1
|
Hu Z, Xia J, Wu J, Zhao H, Ji P, Gu L, Gu W, Chen Z, Xu J, Huang X, Ma J, Chen A, Li J, Shu T, Fan XY. A multistage Sendai virus vaccine incorporating latency-associated antigens induces protection against acute and latent tuberculosis. Emerg Microbes Infect 2024; 13:2300463. [PMID: 38164736 PMCID: PMC10769537 DOI: 10.1080/22221751.2023.2300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
One-quarter of the world's population is infected with Mycobacterium tuberculosis (Mtb). After initial exposure, more immune-competent persons develop asymptomatic latent tuberculosis infection (LTBI) but not active diseases, creates an extensive reservoir at risk of developing active tuberculosis. Previously, we constructed a novel recombinant Sendai virus (SeV)-vectored vaccine encoding two dominant antigens of Mtb, which elicited immune protection against acute Mtb infection. In this study, nine Mtb latency-associated antigens were screened as potential supplementary vaccine candidate antigens, and three antigens (Rv2029c, Rv2028c, and Rv3126c) were selected based on their immune-therapeutic effect in mice, and their elevated immune responses in LTBI human populations. Then, a recombinant SeV-vectored vaccine, termed SeV986A, that expresses three latency-associated antigens and Ag85A was constructed. In murine models, the doses, titers, and inoculation sites of SeV986A were optimized, and its immunogenicity in BCG-primed and BCG-naive mice were determined. Enhanced immune protection against the Mtb challenge was shown in both acute-infection and latent-infection murine models. The expression levels of several T-cell exhaustion markers were significantly lower in the SeV986A-vaccinated group, suggesting that the expression of latency-associated antigens inhibited the T-cell exhaustion process in LTBI infection. Hence, the multistage quarter-antigenic SeV986A vaccine holds considerable promise as a novel post-exposure prophylaxis vaccine against tuberculosis.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Jingxian Xia
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Juan Wu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Huimin Zhao
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Ping Ji
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Ling Gu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Wenfei Gu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Zhenyan Chen
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Jinchuan Xu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Xuejiao Huang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | | | - Anke Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | | | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Malik AA, Shariq M, Sheikh JA, Zarin S, Ahuja Y, Fayaz H, Alam A, Ehtesham NZ, Hasnain SE. Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis. Crit Rev Microbiol 2024:1-20. [PMID: 38470107 DOI: 10.1080/1040841x.2024.2321494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- ICMR-National Institute of Pathology, New Delhi, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, New Delhi, India
| | - Sheeba Zarin
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, New Delhi, India
| | - Yashika Ahuja
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anwar Alam
- Department of Biotechnology, School of Science and Engineering Technology, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
3
|
Lin XQ, Liu ZZ, Zhou CK, Zhang L, Gao Y, Luo XY, Zhang JG, Chen W, Yang YJ. Trained immunity in recurrent Staphylococcus aureus infection promotes bacterial persistence. PLoS Pathog 2024; 20:e1011918. [PMID: 38241414 PMCID: PMC10798626 DOI: 10.1371/journal.ppat.1011918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
Bacterial persister cells, a sub-population of dormant phenotypic variants highly tolerant to antibiotics, present a significant challenge for infection control. Investigating the mechanisms of antibiotic persistence is crucial for developing effective treatment strategies. Here, we found a significant association between tolerance frequency and previous infection history in bovine mastitis. Previous S. aureus infection led to S. aureus tolerance to killing by rifampicin in subsequent infection in vivo and in vitro. Actually, the activation of trained immunity contributed to rifampicin persistence of S. aureus in secondary infection, where it reduced the effectiveness of antibiotic treatment and increased disease severity. Mechanically, we found that S. aureus persistence was mediated by the accumulation of fumarate provoked by trained immunity. Combination therapy with metformin and rifampicin promoted eradication of persisters and improved the severity of recurrent S. aureus infection. These findings provide mechanistic insight into the relationship between trained immunity and S. aureus persistence, while providing proof of concept that trained immunity is a therapeutic target in recurrent bacterial infections involving persistent pathogens.
Collapse
Affiliation(s)
- Xiao-Qi Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Zhen-Zhen Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Cheng-Kai Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Liang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Yu Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Xue-Yue Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Jian-Gang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Wei Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Yong-Jun Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
4
|
López-R M, Maya-Hoyos M, León-Torres A, Cruz-Cacais A, Castillo E, Soto CY. The copper P-type ATPase CtpA is involved in the response of Mycobacterium tuberculosis to redox stress. Biochimie 2023; 221:S0300-9084(23)00288-2. [PMID: 39491178 DOI: 10.1016/j.biochi.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
The functional difference among the three copper-transporting P-type ATPases (CtpA, CtpB, and CtpV) annotated in genome of Mycobacterium tuberculosis (Mtb) remains unclear. Thus, CtpA and CtpB are believed to deliver copper to extracytoplasmic proteins as a cofactor required to overcome redox and copper stress in the Mtb periplasm. This study investigates an alternative role of CtpA-mediated copper transportation and its possible interaction with the activity of the multicopper oxidase, (MmcO), in response to redox stress. Results from RT-qPCR experiments indicate that the ctpA gene is upregulated in low Cu2+ concentrations, and under oxidative (H2O2) and nitrosative (sodium nitroprusside) conditions in vitro, but not in high doses of Cu2+. Furthermore, the ctpA mutant strain (MtbΔctpA) showed impaired growth in the presence of oxidative and nitrosative stress in vitro. However, it did not display such growth impairments in response to high doses of copper in comparison to the wild-type strain. Disruption of the ctpA gene in the Mtb genome did not induce an accumulation of copper in cells under toxic doses of the metal, suggesting that CtpA is not directly involved in copper detoxification. On the other hand, whole-cell lysates of the MtbΔctpA mutant that were previously stimulated with Cu2+, H2O2 and SNP (sodium nitroprusside), displayed reduced ability to oxidize organic substrates (para-phenylenediamine (pPD) and 2,2-azino-bis (3-ethylbenzothiazo-line-6-sulfonic acid) (ABTS). These finding strongly suggest that the efflux of copper transported by CtpA from the cytoplasm is relevant to the response to the redox stress and may be required for metalation and activity of MmcO in Mtb.
Collapse
Affiliation(s)
- Marcela López-R
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Milena Maya-Hoyos
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Andrés León-Torres
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Alver Cruz-Cacais
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Eliana Castillo
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia
| | - Carlos Y Soto
- Chemistry Department, Faculty of Science, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia.
| |
Collapse
|
5
|
da Silva Graça Amoras E, de Morais TG, do Nascimento Ferreira R, Gomes STM, de Sousa FDM, de Paula Souza I, Ishak R, Vallinoto ACR, Queiroz MAF. Association of Cytokine Gene Polymorphisms and Their Impact on Active and Latent Tuberculosis in Brazil's Amazon Region. Biomolecules 2023; 13:1541. [PMID: 37892223 PMCID: PMC10605732 DOI: 10.3390/biom13101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Some genetic variations in cytokine genes can alter their expression and influence the evolution of Mycobacterium tuberculosis (Mtb) infection. This study aimed to investigate the association of polymorphisms in cytokine genes and variability in plasma levels of cytokines with the development of tuberculosis (TB) and latent tuberculosis infection (LTBI). Blood samples from 245 patients with TB, 80 with LTBI, and healthy controls (n = 100) were included. Genotyping of the IFNG +874A/T, IL6 -174G/C, IL4 -590C/T, and IL10 -1082A/G polymorphisms was performed by real-time PCR, and cytokine levels were determined by flow cytometry. Higher frequencies of genotypes AA (IFNG +874A/T), GG (IL6 -174G/C), TT (IL4 -590C/T), and GG (IL10 -1082A/G) were associated with an increased risk of TB compared to that of LTBI (p = 0.0027; p = 0.0557; p = 0.0286; p = 0.0361, respectively) and the control (p = <0.0001, p = 0.0021; p = 0.01655; p = 0.0132, respectively). In combination, the A allele for IFNG +874A/T and the T allele for IL4 -590C/T were associated with a higher chance of TB (p = 0.0080; OR = 2.753 and p < 0.0001; OR = 3.273, respectively). The TB group had lower levels of IFN-γ and higher concentrations of IL-6, IL-4, and IL-10. Cytokine levels were different between the genotypes based on the polymorphisms investigated (p < 0.05). The genotype and wild-type allele for IFNG +874A/T and the genotype and polymorphic allele for IL4 -590C/T appear to be more relevant in the context of Mtb infection, which has been associated with the development of TB among individuals infected by the bacillus and with susceptibility to active infection but not with susceptibility to latent infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Alice Freitas Queiroz
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (E.d.S.G.A.); (T.G.d.M.); (R.d.N.F.); (S.T.M.G.); (F.D.M.d.S.); (I.d.P.S.); (R.I.); (A.C.R.V.)
| |
Collapse
|
6
|
Qin Y, Wang Q, Shi J. Immune checkpoint modulating T cells and NK cells response to Mycobacterium tuberculosis infection. Microbiol Res 2023; 273:127393. [PMID: 37182283 DOI: 10.1016/j.micres.2023.127393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/07/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Many subversive mechanisms promote the occurrence and development of chronic infectious diseases and cancer, among which the down-regulated expression of immune-activating receptors and the enhanced expression of immune-inhibitory receptors accelerate the occurrence and progression of the disease. Recently, the use of immune checkpoint inhibitors has shown remarkable efficacy in the treatment of tumors in multiple organs. However, the expression of immune checkpoint molecules on natural killer (NK) cells by Mycobacterium tuberculosis (Mtb) infection and its impact on NK cell effector functions have been poorly studied. In this review, we focus on what is currently known about the expression of various immune checkpoints in NK cells following Mtb infection and how it alters NK cell-mediated host cytotoxicity and cytokine secretion. Unraveling the function of NK cells after the infection of host cells by Mtb is crucial for a comprehensive understanding of the innate immune mechanism of NK cells involved in tuberculosis and the evaluation of the efficacy of immunotherapies using immune checkpoint inhibitors to treat tuberculosis. In view of some similarities in the immune characteristics of T cells and NK cells, we reviewed the molecular mechanism of the interaction between T cells and Mtb, which can help us to further understand and explore the specific interaction mechanism between NK cells and Mtb.
Collapse
Affiliation(s)
- Yongwei Qin
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong 226001, China.
| | - Qinglan Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong 226001, China
| |
Collapse
|
7
|
Sengupta S, Pattanaik KP, Mishra S, Sonawane A. Epigenetic orchestration of host immune defences by Mycobacterium tuberculosis. Microbiol Res 2023; 273:127400. [PMID: 37196490 DOI: 10.1016/j.micres.2023.127400] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/09/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Being among the top 10 causes of adult deaths, tuberculosis (TB) disease is considered a major global public health concern to address. The human tuberculosis pathogen, Mycobacterium tuberculosis (Mtb), is an extremely competent and well-versed pathogen that promotes pathogenesis by evading the host immune systems through numerous tactics. Investigations revealed that Mtb could evade the host defense mechanisms by reconfiguring the host gene transcription and causing epigenetic changes. Although results indicate the link between epigenetics and disease manifestation in other bacterial infections, little is known regarding the kinetics of the epigenetic alterations in mycobacterial infection. This literature review discusses the studies in Mtb-induced epigenetic alterations inside the host and its contribution in the host immune evasion strategies. It also discusses how the Mtb-induced alterations could be used as 'epibiomarkers' to diagnose TB. Additionally, this review also discusses therapeutic interventions to be enhanced through remodification by 'epidrugs'.
Collapse
Affiliation(s)
- Srabasti Sengupta
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Kali Prasad Pattanaik
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Snehasish Mishra
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Avinash Sonawane
- Discipline of Biosciences and Biomedical Engineering, Indian Institutes of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
| |
Collapse
|
8
|
Sousa FDMD, Souza IDP, Amoras EDSG, Lima SS, Cayres-Vallinoto IMV, Ishak R, Vallinoto ACR, Queiroz MAF. Low levels of TNFA gene expression seem to favor the development of pulmonary tuberculosis in a population from the Brazilian Amazon. Immunobiology 2023; 228:152333. [PMID: 36630812 DOI: 10.1016/j.imbio.2023.152333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
TNF-α is a Th1 cytokine profile active in the control of Mycobacterium tuberculosis infection, IL-10 is associated with persistence of bacterial infection. The aim of the study was to investigate the association of TNFA -308G/A and IL10 -819C/T polymorphisms and TNFA and IL10 gene expression levels with pulmonary and extrapulmonary tuberculosis (n = 200) and control (n = 200). The individuals were submitted to genotyping and quantification of gene expression performed by real-time quantitative polymerase chain reaction (qPCR). No association was observed between the frequencies of polymorphisms evaluated and pulmonary tuberculosis. The frequency of polymorphic genotypes for TNFA -308G/A were associated with the extrapulmonary tuberculosis (p = 0.0445). The levels of TNFA expression were lower in the pulmonary tuberculosis group than in the control (p = 0.0009). There was a positive correlation between the levels of TNFA and IL10 in patients with pulmonary tuberculosis (r = 0.560; p = 0.0103). Reduced levels of TNFA expression may promote the formation of an anti-inflammatory microenvironment, favoring the persistence of the bacillus in the host, contributing to the establishment of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Francisca Dayse Martins de Sousa
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil; Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Iury de Paula Souza
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil; Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Ednelza da Silva Graça Amoras
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil
| | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil
| | | | - Ricardo Ishak
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil
| | | | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil.
| |
Collapse
|
9
|
Paiola M, Dimitrakopoulou D, Pavelka MS, Robert J. Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104594. [PMID: 36403788 DOI: 10.1016/j.dci.2022.104594] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.
Collapse
Affiliation(s)
- Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
10
|
Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol 2022; 20:750-766. [PMID: 35879556 PMCID: PMC9310001 DOI: 10.1038/s41579-022-00763-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has infected humans for millennia. M. tuberculosis is well adapted to establish infection, persist in the face of the host immune response and be transmitted to uninfected individuals. Its ability to complete this infection cycle depends on it both evading and taking advantage of host immune responses. The outcome of M. tuberculosis infection is often a state of equilibrium characterized by immunological control and bacterial persistence. Recent data have highlighted the diverse cell populations that respond to M. tuberculosis infection and the dynamic changes in the cellular and intracellular niches of M. tuberculosis during the course of infection. M. tuberculosis possesses an arsenal of protein and lipid effectors that influence macrophage functions and inflammatory responses; however, our understanding of the role that specific bacterial virulence factors play in the context of diverse cellular reservoirs and distinct infection stages is limited. In this Review, we discuss immune evasion and provocation by M. tuberculosis during its infection cycle and describe how a more detailed molecular understanding is crucial to enable the development of novel host-directed therapies, disease biomarkers and effective vaccines.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Steven J Grigsby
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer A Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
11
|
Jeong EK, Lee HJ, Jung YJ. Host-Directed Therapies for Tuberculosis. Pathogens 2022; 11:1291. [PMID: 36365041 PMCID: PMC9697779 DOI: 10.3390/pathogens11111291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 02/04/2024] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, consistently threatening public health. Conventional tuberculosis treatment requires a long-term treatment regimen and is associated with side effects. The efficacy of antitubercular drugs has decreased with the emergence of drug-resistant TB; therefore, the development of new TB treatment strategies is urgently needed. In this context, we present host-directed therapy (HDT) as an alternative to current tuberculosis therapy. Unlike antitubercular drugs that directly target Mycobacterium tuberculosis (Mtb), the causative agent of TB, HDT is an approach for treating TB that appropriately modulates host immune responses. HDT primarily aims to enhance the antimicrobial activity of the host in order to control Mtb infection and attenuate excessive inflammation in order to minimize tissue damage. Recently, research based on the repositioning of drugs for use in HDT has been in progress. Based on the overall immune responses against Mtb infection and the immune-evasion mechanisms of Mtb, this review examines the repositioned drugs available for HDT and their mechanisms of action.
Collapse
Affiliation(s)
- Eui-Kwon Jeong
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 24341, Korea
| | - Hyo-Ji Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Yu-Jin Jung
- BIT Medical Convergence Graduate Program, Kangwon National University, Chuncheon 24341, Korea
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
12
|
Rangchaikul P, Ahn P, Nguyen M, Zhong V, Venketaraman V. Review of Pediatric Tuberculosis in the Aftermath of COVID-19. Clin Pract 2022; 12:738-754. [PMID: 36136871 PMCID: PMC9498527 DOI: 10.3390/clinpract12050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
In 2014, the World Health Organization developed the End Tuberculosis Strategy with the goal of a 95% reduction in deaths from tuberculosis (TB) by 2035. The start of the COVID-19 pandemic and global lockdown has had a major impact on TB awareness, screening, diagnosis, and prompt initiation of treatment, inevitably leading to a significant setback. We explore pediatric tuberculosis through the lens of the COVID-19 era, investigating how COVID-19 has impacted pediatric TB cases in different regions of the world and what the implications are for management moving forward to mitigate these effects. Furthermore, in light of recent findings showing how exposed infants and children are at higher risk than we thought of contracting the disease, greater attention and resources are needed to prevent further downward trends.
Collapse
|
13
|
Mir MA, Mir B, Kumawat M, Alkhanani M, Jan U. Manipulation and exploitation of host immune system by pathogenic Mycobacterium tuberculosis for its advantage. Future Microbiol 2022; 17:1171-1198. [PMID: 35924958 DOI: 10.2217/fmb-2022-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can become a long-term infection by evading the host immune response. Coevolution of Mtb with humans has resulted in its ability to hijack the host's immune systems in a variety of ways. So far, every Mtb defense strategy is essentially dependent on a subtle balance that, if shifted, can promote Mtb proliferation in the host, resulting in disease progression. In this review, the authors summarize many important and previously unknown mechanisms by which Mtb evades the host immune response. Besides recently found strategies by which Mtb manipulates the host molecular regulatory machinery of innate and adaptive immunity, including the intranuclear regulatory machinery, costimulatory molecules, the ubiquitin system and cellular intrinsic immune components will be discussed. A holistic understanding of these immune-evasion mechanisms is of foremost importance for the prevention, diagnosis and treatment of tuberculosis and will lead to new insights into tuberculosis pathogenesis and the development of more effective vaccines and treatment regimens.
Collapse
Affiliation(s)
- Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bilkees Mir
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, UP, India
| | - Manoj Kumawat
- Department of Microbiology, Indian Council of Medical Research (ICMR)-NIREH, Bhopal, MP, India
| | - Mustfa Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafar Al Batin, Saudi Arabia
| | - Ulfat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
14
|
Abstract
Pulmonary granulomas are widely considered the epicenters of the immune response to Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Recent animal studies have revealed factors that either promote or restrict TB immunity within granulomas. These models, however, typically ignore the impact of preexisting immunity on cellular organization and function, an important consideration because most TB probably occurs through reinfection of previously exposed individuals. Human postmortem research from the pre-antibiotic era showed that infections in Mtb-naïve individuals (primary TB) versus those with prior Mtb exposure (postprimary TB) have distinct pathologic features. We review recent animal findings in TB granuloma biology, which largely reflect primary TB. We also discuss our current understanding of postprimary TB lesions, about which much less is known. Many knowledge gaps remain, particularly regarding how preexisting immunity shapes granuloma structure and local immune responses at Mtb infection sites. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sara B. Cohen
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benjamin H. Gern
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Kevin B. Urdahl
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Shield CG, Swift BMC, McHugh TD, Dedrick RM, Hatfull GF, Satta G. Application of Bacteriophages for Mycobacterial Infections, from Diagnosis to Treatment. Microorganisms 2021; 9:2366. [PMID: 34835491 PMCID: PMC8617706 DOI: 10.3390/microorganisms9112366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis and other non-tuberculous mycobacteria are responsible for a variety of different infections affecting millions of patients worldwide. Their diagnosis is often problematic and delayed until late in the course of disease, requiring a high index of suspicion and the combined efforts of clinical and laboratory colleagues. Molecular methods, such as PCR platforms, are available, but expensive, and with limited sensitivity in the case of paucibacillary disease. Treatment of mycobacterial infections is also challenging, typically requiring months of multiple and combined antibiotics, with associated side effects and toxicities. The presence of innate and acquired drug resistance further complicates the picture, with dramatic cases without effective treatment options. Bacteriophages (viruses that infect bacteria) have been used for decades in Eastern Europe for the treatment of common bacterial infections, but there is limited clinical experience of their use in mycobacterial infections. More recently, bacteriophages' clinical utility has been re-visited and their use has been successfully demonstrated both as diagnostic and treatment options. This review will focus specifically on how mycobacteriophages have been used recently in the diagnosis and treatment of different mycobacterial infections, as potential emerging technologies, and as an alternative treatment option.
Collapse
Affiliation(s)
- Christopher G. Shield
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK;
| | - Benjamin M. C. Swift
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK;
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, London NW3 2PF, UK; (T.D.M.); (G.S.)
| | - Rebekah M. Dedrick
- Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; (R.M.D.); (G.F.H.)
| | - Graham F. Hatfull
- Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; (R.M.D.); (G.F.H.)
| | - Giovanni Satta
- Centre for Clinical Microbiology, University College London, London NW3 2PF, UK; (T.D.M.); (G.S.)
| |
Collapse
|
16
|
Kiritsy MC, Ankley LM, Trombley J, Huizinga GP, Lord AE, Orning P, Elling R, Fitzgerald KA, Olive AJ. A genetic screen in macrophages identifies new regulators of IFNγ-inducible MHCII that contribute to T cell activation. eLife 2021; 10:65110. [PMID: 34747695 PMCID: PMC8598162 DOI: 10.7554/elife.65110] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
Cytokine-mediated activation of host immunity is central to the control of pathogens. Interferon-gamma (IFNγ) is a key cytokine in protective immunity that induces major histocompatibility complex class II molecules (MHCII) to amplify CD4+ T cell activation and effector function. Despite its central role, the dynamic regulation of IFNγ-induced MHCII is not well understood. Using a genome-wide CRISPR-Cas9 screen in murine macrophages, we identified genes that control MHCII surface expression. Mechanistic studies uncovered two parallel pathways of IFNγ-mediated MHCII control that require the multifunctional glycogen synthase kinase three beta (GSK3β) or the mediator complex subunit 16 (MED16). Both pathways control distinct aspects of the IFNγ response and are necessary for IFNγ-mediated induction of the MHCII transactivator Ciita, MHCII expression, and CD4+ T cell activation. Our results define previously unappreciated regulation of MHCII expression that is required to control CD4+ T cell responses.
Collapse
Affiliation(s)
- Michael C Kiritsy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Laurisa M Ankley
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, United States
| | - Justin Trombley
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, United States
| | - Gabrielle P Huizinga
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, United States
| | - Audrey E Lord
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Pontus Orning
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Roland Elling
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Katherine A Fitzgerald
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Andrew J Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, United States
| |
Collapse
|
17
|
Chen S, Quan DH, Wang XT, Sandford S, Kirman JR, Britton WJ, Rehm BHA. Particulate Mycobacterial Vaccines Induce Protective Immunity against Tuberculosis in Mice. NANOMATERIALS 2021; 11:nano11082060. [PMID: 34443891 PMCID: PMC8402087 DOI: 10.3390/nano11082060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
Currently available vaccines fail to provide consistent protection against tuberculosis (TB). New, improved vaccines are urgently needed for controlling the disease. The mycobacterial antigen fusions H4 (Ag85B-TB10.4) and H28 (Ag85B-TB10.4-Rv2660c) have been shown to be very immunogenic and have been considered as potential candidates for TB vaccine development. However, soluble protein vaccines are often poorly immunogenic, but augmented immune responses can be induced when selected antigens are delivered in particulate form. This study investigated whether the mycobacterial antigen fusions H4 and H28 can induce protective immunity when assembled into particulate vaccines (polyester nanoparticle-H4, polyester nanoparticle-H28, H4 nanoparticles and H28 nanoparticles). The particulate mycobacterial vaccines were assembled inside an engineered endotoxin-free production strain of Escherichia coli at high yield. Vaccine nanoparticles were purified and induced long-lasting antigen-specific T cell responses and protective immunity in mice challenged by aerosol with virulent Mycobacterium tuberculosis. A significant reduction of M. tuberculosis CFU, up to 0.7-log10 protection, occurred in the lungs of mice immunized with particulate vaccines in comparison to placebo-vaccinated mice (p < 0.0001). Polyester nanoparticles displaying the mycobacterial antigen fusion H4 induced a similar level of protective immunity in the lung when compared to M. bovis bacillus Calmette-Guérin (BCG), the currently approved TB vaccine. The safe and immunogenic polyester nanoparticle-H4 vaccine is a promising subunit vaccine candidate, as it can be cost-effectively manufactured and efficiently induces protection against TB.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia;
| | - Diana H. Quan
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia; (D.H.Q.); (X.T.W.); (W.J.B.)
| | - Xiaonan T. Wang
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia; (D.H.Q.); (X.T.W.); (W.J.B.)
| | - Sarah Sandford
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Joanna R. Kirman
- Microbiology & Immunology Department, University of Otago, Dunedin 9016, New Zealand;
| | - Warwick J. Britton
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia; (D.H.Q.); (X.T.W.); (W.J.B.)
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia;
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-(0)7-3735-4233
| |
Collapse
|
18
|
Bittencourt TL, da Silva Prata RB, de Andrade Silva BJ, de Mattos Barbosa MG, Dalcolmo MP, Pinheiro RO. Autophagy as a Target for Drug Development Of Skin Infection Caused by Mycobacteria. Front Immunol 2021; 12:674241. [PMID: 34113346 PMCID: PMC8185338 DOI: 10.3389/fimmu.2021.674241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic mycobacteria species may subvert the innate immune mechanisms and can modulate the activation of cells that cause disease in the skin. Cutaneous mycobacterial infection may present different clinical presentations and it is associated with stigma, deformity, and disability. The understanding of the immunopathogenic mechanisms related to mycobacterial infection in human skin is of pivotal importance to identify targets for new therapeutic strategies. The occurrence of reactional episodes and relapse in leprosy patients, the emergence of resistant mycobacteria strains, and the absence of effective drugs to treat mycobacterial cutaneous infection increased the interest in the development of therapies based on repurposed drugs against mycobacteria. The mechanism of action of many of these therapies evaluated is linked to the activation of autophagy. Autophagy is an evolutionary conserved lysosomal degradation pathway that has been associated with the control of the mycobacterial bacillary load. Here, we review the role of autophagy in the pathogenesis of cutaneous mycobacterial infection and discuss the perspectives of autophagy as a target for drug development and repurposing against cutaneous mycobacterial infection.
Collapse
Affiliation(s)
| | | | | | | | - Margareth Pretti Dalcolmo
- Helio Fraga Reference Center, Sergio Arouca National School of Public Health, Fiocruz, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Immel A, Key FM, Szolek A, Barquera R, Robinson MK, Harrison GF, Palmer WH, Spyrou MA, Susat J, Krause-Kyora B, Bos KI, Forrest S, Hernández-Zaragoza DI, Sauter J, Solloch U, Schmidt AH, Schuenemann VJ, Reiter E, Kairies MS, Weiß R, Arnold S, Wahl J, Hollenbach JA, Kohlbacher O, Herbig A, Norman PJ, Krause J. Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Mol Biol Evol 2021; 38:4059-4076. [PMID: 34002224 PMCID: PMC8476174 DOI: 10.1093/molbev/msab147] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathogens and associated outbreaks of infectious disease exert selective pressure on human populations, and any changes in allele frequencies that result may be especially evident for genes involved in immunity. In this regard, the 1346-1353 Yersinia pestis-caused Black Death pandemic, with continued plague outbreaks spanning several hundred years, is one of the most devastating recorded in human history. To investigate the potential impact of Y. pestis on human immunity genes we extracted DNA from 36 plague victims buried in a mass grave in Ellwangen, Germany in the 16th century. We targeted 488 immune-related genes, including HLA, using a novel in-solution hybridization capture approach. In comparison with 50 modern native inhabitants of Ellwangen, we find differences in allele frequencies for variants of the innate immunity proteins Ficolin-2 and NLRP14 at sites involved in determining specificity. We also observed that HLA-DRB1*13 is more than twice as frequent in the modern population, whereas HLA-B alleles encoding an isoleucine at position 80 (I-80+), HLA C*06:02 and HLA-DPB1 alleles encoding histidine at position 9 are half as frequent in the modern population. Simulations show that natural selection has likely driven these allele frequency changes. Thus, our data suggests that allele frequencies of HLA genes involved in innate and adaptive immunity responsible for extracellular and intracellular responses to pathogenic bacteria, such as Y. pestis, could have been affected by the historical epidemics that occurred in Europe.
Collapse
Affiliation(s)
- Alexander Immel
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany.,Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Felix M Key
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - András Szolek
- Applied Bioinformatics, Dept. for Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Rodrigo Barquera
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Madeline K Robinson
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, CO 80045, USA
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, CO 80045, USA
| | - William H Palmer
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, CO 80045, USA
| | - Maria A Spyrou
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Stephen Forrest
- Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Diana I Hernández-Zaragoza
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Immunogenetics Unit, Técnicas Genéticas Aplicadas a la Clínica (TGAC), Mexico City, Mexico
| | | | | | | | - Verena J Schuenemann
- Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ella Reiter
- Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Madita S Kairies
- Institute for Archaeological Sciences, WG Palaeoanthropology, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Rainer Weiß
- State Office for Cultural Heritage Management, Stuttgart Regional Council, Berliner Strasse 12, 73728 Esslingen, Germany
| | - Susanne Arnold
- State Office for Cultural Heritage Management, Stuttgart Regional Council, Berliner Strasse 12, 73728 Esslingen, Germany
| | - Joachim Wahl
- Institute for Archaeological Sciences, WG Palaeoanthropology, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany.,State Office for Cultural Heritage Management, Stuttgart Regional Council, Berliner Strasse 12, 73728 Esslingen, Germany
| | - Jill A Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, USA
| | - Oliver Kohlbacher
- Applied Bioinformatics, Dept. for Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany.,Quantitative Biology Center, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.,Translational Bioinformatics, University Hospital Tübingen, Sand 14, 72076 Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, CO 80045, USA
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany.,Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Crowther RR, Qualls JE. Metabolic Regulation of Immune Responses to Mycobacterium tuberculosis: A Spotlight on L-Arginine and L-Tryptophan Metabolism. Front Immunol 2021; 11:628432. [PMID: 33633745 PMCID: PMC7900187 DOI: 10.3389/fimmu.2020.628432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a leading cause of death worldwide. Despite decades of research, there is still much to be uncovered regarding the immune response to Mtb infection. Here, we summarize the current knowledge on anti-Mtb immunity, with a spotlight on immune cell amino acid metabolism. Specifically, we discuss L-arginine and L-tryptophan, focusing on their requirements, regulatory roles, and potential use as adjunctive therapy in TB patients. By continuing to uncover the immune cell contribution during Mtb infection and how amino acid utilization regulates their functions, it is anticipated that novel host-directed therapies may be developed and/or refined, helping to eradicate TB.
Collapse
Affiliation(s)
- Rebecca R Crowther
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Joseph E Qualls
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
21
|
Kilinç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to combat mycobacterial infections. Immunol Rev 2021; 301:62-83. [PMID: 33565103 PMCID: PMC8248113 DOI: 10.1111/imr.12951] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
Upon infection, mycobacteria, such as Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM), are recognized by host innate immune cells, triggering a series of intracellular processes that promote mycobacterial killing. Mycobacteria, however, have developed multiple counter‐strategies to persist and survive inside host cells. By manipulating host effector mechanisms, including phagosome maturation, vacuolar escape, autophagy, antigen presentation, and metabolic pathways, pathogenic mycobacteria are able to establish long‐lasting infection. Counteracting these mycobacteria‐induced host modifying mechanisms can be accomplished by host‐directed therapeutic (HDT) strategies. HDTs offer several major advantages compared to conventional antibiotics: (a) HDTs can be effective against both drug‐resistant and drug‐susceptible bacteria, as well as potentially dormant mycobacteria; (b) HDTs are less likely to induce bacterial drug resistance; and (c) HDTs could synergize with, or shorten antibiotic treatment by targeting different pathways. In this review, we will explore host‐pathogen interactions that have been identified for Mtb for which potential HDTs impacting both innate and adaptive immunity are available, and outline those worthy of future research. We will also discuss possibilities to target NTM infection by HDT, although current knowledge regarding host‐pathogen interactions for NTM is limited compared to Mtb. Finally, we speculate that combinatorial HDT strategies can potentially synergize to achieve optimal mycobacterial host immune control.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Shepherd FR, McLaren JE. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Int J Mol Sci 2020; 21:E6144. [PMID: 32858901 PMCID: PMC7504484 DOI: 10.3390/ijms21176144] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αβ T cells, along with unconventional αβ or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.
Collapse
Affiliation(s)
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|