1
|
Kappler U, Henningham A, Nasreen M, Yamamoto A, Buultjens AH, Stinear TP, Sly P, Fantino E. Tolerance to Haemophilus influenzae infection in human epithelial cells: Insights from a primary cell-based model. PLoS Pathog 2024; 20:e1012282. [PMID: 38990812 PMCID: PMC11239077 DOI: 10.1371/journal.ppat.1012282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
Haemophilus influenzae is a human respiratory pathogen and inhabits the human respiratory tract as its only niche. Despite this, the molecular mechanisms that allow H. influenzae to establish persistent infections of human epithelia are not well understood. Here, we have investigated how H. influenzae adapts to the host environment and triggers the host immune response using a human primary cell-based infection model that closely resembles human nasal epithelia (NHNE). Physiological assays combined with dualRNAseq revealed that NHNE from five healthy donors all responded to H. influenzae infection with an initial, 'unproductive' inflammatory response that included a strong hypoxia signature but did not produce pro-inflammatory cytokines. Subsequently, an apparent tolerance to large extracellular and intraepithelial burdens of H. influenzae developed, with NHNE transcriptional profiles resembling the pre-infection state. This occurred in parallel with the development of intraepithelial bacterial populations, and appears to involve interruption of NFκB signalling. This is the first time that large-scale, persistence-promoting immunomodulatory effects of H. influenzae during infection have been observed, and we were able to demonstrate that only infections with live, but not heat-killed H. influenzae led to immunomodulation and reduced expression of NFκB-controlled cytokines such as IL-1β, IL-36γ and TNFα. Interestingly, NHNE were able to re-activate pro-inflammatory responses towards the end of the 14-day infection, resulting in release of IL-8 and TNFα. In addition to providing first molecular insights into mechanisms enabling persistence of H. influenzae in the host, our data further indicate the presence of infection stage-specific gene expression modules, highlighting fundamental similarities between immune responses in NHNE and canonical immune cells, which merit further investigation.
Collapse
Affiliation(s)
- Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Anna Henningham
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Ayaho Yamamoto
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Andrew H. Buultjens
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Peter Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Emmanuelle Fantino
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| |
Collapse
|
2
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
3
|
Rivera K, Tanaka KJ, Buechel ER, Origel O, Harrison A, Mason KM, Pinkett HW. Antimicrobial Peptide Recognition Motif of the Substrate Binding Protein SapA from Nontypeable Haemophilus influenzae. Biochemistry 2024; 63:294-311. [PMID: 38189237 PMCID: PMC10851439 DOI: 10.1021/acs.biochem.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen associated with respiratory diseases, including otitis media and exacerbations of chronic obstructive pulmonary disease. NTHi exhibits resistance to killing by host antimicrobial peptides (AMPs) mediated by SapA, the substrate binding protein of the sensitivity to antimicrobial peptides (Sap) transporter. However, the specific mechanisms by which SapA selectively binds various AMPs such as defensins and cathelicidin are unknown. In this study, we report mutational analyses of both defensin AMPs and the SapA binding pocket to define the specificity of AMP recognition. Bactericidal assays revealed that NTHi lacking SapA are more susceptible to human beta defensins and LL-37, while remaining highly resistant to a human alpha defensin. In contrast to homologues, our research underscores the distinct specificity of NTHi SapA, which selectively recognizes and binds to peptides containing the charged-hydrophobic motif PKE and RRY. These findings provide valuable insight into the divergence of SapA among bacterial species and NTHi SapA's ability to selectively interact with specific AMPs to mediate resistance.
Collapse
Affiliation(s)
- Kristen
G. Rivera
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Kari J. Tanaka
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan R. Buechel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Octavio Origel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Alistair Harrison
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Kevin M. Mason
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Heather W. Pinkett
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Akhtar AA, Turner DP. The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: Therapeutic and vaccine potential. Microb Pathog 2022; 171:105734. [PMID: 36007845 DOI: 10.1016/j.micpath.2022.105734] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is found in all domains of life, facilitating critical biological processes through the translocation of a wide variety of substrates from, ions to proteins, across cellular membranes in an ATP-coupled process. The role of ABC transporters in eukaryotes has been well established: the facilitation of genetic diseases and multi-drug resistance (MDR) in cancer patients. In contrast, the role of ABC transporters in prokaryotes has been ambiguous due to their diverse functions and the sheer number of organisms in which they reside. This review examines the role of bacterial ABC transporters in pathogenesis and virulence, and their potential for therapeutic and vaccine application. We demonstrate how ABC transporters play a vital role in the virulence and pathogenesis of several pathogenic bacteria through the import of essential molecules, such as metal ions, amino acids, peptides, vitamins and osmoprotectants, as well as, the export of virulent determinants involved in glycoconjugate biosynthesis and Type I secretion. Furthermore, ABC exporters facilitate the persistence of pathogenic bacteria through the export of toxic xenobiotic substances, thus, contributing to the development of antimicrobial resistance. We also show that ABC transporters display considerable potential for therapeutic application through immunisation and resistance reversal. In conclusion, bacterial ABC transporters play an immense role in virulence and pathogenesis and display desirable traits for clinical use, therefore, potentially aiding in the battle against MDR.
Collapse
Affiliation(s)
- Armaan A Akhtar
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - David Pj Turner
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
5
|
Lukacik P, Owen CD, Harris G, Bolla JR, Picaud S, Alibay I, Nettleship JE, Bird LE, Owens RJ, Biggin PC, Filippakopoulos P, Robinson CV, Walsh MA. The structure of nontypeable Haemophilus influenzae SapA in a closed conformation reveals a constricted ligand-binding cavity and a novel RNA binding motif. PLoS One 2021; 16:e0256070. [PMID: 34653190 PMCID: PMC8519434 DOI: 10.1371/journal.pone.0256070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in respiratory disease and otitis media. Important for NTHi survival, colonization and persistence in vivo is the Sap (sensitivity to antimicrobial peptides) ABC transporter system. Current models propose a direct role for Sap in heme and antimicrobial peptide (AMP) transport. Here, the crystal structure of SapA, the periplasmic component of Sap, in a closed, ligand bound conformation, is presented. Phylogenetic and cavity volume analysis predicts that the small, hydrophobic SapA central ligand binding cavity is most likely occupied by a hydrophobic di- or tri- peptide. The cavity is of insufficient volume to accommodate heme or folded AMPs. Crystal structures of SapA have identified surface interactions with heme and dsRNA. Heme binds SapA weakly (Kd 282 μM) through a surface exposed histidine, while the dsRNA is coordinated via residues which constitute part of a conserved motif (estimated Kd 4.4 μM). The RNA affinity falls within the range observed for characterized RNA/protein complexes. Overall, we describe in molecular-detail the interactions of SapA with heme and dsRNA and propose a role for SapA in the transport of di- or tri-peptides.
Collapse
Affiliation(s)
- Petra Lukacik
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - C. David Owen
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Jani Reddy Bolla
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Picaud
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
| | - Irfan Alibay
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Joanne E. Nettleship
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Louise E. Bird
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Raymond J. Owens
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Martin A. Walsh
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Continuous Microevolution Accelerates Disease Progression during Sequential Episodes of Infection. Cell Rep 2021; 30:2978-2988.e3. [PMID: 32130901 PMCID: PMC7137071 DOI: 10.1016/j.celrep.2020.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 12/04/2022] Open
Abstract
Bacteria adapt to dynamic changes in the host during chronic and recurrent infections. Bacterial microevolution is one type of adaptation that imparts a selective advantage. We hypothesize that recurrent episodes of disease promote microevolution through genetic mutations that modulate disease severity. We use a pre-clinical model of otitis media (OM) to determine the potential role for microevolution of nontypeable Haemophilus influenzae (NTHI) during sequential episodes of disease. Whole genome sequencing reveals microevolution of hemoglobin binding and lipooligosaccharide (LOS) biosynthesis genes, suggesting that adaptation of these systems is critical for infection. These OM-adapted strains promote increased biofilm formation, inflammation, stromal fibrosis, and an increased propensity to form intracellular bacterial communities (IBCs). Remarkably, IBCs remain for at least one month following clinical resolution of infection, suggesting an intracellular reservoir as a nidus for recurrent OM. Additional approaches for therapeutic design tailored to combat this burdensome disease will arise from these studies. Harrison et al. develop a sequential model of otitis media (OM) to investigate microevolution through genetic mutations that modulate disease severity. OM-adapted strains promote increased biofilm, inflammation, stromal fibrosis, and intracellular bacterial community (IBC) development. IBCs remain one month following clinical resolution of infection, suggesting a nidus for recurrent OM.
Collapse
|
7
|
Cao X, Coyle JP, Xiong R, Wang Y, Heflich RH, Ren B, Gwinn WM, Hayden P, Rojanasakul L. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell Dev Biol Anim 2020; 57:104-132. [PMID: 33175307 PMCID: PMC7657088 DOI: 10.1007/s11626-020-00517-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
The lung is an organ that is directly exposed to the external environment. Given the large surface area and extensive ventilation of the lung, it is prone to exposure to airborne substances, such as pathogens, allergens, chemicals, and particulate matter. Highly elaborate and effective mechanisms have evolved to protect and maintain homeostasis in the lung. Despite these sophisticated defense mechanisms, the respiratory system remains highly susceptible to environmental challenges. Because of the impact of respiratory exposure on human health and disease, there has been considerable interest in developing reliable and predictive in vitro model systems for respiratory toxicology and basic research. Human air-liquid-interface (ALI) organotypic airway tissue models derived from primary tracheobronchial epithelial cells have in vivo–like structure and functions when they are fully differentiated. The presence of the air-facing surface allows conducting in vitro exposures that mimic human respiratory exposures. Exposures can be conducted using particulates, aerosols, gases, vapors generated from volatile and semi-volatile substances, and respiratory pathogens. Toxicity data have been generated using nanomaterials, cigarette smoke, e-cigarette vapors, environmental airborne chemicals, drugs given by inhalation, and respiratory viruses and bacteria. Although toxicity evaluations using human airway ALI models require further standardization and validation, this approach shows promise in supplementing or replacing in vivo animal models for conducting research on respiratory toxicants and pathogens.
Collapse
Affiliation(s)
- Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA.
| | - Jayme P Coyle
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Baiping Ren
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - William M Gwinn
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | | - Liying Rojanasakul
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
8
|
Baddal B. Characterization of biofilm formation and induction of apoptotic DNA fragmentation by nontypeable Haemophilus influenzae on polarized human airway epithelial cells. Microb Pathog 2020; 141:103985. [PMID: 31968224 DOI: 10.1016/j.micpath.2020.103985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a common airway commensal and opportunistic pathogen that persists within biofilm communities in vivo. Biofilm studies so far are mainly based on assays on plastic surfaces. The aim of this work was to investigate the capacity of clinical NTHi strains to form biofilm structures on polarized Calu-3 human airway epithelial cells and primary normal human bronchial epithelial cells and to characterize the biofilm architecture. Formation of adherent NTHi biofilms post colonization of host cells at multiple time-points was evaluated using confocal laser scanning microscopy and electron microscopy. NTHi biofilms were analyzed in terms of biofilm height and presence of extracellular matrix components, and their apoptotic effects on epithelial cells were measured by TUNEL assay. Strain Fi176 was observed to form robust biofilms on airway epithelia over time, while disrupting the integrity of Calu-3 monolayer by 72 h of co-culture. NTHi biofilms were observed to induce apoptotic DNA fragmentation in host cells at 24 h post infection. Biofilm formation on cell monolayers by Fi176ΔpilA strain was markedly reduced compared to WT strain. Biofilm inhibition and disruption assays by crystal violet staining indicated that DNA and proteins are part of NTHi biofilms in vitro. Our findings highlight critical stages of NTHi pathogenesis following host colonization and provide useful biofilm models for future antimicrobial drug discovery investigations.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus; Microbial Pathogenesis Research Group, DESAM Institute, Near East University, Nicosia, Cyprus.
| |
Collapse
|
9
|
Hsu CR, Chang IW, Hsieh PF, Lin TL, Liu PY, Huang CH, Li KT, Wang JT. A Novel Role for the Klebsiella pneumoniae Sap (Sensitivity to Antimicrobial Peptides) Transporter in Intestinal Cell Interactions, Innate Immune Responses, Liver Abscess, and Virulence. J Infect Dis 2020; 219:1294-1306. [PMID: 30476200 PMCID: PMC6452313 DOI: 10.1093/infdis/jiy615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022] Open
Abstract
Klebsiella pneumoniae is an important human pathogen causing hospital-acquired and community-acquired infections. Systemic K. pneumoniae infections may be preceded by gastrointestinal colonization, but the basis of this bacterium’s interaction with the intestinal epithelium remains unclear. Here, we report that the K. pneumoniae Sap (sensitivity to antimicrobial peptides) transporter contributes to bacterial–host cell interactions and in vivo virulence. Gene deletion showed that sapA is required for the adherence of a K. pneumoniae blood isolate to intestinal epithelial, lung epithelial, urinary bladder epithelial, and liver cells. The ΔsapA mutant was deficient for translocation across intestinal epithelial monolayers, macrophage interactions, and induction of proinflammatory cytokines. In a mouse gastrointestinal infection model, ΔsapA yielded significantly decreased bacterial loads in liver, spleen and intestine, reduced liver abscess generation, and decreased mortality. These findings offer new insights into the pathogenic interaction of K. pneumoniae with the host gastrointestinal tract to cause systemic infection.
Collapse
Affiliation(s)
- Chun-Ru Hsu
- Department of Medical Research, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - I-Wei Chang
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,Department of Pathology, College of Medicine, Taipei Medical University.,Department of Pathology, Taipei Medical University Hospital
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine
| | - Pei-Yin Liu
- Department of Microbiology, National Taiwan University College of Medicine
| | - Chen-Hsiu Huang
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Kun-Tzu Li
- Department of Medical Research, I-Shou University, Kaohsiung, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine.,Internal Medicine, National Taiwan University Hospital, Taipei
| |
Collapse
|
10
|
Rodríguez-Arce I, Al-Jubair T, Euba B, Fernández-Calvet A, Gil-Campillo C, Martí S, Törnroth-Horsefield S, Riesbeck K, Garmendia J. Moonlighting of Haemophilus influenzae heme acquisition systems contributes to the host airway-pathogen interplay in a coordinated manner. Virulence 2019; 10:315-333. [PMID: 30973092 PMCID: PMC6550540 DOI: 10.1080/21505594.2019.1596506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 01/30/2023] Open
Abstract
Nutrient iron sequestration is the most significant form of nutritional immunity and causes bacterial pathogens to evolve strategies of host iron scavenging. Cigarette smoking contains iron particulates altering lung and systemic iron homeostasis, which may enhance colonization in the lungs of patients suffering chronic obstructive pulmonary disease (COPD) by opportunistic pathogens such as nontypeable. NTHi is a heme auxotroph, and the NTHi genome contains multiple heme acquisition systems whose role in pulmonary infection requires a global understanding. In this study, we determined the relative contribution to NTHi airway infection of the four heme-acquisition systems HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF that are located at the bacterial outer membrane or the periplasm. Our computational studies provided plausible 3D models for HbpA, SapA, PE, and HxuA interactions with heme. Generation and characterization of single mutants in the hxuCBA, hpe, sapA, and hbpA genes provided evidence for participation in heme binding-storage and inter-bacterial donation. The hxuA, sapA, hbpA, and hpe genes showed differential expression and responded to heme. Moreover, HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF presented moonlighting properties related to resistance to antimicrobial peptides or glutathione import, together likely contributing to the NTHi-host airway interplay, as observed upon cultured airway epithelia and in vivo lung infection. The observed multi-functionality was shown to be system-specific, thus limiting redundancy. Together, we provide evidence for heme uptake systems as bacterial factors that act in a coordinated and multi-functional manner to subvert nutritional- and other sources of host innate immunity during NTHi airway infection.
Collapse
Affiliation(s)
| | - Tamim Al-Jubair
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Begoña Euba
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento Microbiología, Hospital Universitari Bellvitge, University of Barcelona, IDIBELL, Barcelona, Spain
| | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
11
|
Harrison A, Hardison RL, Wallace RM, Fitch J, Heimlich DR, Bryan MO, Dubois L, John-Williams LS, Sebra RP, White P, Moseley MA, Thompson JW, Justice SS, Mason KM. Reprioritization of biofilm metabolism is associated with nutrient adaptation and long-term survival of Haemophilus influenzae. NPJ Biofilms Microbiomes 2019; 5:33. [PMID: 31700653 PMCID: PMC6831627 DOI: 10.1038/s41522-019-0105-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a human-restricted pathogen with an essential requirement for heme-iron acquisition. We previously demonstrated that microevolution of NTHI promotes stationary phase survival in response to transient heme-iron restriction. In this study, we examine the metabolic contributions to biofilm formation using this evolved NTHI strain, RM33. Quantitative analyses identified 29 proteins, 55 transcripts, and 31 metabolites that significantly changed within in vitro biofilms formed by RM33. The synthesis of all enzymes within the tryptophan and glycogen pathways was significantly increased in biofilms formed by RM33 compared with the parental strain. In addition, increases were observed in metabolite transport, adhesin production, and DNA metabolism. Furthermore, we observed pyruvate as a pivotal point in the metabolic pathways associated with changes in cAMP phosphodiesterase activity during biofilm formation. Taken together, changes in central metabolism combined with increased stores of nutrients may serve to counterbalance nutrient sequestration.
Collapse
Affiliation(s)
- Alistair Harrison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachael L. Hardison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachel M. Wallace
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - James Fitch
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - Derek R. Heimlich
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Meghan O’ Bryan
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Laura Dubois
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Lisa St. John-Williams
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Robert P. Sebra
- Icahn School of Medicine at Mount Sinai, Icahn Institute and Department of Genetics & Genomic Sciences, 1 Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter White
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - J. Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Sheryl S. Justice
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Kevin M. Mason
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| |
Collapse
|
12
|
Pathogenic Mannheimia haemolytica Invades Differentiated Bovine Airway Epithelial Cells. Infect Immun 2019; 87:IAI.00078-19. [PMID: 30962401 PMCID: PMC6529648 DOI: 10.1128/iai.00078-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The Gram-negative bacterium Mannheimia haemolytica is the primary bacterial species associated with bovine respiratory disease (BRD) and is responsible for significant economic losses to livestock industries worldwide. Healthy cattle are frequently colonized by commensal serotype A2 strains, but disease is usually caused by pathogenic strains of serotype A1. For reasons that are poorly understood, a transition occurs within the respiratory tract and a sudden explosive proliferation of serotype A1 bacteria leads to the onset of pneumonic disease. Very little is known about the interactions of M. haemolytica with airway epithelial cells of the respiratory mucosa which might explain the different abilities of serotype A1 and A2 strains to cause disease. In the present study, host-pathogen interactions in the bovine respiratory tract were mimicked using a novel differentiated bovine bronchial epithelial cell (BBEC) infection model. In this model, differentiated BBECs were inoculated with serotype A1 or A2 strains of M. haemolytica and the course of infection followed over a 5-day period by microscopic assessment and measurement of key proinflammatory mediators. We have demonstrated that serotype A1, but not A2, M. haemolytica invades differentiated BBECs by transcytosis and subsequently undergoes rapid intracellular replication before spreading to adjacent cells and causing extensive cellular damage. Our findings suggest that the explosive proliferation of serotype A1 M. haemolytica that occurs within the bovine respiratory tract prior to the onset of pneumonic disease is potentially due to bacterial invasion of, and rapid proliferation within, the mucosal epithelium. The discovery of this previously unrecognized mechanism of pathogenesis is important because it will allow the serotype A1-specific virulence determinants responsible for invasion to be identified and thereby provide opportunities for the development of new strategies for combatting BRD aimed at preventing early colonization and infection of the bovine respiratory tract.
Collapse
|
13
|
García-Fojeda B, González-Carnicero Z, de Lorenzo A, Minutti CM, de Tapia L, Euba B, Iglesias-Ceacero A, Castillo-Lluva S, Garmendia J, Casals C. Lung Surfactant Lipids Provide Immune Protection Against Haemophilus influenzae Respiratory Infection. Front Immunol 2019; 10:458. [PMID: 30936871 PMCID: PMC6431623 DOI: 10.3389/fimmu.2019.00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) causes persistent respiratory infections in patients with chronic obstructive pulmonary disease (COPD), probably linked to its capacity to invade and reside within pneumocytes. In the alveolar fluid, NTHi is in contact with pulmonary surfactant, a lipoprotein complex that protects the lung against alveolar collapse and constitutes the front line of defense against inhaled pathogens and toxins. Decreased levels of surfactant phospholipids have been reported in smokers and patients with COPD. The objective of this study was to investigate the effect of surfactant phospholipids on the host-pathogen interaction between NTHi and pneumocytes. For this purpose, we used two types of surfactant lipid vesicles present in the alveolar fluid: (i) multilamellar vesicles (MLVs, > 1 μm diameter), which constitute the tensioactive material of surfactant, and (ii) small unilamellar vesicles (SUVs, 0.1 μm diameter), which are generated after inspiration/expiration cycles, and are endocytosed by pneumocytes for their degradation and/or recycling. Results indicated that extracellular pulmonary surfactant binds to NTHi, preventing NTHi self-aggregation and inhibiting adhesion of NTHi to pneumocytes and, consequently, inhibiting NTHi invasion. In contrast, endocytosed surfactant lipids, mainly via the scavenger receptor SR-BI, did not affect NTHi adhesion but inhibited NTHi invasion by blocking bacterial uptake in pneumocytes. This blockade was made possible by inhibiting Akt phosphorylation and Rac1 GTPase activation, which are signaling pathways involved in NTHi internalization. Administration of the hydrophobic fraction of lung surfactant in vivo accelerated bacterial clearance in a mouse model of NTHi pulmonary infection, supporting the notion that the lipid component of lung surfactant protects against NTHi infection. These results suggest that alterations in surfactant lipid levels in COPD patients may increase susceptibility to infection by this pathogen.
Collapse
Affiliation(s)
- Belén García-Fojeda
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Zoe González-Carnicero
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Alba de Lorenzo
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Carlos M Minutti
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia de Tapia
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Begoña Euba
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Agrobiotecnología, Mutilva, Spain
| | - Alba Iglesias-Ceacero
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Sonia Castillo-Lluva
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Junkal Garmendia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Agrobiotecnología, Mutilva, Spain
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Microevolution in response to transient heme-iron restriction enhances intracellular bacterial community development and persistence. PLoS Pathog 2018; 14:e1007355. [PMID: 30332468 PMCID: PMC6205647 DOI: 10.1371/journal.ppat.1007355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/29/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogens must sense, respond and adapt to a myriad of dynamic microenvironmental stressors to survive. Adaptation is key for colonization and long-term ability to endure fluctuations in nutrient availability and inflammatory processes. We hypothesize that strains adapted to survive nutrient deprivation are more adept for colonization and establishment of chronic infection. In this study, we detected microevolution in response to transient nutrient limitation through mutation of icc. The mutation results in decreased 3',5'-cyclic adenosine monophosphate phosphodiesterase activity in nontypeable Haemophilus influenzae (NTHI). In a preclinical model of NTHI-induced otitis media (OM), we observed a significant decrease in the recovery of effusion from ears infected with the icc mutant strain. Clinically, resolution of OM coincides with the clearance of middle ear fluid. In contrast to this clinical paradigm, we observed that the icc mutant strain formed significantly more intracellular bacterial communities (IBCs) than the parental strain early during experimental OM. Although the number of IBCs formed by the parental strain was low at early stages of OM, we observed a significant increase at later stages that coincided with absence of recoverable effusion, suggesting the presence of a mucosal reservoir following resolution of clinical disease. These data provide the first insight into NTHI microevolution during nutritional limitation and provide the first demonstration of IBCs in a preclinical model of chronic OM. Nontypeable Haemophilus influenzae (NTHI) inhabits diverse niches in the host. The ability to adapt to new microenvironments is consistent with the predominance of NTHI as a causative agent of otitis media (OM) in children. We evaluated the microevolution of NTHI associated with adaptation and persistence in response to nutrient limitation. We identified a naturally occurring mutation that enhances NTHI persistence and formation of intracellular bacterial communities (IBCs) in a pre-clinical model of OM. The presence of IBCs during OM provides the first opportunity to evaluate the role of intracellular populations in chronicity and quiescence as a new paradigm for recurrent OM. This model provides a new platform to identify novel therapeutics for this highly prevalent and costly infectious disease.
Collapse
|
15
|
Hardison RL, Heimlich DR, Harrison A, Beatty WL, Rains S, Moseley MA, Thompson JW, Justice SS, Mason KM. Transient Nutrient Deprivation Promotes Macropinocytosis-Dependent Intracellular Bacterial Community Development. mSphere 2018; 3:3/5/e00286-18. [PMID: 30209128 PMCID: PMC6135960 DOI: 10.1128/msphere.00286-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nutrient limitation restricts bacterial growth in privileged sites such as the middle ear. Transient heme-iron restriction of nontypeable Haemophilus influenzae (NTHI), the major causative agent of chronic and recurrent otitis media (OM), promotes new and diverse phenotypes that can influence planktonic, biofilm, and intracellular lifestyles of NTHI. However, the bacterial responses to nutrient restriction that impact intracellular fate and survival of NTHI are unknown. In this work, we provide evidence for the role of transient heme-iron restriction in promoting the formation of intracellular bacterial communities (IBCs) of NTHI both in vitro and in vivo in a preclinical model of OM. We show that transient heme-iron restriction of NTHI results in significantly increased invasion and intracellular populations that escape or evade the endolysosomal pathway for increased intracellular survival. In contrast, NTHI continuously exposed to heme-iron traffics through the endolysosomal pathway for degradation. The use of pharmacological inhibitors revealed that prior heme-iron status does not appear to influence NTHI internalization through endocytic pathways. However, inhibition of macropinocytosis altered the intracellular fate of transiently restricted NTHI for degradation in the endolysosomal pathway. Furthermore, prevention of macropinocytosis significantly reduced the number of IBCs in cultured middle ear epithelial cells, providing evidence for the feasibility of this approach to reduce OM persistence. These results reveal that microenvironmental cues can influence the intracellular fate of NTHI, leading to new mechanisms for survival during disease progression.IMPORTANCE Otitis media is the most common bacterial infection in childhood. Current therapies are limited in the prevention of chronic or recurrent otitis media which leads to increased antibiotic exposure and represents a significant socioeconomic burden. In this study, we delineate the effect of nutritional limitation on the intracellular trafficking pathways used by nontypeable Haemophilus influenzae (NTHI). Moreover, transient limitation of heme-iron led to the development of intracellular bacterial communities that are known to contribute to persistence and recurrence in other diseases. New approaches for therapeutic interventions that reduce the production of intracellular bacterial communities and promote trafficking through the endolysosomal pathway were revealed through the use of pharmacological inhibition of macropinocytosis. This work demonstrates the importance of an intracellular niche for NTHI and provides new approaches for intervention for acute, chronic, and recurring episodes of otitis media.
Collapse
Affiliation(s)
- Rachael L Hardison
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Derek R Heimlich
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alistair Harrison
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah Rains
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Sheryl S Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kevin M Mason
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Hasan S, Sebo P, Osicka R. A guide to polarized airway epithelial models for studies of host-pathogen interactions. FEBS J 2018; 285:4343-4358. [PMID: 29896776 DOI: 10.1111/febs.14582] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
Abstract
Mammalian lungs are organs exhibiting the cellular and spatial complexity required for gas exchange to support life. The respiratory epithelium internally lining the airways is susceptible to infections due to constant exposure to inhaled microbes. Biomedical research into respiratory bacterial infections in humans has been mostly carried out using small mammalian animal models or two-dimensional, submerged cultures of undifferentiated epithelial cells. These experimental model systems have considerable limitations due to host specificity of bacterial pathogens and lack of cellular and morphological complexity. This review describes the in vitro differentiated and polarized airway epithelial cells of human origin that are used as a model to study respiratory bacterial infections. Overall, these models recapitulate key aspects of the complexity observed in vivo and can help in elucidating the molecular details of disease processes observed during respiratory bacterial infections.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
17
|
Tanaka KJ, Song S, Mason K, Pinkett HW. Selective substrate uptake: The role of ATP-binding cassette (ABC) importers in pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:868-877. [PMID: 28847505 PMCID: PMC5807212 DOI: 10.1016/j.bbamem.2017.08.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
The uptake of nutrients, including metals, amino acids and peptides are required for many biological processes. Pathogenic bacteria scavenge these essential nutrients from microenvironments to survive within the host. Pathogens must utilize a myriad of mechanisms to acquire these essential nutrients from the host while mediating the effects of toxicity. Bacteria utilize several transport proteins, including ATP-binding cassette (ABC) transporters to import and expel substrates. ABC transporters, conserved across all organisms, are powered by the energy from ATP to move substrates across cellular membranes. In this review, we will focus on nutrient uptake, the role of ABC importers at the host-pathogen interface, and explore emerging therapies to combat pathogenesis. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Kari J Tanaka
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Saemee Song
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Kevin Mason
- The Research Institute at Nationwide Children's Hospital and The Ohio State University, College of Medicine, Department of Pediatrics, Center for Microbial Pathogenesis, Columbus, OH, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
18
|
Role of sapA and yfgA in Susceptibility to Antibody-Mediated Complement-Dependent Killing and Virulence of Salmonella enterica Serovar Typhimurium. Infect Immun 2017; 85:IAI.00419-17. [PMID: 28674031 PMCID: PMC5563563 DOI: 10.1128/iai.00419-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 01/18/2023] Open
Abstract
The ST313 pathovar of Salmonella enterica serovar Typhimurium contributes to a high burden of invasive disease among African infants and HIV-infected adults. It is characterized by genome degradation (loss of coding capacity) and has increased resistance to antibody-dependent complement-mediated killing compared with enterocolitis-causing strains of S. Typhimurium. Vaccination is an attractive disease-prevention strategy, and leading candidates focus on the induction of bactericidal antibodies. Antibody-resistant strains arising through further gene deletion could compromise such a strategy. Exposing a saturating transposon insertion mutant library of S. Typhimurium to immune serum identified a repertoire of S. Typhimurium genes that, when interrupted, result in increased resistance to serum killing. These genes included several involved in bacterial envelope biogenesis, protein translocation, and metabolism. We generated defined mutant derivatives using S. Typhimurium SL1344 as the host. Based on their initial levels of enhanced resistance to killing, yfgA and sapA mutants were selected for further characterization. The S. Typhimurium yfgA mutant lost the characteristic Salmonella rod-shaped appearance, exhibited increased sensitivity to osmotic and detergent stress, lacked very long lipopolysaccharide, was unable to invade enterocytes, and demonstrated decreased ability to infect mice. In contrast, the S. Typhimurium sapA mutants had similar sensitivity to osmotic and detergent stress and lipopolysaccharide profile and an increased ability to infect enterocytes compared with the wild type, but it had no increased ability to cause in vivo infection. These findings indicate that increased resistance to antibody-dependent complement-mediated killing secondary to genetic deletion is not necessarily accompanied by increased virulence and suggest the presence of different mechanisms of antibody resistance.
Collapse
|
19
|
Cuevas RA, Eutsey R, Kadam A, West-Roberts JA, Woolford CA, Mitchell AP, Mason KM, Hiller NL. A novel streptococcal cell-cell communication peptide promotes pneumococcal virulence and biofilm formation. Mol Microbiol 2017; 105:554-571. [PMID: 28557053 DOI: 10.1111/mmi.13721] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/29/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a major human pathogen. It is a common colonizer of the human respiratory track, where it utilizes cell-cell communication systems to coordinate population-level behaviors. We reasoned that secreted peptides that are highly expressed during infection are pivotal for virulence. Thus, we used in silico pattern searches to define a pneumococcal secretome and analyzed the transcriptome of the clinically important PMEN1 lineage to identify which peptide-encoding genes are highly expressed in vivo. In this study, we characterized virulence peptide 1 (vp1), a highly expressed Gly-Gly peptide-encoding gene in chinchilla middle ear effusions. The vp1 gene is widely distributed across pneumococcus as well as encoded in related species. Studies in the chinchilla model of middle ear infection demonstrated that VP1 is a virulence determinant. The vp1 gene is positively regulated by a transcription factor from the Rgg family and its cognate SHP (short hydrophobic peptide). In vitro data indicated that VP1 promotes increased thickness and biomass for biofilms grown on chinchilla middle ear epithelial cells. Furthermore, the wild-type biofilm is restored with the exogenous addition of synthetic VP1. We conclude that VP1 is a novel streptococcal regulatory peptide that controls biofilm development and pneumococcal pathogenesis.
Collapse
Affiliation(s)
- Rolando A Cuevas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Anagha Kadam
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jacob A West-Roberts
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Carol A Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kevin M Mason
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA 15211, USA
| |
Collapse
|
20
|
Ahearn CP, Gallo MC, Murphy TF. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog Dis 2017; 75:3753446. [PMID: 28449098 PMCID: PMC5437125 DOI: 10.1093/femspd/ftx042] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is the most common bacterial cause of infection of the lower airways in adults with chronic obstructive pulmonary disease (COPD). Infection of the COPD airways causes acute exacerbations, resulting in substantial morbidity and mortality. NTHi has evolved multiple mechanisms to establish infection in the hostile environment of the COPD airways, allowing the pathogen to persist in the airways for months to years. Persistent infection of the COPD airways contributes to chronic airway inflammation that increases symptoms and accelerates the progressive loss of pulmonary function, which is a hallmark of the disease. Persistence mechanisms of NTHi include the expression of multiple redundant adhesins that mediate binding to host cellular and extracellular matrix components. NTHi evades host immune recognition and clearance by invading host epithelial cells, forming biofilms, altering gene expression and displaying surface antigenic variation. NTHi also binds host serum factors that confer serum resistance. Here we discuss the burden of COPD and the role of NTHi infections in the course of the disease. We provide an overview of NTHi mechanisms of persistence that allow the pathogen to establish a niche in the hostile COPD airways.
Collapse
Affiliation(s)
- Christian P. Ahearn
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Mary C. Gallo
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Timothy F. Murphy
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Division of Infectious Disease, Department of Medicine, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
21
|
Barenkamp SJ, Chonmaitree T, Hakansson AP, Heikkinen T, King S, Nokso-Koivisto J, Novotny LA, Patel JA, Pettigrew M, Swords WE. Panel 4: Report of the Microbiology Panel. Otolaryngol Head Neck Surg 2017; 156:S51-S62. [PMID: 28372529 PMCID: PMC5490388 DOI: 10.1177/0194599816639028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Objective To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources PubMed database of the National Library of Medicine. Review Methods Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.
Collapse
Affiliation(s)
- Stephen J. Barenkamp
- Department of Pediatrics, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Tasnee Chonmaitree
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Samantha King
- The Research Institute at Nationwide Children’s Hospital and Ohio State University, Columbus, Ohio, USA
| | - Johanna Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura A. Novotny
- The Research Institute at Nationwide Children’s Hospital and Ohio State University, Columbus, Ohio, USA
| | - Janak A. Patel
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Melinda Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - W. Edward Swords
- Department of Microbiology and Immunology, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
22
|
Duell BL, Su YC, Riesbeck K. Host-pathogen interactions of nontypeable Haemophilus influenzae: from commensal to pathogen. FEBS Lett 2016; 590:3840-3853. [PMID: 27508518 DOI: 10.1002/1873-3468.12351] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 11/09/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a commensal microbe often isolated from the upper and lower respiratory tract. This bacterial species can cause sinusitis, acute otitis media in preschool children, exacerbations in patients suffering from chronic obstructive pulmonary disease, as well as conjunctivitis and bacteremia. Since the introduction of a vaccine against H. influenzae serotype b in the 1990s, the burden of H. influenzae-related infections has been increasingly dominated by NTHi. Understanding the ability of NTHi to cause infection is currently an expanding area of study. NTHi is able to exert differential binding to the host tissue through the use of a broad range of adhesins. NTHi survival in the host is multifaceted, that is, using virulence factors involved in complement resistance, biofilm, modified immunoglobulin responses, and, finally, formation and utilization of host proteins as a secondary strategy of increasing the adhesive ability.
Collapse
Affiliation(s)
- Benjamin Luke Duell
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
23
|
Singh NK, Kunde DA, Tristram SG. Effect of epithelial cell type on in vitro invasion of non-typeable Haemophilus influenzae. J Microbiol Methods 2016; 129:66-69. [PMID: 27473508 DOI: 10.1016/j.mimet.2016.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/28/2022]
Abstract
Non-typeable Haemophilus influenzae (NTHi) have been shown to have variable ability for in vitro invasion with a range of epithelial cells, and increased invasion of BEAS-2B cells has been associated with altered penicillin binding protein3 (PBP3), which is concerning as these strains are increasing worldwide. The aim of the study was to investigate the effect of respiratory cell type and the presence of altered PBP3 on the in vitro invasion of NTHi. A collection of 16 clinical NTHi isolates was established, 7 had normal PBP3, and 9 had altered PBP3 as defined by an N526K substitution. The isolates were tested for invasion of BEAS-2B, NHBE, A549 and NCI-H292 respiratory epithelial cells in vitro using a gentamicin survival assay, with invasion measured as the percentage of intracellular organisms relative to the initial inoculum. The overall median invasion for the 16 NTHi isolates for cell types BEAS-2B, NHBE, A549 and NCI-H292 cells were 3.17, 2.31, 0.11 and 1.52 respectively. The differences were statistically significant for BEAS-2B compared to A549 (P=0.015) and A549 compared to NCI-H292 (P=0.015), and there were also very marked differences in invasion for some individual isolates depending on the cell type used. There was a consistent bias for invasion of isolates with normal versus abnormal PBP3: and this was statistically significant for BEAS-2B (0.07 to 9.90, P=0.031) and A549 cells (0.02 to 1.68, P=0.037). These results show that NTHi invasion of respiratory epithelial cells in vitro is both strain dependant and influenced significantly by the cell line used, and that the association between altered PBP3 and increased invasion is conserved across multiple cell lines.
Collapse
Affiliation(s)
- Neeraj Kumar Singh
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dale A Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Stephen G Tristram
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia.
| |
Collapse
|
24
|
Transformed Recombinant Enrichment Profiling Rapidly Identifies HMW1 as an Intracellular Invasion Locus in Haemophilus influenza. PLoS Pathog 2016; 12:e1005576. [PMID: 27124727 PMCID: PMC4849778 DOI: 10.1371/journal.ppat.1005576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
Many bacterial species actively take up and recombine homologous DNA into their genomes, called natural competence, a trait that offers a means to identify the genetic basis of naturally occurring phenotypic variation. Here, we describe “transformed recombinant enrichment profiling” (TREP), in which natural transformation is used to generate complex pools of recombinants, phenotypic selection is used to enrich for specific recombinants, and deep sequencing is used to survey for the genetic variation responsible. We applied TREP to investigate the genetic architecture of intracellular invasion by the human pathogen Haemophilus influenzae, a trait implicated in persistence during chronic infection. TREP identified the HMW1 adhesin as a crucial factor. Natural transformation of the hmw1 operon from a clinical isolate (86-028NP) into a laboratory isolate that lacks it (Rd KW20) resulted in ~1,000-fold increased invasion into airway epithelial cells. When a distinct recipient (Hi375, already possessing hmw1 and its paralog hmw2) was transformed by the same donor, allelic replacement of hmw2AHi375 by hmw1A86-028NP resulted in a ~100-fold increased intracellular invasion rate. The specific role of hmw1A86-028NP was confirmed by mutant and western blot analyses. Bacterial self-aggregation and adherence to airway cells were also increased in recombinants, suggesting that the high invasiveness induced by hmw1A86-028NP might be a consequence of these phenotypes. However, immunofluorescence results found that intracellular hmw1A86-028NP bacteria likely invaded as groups, instead of as individual bacterial cells, indicating an emergent invasion-specific consequence of hmw1A-mediated self-aggregation. Many bacteria are naturally competent, actively taking up DNA from their surroundings and incorporating it into their genomes by homologous recombination. This cellular process has had a large impact on the evolution of these species, for example by enabling pathogens to acquire virulence factors and antibiotic resistances from their relatives. But natural competence can also be exploited by researchers to identify the underlying genetic variation responsible for naturally varying phenotypic traits, similar to how eukaryotic geneticists use meiotic recombination during sexual reproduction to create genetically admixed populations. Here we exploited natural competence, phenotypic selection, and deep sequencing to rapidly identify the hmw1 locus as a major contributor to intracellular invasion of airway epithelial cells by the human pathogen Haemophilus influenzae, a trait that likely allows bacterial cells to evade the immune system and therapeutic interventions during chronic infections. Genetic variation in this locus can strongly modulate bacterial intracellular invasion rates, and possession of a certain allele favors adhesion and self-aggregation, which appear to prompt bacteria to invade airway cells as groups, rather than as individuals. Overall, our findings indicate that targeting HMW1 could block the ability of H. influenzae to invade airway cells, which would make antibiotic therapy to treat chronic lung infections more effective. Furthermore, our new approach to identifying the genetic basis of natural phenotypic variation is applicable to a wide-range of phenotypically selectable traits within the widely distributed naturally competent bacterial species, including pathogenesis traits in many human pathogens.
Collapse
|
25
|
Harrison A, Dubois LG, St John-Williams L, Moseley MA, Hardison RL, Heimlich DR, Stoddard A, Kerschner JE, Justice SS, Thompson JW, Mason KM. Comprehensive Proteomic and Metabolomic Signatures of Nontypeable Haemophilus influenzae-Induced Acute Otitis Media Reveal Bacterial Aerobic Respiration in an Immunosuppressed Environment. Mol Cell Proteomics 2015; 15:1117-38. [PMID: 26711468 DOI: 10.1074/mcp.m115.052498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
A thorough understanding of the molecular details of the interactions between bacteria and host are critical to ultimately prevent disease. Recent technological advances allow simultaneous analysis of host and bacterial protein and metabolic profiles from a single small tissue sample to provide insight into pathogenesis. We used the chinchilla model of human otitis media to determine, for the first time, the most expansive delineation of global changes in protein and metabolite profiles during an experimentally induced disease. After 48 h of infection with nontypeable Haemophilus influenzae, middle ear tissue lysates were analyzed by high-resolution quantitative two-dimensional liquid chromatography-tandem mass spectrometry. Dynamic changes in 105 chinchilla proteins and 66 metabolites define the early proteomic and metabolomic signature of otitis media. Our studies indicate that establishment of disease coincides with actin morphogenesis, suppression of inflammatory mediators, and bacterial aerobic respiration. We validated the observed increase in the actin-remodeling complex, Arp2/3, and experimentally showed a role for Arp2/3 in nontypeable Haemophilus influenzae invasion. Direct inhibition of actin branch morphology altered bacterial invasion into host epithelial cells, and is supportive of our efforts to use the information gathered to modify outcomes of disease. The twenty-eight nontypeable Haemophilus influenzae proteins identified participate in carbohydrate and amino acid metabolism, redox homeostasis, and include cell wall-associated metabolic proteins. Quantitative characterization of the molecular signatures of infection will redefine our understanding of host response driven developmental changes during pathogenesis. These data represent the first comprehensive study of host protein and metabolite profiles in vivo in response to infection and show the feasibility of extensive characterization of host protein profiles during disease. Identification of novel protein targets and metabolic biomarkers will advance development of therapeutic and diagnostic options for treatment of disease.
Collapse
Affiliation(s)
- Alistair Harrison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Laura G Dubois
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Lisa St John-Williams
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - M Arthur Moseley
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Rachael L Hardison
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Derek R Heimlich
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | | | - Joseph E Kerschner
- ‖Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; **Division of Pediatric Otolaryngology, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226
| | - Sheryl S Justice
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210
| | - J Will Thompson
- ‡‡Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Kevin M Mason
- From the ‡The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; §The Center for Microbial Interface Biology and Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
26
|
Haemophilus influenzae: recent advances in the understanding of molecular pathogenesis and polymicrobial infections. Curr Opin Infect Dis 2015; 27:268-74. [PMID: 24699388 DOI: 10.1097/qco.0000000000000056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Non-typeable Haemophilus influenzae (NTHi) is a human-specific mucosal pathogen and one of the most common causes of bacterial infections in children and patients with chronic obstructive pulmonary disease. It is also frequently found in polymicrobial superinfections. Great strides have recently been made in the understanding of the molecular mechanisms underlying NTHi pathogenesis. RECENT FINDINGS By using new methodology, such as experimental human colonization models and whole-genome approaches, investigators have shed light upon the various strategies of NTHi that are involved in pathogenesis. These include the escape of the mucociliary elevator, evasion of host immunity, survival in environments with scarce nutrients, and finally participation in polymicrobial infections. Lipooligosaccharide branching, proteinous adhesins, metabolic adaption to nutrient availability and many scavenging systems are implicated in these processes. Interestingly, genome-based studies comparing virulent and commensal strains have identified many hypothetical proteins as virulence determinants, suggesting that much regarding the molecular pathogenesis of NTHi remains to be solved. SUMMARY NTHi is an opportunistic pathogen and highly specialized colonizer of the human respiratory tract that has developed intricate mechanisms to establish growth and survival in the human host. Continued research is needed to further elucidate NTHi host-pathogen and pathogen-pathogen interactions.
Collapse
|
27
|
Justice SS, Harrison A, Becknell B, Mason KM. Bacterial differentiation, development, and disease: mechanisms for survival. FEMS Microbiol Lett 2014; 360:1-8. [PMID: 25228010 DOI: 10.1111/1574-6968.12602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 12/27/2022] Open
Abstract
Bacteria have the exquisite ability to maintain a precise diameter, cell length, and shape. The dimensions of bacteria size and shape are a classical metric in the distinction of bacterial species. Much of what we know about the particular morphology of any given species is the result of investigations of planktonic cultures. As we explore deeper into the natural habitats of bacteria, it is increasingly clear that bacteria can alter their morphology in response to the environment in which they reside. Specific morphologies are also becoming recognized as advantageous for survival in hostile environments. This is of particular importance in the context of both colonization and infection in the host. There are multiple examples of bacterial pathogens that use morphological changes as a mechanism for evasion of host immune responses and continued persistence. This review will focus on two systems where specific morphological changes are essential for persistence in animal models of human disease. We will also offer insight into the mechanism underlying the morphological changes and how these morphotypes aid in persistence. Additional examples of morphological changes associated with survival will be presented.
Collapse
Affiliation(s)
- Sheryl S Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University School of Medicine, Columbus, OH, USA
| | | | | | | |
Collapse
|
28
|
Su YC, Resman F, Hörhold F, Riesbeck K. Comparative genomic analysis reveals distinct genotypic features of the emerging pathogen Haemophilus influenzae type f. BMC Genomics 2014; 15:38. [PMID: 24438474 PMCID: PMC3928620 DOI: 10.1186/1471-2164-15-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of invasive disease caused by encapsulated Haemophilus influenzae type f (Hif) has increased in the post-H. influenzae type b (Hib) vaccine era. We previously annotated the first complete Hif genome from a clinical isolate (KR494) that caused septic shock and necrotizing myositis. Here, the full genome of Hif KR494 was compared to sequenced reference strains Hib 10810, capsule type d (Hid) Rd Kw20, and finally nontypeable H. influenzae 3655. The goal was to identify possible genomic characteristics that may shed light upon the pathogenesis of Hif. RESULTS The Hif KR494 genome exhibited large regions of synteny with other H. influenzae, but also distinct genome rearrangements. A predicted Hif core genome of 1390 genes was shared with the reference strains, and 6 unique genomic regions comprising half of the 191 unique coding sequences were revealed. The majority of these regions were inserted genetic fragments, most likely derived from the closely-related Haemophilus spp. including H. aegyptius, H. haemolyticus and H. parainfluenzae. Importantly, the KR494 genome possessed several putative virulence genes that were distinct from non-type f strains. These included the sap2 operon, aef3 fimbriae, and genes for kanamycin nucleotidyltranserase, iron-utilization proteins, and putative YadA-like trimeric autotransporters that may increase the bacterial virulence. Furthermore, Hif KR494 lacked a hisABCDEFGH operon for de novo histidine biosynthesis, hmg locus for lipooligosaccharide biosynthesis and biofilm formation, the Haemophilus antibiotic resistance island and a Haemophilus secondary molybdate transport system. We confirmed the histidine auxotrophy and kanamycin resistance in Hif by functional experiments. Moreover, the pattern of unique or missing genes of Hif KR494 was similar in 20 Hif clinical isolates obtained from different years and geographical areas. A cross-species comparison revealed that the Hif genome shared more characteristics with H. aegyptius than Hid and NTHi. CONCLUSIONS The genomic comparative analyses facilitated identification of genotypic characteristics that may be related to the specific virulence of Hif. In relation to non-type f H. influenzae strains, the Hif genome contains differences in components involved in metabolism and survival that may contribute to its invasiveness.
Collapse
Affiliation(s)
| | | | | | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden.
| |
Collapse
|
29
|
Haemophilus responses to nutritional immunity: epigenetic and morphological contribution to biofilm architecture, invasion, persistence and disease severity. PLoS Pathog 2013; 9:e1003709. [PMID: 24130500 PMCID: PMC3795038 DOI: 10.1371/journal.ppat.1003709] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/30/2013] [Indexed: 12/18/2022] Open
Abstract
In an effort to suppress microbial outgrowth, the host sequesters essential nutrients in a process termed nutritional immunity. However, inflammatory responses to bacterial insult can restore nutritional resources. Given that nutrient availability modulates virulence factor production and biofilm formation by other bacterial species, we hypothesized that fluctuations in heme-iron availability, particularly at privileged sites, would similarly influence Haemophilus biofilm formation and pathogenesis. Thus, we cultured Haemophilus through sequential heme-iron deplete and heme-iron replete media to determine the effect of transient depletion of internal stores of heme-iron on multiple pathogenic phenotypes. We observed that prior heme-iron restriction potentiates biofilm changes for at least 72 hours that include increased peak height and architectural complexity as compared to biofilms initiated from heme-iron replete bacteria, suggesting a mechanism for epigenetic responses that participate in the changes observed. Additionally, in a co-infection model for human otitis media, heme-iron restricted Haemophilus, although accounting for only 10% of the inoculum (90% heme-iron replete), represented up to 99% of the organisms recovered at 4 days. These data indicate that fluctuations in heme-iron availability promote a survival advantage during disease. Filamentation mediated by a SulA-related ortholog was required for optimal biofilm peak height and persistence during experimental otitis media. Moreover, severity of disease in response to heme-iron restricted Haemophilus was reduced as evidenced by lack of mucosal destruction, decreased erythema, hemorrhagic foci and vasodilatation. Transient restriction of heme-iron also promoted productive invasion events leading to the development of intracellular bacterial communities. Taken together, these data suggest that nutritional immunity, may, in fact, foster long-term phenotypic changes that better equip bacteria for survival at infectious sites. Clinical management of upper and lower respiratory tract diseases caused by nontypeable Haemophilus influenzae (NTHI) is a significant socioeconomic burden. Therapies targeting the pathogenic lifestyle of NTHI remain non-existent due to a lack of understanding of host microenvironmental cues and bacterial responses that dictate NTHI persistence. Iron availability influences bacterial virulence traits and biofilm formation; yet, host sequestration of iron serves to restrict bacterial growth. We predicted that fluctuations in availability of iron-containing compounds, typically associated with infection, would impact NTHI pathogenesis. We demonstrated that transient restriction of heme-iron triggered an epigenetic developmental program that enhanced NTHI biofilm architecture, directly influenced by induced morphological changes in bacterial length. Heme-iron restricted bacteria were primed for survival in the mammalian middle ear, due in part to an observed reduction in host inflammation coinciding with a striking reduction in host mucosal epithelial damage, compared to that observed in response to heme-iron replete NTHI. Moreover, transiently restricted NTHI were more invasive of epithelial cells resulting in formation of intracellular bacterial communities. Our findings significantly advance our understanding of how host immune pressure and nutrient availability influence pathogenic behaviors that impact disease severity.
Collapse
|
30
|
Harrison A, Santana EA, Szelestey BR, Newsom DE, White P, Mason KM. Ferric uptake regulator and its role in the pathogenesis of nontypeable Haemophilus influenzae. Infect Immun 2013; 81:1221-33. [PMID: 23381990 PMCID: PMC3639608 DOI: 10.1128/iai.01227-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/21/2013] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a commensal microorganism of the human nasopharynx, and yet is also an opportunistic pathogen of the upper and lower respiratory tracts. Host microenvironments influence gene expression patterns, likely critical for NTHi persistence. The host sequesters iron as a mechanism to control microbial growth, and yet iron limitation influences gene expression and subsequent production of proteins involved in iron homeostasis. Careful regulation of iron uptake, via the ferric uptake regulator Fur, is essential in multiple bacteria, including NTHi. We hypothesized therefore that Fur contributes to iron homeostasis in NTHi, is critical for bacterial persistence, and likely regulates expression of virulence factors. Toward this end, fur was deleted in the prototypic NTHi clinical isolate, 86-028NP, and we assessed gene expression regulated by Fur. As expected, expression of the majority of genes that encode proteins with predicted roles in iron utilization was repressed by Fur. However, 14 Fur-regulated genes encode proteins with no known function, and yet may contribute to iron utilization or other biological functions. In a mammalian model of human otitis media, we determined that Fur was critical for bacterial persistence, indicating an important role for Fur-mediated iron homeostasis in disease progression. These data provide a profile of genes regulated by Fur in NTHi and likely identify additional regulatory pathways involved in iron utilization. Identification of such pathways will increase our understanding of how this pathogen can persist within host microenvironments, as a common commensal and, importantly, as a pathogen with significant clinical impact.
Collapse
Affiliation(s)
- Alistair Harrison
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Center for Microbial Interface Biology, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.
| | | | | | | | | | | |
Collapse
|