiotics only reduce symptoms if administered in early stages, which rarely occurs due to a late diagnosis. Thus, no causative treatments against symptoms of whooping cough are currently available. The AB-type protein toxin PT is a main virulence factor and consists of a binding subunit that facilitates transport of an enzyme subunit into the cytosol of target cells. There, the enzyme subunit ADP-ribosylates inhibitory α-subunits of G-protein coupled receptors resulting in disturbed cAMP signaling. As an important virulence factor associated with severe symptoms, such as leukocytosis, and poor outcomes, PT represents an attractive drug target to develop novel therapeutic strategies. In this review, chaperone inhibitors, human peptides, small molecule inhibitors, and humanized antibodies are discussed as novel strategies to inhibit PT.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
12
|
Hall JM, Kang J, Kenney SM, Wong TY, Bitzer GJ, Kelly CO, Kisamore CA, Boehm DT, DeJong MA, Wolf MA, Sen-Kilic E, Horspool AM, Bevere JR, Barbier M, Damron FH. Reinvestigating the Coughing Rat Model of Pertussis To Understand Bordetella pertussis Pathogenesis. Infect Immun 2021; 89:e0030421. [PMID: 34125597 PMCID: PMC8594615 DOI: 10.1128/iai.00304-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 12/04/2022] Open
Abstract
Bordetella pertussis is a highly contagious bacterium that is the causative agent of whooping cough (pertussis). Currently, acellular pertussis vaccines (aP, DTaP, and Tdap) are used to prevent pertussis disease. However, it is clear that the aP vaccine efficacy quickly wanes, resulting in the reemergence of pertussis. Furthermore, recent work performed by the CDC suggest that current circulating strains are genetically distinct from strains of the past. The emergence of genetically diverging strains, combined with waning aP vaccine efficacy, calls for reevaluation of current animal models of pertussis. In this study, we used the rat model of pertussis to compare two genetically divergent strains Tohama 1 and D420. We intranasally challenged 7-week-old Sprague-Dawley rats with 108 viable Tohama 1 and D420 and measured the hallmark signs/symptoms of B. pertussis infection such as neutrophilia, pulmonary inflammation, and paroxysmal cough using whole-body plethysmography. Onset of cough occurred between 2 and 4 days after B. pertussis challenge, averaging five coughs per 15 min, with peak coughing occurring at day 8 postinfection, averaging upward of 13 coughs per 15 min. However, we observed an increase of coughs in rats infected with clinical isolate D420 through 12 days postchallenge. The rats exhibited increased bronchial restriction following B. pertussis infection. Histology of the lung and flow cytometry confirm both cellular infiltration and pulmonary inflammation. D420 infection induced higher production of anti-B. pertussis IgM antibodies compared to Tohama 1 infection. The coughing rat model provides a way of characterizing disease manifestation differences between B. pertussis strains.
Collapse
Affiliation(s)
- Jesse M. Hall
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Jason Kang
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Sophia M. Kenney
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Ting Y. Wong
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Graham J. Bitzer
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Claire O. Kelly
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Caleb A. Kisamore
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Megan A. DeJong
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - M. Allison Wolf
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Alexander M. Horspool
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
13
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
14
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
15
|
Tomas J, Koo Y, Popoff D, Arce-Gorvel V, Hanniffy S, Gorvel JP, Mionnet C. PTX Instructs the Development of Lung-Resident Memory T Cells in Bordetella pertussis Infected Mice. Toxins (Basel) 2021; 13:toxins13090632. [PMID: 34564636 PMCID: PMC8470914 DOI: 10.3390/toxins13090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Whooping cough is a severe, highly contagious disease of the human respiratory tract, caused by Bordetellapertussis. The pathogenicity requires several virulence factors, including pertussis toxin (PTX), a key component of current available vaccines. Current vaccines do not induce mucosal immunity. Tissue-resident memory T cells (Trm) are among the first lines of defense against invading pathogens and are involved in long-term protection. However, the factors involved in Trm establishment remain unknown. Comparing two B.pertussis strains expressing PTX (WT) or not (ΔPTX), we show that the toxin is required to generate both lung CD4+ and CD8+ Trm. Co-administering purified PTX with ΔPTX is sufficient to generate these Trm subsets. Importantly, adoptive transfer of lung CD4+ or CD8+ Trm conferred protection against B. pertussis in naïve mice. Taken together, our data demonstrate for the first time a critical role for PTX in the induction of mucosal long-term protection against B. pertussis.
Collapse
Affiliation(s)
- Julie Tomas
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Yoon Koo
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
- Laboratoire Adhesion & Inflammation, UMR INSERM 1067, UMR CNRS 7333, Aix-Marseille Université Case 937, CEDEX 09, 13288 Marseille, France
| | - Dimitri Popoff
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Sean Hanniffy
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Cyrille Mionnet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
- Correspondence:
| |
Collapse
|
16
|
Kling C, Pulliainen AT, Barth H, Ernst K. Human Peptides α-Defensin-1 and -5 Inhibit Pertussis Toxin. Toxins (Basel) 2021; 13:toxins13070480. [PMID: 34357952 PMCID: PMC8310310 DOI: 10.3390/toxins13070480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 01/13/2023] Open
Abstract
Bordetella pertussis causes the severe childhood disease whooping cough, by releasing several toxins, including pertussis toxin (PT) as a major virulence factor. PT is an AB5-type toxin, and consists of the enzymatic A-subunit PTS1 and five B-subunits, which facilitate binding to cells and transport of PTS1 into the cytosol. PTS1 ADP-ribosylates α-subunits of inhibitory G-proteins (Gαi) in the cytosol, which leads to disturbed cAMP signaling. Since PT is crucial for causing severe courses of disease, our aim is to identify new inhibitors against PT, to provide starting points for novel therapeutic approaches. Here, we investigated the effect of human antimicrobial peptides of the defensin family on PT. We demonstrated that PTS1 enzyme activity in vitro was inhibited by α-defensin-1 and -5, but not β-defensin-1. The amount of ADP-ribosylated Gαi was significantly reduced in PT-treated cells, in the presence of α-defensin-1 and -5. Moreover, both α-defensins decreased PT-mediated effects on cAMP signaling in the living cell-based interference in the Gαi-mediated signal transduction (iGIST) assay. Taken together, we identified the human peptides α-defensin-1 and -5 as inhibitors of PT activity, suggesting that these human peptides bear potential for developing novel therapeutic strategies against whooping cough.
Collapse
Affiliation(s)
- Carolin Kling
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (C.K.); (H.B.)
| | - Arto T. Pulliainen
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, FI-20520 Turku, Finland;
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (C.K.); (H.B.)
| | - Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (C.K.); (H.B.)
- Correspondence:
| |
Collapse
|
17
|
Zhou F, Liu R, Han P, Zhang X, Li Z, Zhang S, Liu C, Xia Y, Tang Z. Pertussis Toxin Ameliorates Microglial Activation Associated With Ischemic Stroke. Front Cell Neurosci 2020; 14:152. [PMID: 32676009 PMCID: PMC7333375 DOI: 10.3389/fncel.2020.00152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the effect and the underlying mechanism of Pertussis toxin (PTX) on microglia in the setting of cerebral ischemia. Methods: We tested the effect of PTX 400 ng/days on middle cerebral artery occlusion stroke model by evaluating the neurologic function, infarct size, microglial distribution, and activation. In parallel, we also tested the effect of PTX on primary cultured microglia by evaluating microglial proliferation, activation, cytokine release, and CX3CR1 expression. Results: PTX reduced the poststroke infarct size, improved the neurologic function as evaluated by Longa score, and reduced microglial aggregation and activation in the infarcted area. Further, PTX significantly decreased lipopolysaccharide-stimulated microglial proliferation, the release of interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), and the expression of CX3CR1. Interpretation: PTX treatment in stroke reduced microglial accumulation and activation in the infarct zone, resulting in a better functional outcome. The benefits of PTX treatment may be attributed to the reduced production of proinflammatory cytokine such as IL-1β and TNF-α and reduced expression of chemokine CX3CR1.
Collapse
Affiliation(s)
- Feihui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pengcheng Han
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Xingkui Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Xia
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
18
|
Peer V, Schwartz N, Green MS. A multi-country, multi-year, meta-analytic evaluation of the sex differences in age-specific pertussis incidence rates. PLoS One 2020; 15:e0231570. [PMID: 32324790 PMCID: PMC7179848 DOI: 10.1371/journal.pone.0231570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/24/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Pertussis is frequently reported to be more common in females than in males. However, the variability of the sources of these observations makes it difficult to estimate the magnitude and consistency of the sex differences by age. To address this question, we used meta-analytic methods to analyze pertussis national incidence rates by sex and age group from nine countries between the years 1990 and 2017. METHODS For each age group, we used meta-analytic methods to combine the female to male incidence rate ratios (RRs) by country and year. Meta-regression was performed to assess the relative contributions of age, country and time-period to the variation in the incidence RRs. RESULTS The pooled female to male incidence RRs (with 95% CI) for ages 0-1, 1-4, 5-9 and 10-14, were 1.03 (1.01-1.06), 1.16 (1.14-1.17), 1.18 (1.15-1.22), 1.15 (1.11-1.18) respectively. For the ages 15-44, 45-64 and 65+ they were 1.65 (1.58-1.72), 1.59 (1.53-1.66), 1.20 (1.16-1.24), respectively. While there were some differences between the countries, the directions were consistent. When including age, country and time in meta-regression analyses, almost all the variation could be attributed to the differences between the age groups. CONCLUSIONS The consistency of the excess pertussis incidence rates in females, particularly in infants and very young children, is unlikely to be due to differences in exposure. Other factors that impact on the immune system, including chromosomal differences and hormones, should be further investigated to explain these sex differences. Future studies should consider sex for better understanding the mechanisms affecting disease incidence, with possible implications for management and vaccine development.
Collapse
Affiliation(s)
- Victoria Peer
- School of Public Health, University of Haifa, Haifa, Israel
| | - Naama Schwartz
- School of Public Health, University of Haifa, Haifa, Israel
| | | |
Collapse
|
19
|
Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, Moehrlen U, Lode H, Huwer H, Hudel M, Mraheil MA, Toque HAF, Chakraborty T, Hamacher J. Impact of Bacterial Toxins in the Lungs. Toxins (Basel) 2020; 12:toxins12040223. [PMID: 32252376 PMCID: PMC7232160 DOI: 10.3390/toxins12040223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.
Collapse
Affiliation(s)
- Rudolf Lucas
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
| | - Joyce Gonzales
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Thomas Bodmer
- Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland;
| | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland;
| | - Hartmut Lode
- Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany;
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 Voelklingen/Saar, Germany;
| | - Martina Hudel
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Mobarak Abu Mraheil
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Haroldo Alfredo Flores Toque
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Trinad Chakraborty
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, D-66421 Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, D-66421 Homburg, Germany
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| |
Collapse
|
20
|
Ardanuy J, Scanlon K, Skerry C, Fuchs SY, Carbonetti NH. Age-Dependent Effects of Type I and Type III IFNs in the Pathogenesis of Bordetella pertussis Infection and Disease. THE JOURNAL OF IMMUNOLOGY 2020; 204:2192-2202. [PMID: 32152071 PMCID: PMC7141952 DOI: 10.4049/jimmunol.1900912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
Type I and III IFNs play diverse roles in bacterial infections, being protective for some but deleterious for others. Using RNA-sequencing transcriptomics we investigated lung gene expression responses to Bordetella pertussis infection in adult mice, revealing that type I and III IFN pathways may play an important role in promoting inflammatory responses. In B. pertussis-infected mice, lung type I/III IFN responses correlated with increased proinflammatory cytokine expression and with lung inflammatory pathology. In mutant mice with increased type I IFN receptor (IFNAR) signaling, B. pertussis infection exacerbated lung inflammatory pathology, whereas knockout mice with defects in type I IFN signaling had lower levels of lung inflammation than wild-type mice. Curiously, B. pertussis-infected IFNAR1 knockout mice had wild-type levels of lung inflammatory pathology. However, in response to infection these mice had increased levels of type III IFN expression, neutralization of which reduced lung inflammation. In support of this finding, B. pertussis-infected mice with a knockout mutation in the type III IFN receptor (IFNLR1) and double IFNAR1/IFNLR1 knockout mutant mice had reduced lung inflammatory pathology compared with that in wild-type mice, indicating that type III IFN exacerbates lung inflammation. In marked contrast, infant mice did not upregulate type I or III IFNs in response to B. pertussis infection and were protected from lethal infection by increased type I IFN signaling. These results indicate age-dependent effects of type I/III IFN signaling during B. pertussis infection and suggest that these pathways represent targets for therapeutic intervention in pertussis.
Collapse
Affiliation(s)
- Jeremy Ardanuy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Karen Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Serge Y Fuchs
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| |
Collapse
|
21
|
Nguyen AW, DiVenere AM, Papin JF, Connelly S, Kaleko M, Maynard JA. Neutralization of pertussis toxin by a single antibody prevents clinical pertussis in neonatal baboons. SCIENCE ADVANCES 2020; 6:eaay9258. [PMID: 32076653 PMCID: PMC7002138 DOI: 10.1126/sciadv.aay9258] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/20/2019] [Indexed: 05/13/2023]
Abstract
Pertussis continues to cause considerable infant mortality world-wide, which could be addressed in part by passive immunization strategies. Antibody hu1B7 is a candidate therapeutic that potently neutralizes pertussis toxin in vitro, prevents leukocytosis in mice and treats established disease in weanling baboons as part of an antibody cocktail. Here, we evaluated the potential for hu1B7 and an extended half-life hu1B7 variant to prevent death, leukocytosis and other clinical symptoms in a newborn baboon model that mimics many aspects of human disease. We administered a single antibody dose to newborn baboons five weeks prior to experimental infection. While all animals were heavily colonized with Bordetella pertussis, prophylaxed animals showed significantly greater survival (P < 0.005), delayed and suppressed leukocytosis (P < 0.01) and enhanced clinical outcomes, including coughing (P < 0.01), as compared to controls. Together, this work demonstrates that a single neutralizing anti-PTx antibody is sufficient to prevent clinical pertussis symptoms.
Collapse
Affiliation(s)
- Annalee W. Nguyen
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea M. DiVenere
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - James F. Papin
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sheila Connelly
- Synthetic Biologics, 9605 Medical Center Dr., Suite 270, Rockville, MD 20850, USA
| | - Michael Kaleko
- Synthetic Biologics, 9605 Medical Center Dr., Suite 270, Rockville, MD 20850, USA
| | - Jennifer A. Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
22
|
Al-Ghezi ZZ, Singh N, Mehrpouya-Bahrami P, Busbee PB, Nagarkatti M, Nagarkatti PS. AhR Activation by TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) Attenuates Pertussis Toxin-Induced Inflammatory Responses by Differential Regulation of Tregs and Th17 Cells Through Specific Targeting by microRNA. Front Microbiol 2019; 10:2349. [PMID: 31681214 PMCID: PMC6813193 DOI: 10.3389/fmicb.2019.02349] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
The Aryl Hydrocarbon Receptor (AhR) is a transcription factor that, when activated by ligand-binding, has been shown to regulate the immune response. Pertussis Toxin (PTX) is a virulence factor found in Bordetella pertussis, a human respiratory pathogen that causes whooping cough. PTX promotes colonization and disease promotion by triggering a heightened inflammatory response. The role of AhR in the regulation of PTX-mediated inflammation has not previously been studied. In the current study, we investigate if AhR activation by 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a well characterized ligand, can attenuate PTX-mediated systemic inflammation. To that end, C57BL/6 mice were injected intraperitoneally (IP) with PTX twice and treated with TCDD or vehicle (VEH). The PTX+VEH group showed elevated levels of pro-inflammatory cytokines (IL-17A, IL-6, and IFNγ) in serum and increased proportions of CD4+ Th1 and Th17 cells in their spleens. In contrast, the PTX+TCDD group showed significantly lower levels of these inflammatory cytokines and decreased proportions of Th1 and Th17 cells, but increased proportions of Th2 and FoxP3+Tregs when compared to the PTX+VEH group. PTX+TCDD treated mice also showed elevated levels of IL-10, and TFG-b, potent anti-inflammatory cytokines. MicroRNAs (miRs) analysis of CD4+ T cells from the spleens of the PTX+TCDD treated mice revealed significant alterations in their expression and several of these miRs targeted cytokines and signaling molecules involved in inflammation. Specifically, the PTX+TCDD group had a significantly enhanced expression of miR-3082-5p that targeted IL-17, and a decreased expression of miR-1224-5p, which targeted FoxP3. Transfection studies with these miR mimics and inhibitors confirmed the specificity of the target genes. The current study suggests that AhR activation by TCDD suppresses PTX-induced inflammation through miR regulation that triggers reciprocal polarization of Tregs and Th17 cells and also suggests that AhR activation may serve as a treatment modality to suppress heightened inflammation induced during B. pertussis infection.
Collapse
Affiliation(s)
- Zinah Zamil Al-Ghezi
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Pegah Mehrpouya-Bahrami
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Philip Brandon Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
23
|
Pertussis Toxin: A Key Component in Pertussis Vaccines? Toxins (Basel) 2019; 11:toxins11100557. [PMID: 31546599 PMCID: PMC6832755 DOI: 10.3390/toxins11100557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
B. pertussis is a human-specific pathogen and the causative agent of whooping cough. The ongoing resurgence in pertussis incidence in high income countries is likely due to faster waning of immunity and increased asymptomatic colonization in individuals vaccinated with acellular pertussis (aP) vaccine relative whole-cell pertussis (wP)-vaccinated individuals. This has renewed interest in developing more effective vaccines and treatments and, in support of these efforts, defining pertussis vaccine correlates of protection and the role of vaccine antigens and toxins in disease. Pertussis and its toxins have been investigated by scientists for over a century, yet we still do not have a clear understanding of how pertussis toxin (PT) contributes to disease symptomology or how anti-PT immune responses confer protection. This review covers PT's role in disease and evidence for its protective role in vaccines. Clinical data suggest that PT is a defining and essential toxin for B. pertussis pathogenesis and, when formulated into a vaccine, can prevent disease. Additional studies are required to further elucidate the role of PT in disease and vaccine-mediated protection, to inform the development of more effective treatments and vaccines.
Collapse
|
24
|
Scanlon K, Skerry C, Carbonetti N. Association of Pertussis Toxin with Severe Pertussis Disease. Toxins (Basel) 2019; 11:toxins11070373. [PMID: 31252532 PMCID: PMC6669598 DOI: 10.3390/toxins11070373] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Pertussis, caused by respiratory tract infection with the bacterial pathogen Bordetella pertussis, has long been considered to be a toxin-mediated disease. Bacteria adhere and multiply extracellularly in the airways and release several toxins, which have a variety of effects on the host, both local and systemic. Predominant among these toxins is pertussis toxin (PT), a multi-subunit protein toxin that inhibits signaling through a subset of G protein-coupled receptors in mammalian cells. PT activity has been linked with severe and lethal pertussis disease in young infants and a detoxified version of PT is a common component of all licensed acellular pertussis vaccines. The role of PT in typical pertussis disease in other individuals is less clear, but significant evidence supporting its contribution to pathogenesis has been accumulated from animal model studies. In this review we discuss the evidence indicating a role for PT in pertussis disease, focusing on its contribution to severe pertussis in infants, modulation of immune and inflammatory responses to infection, and the characteristic paroxysmal cough of pertussis.
Collapse
Affiliation(s)
- Karen Scanlon
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ciaran Skerry
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicholas Carbonetti
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
25
|
Interleukin-Mediated Pendrin Transcriptional Regulation in Airway and Esophageal Epithelia. Int J Mol Sci 2019; 20:ijms20030731. [PMID: 30744098 PMCID: PMC6386862 DOI: 10.3390/ijms20030731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
Pendrin (SLC26A4), a Cl−/anion exchanger, is expressed at high levels in kidney, thyroid, and inner ear epithelia, where it has an essential role in bicarbonate secretion/chloride reabsorption, iodide accumulation, and endolymph ion balance, respectively. Pendrin is expressed at lower levels in other tissues, such as airways and esophageal epithelia, where it is transcriptionally regulated by the inflammatory cytokines interleukin (IL)-4 and IL-13 through a signal transducer and activator of transcription 6 (STAT6)-mediated pathway. In the airway epithelium, increased pendrin expression during inflammatory diseases leads to imbalances in airway surface liquid thickness and mucin release, while, in the esophageal epithelium, dysregulated pendrin expression is supposed to impact the intracellular pH regulation system. In this review, we discuss some of the recent findings on interleukin-mediated transcriptional regulation of pendrin and how this dysregulation impacts airway and esophagus epithelial homeostasis during inflammatory diseases.
Collapse
|
26
|
Scanlon K, Skerry C, Carbonetti N. Role of Major Toxin Virulence Factors in Pertussis Infection and Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:35-51. [PMID: 31376138 DOI: 10.1007/5584_2019_403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bordetella pertussis produces several toxins that affect host-pathogen interactions. Of these, the major toxins that contribute to pertussis infection and disease are pertussis toxin, adenylate cyclase toxin-hemolysin and tracheal cytotoxin. Pertussis toxin is a multi-subunit protein toxin that inhibits host G protein-coupled receptor signaling, causing a wide array of effects on the host. Adenylate cyclase toxin-hemolysin is a single polypeptide, containing an adenylate cyclase enzymatic domain coupled to a hemolysin domain, that primarily targets phagocytic cells to inhibit their antibacterial activities. Tracheal cytotoxin is a fragment of peptidoglycan released by B. pertussis that elicits damaging inflammatory responses in host cells. This chapter describes these three virulence factors of B. pertussis, summarizing background information and focusing on the role of each toxin in infection and disease pathogenesis, as well as their role in pertussis vaccination.
Collapse
Affiliation(s)
- Karen Scanlon
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ciaran Skerry
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholas Carbonetti
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Cauchi S, Locht C. Non-specific Effects of Live Attenuated Pertussis Vaccine Against Heterologous Infectious and Inflammatory Diseases. Front Immunol 2018; 9:2872. [PMID: 30581436 PMCID: PMC6292865 DOI: 10.3389/fimmu.2018.02872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Bordetella pertussis is the agent of pertussis, also referred to as whooping cough, a disease that remains an important public health issue. Vaccine-induced immunity to pertussis wanes over time. In industrialized countries, high vaccine coverage has not prevented infection and transmission of B. pertussis, leading to periodic outbreaks in people of all ages. The consequence is the formation of a large source for transmission to children, who show the highest susceptibility of developing severe whooping cough and mortality. With the aim of providing protection against both disease and infection, a live attenuated pertussis vaccine, in which three toxins have been genetically inactivated or removed, is now in clinical development. This vaccine, named BPZE1, offers strong protection in mice and non-human primates. It has completed a phase I clinical trial in which safety, transient colonization of the human airway and immunogenicity could be demonstrated. In mice, BPZE1 was also found to protect against inflammation resulting from heterologous airway infections, including those caused by other Bordetella species, influenza virus and respiratory syncytial virus. Furthermore, the heterologous protection conferred by BPZE1 was also observed for non-infectious inflammatory diseases, such as allergic asthma, as well as for inflammatory disorders outside of the respiratory tract, such as contact dermatitis. Current studies focus on the mechanisms underlying the anti-inflammatory effects associated with nasal BPZE1 administration. Given the increasing importance of inflammatory disorders, novel preventive and therapeutic approaches are urgently needed. Therefore, live vaccines, such as BPZE1, may offer attractive solutions. It is now essential to understand the cellular and molecular mechanisms of action before translating these biological findings into new healthcare solutions.
Collapse
Affiliation(s)
- Stéphane Cauchi
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| | - Camille Locht
- Univ. Lille, U1019, UMR 8204, CIIL-Centre for Infection and Immunity of Lille, Lille, France.,CNRS UMR8204, Lille, France.,Inserm U1019, Lille, France.,CHU Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
28
|
Peptidoglycan Recognition Protein 4 Suppresses Early Inflammatory Responses to Bordetella pertussis and Contributes to Sphingosine-1-Phosphate Receptor Agonist-Mediated Disease Attenuation. Infect Immun 2018; 87:IAI.00601-18. [PMID: 30510103 DOI: 10.1128/iai.00601-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Incidence of whooping cough (pertussis), a bacterial infection of the respiratory tract caused by the bacterium Bordetella pertussis, has reached levels not seen since the 1950s. Antibiotics fail to improve the course of disease unless administered early in infection. Therefore, there is an urgent need for the development of antipertussis therapeutics. Sphingosine-1-phosphate receptor (S1PR) agonists have been shown to reduce pulmonary inflammation during Bordetella pertussis infection in mouse models. However, the mechanisms by which S1PR agonists attenuate pertussis disease are unknown. We report the results of a transcriptome sequencing study examining pulmonary transcriptional responses in B. pertussis-infected mice treated with S1PR agonist AAL-R or vehicle control. This study identified peptidoglycan recognition protein 4 (PGLYRP4) as one of the most highly upregulated genes in the lungs of infected mice following S1PR agonism. PGLYRP4, a secreted, innate mediator of host defenses, was found to limit early inflammatory pathology in knockout mouse studies. Further, S1PR agonist AAL-R failed to attenuate pertussis disease in PGLYRP4 knockout (KO) mice. B. pertussis virulence factor tracheal cytotoxin (TCT), a secreted peptidoglycan breakdown product, induces host tissue damage. TCT-oversecreting strains were found to drive an early inflammatory response similar to that observed in PGLYRP4 KO mice. Further, TCT-oversecreting strains induced significantly greater pathology in PGLYRP4-deficient animals than their wild-type counterparts. Together, these data indicate that S1PR agonist-mediated protection against pertussis disease is PGLYRP4 dependent. Our data suggest PGLYRP4 functions, in part, by preventing TCT-induced airway damage.
Collapse
|
29
|
Varney ME, Boehm DT, DeRoos K, Nowak ES, Wong TY, Sen-Kilic E, Bradford SD, Elkins C, Epperly MS, Witt WT, Barbier M, Damron FH. Bordetella pertussis Whole Cell Immunization, Unlike Acellular Immunization, Mimics Naïve Infection by Driving Hematopoietic Stem and Progenitor Cell Expansion in Mice. Front Immunol 2018; 9:2376. [PMID: 30405604 PMCID: PMC6200895 DOI: 10.3389/fimmu.2018.02376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) compartments are altered to direct immune responses to infection. Their roles during immunization are not well-described. To elucidate mechanisms for waning immunity following immunization with acellular vaccines (ACVs) against Bordetella pertussis (Bp), we tested the hypothesis that immunization with Bp ACVs and whole cell vaccines (WCVs) differ in directing the HSPC characteristics and immune cell development patterns that ultimately contribute to the types and quantities of cells produced to fight infection. Our data demonstrate that compared to control and ACV-immunized CD-1 mice, immunization with an efficacious WCV drives expansion of hematopoietic multipotent progenitor cells (MPPs), increases circulating white blood cells (WBCs), and alters the size and composition of lymphoid organs. In addition to MPPs, common lymphoid progenitor (CLP) proportions increase in the bone marrow of WCV-immunized mice, while B220+ cell proportions decrease. Upon subsequent infection, increases in maturing B cell populations are striking in WCV-immunized mice. RNAseq analyses of HSPCs revealed that WCV and ACV-immunized mice vastly differ in developing VDJ gene segment diversity. Moreover, gene set enrichment analyses demonstrate WCV-immunized mice exhibit unique gene signatures that suggest roles for interferon (IFN) induced gene expression. Also observed in naïve infection, these IFN stimulated gene (ISG) signatures point toward roles in cell survival, cell cycle, autophagy, and antigen processing and presentation. Taken together, these findings underscore the impact of vaccine antigen and adjuvant content on skewing and/or priming HSPC populations for immune response.
Collapse
Affiliation(s)
- Melinda E Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Katherine DeRoos
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Evan S Nowak
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Shebly D Bradford
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Cody Elkins
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Matthew S Epperly
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - William T Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
30
|
Rubin K, Glazer S. The pertussis hypothesis: Bordetella pertussis colonization in the etiology of asthma and diseases of allergic sensitization. Med Hypotheses 2018; 120:101-115. [PMID: 30220328 DOI: 10.1016/j.mehy.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Decades of peer reviewed evidence demonstrate that: 1)Bordetellapertussisand pertussis toxin are potent adjuvants, inducing asthma and allergic sensitization in animal models of human disease, 2)Bordetella pertussisoften colonizes the human nasopharynx, and is well documented in highly pertussis-vaccinated populations and 3) in children, a history of whooping cough increases the risk of asthma and allergic sensitization disease. We build on these observations with six case studies and offer a pertussis-based explanation for the rapid rise in allergic disease in former East Germany following the fall of the Berlin Wall; the current asthma, peanut allergy, and anaphylaxis epidemics in the United States; the correlation between the risk of asthma and gross national income per capita by country; the lower risk of asthma and allergy in children raised on farms; and the reduced risk of atopy with increased family size and later sibling birth order. To organize the evidence for the pertussis hypothesis, we apply the Bradford Hill criteria to the association between Bordetella pertussisand asthma and allergicsensitization disease. We propose that, contrary to conventional wisdom that nasopharyngealBordetella pertussiscolonizing infections are harmless, subclinicalBordetella pertussiscolonization is an important cause of asthma and diseases of allergic sensitization.
Collapse
|
31
|
Pharmacological Cyclophilin Inhibitors Prevent Intoxication of Mammalian Cells with Bordetella pertussis Toxin. Toxins (Basel) 2018; 10:toxins10050181. [PMID: 29723951 PMCID: PMC5983237 DOI: 10.3390/toxins10050181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022] Open
Abstract
The Bordetella pertussis toxin (PT) is one important virulence factor causing the severe childhood disease whooping cough which still accounted for approximately 63,000 deaths worldwide in children in 2013. PT consists of PTS1, the enzymatically active (A) subunit and a non-covalently linked pentameric binding/transport (B) subunit. After endocytosis, PT takes a retrograde route to the endoplasmic reticulum (ER), where PTS1 is released into the cytosol. In the cytosol, PTS1 ADP-ribosylates inhibitory alpha subunits of trimeric GTP-binding proteins (Giα) leading to increased cAMP levels and disturbed signalling. Here, we show that the cyclophilin (Cyp) isoforms CypA and Cyp40 directly interact with PTS1 in vitro and that Cyp inhibitors cyclosporine A (CsA) and its tailored non-immunosuppressive derivative VK112 both inhibit intoxication of CHO-K1 cells with PT, as analysed in a morphology-based assay. Moreover, in cells treated with PT in the presence of CsA, the amount of ADP-ribosylated Giα was significantly reduced and less PTS1 was detected in the cytosol compared to cells treated with PT only. The results suggest that the uptake of PTS1 into the cytosol requires Cyps. Therefore, CsA/VK112 represent promising candidates for novel therapeutic strategies acting on the toxin level to prevent the severe, life-threatening symptoms caused by PT.
Collapse
|
32
|
The Significance of Hypothiocyanite Production via the Pendrin/DUOX/Peroxidase Pathway in the Pathogenesis of Asthma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1054801. [PMID: 29359006 PMCID: PMC5735670 DOI: 10.1155/2017/1054801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 01/06/2023]
Abstract
Inhaled corticosteroids (ICSs) are used as first-line drugs for asthma, and various novel antiasthma drugs targeting type 2 immune mediators are now under development. However, molecularly targeted drugs are expensive, creating an economic burden on patients. We and others previously found pendrin/SLC26A4 as a downstream molecule of IL-13, a signature type 2 cytokine critical for asthma, and showed its significance in the pathogenesis of asthma using model mice. However, the molecular mechanism of how pendrin causes airway inflammation remained elusive. We have recently demonstrated that hypothiocyanite (OSCN−) produced by the pendrin/DUOX/peroxidase pathway has the potential to cause airway inflammation. Pendrin transports thiocyanate (SCN−) into pulmonary lumens at the apical side. Peroxidases catalyze SCN− and H2O2 generated by DUOX into OSCN−. Low doses of OSCN− activate NF-κB in airway epithelial cells, whereas OSCN− in high doses causes necrosis of the cells, inducing the release of IL-33 and accelerating inflammation. OSCN− production is augmented in asthma model mice and possibly in some asthma patients. Heme peroxidase inhibitors, widely used as antithyroid agents, diminish asthma-like phenotypes in mice, indicating the significance of this pathway. These findings suggest the possibility of repositioning antithyroid agents as antiasthma drugs.
Collapse
|
33
|
Fatal Pertussis in the Neonatal Mouse Model Is Associated with Pertussis Toxin-Mediated Pathology beyond the Airways. Infect Immun 2017; 85:IAI.00355-17. [PMID: 28784932 DOI: 10.1128/iai.00355-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/03/2017] [Indexed: 01/28/2023] Open
Abstract
In infants, Bordetella pertussis can cause severe disease, manifested as pronounced leukocytosis, pulmonary hypertension, and even death. The exact cause of death remains unknown, and no effective therapies for treating fulminant pertussis exist. In this study, a neonatal mouse model of critical pertussis is characterized, and a central role for pertussis toxin (PT) is described. PT promoted colonization, leukocytosis, T cell phenotypic changes, systemic pathology, and death in neonatal but not adult mice. Surprisingly, PT inhibited lung inflammatory pathology in neonates, a result which contrasts dramatically with observed PT-promoted pathology in adult mice. Infection with a PT-deficient strain induced severe pulmonary inflammation but not mortality in neonatal mice, suggesting that death in these mice was not associated with impaired lung function. Dissemination of infection beyond the lungs was also detected in neonatal mice, which may contribute to the observed systemic effects of PT. We propose that it is the systemic activity of pertussis toxin and not pulmonary pathology that promotes mortality in critical pertussis. In addition, we observed transmission of infection between neonatal mice, the first report of B. pertussis transmission in mice. This model will be a valuable tool to investigate causes of pertussis pathogenesis and identify potential therapies for critical pertussis.
Collapse
|
34
|
Abstract
The secretion of proteins that damage host tissue is well established as integral to the infectious processes of many bacterial pathogens. However, recent advances in our understanding of the activity of toxins suggest that the attributes we have assigned to them from early in vitro experimentation have misled us into thinking of them as merely destructive tools. Here, we will discuss the multifarious ways in which toxins contribute to the lifestyle of bacteria and, by considering their activity from an evolutionary perspective, demonstrate how this extends far beyond their ability to destroy host tissue.
Collapse
|
35
|
Skerry C, Scanlon K, Ardanuy J, Roberts D, Zhang L, Rosen H, Carbonetti NH. Reduction of Pertussis Inflammatory Pathology by Therapeutic Treatment With Sphingosine-1-Phosphate Receptor Ligands by a Pertussis Toxin-Insensitive Mechanism. J Infect Dis 2017; 215:278-286. [PMID: 27815382 PMCID: PMC5853922 DOI: 10.1093/infdis/jiw536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/28/2016] [Indexed: 12/28/2022] Open
Abstract
Recent data have demonstrated the potential of sphingosine 1-phosphate (S1P) receptor (S1PR) agonism in the treatment of infectious diseases. A previous study used a murine model of Bordetella pertussis infection to demonstrate that treatment with the S1PR agonist AAL-R reduces pulmonary inflammation during infection. In the current study, we showed that this effect is mediated via the S1PR1 on LysM+ (myeloid) cells. Signaling via this receptor results in reduced lung inflammation and cellular recruitment as well as reduced morbidity and mortality in a neonatal mouse model of disease. Despite the fact that S1PRs are pertussis toxin-sensitive G protein-coupled receptors, the effects of AAL-R were pertussis toxin insensitive in our model. Furthermore, our data demonstrate that S1PR agonist administration may be effective at therapeutic time points. These results indicate a role for S1P signaling in B. pertussis-mediated pathology and highlight the possibility of host-targeted therapy for pertussis.
Collapse
Affiliation(s)
| | | | | | - Drew Roberts
- Department of Physiology, University of Maryland Medical School, Baltimore
| | - Li Zhang
- Department of Physiology, University of Maryland Medical School, Baltimore
| | - Hugh Rosen
- Departments of Chemical Physiology and Immunology, The Scripps Research Institute, La Jolla, California
| | | |
Collapse
|
36
|
Abstract
The interleukin-17 (IL-17) family cytokines, such as IL-17A and IL-17F, play
important protective roles in host immune response to a variety of infections
such as bacterial, fungal, parasitic, and viral. The IL-17R signaling and
downstream pathways mediate induction of proinflammatory molecules which
participate in control of these pathogens. However, the production of IL-17 can
also mediate pathology and inflammation associated with infections. In this
review, we will discuss the yin-and-yang roles of IL-17 in host immunity to
pathogens.
Collapse
Affiliation(s)
- Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St Louis, MO, USA
| | - Shabaana Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St Louis, MO, USA
| |
Collapse
|
37
|
Plaut RD, Scanlon KM, Taylor M, Teter K, Carbonetti NH. Intracellular disassembly and activity of pertussis toxin require interaction with ATP. Pathog Dis 2016; 74:ftw065. [PMID: 27369899 DOI: 10.1093/femspd/ftw065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2016] [Indexed: 11/13/2022] Open
Abstract
The active subunit (S1) of pertussis toxin (PT), a major virulence factor of Bordetella pertussis, ADP-ribosylates Gi proteins in the mammalian cell cytosol to inhibit GPCR signaling. The intracellular pathway of PT includes endocytosis and retrograde transport to the trans-Golgi network (TGN) and endoplasmic reticulum (ER). Subsequent translocation of S1 to the cytosol is presumably preceded by dissociation from the holotoxin. In vitro, such dissociation is stimulated by interaction of PT with ATP. To investigate the role of this interaction in cellular events, we engineered a form of PT (PTDM) with changes to two amino acids involved in the interaction with ATP. PTDM was reduced in (1) binding to ATP, (2) dissociability by interaction with ATP, (3) in vitro enzymatic activity and (4) cellular ADP-ribosylation activity. In cells treated with PTDM carrying target sequences for organelle-specific modifications, normal transport to the TGN and ER occurred, but N-glycosylation patterns of the S1 and S4 subunits were consistent with an inability of PTDM to dissociate in the ER. These results indicate a requirement for interaction with ATP for PT dissociation in the ER and cellular activity. They also indicate that the retrograde transport route is the cellular intoxication pathway for PT.
Collapse
Affiliation(s)
- Roger D Plaut
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Karen M Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826, USA
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826, USA
| | - Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
38
|
Jia CE, Jiang D, Dai H, Xiao F, Wang C. Pendrin, an anion exchanger on lung epithelial cells, could be a novel target for lipopolysaccharide-induced acute lung injury mice. Am J Transl Res 2016; 8:981-992. [PMID: 27158384 PMCID: PMC4846941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE The aim of this study is to evaluate the role of pendrin in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and to explore whether pendrin expression existing on alveolar cells. METHODS ALI C57BL/6 mice model induced by lipopolysaccharide (LPS) was established. The expression of pendrin in lung was analyzed by RT-PCR and western blotting methods, the changes of lung inflammatory parameters and pathology were observed, the cellular distribution of pendrin in the lung was determined using immunofluorescence. Statistical comparisons between groups were made by two-tailed Student's t-test. RESULTS Enhanced expression of the slc26a4 gene and production of pendrin in lungs of LPS-induced ALI mice were confirmed. In comparison with vehicle-control mice, methazolamide treatment mitigated lung inflammatory parameters and pathology. IL-6 and MCP-1 in lung tissues and BALF in methazolamide-treated mice were statistically decreased. Methazolamide treatment had significant effect on the total protein concentration in the BALF and the ratio of lung wet/dry weight. The percentage of macrophages in the BALF was increased. There was a low expression of pendrin in ATII. CONCLUSIONS Pendrin may be involved in pathological process of LPS-induced ALI. Inhibition of the pendrin function could be used to treat ALI. Airway epithelial cell may be a valuable therapeutic target for discovering and developing new drugs and/or new therapeutic strategies for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chun-E Jia
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Graduate School, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing 100730, P. R. China
| | - Dingyuan Jiang
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical UniversityBeijing 100020, P. R. China
| | - Huaping Dai
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical UniversityBeijing 100020, P. R. China
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship HospitalBeijing 100029, P. R. China
| | - Fei Xiao
- National Clinical Research Center of Respiratory DiseasesBeijing 100730, P. R. China
- Department of Cell Biology, Institute of Geriatrics, Beijing HospitalBeijing 100730, P. R. China
| | - Chen Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Graduate School, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing 100730, P. R. China
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical UniversityBeijing 100020, P. R. China
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship HospitalBeijing 100029, P. R. China
- National Clinical Research Center of Respiratory DiseasesBeijing 100730, P. R. China
| |
Collapse
|
39
|
Lin CC, Bradstreet TR, Schwarzkopf EA, Jarjour NN, Chou C, Archambault AS, Sim J, Zinselmeyer BH, Carrero JA, Wu GF, Taneja R, Artyomov MN, Russell JH, Edelson BT. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med 2016; 213:251-71. [PMID: 26834156 PMCID: PMC4749922 DOI: 10.1084/jem.20150568] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
Lin et al. show that Bhlhe40 expression identifies encephalitogenic CD4+ T helper cells and define a pertussis toxin–IL-1–Bhlhe40 pathway active in experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. The features that define autoreactive T helper (Th) cell pathogenicity remain obscure. We have previously shown that Th cells require the transcription factor Bhlhe40 to mediate experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Here, using Bhlhe40 reporter mice and analyzing both polyclonal and TCR transgenic Th cells, we found that Bhlhe40 expression was heterogeneous after EAE induction, with Bhlhe40-expressing cells displaying marked production of IFN-γ, IL-17A, and granulocyte-macrophage colony-stimulating factor. In adoptive transfer EAE models, Bhlhe40-deficient Th1 and Th17 cells were both nonencephalitogenic. Pertussis toxin (PTX), a classical co-adjuvant for actively induced EAE, promoted IL-1β production by myeloid cells in the draining lymph node and served as a strong stimulus for Bhlhe40 expression in Th cells. Furthermore, PTX co-adjuvanticity was Bhlhe40 dependent. IL-1β induced Bhlhe40 expression in polarized Th17 cells, and Bhlhe40-expressing cells exhibited an encephalitogenic transcriptional signature. In vivo, IL-1R signaling was required for full Bhlhe40 expression by Th cells after immunization. Overall, we demonstrate that Bhlhe40 expression identifies encephalitogenic Th cells and defines a PTX–IL-1–Bhlhe40 pathway active in EAE.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tara R Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Elizabeth A Schwarzkopf
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicholas N Jarjour
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Chun Chou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Angela S Archambault
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Julia Sim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Javier A Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gregory F Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110 Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - John H Russell
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
40
|
do Vale A, Cabanes D, Sousa S. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front Microbiol 2016; 7:42. [PMID: 26870008 PMCID: PMC4734073 DOI: 10.3389/fmicb.2016.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.
Collapse
Affiliation(s)
- Ana do Vale
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Didier Cabanes
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Sandra Sousa
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
41
|
Jobling MG. The chromosomal nature of LT-II enterotoxins solved: a lambdoid prophage encodes both LT-II and one of two novel pertussis-toxin-like toxin family members in type II enterotoxigenic Escherichia coli. Pathog Dis 2016; 74:ftw001. [PMID: 26755534 PMCID: PMC4957749 DOI: 10.1093/femspd/ftw001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2016] [Indexed: 01/06/2023] Open
Abstract
Heat-labile enterotoxins (LT) of enterotoxigenic Escherichia coli (ETEC) are structurally and functionally related to cholera toxin (CT). LT-I toxins are plasmid-encoded and flanked by IS elements, while LT-II toxins of type II ETEC are chromosomally encoded with flanking genes that appear phage related. Here, I determined the complete genomic sequence of the locus for the LT-IIa type strain SA53, and show that the LT-IIa genes are encoded by a 51 239 bp lambdoid prophage integrated at the rac locus, the site of a defective prophage in E. coli K12 strains. Of 50 LT-IIa and LT-IIc, 46 prophages also encode one member of two novel two-gene ADP-ribosyltransferase toxin families that are both related to pertussis toxin, which I named eplBA or ealAB, respectively. The eplBA and ealAB genes are syntenic with the Shiga toxin loci in their lambdoid prophages of the enteric pathogen enterohemorrhagic E. coli. These novel AB5 toxins show pertussis-toxin-like activity on tissue culture cells, and like pertussis toxin bind to sialic acid containing glycoprotein ligands. Type II ETEC are the first mucosal pathogens known to simultaneously produce two ADP-ribosylating toxins predicted to act on and modulate activity of both stimulatory and inhibitory alpha subunits of host cell heterotrimeric G-proteins. Two novel pertussis-toxin-like toxins are also present in the genome of the prophage that also encodes the LT-II enterotoxin genes in type II enterotoxigenic Escherichi coli.
Collapse
Affiliation(s)
- Michael G Jobling
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Ave, Aurora CO 80045, USA
| |
Collapse
|
42
|
Novel Roles for Chloride Channels, Exchangers, and Regulators in Chronic Inflammatory Airway Diseases. Mediators Inflamm 2015; 2015:497387. [PMID: 26612971 PMCID: PMC4647060 DOI: 10.1155/2015/497387] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/13/2015] [Indexed: 01/14/2023] Open
Abstract
Chloride transport proteins play critical roles in inflammatory airway diseases, contributing to the detrimental aspects of mucus overproduction, mucus secretion, and airway constriction. However, they also play crucial roles in contributing to the innate immune properties of mucus and mucociliary clearance. In this review, we focus on the emerging novel roles for a chloride channel regulator (CLCA1), a calcium-activated chloride channel (TMEM16A), and two chloride exchangers (SLC26A4/pendrin and SLC26A9) in chronic inflammatory airway diseases.
Collapse
|
43
|
Scanlon KM, Skerry C, Carbonetti NH. Novel therapies for the treatment of pertussis disease. Pathog Dis 2015; 73:ftv074. [PMID: 26394802 PMCID: PMC4626598 DOI: 10.1093/femspd/ftv074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/09/2015] [Accepted: 09/16/2015] [Indexed: 12/13/2022] Open
Abstract
Whooping cough, or pertussis, incidence has reached levels not seen since the 1950s. Previous studies have shown that antibiotics fail to improve the course of disease unless diagnosed early. Early diagnosis is complicated by the non-diagnostic presentation of disease early in infection. This review focuses on previous attempts at developing novel host-directed therapies for the treatment of pertussis. In addition, two novel approaches from our group are discussed. Manipulation of the signaling pathway of sphingosine-1-phosphate, a lipid involved in many immune processes, has shown great promise, but is in its infancy. Pendrin, a host epithelial anion exchanger upregulated in the airways with B. pertussis infection, appears to drive mucus production and dysregulation of airway surface liquid pH and salinity. In addition to detailing these potential new therapeutic targets, the need for greater focus on the neonatal model of disease is highlighted.
Collapse
Affiliation(s)
- Karen M Scanlon
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD 21201, USA
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD 21201, USA
| | - Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD 21201, USA
| |
Collapse
|
44
|
Eby JC, Hoffman CL, Gonyar LA, Hewlett EL. Review of the neutrophil response to Bordetella pertussis infection. Pathog Dis 2015; 73:ftv081. [PMID: 26432818 DOI: 10.1093/femspd/ftv081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 01/13/2023] Open
Abstract
The nature and timing of the neutrophil response to infection with Bordetella pertussis is influenced by multiple virulence factors expressed by the bacterium. After inoculation of the host airway, the recruitment of neutrophils signaled by B. pertussis lipooligosaccharide (LOS) is suppressed by pertussis toxin (PTX). Over the next week, the combined activities of PTX, LOS and adenylate cyclase toxin (ACT) result in production of cytokines that generate an IL-17 response, promoting neutrophil recruitment which peaks at 10-14 days after inoculation in mice. Arriving at the site of infection, neutrophils encounter the powerful local inhibitory activity of ACT, in conjunction with filamentous hemagglutinin. With the help of antibodies, neutrophils contribute to clearance of B. pertussis, but only after 28-35 days in a naïve mouse. Studies of the lasting, antigen-specific IL-17 response to infection in mice and baboons has led to progress in vaccine development and understanding of pathogenesis. Questions remain about the mediators that coordinate neutrophil recruitment and the mechanisms by which neutrophils overcome B. pertussis virulence factors.
Collapse
Affiliation(s)
- Joshua C Eby
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| | - Casandra L Hoffman
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| | - Laura A Gonyar
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| | - Erik L Hewlett
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
45
|
Carbonetti NH. Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathog Dis 2015; 73:ftv073. [PMID: 26394801 DOI: 10.1093/femspd/ftv073] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
Pertussis toxin (PT) is a multisubunit protein toxin secreted by Bordetella pertussis, the bacterial agent of the disease pertussis or whooping cough. PT in detoxified form is a component of all licensed acellular pertussis vaccines, since it is considered to be an important virulence factor for this pathogen. PT inhibits G protein-coupled receptor signaling through Gi proteins in mammalian cells, an activity that has led to its widespread use as a cell biology tool. But how does this activity of PT contribute to pertussis, including the severe respiratory symptoms of this disease? In this minireview, the contribution of PT to the pathogenesis of pertussis disease will be considered based on evidence from both human infections and animal model studies. Although definitive proof of the role of PT in humans is lacking, substantial evidence supports the idea that PT is a major contributor to pertussis pathology, including the severe respiratory symptoms associated with this disease.
Collapse
Affiliation(s)
- Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD 21201, USA
| |
Collapse
|
46
|
Coutte L, Locht C. Investigating pertussis toxin and its impact on vaccination. Future Microbiol 2015; 10:241-54. [PMID: 25689536 DOI: 10.2217/fmb.14.123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Whooping cough, caused by Bordetella pertussis, remains a major global health problem. Each year around 40 million of pertussis cases resulting in 200,000-400,000 annual deaths occur worldwide. Pertussis toxin is a major virulence factor of B. pertussis. Murine studies have shown its importance in bacterial colonization and in immunomodulation to evade innate or adaptive immunity. The toxin is composed of an A protomer expressing ADP-ribosyltransferase activity and a B oligomer, responsible for toxin binding to target cells. The toxin is also a major protective antigen in all currently available vaccines. However, vaccine escape mutants with altered toxin expression have recently been isolated in countries with high vaccination coverage illustrating the need for improved pertussis vaccines.
Collapse
Affiliation(s)
- Loic Coutte
- Center for Infection & Immunity of Lille, Institut Pasteur de Lille, 1, rue du Prof. Calmette, F-59019 Lille Cedex, France
| | | |
Collapse
|
47
|
Cooperative roles for fimbria and filamentous hemagglutinin in Bordetella adherence and immune modulation. mBio 2015; 6:e00500-15. [PMID: 26015497 PMCID: PMC4447244 DOI: 10.1128/mbio.00500-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bordetella fimbriae (FIM) are generally considered to function as adhesins despite a lack of experimental evidence supporting this conclusion for Bordetella pertussis and evidence against a requirement for FIM in adherence of Bordetella bronchiseptica to mammalian cell lines. Using B. bronchiseptica and mice, we developed an in vivo adherence assay that revealed that FIM do function as critically important adhesins in the lower respiratory tract. In the first few days postinoculation, FIM-deficient B. bronchiseptica induced a more robust inflammatory response than wild-type bacteria did, suggesting that FIM, like filamentous hemagglutinin (FHA), allow B. bronchiseptica to suppress the innate immune response to infection. Localization analyses indicated that FIM are required for efficient attachment to airway epithelium, as bacteria lacking FIM localized to alveoli. FHA-deficient bacteria, in contrast, localized to airways. Bacteria unable to produce both FIM and FHA localized to alveoli and caused increased inflammation and histopathology identical to that caused by FIM-deficient bacteria, demonstrating that lack of FIM is epistatic to lack of FHA. Coinoculation experiments provided evidence that wild-type B. bronchiseptica suppresses inflammation locally within the respiratory tract and that both FHA and FIM are required for defense against clearance by the innate immune system. Altogether, our data suggest that FIM-mediated adherence to airway epithelium is a critical first step in Bordetella infection that allows FHA-dependent interactions to mediate tight adherence, suppression of inflammation, and resistance to inflammatory cell-mediated clearance. Our results suggest that mucosal antibodies capable of blocking FIM-mediated interactions could prevent bacterial colonization of the lower respiratory tract. Although fimbriae (FIM) have been shown to be important mediators of adherence for many bacterial pathogens, there is surprisingly little experimental evidence supporting this role for Bordetella fimbria. Our results provide the first demonstration that Bordetella FIM function as adhesins in vivo, specifically to airway epithelium. Furthermore, our results suggest that FIM mediate initial interactions with airway epithelial cells that are followed by tight filamentous hemagglutinin (FHA)-mediated binding and that together, FIM and FHA allow Bordetella to suppress inflammation, leading to prolonged colonization. Given the shortcoming of the current acellular component pertussis (aP) vaccine in preventing colonization, these findings suggest that generation of antibodies capable of blocking FIM-mediated adherence could potentially prevent Bordetella colonization.
Collapse
|
48
|
Skerry C, Scanlon K, Rosen H, Carbonetti NH. Sphingosine-1-phosphate Receptor Agonism Reduces Bordetella pertussis-mediated Lung Pathology. J Infect Dis 2014; 211:1883-6. [PMID: 25538274 DOI: 10.1093/infdis/jiu823] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/12/2014] [Indexed: 11/14/2022] Open
Abstract
Recent pertussis resurgence represents a major public health concern. Currently, there are no effective treatments for critical pertussis in infants. Recent data have demonstrated the potential of sphingosine-1-phosphate receptor (S1PR) agonism in the treatment of infectious diseases. We used the murine Bordetella pertussis model to test the hypothesis that treatment with S1PR agonist AAL-R reduces pulmonary inflammation during infection. AAL-R treatment resulted in reduced expression of inflammatory cytokines and chemokines and attenuated lung pathology in infected mice. These results demonstrate a role for sphingosine-1-phosphate (S1P) signaling in B. pertussis-mediated pathology and highlight the possibility of host-targeted therapy for pertussis.
Collapse
Affiliation(s)
- Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore
| | - Karen Scanlon
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore
| | - Hugh Rosen
- Departments of Chemical Physiology and Immunology, The Scripps Research Institute, La Jolla, California
| | - Nicholas H Carbonetti
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore
| |
Collapse
|
49
|
Epithelial anion transporter pendrin contributes to inflammatory lung pathology in mouse models of Bordetella pertussis infection. Infect Immun 2014; 82:4212-21. [PMID: 25069981 DOI: 10.1128/iai.02222-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pertussis disease, characterized by severe and prolonged coughing episodes, can progress to a critical stage with pulmonary inflammation and death in young infants. However, there are currently no effective treatments for pertussis. We previously studied the role of pertussis toxin (PT), an important Bordetella pertussis virulence factor, in lung transcriptional responses to B. pertussis infection in mouse models. One of the genes most highly upregulated in a PT-dependent manner encodes an epithelial transporter of bicarbonate, chloride, and thiocyanate, named pendrin, that contributes to asthma pathology. In this study, we found that pendrin expression is upregulated at both gene and protein levels in the lungs of B. pertussis-infected mice. Pendrin upregulation is associated with PT production by the bacteria and with interleukin-17A (IL-17A) production by the host. B. pertussis-infected pendrin knockout (KO) mice had higher lung bacterial loads than infected pendrin-expressing mice but had significantly reduced levels of lung inflammatory pathology. However, reduced pathology did not correlate with reduced inflammatory cytokine expression. Infected pendrin KO mice had higher levels of inflammatory cytokines and chemokines than infected pendrin-expressing mice, suggesting that these inflammatory mediators are less active in the airways in the absence of pendrin. In addition, treatment of B. pertussis-infected mice with the carbonic anhydrase inhibitor acetazolamide reduced lung inflammatory pathology without affecting pendrin synthesis or bacterial loads. Together these data suggest that PT contributes to pertussis pathology through the upregulation of pendrin, which promotes conditions favoring inflammatory pathology. Therefore, pendrin may represent a novel therapeutic target for treatment of pertussis disease.
Collapse
|
50
|
Hewlett EL, Burns DL, Cotter PA, Harvill ET, Merkel TJ, Quinn CP, Stibitz ES. Pertussis pathogenesis--what we know and what we don't know. J Infect Dis 2014; 209:982-5. [PMID: 24626533 DOI: 10.1093/infdis/jit639] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pertussis is a worldwide public health threat. Bordetella pertussis produces multiple virulence factors that have been studied individually, and many have recently been found to have additional biological activities. Nevertheless, how they interact to cause the disease pertussis remains unknown. New animal models, particularly the infection of infant baboons with B. pertussis, are enabling longstanding questions about pertussis pathogenesis to be answered and new ones to be asked. Enhancing our understanding of pathogenesis will enable new approaches to the prevention and control of pertussis.
Collapse
Affiliation(s)
- Erik L Hewlett
- Departments of Medicine and Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | | | | | | | | | | |
Collapse
|