1
|
Shah NM, Charani E, Ming D, Cheah FC, Johnson MR. Antimicrobial stewardship and targeted therapies in the changing landscape of maternal sepsis. JOURNAL OF INTENSIVE MEDICINE 2024; 4:46-61. [PMID: 38263965 PMCID: PMC10800776 DOI: 10.1016/j.jointm.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 01/25/2024]
Abstract
Pregnant and postnatal women are a high-risk population particularly prone to rapid progression to sepsis with significant morbidity and mortality worldwide. Moreover, severe maternal infections can have a serious detrimental impact on neonates with almost 1 million neonatal deaths annually attributed to maternal infection or sepsis. In this review we discuss the susceptibility of pregnant women and their specific physiological and immunological adaptations that contribute to their vulnerability to sepsis, the implications for the neonate, as well as the issues with antimicrobial stewardship and the challenges this poses when attempting to reach a balance between clinical care and urgent treatment. Finally, we review advancements in the development of pregnancy-specific diagnostic and therapeutic approaches and how these can be used to optimize the care of pregnant women and neonates.
Collapse
Affiliation(s)
- Nishel M Shah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Esmita Charani
- Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Damien Ming
- Department of Infectious Diseases, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Fook-Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mark R Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
2
|
Qutob RA, Alaryni A, Alghamdi A, Alsolamy EN, Al Harbi K, Alammari Y, Alanazi AM, Ababtain AA, Hakami OA, Aleid ZA, Alhaqbani AS, Alshehri RA, Almoshiqeh BA, Alhejazi AQ. A Cross-Sectional Survey Study on the Diagnosis and Management of Critical Illness-Induced Corticosteroid Insufficiency in Saudi Arabia. Cureus 2023; 15:e49982. [PMID: 38179369 PMCID: PMC10766206 DOI: 10.7759/cureus.49982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Background The presence of critical illness-induced corticosteroid insufficiency (CIRCI) is correlated with elevated concentrations of circulating biomarkers associated with inflammation and coagulation in multiple domains. The management of adrenal insufficiency remains a topic of ongoing debate and disagreement among endocrinologists and intensivists. This study aimed to assess the extent of understanding regarding CIRCI among endocrinologists and intensivists who are actively practicing in Saudi Arabia. Methods This is an online cross-sectional survey study that was conducted between June and August 2023 to assess knowledge of CIRCI among endocrinologists and intensivists working in Saudi Arabia. The questionnaire tool for this study was constructed based on a previous literature review. Binary logistic regression analysis was used to define factors that affect participants' knowledge of CIRCI. Results A total of 76 physicians were involved in this study. Around 32.9% (n= 25) of the participants described CIRCI correctly as an impairment of the hypothalamic-pituitary axis during critical illness. Around 35.5% (n=27) of the participants identified that widespread use of corticosteroids in critically ill patients prompted the need to revisit the concept, diagnosis, and management of CIRCI, and a similar proportion of the participants (35.5%) (n=27) identified that the role of corticosteroids in the management of CIRCI in critically ill patients may be beneficial in selected cases. Around 42.1% (n=32) of the participants identified that CIRCI is specific to critically ill patients while AI can occur in any individual. Around 17.1% (n=13) of the participants confirmed that there is no task force agreement on whether corticosteroids should be used in adult patients with sepsis but without shock. The mean knowledge score of the study participants was 3.6 (sd: 2.2) out of 10, which demonstrates a weak level of knowledge of CIRCI (36.0%). Binary logistic regression analysis identified that physicians from the southern and western regions were less likely to be knowledgeable of CIRCI compared to physicians from the central region (p< 0.05). Conclusion The study revealed that the level of familiarity with CIRCI among endocrinologists and intensivists in Saudi Arabia fell short of the desired benchmark. Clinicians may opt to utilize delta cortisol levels following cosyntropin administration and random plasma cortisol levels as diagnostic measures for CIRCI, instead of relying on plasma-free cortisol or salivary cortisol levels in conjunction with plasma total cortisol. Adherence to customized treatment protocols is crucial to attain the most favorable results for patients.
Collapse
Affiliation(s)
- Rayan Abubakker Qutob
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Abdullah Alaryni
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Abdullah Alghamdi
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Eysa N Alsolamy
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Khalid Al Harbi
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Yousef Alammari
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | | | - Abdalmohsen A Ababtain
- Department of Critical Care Medicine, King Abdullah bin Abdulaziz University Hospital at Princess Nourah bint Abdulrahman University, Riyadh, SAU
| | - Osamah Ahmad Hakami
- Department of Internal Medicine, King Abdullah Medical City in Holy Capital (KAMC-HC), Makkah, SAU
| | | | | | | | | | | |
Collapse
|
3
|
Olivera-Ardid S, Bello-Gil D, Perez-Cruz M, Costa C, Camoez M, Dominguez MA, Ferrero-Alves Y, Vaquero JM, Khasbiullina N, Shilova NV, Bovin NV, Mañez R. Removal of natural anti-αGal antibodies elicits protective immunity against Gram-negative bacterial infections. Front Immunol 2023; 14:1232924. [PMID: 37662909 PMCID: PMC10471972 DOI: 10.3389/fimmu.2023.1232924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Antibody-dependent enhancement (ADE) of bacterial infections occurs when blocking or inhibitory antibodies facilitate the infectivity of pathogens. In humans, antibodies involved in ADE of bacterial infections may include those naturally produced against Galα1-3Galβ1-4GlcNAcβ (αGal). Here, we investigate whether eliminating circulating anti-αGal antibodies using a soluble αGal glycopolymer confers protection against Gram-negative bacterial infections. We demonstrated that the in vivo intra-corporeal removal of anti-αGal antibodies in α1,3-galactosyltransferase knockout (GalT-KO) mice was associated with protection against mortality from Gram-negative sepsis after cecal ligation and puncture (CLP). The improved survival of GalT-KO mice was associated with an increased killing capacity of serum against Escherichia coli isolated after CLP and reduced binding of IgG1 and IgG3 to the bacteria. Additionally, inhibition of anti-αGal antibodies from human serum in vitro increases the bactericidal killing of E. coli O86:B7 and multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. In the case of E. coli O86:B7, there was also an improvement in bacteria opsonophagocytosis by macrophages. Both lytic mechanisms were related to a decreased binding of IgG2 to the bacteria. Our results show that protective immunity against Gram-negative bacterial pathogens can be elicited, and infectious diseases caused by these bacteria can be prevented by removing natural anti-αGal antibodies.
Collapse
Affiliation(s)
- Sara Olivera-Ardid
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Daniel Bello-Gil
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Magdiel Perez-Cruz
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Cristina Costa
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Mariana Camoez
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Microbiology Department, Bellvitge University Hospital, University of Barcelona, Hospitalet de Llobregat, Spain
| | - M. Angeles Dominguez
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Microbiology Department, Bellvitge University Hospital, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Yara Ferrero-Alves
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Jose Miguel Vaquero
- Flow Cytometry Platform, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Nailya Khasbiullina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda V. Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nicolai V. Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rafael Mañez
- Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
- Intensive Care Department, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| |
Collapse
|
4
|
Davoudian S, Piovani D, Desai A, Mapelli SN, Leone R, Sironi M, Valentino S, Silva-Gomes R, Stravalaci M, Asgari F, Madera A, Piccinini D, Fedeli C, Comina D, Bonovas S, Voza A, Mantovani A, Bottazzi B. A cytokine/PTX3 prognostic index as a predictor of mortality in sepsis. Front Immunol 2022; 13:979232. [PMID: 36189302 PMCID: PMC9521428 DOI: 10.3389/fimmu.2022.979232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022] Open
Abstract
BackgroundEarly prognostic stratification of patients with sepsis is a difficult clinical challenge. Aim of this study was to evaluate novel molecules in association with clinical parameters as predictors of 90-days mortality in patients admitted with sepsis at Humanitas Research Hospital.MethodsPlasma samples were collected from 178 patients, diagnosed based on Sepsis-3 criteria, at admission to the Emergency Department and after 5 days of hospitalization. Levels of pentraxin 3 (PTX3), soluble IL-1 type 2 receptor (sIL-1R2), and of a panel of pro- and anti-inflammatory cytokines were measured by ELISA. Cox proportional-hazard models were used to evaluate predictors of 90-days mortality.ResultsCirculating levels of PTX3, sIL-1R2, IL-1β, IL-6, IL-8, IL-10, IL-18, IL-1ra, TNF-α increased significantly in sepsis patients on admission, with the highest levels measured in shock patients, and correlated with SOFA score (PTX3: r=0.44, p<0.0001; sIL-1R2: r=0.35, p<0.0001), as well as with 90-days mortality. After 5 days of hospitalization, PTX3 and cytokines, but not sIL-1R2 levels, decreased significantly, in parallel with a general improvement of clinical parameters. The combination of age, blood urea nitrogen, PTX3, IL-6 and IL-18, defined a prognostic index predicting 90-days mortality in Sepsis-3 patients and showing better apparent discrimination capacity than the SOFA score (AUC=0.863, 95% CI: 0.780−0.945 vs. AUC=0.727, 95% CI: 0.613-0.840; p=0.021 respectively).ConclusionThese data suggest that a prognostic index based on selected cytokines, PTX3 and clinical parameters, and hence easily adoptable in clinical practice, performs in predicting 90-days mortality better than SOFA. An independent validation is required.
Collapse
Affiliation(s)
- Sadaf Davoudian
- Department of Research in Inflammation and Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniele Piovani
- Department of Biomedical Science, Humanitas University, Milan, Italy
| | - Antonio Desai
- Department of Biomedical Science, Humanitas University, Milan, Italy
- Department of Emergency, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sarah N. Mapelli
- Department of Research in Inflammation and Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberto Leone
- Department of Research in Inflammation and Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marina Sironi
- Department of Research in Inflammation and Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sonia Valentino
- Department of Research in Inflammation and Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Rita Silva-Gomes
- Department of Research in Inflammation and Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Stravalaci
- Department of Research in Inflammation and Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fatemeh Asgari
- Department of Research in Inflammation and Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandra Madera
- Department of Biomedical Science, Humanitas University, Milan, Italy
| | - Daniele Piccinini
- Department of Biomedical Science, Humanitas University, Milan, Italy
| | - Carlo Fedeli
- Department of Emergency, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Denise Comina
- Department of Emergency, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefanos Bonovas
- Department of Biomedical Science, Humanitas University, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Science, Humanitas University, Milan, Italy
- Department of Emergency, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- Department of Research in Inflammation and Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Science, Humanitas University, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Barbara Bottazzi, ; Alberto Mantovani,
| | - Barbara Bottazzi
- Department of Research in Inflammation and Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- *Correspondence: Barbara Bottazzi, ; Alberto Mantovani,
| |
Collapse
|
5
|
Poole J, Ray D. The Role of Circadian Clock Genes in Critical Illness: The Potential Role of Translational Clock Gene Therapies for Targeting Inflammation, Mitochondrial Function, and Muscle Mass in Intensive Care. J Biol Rhythms 2022; 37:385-402. [PMID: 35880253 PMCID: PMC9326790 DOI: 10.1177/07487304221092727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Earth's 24-h planetary rotation, with predictable light and heat cycles, has driven profound evolutionary adaptation, with prominent impacts on physiological mechanisms important for surviving critical illness. Pathways of interest include inflammation, mitochondrial function, energy metabolism, hypoxic signaling, apoptosis, and defenses against reactive oxygen species. Regulation of these by the cellular circadian clock (BMAL-1 and its network) has an important influence on pulmonary inflammation; ventilator-associated lung injury; septic shock; brain injury, including vasospasm; and overall mortality in both animals and humans. Whether it is cytokines, the inflammasome, or mitochondrial biogenesis, circadian medicine represents exciting opportunities for translational therapy in intensive care, which is currently lacking. Circadian medicine also represents a link to metabolic determinants of outcome, such as diabetes and cardiovascular disease. More than ever, we are appreciating the problem of circadian desynchrony in intensive care. This review explores the rationale and evidence for the importance of the circadian clock in surviving critical illness.
Collapse
Affiliation(s)
- Joanna Poole
- Anaesthetics and Critical Care, Gloucestershire Royal Hospital, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - David Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Kazmi I, Al-Abbasi FA, Afzal M, Nadeem MS, Altayb HN, Gupta G. Phosphodiesterase-4 Inhibitor Roflumilast-Mediated Protective Effect in Sepsis-Induced Late-Phase Event of Acute Kidney Injury: A Narrative Review. Pharmaceuticals (Basel) 2022; 15:ph15070899. [PMID: 35890197 PMCID: PMC9315747 DOI: 10.3390/ph15070899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Severe infections such as viral, bacterial, or fungal sepsis can cause an inflammatory response in the host, leading to organ failure and septic shock—phosphodiesterase-4 (PDE-4) inhibiting related agents from suppressing cyclic adenosine monophosphate (cAMP) degradation. Regulatory organisations have approved some substances in this category to reduce the risk of chronic obstructive pulmonary disease (COPD) exacerbations in patients with chronic bronchitis and a history of COPD exacerbations. Roflumilast has been shown to alleviate inflammatory responses, thus regulating airway inflammation. Additionally, roflumilast therapy dramatically enhanced B-cell lymphoma 2 (Bcl-2) expression, an anti-apoptotic marker lowered in septic animals. Previous research has indicated that roflumilast may help reverse sepsis-induced liver and lung harm, but whether it is also effective in reversing sepsis-induced renal impairment remains unknown. Therefore, this review determines whether roflumilast protects against renal dysfunction, inflammatory response, and apoptosis in sepsis-induced kidney damage. Additionally, we discussed the molecular mechanism through which roflumilast exerts its protective effect to uncover a possible treatment agent for sepsis-induced renal impairment.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
- Correspondence:
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
7
|
Son JY, Kwack WG, Chung EK, Shin S, Choi YJ. Effects of Early Initiation of High-Dose Dexamethasone Therapy on Pro-Inflammatory Cytokines and Mortality in LPS-Challenged Mice. Healthcare (Basel) 2022; 10:healthcare10071247. [PMID: 35885778 PMCID: PMC9320239 DOI: 10.3390/healthcare10071247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 12/15/2022] Open
Abstract
This study aims to explore the effects of early dexamethasone therapy at low to high doses on the survival and inflammatory responses in lipopolysaccharide (LPS)-challenged mice. We performed two-series experiments to explore the impact of early dexamethasone therapy at different doses (0.5 mg/kg, 1.5 mg/kg, and 5 mg/kg; PO) on pro-inflammatory cytokine levels, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), as well as survival in LPS-treated mice (10 mg/kg, IP). Dexamethasone was administered daily from 24 h before and 5 days after LPS challenge. Dose-dependent improved survival was demonstrated with dexamethasone (p < 0.05). Body weight was significantly decreased within 24 h of LPS injection, with significantly greater weight loss in the dexamethasone groups (p < 0.05). Weight changes were significantly associated with the days after LPS administration (p < 0.01), but not with the dexamethasone dose (p > 0.05). Mice treated with high-dose dexamethasone (5 mg/kg) had a significantly lowered serum TNF-α (134.41 ± 15.83 vs. 408.83 ± 18.32) and IL-6 (22.08 ± 4.34 vs. 91.27 ± 8.56) compared with those without dexamethasone. This study provides essential insights that the suppression of early-phase hyperactivation of pro-inflammatory activities through the early initiation of high-dose dexamethasone therapy increases sepsis-related prognosis.
Collapse
Affiliation(s)
- Ji-young Son
- Department of Clinical Pharmacy, Graduate School of Pharmacy, CHA University, Seongnam 13488, Korea;
| | - Won Gun Kwack
- Division of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital, Seoul 02447, Korea;
| | - Eun Kyoung Chung
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Pharmacy, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
- Correspondence: (E.K.C.); (S.S.); (Y.J.C.); Tel.: +82-2-961-2122 (E.K.C.); +82-31-219-3456 (S.S.); +82-2-961-0532 (Y.J.C.)
| | - Sooyoung Shin
- Department of Clinical Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Korea
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
- Correspondence: (E.K.C.); (S.S.); (Y.J.C.); Tel.: +82-2-961-2122 (E.K.C.); +82-31-219-3456 (S.S.); +82-2-961-0532 (Y.J.C.)
| | - Yeo Jin Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (E.K.C.); (S.S.); (Y.J.C.); Tel.: +82-2-961-2122 (E.K.C.); +82-31-219-3456 (S.S.); +82-2-961-0532 (Y.J.C.)
| |
Collapse
|
8
|
Abstract
INTRODUCTION The immunobiology defining the clinically apparent differences in response to sepsis remains unclear. We hypothesize that in murine models of sepsis we can identify phenotypes of sepsis using non-invasive physiologic parameters (NIPP) early after infection to distinguish between different inflammatory states. METHODS Two murine models of sepsis were used: gram-negative pneumonia (PNA) and cecal ligation and puncture (CLP). All mice were treated with broad spectrum antibiotics and fluid resuscitation. High-risk sepsis responders (pDie) were defined as those predicted to die within 72 h following infection. Low-risk responders (pLive) were expected to survive the initial 72 h of sepsis. Statistical modeling in R was used for statistical analysis and machine learning. RESULTS NIPP obtained at 6 and 24 h after infection of 291 mice (85 PNA and 206 CLP) were used to define the sepsis phenotypes. Lasso regression for variable selection with 10-fold cross-validation was used to define the optimal shrinkage parameters. The variables selected to discriminate between phenotypes included 6-h temperature and 24-h pulse distention, heart rate (HR), and temperature. Applying the model to fit test data (n = 55), area under the curve (AUC) for the receiver operating characteristics (ROC) curve was 0.93. Subgroup analysis of 120 CLP mice revealed a HR of <620 bpm at 24 h as a univariate predictor of pDie. (AUC of ROC curve = 0.90). Subgroup analysis of PNA exposed mice (n = 121) did not reveal a single predictive variable highlighting the complex physiological alterations in response to sepsis. CONCLUSION In murine models with various etiologies of sepsis, non-invasive vitals assessed just 6 and 24 h after infection can identify different sepsis phenotypes. Stratification by sepsis phenotypes can transform future studies investigating novel therapies for sepsis.
Collapse
|
9
|
Zhao Y, Liu S, Shi Z, Zhu H, Li M, Yu Q. Pathogen infection-responsive nanoplatform targeting macrophage endoplasmic reticulum for treating life-threatening systemic infection. NANO RESEARCH 2022; 15:6243-6255. [PMID: 35382032 PMCID: PMC8972645 DOI: 10.1007/s12274-022-4211-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Systemic infections caused by life-threatening pathogens represent one of the main factors leading to clinical death. In this study, we developed a pathogen infection-responsive and macrophage endoplasmic reticulum-targeting nanoplatform to alleviate systemic infections. The nanoplatform is composed of large-pore mesoporous silica nanoparticles (MSNs) grafted by an endoplasmic reticulum-targeting peptide, and a pathogen infection-responsive cap containing the reactive oxygen species-cleavable boronobenzyl acid linker and bovine serum albumin. The capped MSNs exhibited the capacity to high-efficiently load the antimicrobial peptide melittin, and to rapidly release the cargo triggered by H2O2 or the pathogen-macrophage interaction system, but had no obvious toxicity to macrophages. During the interaction with pathogenic Candida albicans cells and macrophages, the melittin-loading nanoplatform MSNE+MEL+TPB strongly inhibited pathogen growth, survived macrophages, and suppressed endoplasmic reticulum stress together with pro-inflammatory cytokine secretion. In a systemic infection model, the nanoplatform efficiently prevented kidney dysfunction, alleviated inflammatory symptoms, and protected the mice from death. This study developed a macrophage organelle-targeting nanoplatform for treatment of life-threatening systemic infections. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (N2 adsorption curves of the initial synthesized MSNs, FT-IR spectra of MSN, and MSNE, MEL release from the FITC-MEL-loading MSNE + TPB induced by different concentration of H2O2, viability of NIH3T3 cells, and DC2.4 cells after treatment of free MEL or the used nanoparticles, effect of MEL on C. albicans growth and macrophage death during the interaction between C. albicans and macrophages, effect of MEL and the nanoparticles on S. aureus growth and macrophage death during the interaction between S. aureus and macrophages, quantification of GRP78 (a) and activated Caspase-3, flow cytometry analysis of kidney non-macrophages with the Alexa Fluor 594 signal, survival curve of the infected mice treated by MEL or MSNE + MEL, kidney burden, blood urea levels and serum TNF-α levels in the infected mice) is available in the online version of this article at 10.1007/s12274-022-4211-z.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Shuo Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350 China
| | - Zhishang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| |
Collapse
|
10
|
Yousefi-Manesh H, Shirooie S, Noori T, Tavangar SM, Sheibani M, Chaboki A, Mohammadi S, Dehpour AR. Assessment of Sumatriptan on Sepsis-Induced Kidney injury in the Cecal Ligation and Puncture Mice Model. Drug Res (Stuttg) 2021; 72:156-162. [PMID: 34852366 DOI: 10.1055/a-1685-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sepsis is a severe systemic inflammatory response with high mortality rate resulting from different microorganisms. Cytokines activation is essential for the immune response, but in painful conditions like sepsis, cytokines act as a double-edged sword and dysregulate immune response which is life-threatening owing to multiple organ dysfunction. The abnormality in 5-HT function is involved in pathological conditions like irritable bowel syndrome, inflammation, myocardial ischemia, itch and renal injury. Sumatriptan, a 5-HT1B/1D agonist, has anti-inflammatory and anti-oxidative stress effects on animal models. This study was aimed to assess the effects of sumatriptan on kidney injury, the levels of pro-inflammatory cytokines and the percentage of survival in (CLP)-induced sepsis were examined.Cecal ligation and puncture (CLP) model was done on adult C57BL/6 male mice to induce Polymicrobial sepsis. Sumatriptan was injected intraperitoneally 1 h after the sepsis induction by CLP at doses of 0.1, 0.3, and 1 mg/kg in 3 treatment groups. To study the effect of sumatriptan on short-term survival, septic animals were detected 72 h after CLP. Serum levels of TNF-α, IL-1β, IL-6 and IL-10 were evaluated. To study sepsis-induced acute renal failure, kidney functional biomarkers and histopathological alterations were evaluated.Sumatriptan (0.3 mg/kg) administration significantly enhanced survival rate (P<0.01) compared to the CLP group. The beneficial effects of sumatriptan were related to a significant decrease in the pro-inflammatory cytokines and elevated level of IL-10. Sumatriptan presented protective effects on kidney biomarkers and histopathology assay.Anti-inflammatory effects of sumatriptan lead to decrease mortality rate and inflammatory cytokines in CLP induction sepsis in C57BL/6 mice.
Collapse
Affiliation(s)
- Hasan Yousefi-Manesh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Chaboki
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mohammadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Datta PK, Rewari V, Ramachandran R, Singh PM, Ray BR, Aravindan A, Seth S, Parakh N, Trikha A. Effectiveness of enteral ivabradine for heart rate control in septic shock: A randomised controlled trial. Anaesth Intensive Care 2021; 49:366-378. [PMID: 34407620 DOI: 10.1177/0310057x211009913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Persistent tachycardia in patients with septic shock predicts poor outcome. This study sought to investigate the effect of the cardiac pacemaker current inhibitor ivabradine on heart rate and cardio-circulatory function in patients with septic shock. After informed consent, 60 patients with septic shock and persistent tachycardia (heart rate >95 /minute) were prospectively randomly assigned to receive either standard therapy for septic shock (group S) or standard therapy along with enteral ivabradine (group I) for the initial 96 hours after enrolment. Primary outcome was the difference in heart rate between the two groups during the first 96 hours. Secondary outcomes included the effect of ivabradine on haemodynamic, oxygenation, myocardial function and organ function parameters, incidence of adverse events and 30-day overall survival. Heart rate was lower in group I compared to group S (median difference in area under the curve -25.6 (95% confidence intervals -31.4 to -15.9) /minute; P <0.001). Vasopressor requirements, blood lactate levels, Sequential Organ Failure Assessment scores and E/e' ratio were lower in group I compared to group S. Stroke volume index and ejection fraction were higher in group I while cardiac index and oxygen delivery parameters were maintained similar to group S. There was no difference in 30-day mortality or in the incidence of serious adverse events. Enteral ivabradine is effective in reducing heart rate, and improving haemodynamic parameters and cardiac function in patients with septic shock and persistent tachycardia, without increasing the incidence of adverse events.
Collapse
Affiliation(s)
- Priyankar K Datta
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Vimi Rewari
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Rashmi Ramachandran
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Preet M Singh
- Department of Anesthesiology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Bikash R Ray
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Ajisha Aravindan
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Seth
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Neeraj Parakh
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Anjan Trikha
- Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Gupta K, Pandey S, Singh R, Kumari A, Sen P, Singh G. Roflumilast improves resolution of sepsis-induced acute kidney injury by retarding late phase renal interstitial immune cells infiltration and leakage in urinary sediments. Fundam Clin Pharmacol 2021; 36:114-132. [PMID: 34212425 DOI: 10.1111/fcp.12711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/25/2021] [Indexed: 12/21/2022]
Abstract
Some evidence has demonstrated that both inflammation and immune cell dysregulation are coincident at late phase (post 24 h) of sepsis. The present study was designed to determine the pathological role of hyperinflammation and renal immune cells mobilization during late phase of sepsis induced acute kidney injury (S-AKI) and tests the pharmacological effects of PDE-4 inhibitor on these events. Sepsis was induced by cecal ligation puncture and renal function, oxidative-inflammatory stress biomarkers were assessed after 24 h. PDE-4 inhibitor was administered for 7 days prior to induction of S-AKI. Renal immune cells infiltration during sepsis was analyzed by H&E staining and papanicolaou staining method was used for detecting leukocytes and cast in urinary sediments, periodic acid schiff (PAS) staining was used for detection of brush border loss. AKI developed 24 h post sepsis insult as depicted by increase in serum creatinine, blood urea nitrogen (BUN), renal oxidative stress, and elevated inflammatory biomarkers levels. Moreover, septic rats displayed increased bacterial load, renal expression of phosphodiesterase-4B, 4D isoforms, enhanced vascular permeability, caspase-3 and myeloperoxidase activity, electrolyte imbalance, reduced Na+ K+ ATPase activity, declined cAMP levels, increased interstitial leukocyte infiltration, and leakage in urinary sediments along with histological alterations. Pre-treatment with roflumilast at high dose completely prevented the various AKI associated manifestations in septic rats. Renal hyper-inflammation and leukocyte infiltration was detected in late phase of S-AKI. Roflumilast pre-treatment resolved sepsis induced renal dysfunction and histological damage by suppressing late phase renal immune cells invasion and anti-inflammatory effects mediated by up-regulation of renal cAMP levels.
Collapse
Affiliation(s)
- Kirti Gupta
- Department of Pharmacy, Maharishi Markandeshwar University, Ambala, India
| | - Sneha Pandey
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Ragini Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Abha Kumari
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Pallavi Sen
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | | |
Collapse
|
13
|
Mainali R, Zabalawi M, Long D, Buechler N, Quillen E, Key CC, Zhu X, Parks JS, Furdui C, Stacpoole PW, Martinez J, McCall CE, Quinn MA. Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction. eLife 2021; 10:64611. [PMID: 33616039 PMCID: PMC7901874 DOI: 10.7554/elife.64611] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming between resistance and tolerance occurs within the immune system in response to sepsis. While metabolic tissues such as the liver are subjected to damage during sepsis, how their metabolic and energy reprogramming ensures survival is unclear. Employing comprehensive metabolomic, lipidomic, and transcriptional profiling in a mouse model of sepsis, we show that hepatocyte lipid metabolism, mitochondrial tricarboxylic acid (TCA) energetics, and redox balance are significantly reprogrammed after cecal ligation and puncture (CLP). We identify increases in TCA cycle metabolites citrate, cis-aconitate, and itaconate with reduced fumarate and triglyceride accumulation in septic hepatocytes. Transcriptomic analysis of liver tissue supports and extends the hepatocyte findings. Strikingly, the administration of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate reverses dysregulated hepatocyte metabolism and mitochondrial dysfunction. In summary, our data indicate that sepsis promotes hepatic metabolic dysfunction and that targeting the mitochondrial PDC/PDK energy homeostat rebalances transcriptional and metabolic manifestations of sepsis within the liver.
Collapse
Affiliation(s)
- Rabina Mainali
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Manal Zabalawi
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - David Long
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Nancy Buechler
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Ellen Quillen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Chia-Chi Key
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Xuewei Zhu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - John S Parks
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Cristina Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Peter W Stacpoole
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, United States
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, Bethesda, United States
| | - Charles E McCall
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Matthew A Quinn
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States.,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| |
Collapse
|
14
|
Luu AZ, Luu VZ, Chowdhury B, Kosmopoulos A, Pan Y, Al-Omran M, Quan A, Teoh H, Hess DA, Verma S. Loss of endothelial cell-specific autophagy-related protein 7 exacerbates doxorubicin-induced cardiotoxicity. Biochem Biophys Rep 2021; 25:100926. [PMID: 33553688 PMCID: PMC7851775 DOI: 10.1016/j.bbrep.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin (DOX) is an effective, broad-spectrum antineoplastic agent with serious cardiotoxic side effects, which may lead to the development of heart failure. Current strategies to diagnose, prevent, and treat DOX-induced cardiotoxicity (DIC) are inadequate. Recent evidence has linked the dysregulation and destruction of the vascular endothelium to the development of DIC. Autophagy is a conserved pro-survival mechanism that recycles and removes damaged sub-cellular components. Autophagy-related protein 7 (ATG7) catalyzes autophagosome formation, a critical step in autophagy. In this study, we used endothelial cell-specific Atg7 knockout (EC-Atg7−/−) mice to characterize the role of endothelial cell-specific autophagy in DIC. DOX-treated EC-Atg7−/− mice showed reduced survival and a greater decline in cardiac function compared to wild-type controls. Histological assessments revealed increased cardiac fibrosis in DOX-treated EC-Atg7−/− mice. Furthermore, DOX-treated EC-Atg7−/− mice had elevated serum levels of creatine kinase-myocardial band, a biomarker for cardiac damage. Thus, the lack of EC-specific autophagy exacerbated DIC. Future studies on the relationship between EC-specific autophagy and DIC could establish the importance of endothelium protection in preventing DIC. Recent data suggest that endothelial cells (ECs) may represent a novel target to reduce doxorubicin (DOX)-linked cardiotoxicity. We used EC-specific autophagy-related protein 7 knock-out (EC-Atg7−/−) mice to determine how ATG7 loss in ECs affects DIC. DOX-treated EC-Atg7−/− mice exhibited reduced survival and cardiac function. Cardiac fibrosis and serum creatine kinase-myocardial band levels were increased in DOX-treated EC-Atg7−/− mice. Loss of endothelial Atg7 exacerbated DIC phenotypes.
Collapse
Affiliation(s)
- Albert Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Biswajit Chowdhury
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Andrew Kosmopoulos
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Yi Pan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mohammed Al-Omran
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Immunophenotypic characterization and therapeutics effects of human bone marrow- and umbilical cord-derived mesenchymal stromal cells in an experimental model of sepsis. Exp Cell Res 2021; 399:112473. [PMID: 33428902 DOI: 10.1016/j.yexcr.2021.112473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022]
Abstract
Sepsis is a complicated multi-system disorder characterized by a dysregulated host response to infection. Despite substantial progress in the understanding of mechanisms of sepsis, translation of these advances into clinically effective therapies remains challenging. Mesenchymal Stromal Cells (MSCs) possess immunomodulatory properties that have shown therapeutic promise in preclinical models of sepsis. The therapeutic effects of MSCs may vary depending on the source and type of these cells. In this comparative study, the gene expression pattern and surface markers of bone marrow-derived MSCs (BM-MSCs) and umbilical cord-derived MSCs (UC-MSCs) as well as their therapeutic effects in a clinically relevant mouse model of polymicrobial sepsis, cecal ligation and puncture (CLP), were investigated. The results showed remarkable differences in gene expression profile, surface markers and therapeutic potency in terms of enhancing survival and pro/anti-inflammatory responses between the two MSC types. BM-MSCs improved survival concomitant with an enhanced systemic bacterial clearance and improved inflammatory profile post CLP surgery. Despite some improvement in the inflammatory profile of the septic animals, treatment with UC-MSCs did not enhance survival or bacterial clearance. Overall, the beneficial therapeutic effects of BM-MSCs over UC-MSCs may likely be attributed to their pro-inflammatory function, and to some extent anti-inflammatory features, reflected in their gene expression pattern enhancing macrophage polarization to M1/M2 phenotypes resulting in a balanced pro- and anti-inflammatory response against polymicrobial sepsis.
Collapse
|
16
|
Zetoune FS, Ward PA. Role of Complement and Histones in Sepsis. Front Med (Lausanne) 2020; 7:616957. [PMID: 33425963 PMCID: PMC7785970 DOI: 10.3389/fmed.2020.616957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The wide use of the mouse model of polymicrobial sepsis has provided important evidence for events occurring in infectious sepsis involving septic mice and septic humans. Nearly 100 clinical trials in humans with sepsis have been completed, yet there is no FDA-approved drug. Our studies of polymicrobial sepsis have highlighted the role of complement activation products (especially C5a anaphylatoxin and its receptors C5aR1 and C5aR2) in adverse effects of sepsis. During sepsis, the appearance of these complement products is followed by appearance of extracellular histones in plasma, which have powerful proinflammatory and prothrombotic activities that cause cell injury and multiorgan dysfunction in septic mice. Similar responses occur in septic humans. Histone appearance in plasma is related to complement activation and appearance of C5a and its interaction with its receptors. Development of the cardiomyopathy of sepsis also depends on C5a, C5a receptors and histones. Neutralization of C5a with antibody or absence of C5aR1 blocks appearance of extracellular histones and cell and organ failure in sepsis. Survival rates in septic mice are greatly improved after blockade of C5a with antibody. We also review the various strategies in sepsis that greatly reduce the development of life-threatening events of sepsis.
Collapse
Affiliation(s)
- Firas S Zetoune
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Can the Cecal Ligation and Puncture Model Be Repurposed To Better Inform Therapy in Human Sepsis? Infect Immun 2020; 88:IAI.00942-19. [PMID: 32571986 DOI: 10.1128/iai.00942-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A recent report by the National Institutes of Health on sepsis research has implied there is a trend to move away from mouse models of sepsis. The most commonly used animal model to study the pathogenesis of human sepsis is cecal ligation and puncture (CLP) in mice. The model has been the mainstay of sepsis research for decades and continues to be considered the gold standard to inform novel pathways of sepsis physiology and its therapeutic direction. As there have been many criticisms of the model, particularly regarding its relevance to human disease, how this model might be repurposed to be more reflective of the human condition begs discussion. In this piece, we compare and contrast the mouse microbiome of the CLP model to the emerging science of the microbiome of human sepsis and discuss the relevance for mice to harbor the specific pathogens present in the human microbiome during sepsis, as well as an underlying disease process to mimic the characteristics of those patients with undesirable outcomes. How to repurpose this model to incorporate these "human factors" is discussed in detail and suggestions offered.
Collapse
|
18
|
Jesus AA, Passaglia P, Santos BM, Rodrigues-Santos I, Flores RA, Batalhão ME, Stabile AM, Cárnio EC. Chronic molecular hydrogen inhalation mitigates short and long-term memory loss in polymicrobial sepsis. Brain Res 2020; 1739:146857. [PMID: 32348775 DOI: 10.1016/j.brainres.2020.146857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/04/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023]
Abstract
The central nervous system (CNS) is one of the first physiological systems to be affected in sepsis. During the exacerbated systemic inflammatory response at the early stage of sepsis, circulatory inflammatory mediators are able to reach the CNS leading to neuroinflammation and, consequently, long-term impairment in learning and memory formation is observed. The acute treatment with molecular hydrogen (H2) exerts important antioxidative, antiapoptotic, and anti-inflammatory effects in sepsis, but little is known about the mechanism itself and the efficacy of chronic H2 inhalation in sepsis treatment. Thus, we tested two hypotheses. We first hypothesized that chronic H2 inhalation is also an effective therapy to treat memory impairment induced by sepsis. The second hypothesis is that H2 treatment decreases sepsis-induced neuroinflammation in the hippocampus and prefrontal cortex, important areas related to short and long-term memory processing. Our results indicate that (1) chronic exposure of hydrogen gas is a simple, safe and promising therapeutic strategy to prevent memory loss in patients with sepsis and (2) acute H2 inhalation decreases neuroinflammation in memory-related areas and increases total nuclear factor E2-related factor 2 (Nrf2), a transcription factorthat regulates a vast group of antioxidant and inflammatory agents expression in these areas of septic animals.
Collapse
Affiliation(s)
- Aline A Jesus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Patrícia Passaglia
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Bruna M Santos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Isabelle Rodrigues-Santos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Rafael A Flores
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Marcelo E Batalhão
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Angelita M Stabile
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil
| | - Evelin C Cárnio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil; Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900 Brazil.
| |
Collapse
|
19
|
Rahmel T, Hübner M, Koos B, Wolf A, Willemsen KM, Strauß G, Effinger D, Adamzik M, Kreth S. Impact of carbohydrate-reduced nutrition in septic patients on ICU: study protocol for a prospective randomised controlled trial. BMJ Open 2020; 10:e038532. [PMID: 32641340 PMCID: PMC7348645 DOI: 10.1136/bmjopen-2020-038532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Sepsis is defined as detrimental immune response to an infection. This overwhelming reaction often abolishes a normal reconstitution of the immune cell homeostasis that in turn increases the risk for further complications. Recent studies revealed a favourable impact of ketone bodies on resolution of inflammation. Thus, a ketogenic diet may provide an easy-to-apply and cost-effective treatment option potentially alleviating sepsis-evoked harm. This study is designed to assess the feasibility, efficiency and safety of a ketogenic diet in septic patients. METHODS AND ANALYSIS This monocentric study is a randomised, controlled and open-label trial, which is conducted on an intensive care unit of a German university hospital. As intervention enteral nutrition with reduced amount of carbohydrates (ketogenic) or standard enteral nutrition (control) is applied. The primary endpoint is the detection of ketone bodies in patients' blood and urine samples. As secondary endpoints, the impact on important safety-relevant issues (eg, glucose metabolism, lactate serum concentration, incidence of metabolic acidosis, thyroid function and 30-day mortality) and the effect on the immune system are analysed. ETHICS AND DISSEMINATION The study has received the following approvals: Ethics Committee of the Medical Faculty of Ruhr-University Bochum (No. 18-6557-BR). Results will be made available to critical care survivors, their caregivers, the funders, the critical care societies and other researchers by publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBERS German Clinical Trial Register (DRKS00017710); Universal Trial Number (U1111-1237-2493).
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Max Hübner
- Faculty of Medicine - LMU, Walter-Brendel Center of Experimental Medicine, München, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Alexander Wolf
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Katrin-Maria Willemsen
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Gabriele Strauß
- Faculty of Medicine - LMU, Walter-Brendel Center of Experimental Medicine, München, Germany
| | - David Effinger
- Faculty of Medicine - LMU, Walter-Brendel Center of Experimental Medicine, München, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Simone Kreth
- Faculty of Medicine - LMU, Walter-Brendel Center of Experimental Medicine, München, Germany
| |
Collapse
|
20
|
Shi C, Wang X, Wang L, Meng Q, Guo D, Chen L, Dai M, Wang G, Cooney R, Luo J. A nanotrap improves survival in severe sepsis by attenuating hyperinflammation. Nat Commun 2020; 11:3384. [PMID: 32636379 PMCID: PMC7341815 DOI: 10.1038/s41467-020-17153-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Targeting single mediators has failed to reduce the mortality of sepsis. We developed a telodendrimer (TD) nanotrap (NT) to capture various biomolecules via multivalent, hybrid and synergistic interactions. Here, we report that the immobilization of TD-NTs in size-exclusive hydrogel resins simultaneously adsorbs septic molecules, e.g. lipopolysaccharides (LPS), cytokines and damage- or pathogen-associated molecular patterns (DAMPs/PAMPs) from blood with high efficiency (92-99%). Distinct surface charges displayed on the majority of pro-inflammatory cytokines (negative) and anti-inflammatory cytokines (positive) allow for the selective capture via TD NTs with different charge moieties. The efficacy of NT therapies in murine sepsis is both time-dependent and charge-dependent. The combination of the optimized NT therapy with a moderate antibiotic treatment results in a 100% survival in severe septic mice by controlling both infection and hyperinflammation, whereas survival are only 50-60% with the individual therapies. Cytokine analysis, inflammatory gene activation and tissue histopathology strongly support the survival benefits of treatments.
Collapse
Affiliation(s)
- Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xiaojing Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Lili Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Qinghe Meng
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Li Chen
- Department of Pathology, Baylor Scott and White Medical Center, Temple, TX, 76508, USA
| | - Matthew Dai
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Brown University, Providence, RI, 02912, USA
| | - Guirong Wang
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Robert Cooney
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
- Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
- Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
21
|
Enhancing Autophagy Protects Against Sepsis-Induced Neuromuscular Dysfunction Associated with Qualitative Changes to Acetylcholine Receptors. Shock 2020; 52:111-121. [PMID: 30286033 DOI: 10.1097/shk.0000000000001189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sepsis-induced myopathy is a heavy burden for patients during respiratory failure as well as after discharge, which could be characterized with qualitative changes to nAChR in a rat model of sepsis, regulated by NRG-1. Autophagy is an innate immune defense mechanism against microbial challenges. We found neuromuscular dysfunction in anterior tibial muscle of male Sprague-Dawley rats 24 h after cecal ligation and puncture (CLP). CLP resulted in increased systemic and local inflammation in anterior tibial muscle tissue. The start-up phase of autophagy, as measured by LC3II, was activated immediately after CLP and continued until 24 h; the degradation phase was suppressed until 24 h, after a brief increase at 4 h (revealed by p62). NRG-1 first increased, and then decreased to a level lower than that in the sham group. Meanwhile, expression of γ- and α7- acetylcholine receptors was detected at 8 and 16 h after CLP; levels increased continuously until 24 h. Subsequently, we investigated the significance of autophagy in CLP-induced neuromuscular dysfunction by treatment with rapamycin or 3-methyladenine, which were classical pharmaceuticals for enhancing or suppressing autophagy. Rapamycin activated autophagy, limited the CLP-induced systemic pro-inflammatory response and blood bacterial load without affecting local inflammatory response, upregulated NRG-1, downregulated γ- and α7-acetylcholine receptors, and improved 7-day neuromuscular function and survival rate. In contrast, 3-methyladenine enhanced local inflammatory response, suppressed autophagy, worsened 7-day neuromuscular function. We conclude that impaired autophagy may contribute to sepsis-induced neuromuscular dysfunction in young male rats. Enhancing autophagy with rapamycin alleviated qualitative changes to acetylcholine receptors without triggering local anti-inflammatory response and improved anterior tibial muscle function in septic early phase (24 h) as well as in septic chronic phase (7d). Enhancing autophagy soon after sepsis is a potential strategy for treatment of sepsis-induced myopathy.
Collapse
|
22
|
de Moraes PAD, Tannuri ACA, Rios LM, Paes VR, Gonçalves JDO, Serafini S, Tannuri U. Sepsis and cirrhosis in growing animals: description of a new experimental model and its pathological and immunological reliability. Clinics (Sao Paulo) 2020; 75:e1858. [PMID: 32997081 PMCID: PMC7510946 DOI: 10.6061/clinics/2020/e1858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES In cirrhotic children, infection events and sepsis are more frequent and more severe due to immune dysfunction. The objectives of the current study were therefore to develop an experimental model of infection and sepsis in cirrhotic weaning growing rats, by the use of bile duct ligation (BDL) and cecal ligation and puncture (CLP). Additionally, the correlation of the clinico-histopathological data and serial cytokine levels in septic cirrhotic and non-cirrhotic animals was studied. METHODS Young Wistar rats of age 21 days and of weight between 70-90 g were divided into 12 groups according to the surgical procedure performed: sham (sacrificed after 2 or 4 weeks), BDL (sacrificed after 2 or 4 weeks), CLP (2- or 4-week old animals sacrificed after 12 or 24 hours), BDL+CLP (2- or 4-week old animals sacrificed after 12 hours). Histopathological studies and determination of serum levels of cytokines IL-1 beta, IL-10, and TNF-alpha, for studies of systemic infection, were performed. Murine sepsis scores (MSS) based on the clinical aspects just before euthanasia were also included. RESULTS A transitory increase in IL-1, IL-10, and TNF-alpha levels was observed, with different patterns according to the groups. Two-hit groups tended to present with higher values of serum cytokines and histopathological scores than their septic non-cirrhotic counterparts. There was a correlation between mortality rate and MSS (p<0.0001). CONCLUSION The model is feasible and may be utilized in studies on liver cirrhosis and infection in growing animals.
Collapse
|
23
|
Brichacek AL, Benkovic SA, Chakraborty S, Nwafor DC, Wang W, Jun S, Dakhlallah D, Geldenhuys WJ, Pinkerton AB, Millán JL, Brown CM. Systemic inhibition of tissue-nonspecific alkaline phosphatase alters the brain-immune axis in experimental sepsis. Sci Rep 2019; 9:18788. [PMID: 31827139 PMCID: PMC6906465 DOI: 10.1038/s41598-019-55154-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitous enzyme present in many cells and tissues, including the central nervous system. Yet its functions at the brain-immune axis remain unclear. The goal of this study was to use a novel small molecular inhibitor of TNAP, SBI-425, to interrogate the function of TNAP in neuroimmune disorders. Following intraperitoneal (IP) administration of SBI-425, mass spectrometry analysis revealed that the SBI-425 does not cross the blood-brain barrier (BBB) in healthy mice. To elucidate the role of TNAP at the brain-immune axis, mice were subjected to experimental sepsis and received either vehicle or SBI-425 (25 mg/kg, IP) daily for 7 days. While SBI-425 administration did not affect clinical severity outcomes, we found that SBI-425 administration suppressed CD4 + Foxp3+ CD25- and CD8 + Foxp3+ CD25- splenocyte T-cell populations compared to controls. Further evaluation of SBI-425's effects in the brain revealed that TNAP activity was suppressed in the brain parenchyma of SBI-425-treated mice compared to controls. When primary brain endothelial cells were treated with a proinflammatory stimulus the addition of SBI-425 treatment potentiated the loss of barrier function in BBB endothelial cells. To further demonstrate a protective role for TNAP at endothelial barriers within this axis, transgenic mice with a conditional overexpression of TNAP were subjected to experimental sepsis and found to have increased survival and decreased clinical severity scores compared to controls. Taken together, these results demonstrate a novel role for TNAP activity in shaping the dynamic interactions within the brain-immune axis.
Collapse
Affiliation(s)
- Allison L Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Stanley A Benkovic
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Sreeparna Chakraborty
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Divine C Nwafor
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Wei Wang
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Sujung Jun
- Department of Physiology and Pharmacology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Duaa Dakhlallah
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | | | - José Luis Millán
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
- Department of Neuroscience, School of Medicine, Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
24
|
Rosado‐Franco JJ, Ramos‐Benitez MJ, Parodi LM, Rosario D, Compo N, Giavedoni LD, Espino AM. Outlining key inflammation-associated parameters during early phase of an experimental gram-negative sepsis model in rhesus macaques ( Macaca mulatta). Animal Model Exp Med 2019; 2:326-333. [PMID: 31942564 PMCID: PMC6930987 DOI: 10.1002/ame2.12087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to identify inflammation-associated markers during the early phase of sepsis in rhesus macaque. Four rhesus macaques were given an intravenous dose of 1010 CFU/kg of E. coli. Blood samples were collected before, or 30 minutes, 2, 4, 6 and 8 hours after E. coli infusion. Physiological parameters, bacteremia, endotoxemia, C-reactive protein (CRP), procalcitonin (PCT), and plasma cytokines/chemokines were determined for each animal. Bacteremia was present in all animals from 30 minutes to 3 hours after E. coli infusion whereas endotoxin was detected during the full-time course. CRP and PCT levels remained at detectable levels during the whole experimental window suggesting an ongoing inflammatory process. Signature cytokines and chemokines such as TNF-α, MIP-1α, and MIP-1β peaked about 2 hours after E. coli infusion and decreased thereafter. Plasma IL-6, IL-12p40, IFN-γ, and IL-1Ra, as well as I-TAC, MIG, IP-10 and MCP-1, remained at detectable levels after 4 hours of E. coli infusion. This nonhuman primate model could be useful for the assessment of new therapeutics aiming to suppress key inflammatory markers throughout sepsis early phases.
Collapse
Affiliation(s)
- Jose J. Rosado‐Franco
- Department of Microbiology and Medical ZoologyMedical Sciences CampusUniversity of Puerto RicoSan JuanPuerto Rico
| | - Marcos J. Ramos‐Benitez
- Department of Microbiology and Medical ZoologyMedical Sciences CampusUniversity of Puerto RicoSan JuanPuerto Rico
| | - Laura M. Parodi
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTXUSA
| | - Derick Rosario
- Chemistry DepartmentRio Piedras CampusUniversity of Puerto RicoSan JuanPuerto Rico
| | - Nicole Compo
- Medical Sciences CampusCaribbean Primate Research Center University of Puerto RicoToa BajaPuerto Rico
| | - Luis D. Giavedoni
- Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioTXUSA
| | - Ana M. Espino
- Department of Microbiology and Medical ZoologyMedical Sciences CampusUniversity of Puerto RicoSan JuanPuerto Rico
| |
Collapse
|
25
|
Shah NM, Edey LF, Imami N, Johnson MR. Human labour is associated with altered regulatory T cell function and maternal immune activation. Clin Exp Immunol 2019; 199:182-200. [PMID: 31617583 DOI: 10.1111/cei.13384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
During human pregnancy, regulatory T cell (Treg ) function is enhanced and immune activation is repressed allowing the growth and development of the feto-placental unit. Here, we have investigated whether human labour is associated with a reversal of the pregnancy-induced changes in the maternal immune system. We tested the hypothesis that human labour is associated with a decline in Treg function, specifically their ability to modulate Toll-like receptor (TLR)-induced immune responses. We studied the changes in cell number, activation status and functional behaviour of peripheral blood, myometrial (myoMC) and cord blood mononuclear cells (CBMC) with the onset of labour. We found that Treg function declines and that Treg cellular targets change with labour onset. The changes in Treg function were associated with increased activation of myoMC, assessed by their expression of major histocompatibility complex (MHC) class II molecules and CBMC inflammatory cells. The innate immune system showed increased activation, as shown by altered monocyte and neutrophil cell phenotypes, possibly to be ready to respond to microbial invasion after birth or to contribute to tissue remodelling. Our results highlight changes in the function of the adaptive and innate immune systems that may have important roles in the onset of human labour.
Collapse
Affiliation(s)
- N M Shah
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - L F Edey
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - N Imami
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - M R Johnson
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
26
|
Greer O, Shah NM, Sriskandan S, Johnson MR. Sepsis: Precision-Based Medicine for Pregnancy and the Puerperium. Int J Mol Sci 2019; 20:E5388. [PMID: 31671794 PMCID: PMC6861904 DOI: 10.3390/ijms20215388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Sepsis contributes significantly to global morbidity and mortality, particularly in vulnerable populations. Pregnant and recently pregnant women are particularly prone to rapid progression to sepsis and septic shock, with 11% of maternal deaths worldwide being attributed to sepsis. The impact on the neonate is considerable, with 1 million neonatal deaths annually attributed to maternal infection or sepsis. Pregnancy specific physiological and immunological adaptations are likely to contribute to a greater impact of infection, but current approaches to the management of sepsis are based on those developed for the non-pregnant population. Pregnancy-specific strategies are required to optimise recognition and management of these patients. We review current knowledge of the physiology and immunology of pregnancy and propose areas of research, which may advance the development of pregnancy-specific diagnostic and therapeutic approaches to optimise the care of pregnant women and their babies.
Collapse
Affiliation(s)
- Orene Greer
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | - Nishel Mohan Shah
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | - Shiranee Sriskandan
- Imperial College London, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| | - Mark R Johnson
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| |
Collapse
|
27
|
|
28
|
VU0155069 inhibits inflammasome activation independent of phospholipase D1 activity. Sci Rep 2019; 9:14349. [PMID: 31586128 PMCID: PMC6778193 DOI: 10.1038/s41598-019-50806-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/19/2019] [Indexed: 01/05/2023] Open
Abstract
The inflammasome is a specialized multiprotein oligomer that regulates IL-1β production. Although regulation of the inflammasome is related to crucial inflammatory disorders such as sepsis, pharmacological inhibitors that effectively inhibit inflammasome activity are limited. Here, we evaluated the effects of a phospholipase D1 (PLD1)-selective inhibitor (VU0155069) against sepsis and inflammasome activation. VU0155069 strongly enhances survival rate in cecal ligation and puncture (CLP)-induced sepsis by inhibiting lung inflammation, leukocyte apoptosis, and the production of proinflammatory cytokines, especially IL-1β. VU0155069 also significantly blocked IL-1β production, caspase-1 activation, and pyroptosis caused by several inflammasome-activating signals in the bone marrow-derived macrophages (BMDMs). However, VU0155069 did not affect LPS-induced activation of signaling molecules such as MAPK, Akt, NF-κB, and NLRP3 expression in the BMDMs. VU0155069 also failed to affect mitochondrial ROS generation and calcium increase caused by nigericin or ATP, and subsequent ASC oligomerization caused by several inflammasome-activating signals. VU0155069 indirectly inhibited caspase-1 activity caused by LPS + nigericin in BMDMs independent of PLD1 activity. We demonstrated that a PLD1 inhibitor, VU0155069, shows anti-septic activity as well as inflammasome-inhibiting effects. Our results suggest that VU0155069 can be considered a novel inflammasome inhibitor.
Collapse
|
29
|
Host's Endogenous Caveolin-1 Expression is Downregulated in the Lung During Sepsis to Promote Cytoprotection. Shock 2019; 50:199-208. [PMID: 28957875 DOI: 10.1097/shk.0000000000001005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study focuses on the profile of "endogeneous" caveolin-1 protein in septic lung (CLP model).Caveolin-1, CD25, pP38, pAkt, and 14-3-3b protein expression profiles were studied using flow cytometry and immunohistochemistry 6, 12, 24, 36, and 48 h after sepsis induction. Cell viability was determined by 7-AAD staining and fibrosis by Masson trichrome stain. The effect of protein C zymogen concentrate (PC) on caveolin-1 expression was also investigated given that PC, once dissociated from caveolin-1, elicits a PAR-1-mediated protective signaling by forming a complex with endothelial protein C receptor (EPCR).CLP treatment increased lung inflammation and cell apoptosis. Fibrosis was apparent in vessels and alveoli. Caveolin-1+ cells presented reduced protein expression, especially 12 h post-CLP (P = 0.002). Immunohistochemistry revealed caveolin-1 positive expression mainly in regions with strong inflammatory reaction. Early induction of pP38+ cell population (P = 0.014) and gradual increase of CD25+ cells were also observed. Alternations in 14-3-3b expression related to apoptosis were apparent and accompanied by increased AKT phosphorylation activity late during sepsis progression.After PC administration, cell apoptosis was reduced (P = 0.004) and both the percentile and expression intensity of caveolin-1 positive cells were compromised (P = 0.009 and P = 0.027, respectively). 14-3-3b, CD25, and pP38 protein expression were decreased (P = 0.014, P = 0.004, and P = 0.007, respectively), whereas pAkt expression was induced (P = 0.032).The observed decline of endogenous caveolin-1 protein expression during sepsis implies its involvement in host's cytoprotective reaction either directly, by controlling caveolae population to decrease bacterial burden, or indirectly via regulating 14-3-3b-dependent apoptosis and EPCR-PAR-1-dependent protective signaling.
Collapse
|
30
|
Impact of Intermittent Hypoxia on Sepsis Outcomes in a Murine Model. Sci Rep 2019; 9:12900. [PMID: 31501504 PMCID: PMC6733849 DOI: 10.1038/s41598-019-49381-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/22/2019] [Indexed: 12/03/2022] Open
Abstract
Sleep apnea has been associated with a variety of diseases, but its impact on sepsis outcome remains unclear. This study investigated the effect of intermittent hypoxia [IH]–the principal feature of sleep apnea–on murine sepsis. 5-week-old male C57BL6 mice were assigned to groups receiving severe IH (O2 fluctuating from room air to an O2 nadir of 5.7% with a cycle length of 90 seconds), mild IH (room air to 12%, 4 minutes/cycle), or room air for 3 weeks. Sepsis was induced by cecal ligation and puncture and survival was monitored. Sepsis severity was evaluated by murine sepsis scores, blood bacterial load, plasma tumor necrosis factor-α [TNF-α]/interleukin-6 [IL-6] levels and histopathology of vital organs. Compared with normoxic controls, mice subjected to severe IH had earlier mortality, a lower leukocyte count, higher blood bacterial load, higher plasma TNF-α and IL-6 levels, more severe inflammatory changes in the lung, spleen and small intestine. Mice subjected to mild IH did not differ from normoxic controls, except a higher IL-6 level after sepsis induced. The adverse impact of severe IH was reversed following a 10-day normoxic recovery. In conclusion, severe IH, not mild IH, contributed to poorer outcomes in a murine sepsis model.
Collapse
|
31
|
Darkwah S, Nago N, Appiah MG, Myint PK, Kawamoto E, Shimaoka M, Park EJ. Differential Roles of Dendritic Cells in Expanding CD4 T Cells in Sepsis. Biomedicines 2019; 7:biomedicines7030052. [PMID: 31323786 PMCID: PMC6783955 DOI: 10.3390/biomedicines7030052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Sepsis is a systemically dysregulated inflammatory syndrome, in which dendritic cells (DCs) play a critical role in coordinating aberrant immunity. The aim of this study is to shed light on the differential roles played by systemic versus mucosal DCs in regulating immune responses in sepsis. We identified a differential impact of the systemic and mucosal DCs on proliferating allogenic CD4 T cells in a mouse model of sepsis. Despite the fact that the frequency of CD4 T cells was reduced in septic mice, septic mesenteric lymph node (MLN) DCs proved superior to septic spleen (SP) DCs in expanding allogeneic CD4 T cells. Moreover, septic MLN DCs markedly augmented the surface expression of MHC class II and CD40, as well as the messaging of interleukin-1β (IL-1β). Interestingly, IL-1β-treated CD4 T cells expanded in a dose-dependent manner, suggesting that this cytokine acts as a key mediator of MLN DCs in promoting septic inflammation. Thus, mucosal and systemic DCs were found to be functionally different in the way CD4 T cells respond during sepsis. Our study provides a molecular basis for DC activity, which can be differential in nature depending on location, whereby it induces septic inflammation or immune-paralysis.
Collapse
Affiliation(s)
- Samuel Darkwah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Nodoka Nago
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Clinical Nutrition, Suzuka University of Medical Science, Suzuka, Mie 510-0293, Japan
| | - Michael G Appiah
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Phyoe Kyawe Myint
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
32
|
Andrade MMC, Ariga SSK, Barbeiro DF, Barbeiro HV, Pimentel RN, Petroni RC, Soriano FG. Endotoxin tolerance modulates TREG and TH17 lymphocytes protecting septic mice. Oncotarget 2019; 10:3451-3461. [PMID: 31191818 PMCID: PMC6544402 DOI: 10.18632/oncotarget.26919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 03/23/2019] [Indexed: 01/26/2023] Open
Abstract
Background: Tolerance induces a regulated immune response to infection. We hypothesized that tolerance induction modulated profile of T regulatory cell (Treg) and T lymphocyte 17 (Th17) cells and is related cytokine released in septic animals. Methods: Male black C57/6 mice received subcutaneous (s.c.) injections of lipopolysaccharide (LPS) (1 mg/kg) for 5 days, on day 8th was made cecal ligation and puncture (CLP). Blood and spleen tissue were collected for cell analysis and cytokines measurements. Results: Cytokines (interleukin 2 (IL-2), interleukin (IL-6), transforming growth factor β (TGF-β) and interferon γ (INF-γ)) related to Treg and Th17 stimulation were elevated in the spleen of tolerant animals compared to sham. Treg and Th17 lymphocytes showed an increased amount in blood (Treg: 920 ± 84 cells vs. 1946 ± 65 cells, sham vs. tolerant; Th17:38321± 1954 cells vs. 43526 ± 7623 cells, sham vs. tolerant) and spleen (Treg: 5947 ± 273 cells vs. 16521 ± 486 cells, sham vs. tolerant; Th17: 26543 ± 2944 cells vs. 64567 ± 5523 cells, sham vs. tolerant). Treg (135±23 cells) and Th17 (1590 ± 256 cells) cells were reduced in blood of septic animals compared to sham, while CLP tolerant animals presented an increasing number of these cells. Lymphocyte Th17IL6+ were elevated in tolerant and CLP tolerant animals in the blood compared to sham. Conclusion: LPS tolerance was associated with increasing population of Treg and Th17. LPS tolerance reduces the hyper inflammatory response with immunoregulation exerted by Treg and Th17 cells protecting from septic damage.
Collapse
Affiliation(s)
- Mariana M C Andrade
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Suely S K Ariga
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Denise F Barbeiro
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Hermes V Barbeiro
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Rosangela N Pimentel
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ricardo C Petroni
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Francisco G Soriano
- Laboratório de Investigação Médica - LIM 51, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| |
Collapse
|
33
|
Pletz MW, Bauer M, Brakhage AA. One step closer to precision medicine for infectious diseases. THE LANCET. INFECTIOUS DISEASES 2019; 19:564-565. [PMID: 31056426 DOI: 10.1016/s1473-3099(19)30070-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena 07740, Germany.
| | - Michael Bauer
- Center for Sepsis Control and Care, Department of Anaesthesiology and Intensive Care Unit, Jena University Hospital, Jena 07740, Germany; Jena University Hospital, Jena 07740, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
34
|
Omega-9 Oleic Acid, the Main Compound of Olive Oil, Mitigates Inflammation during Experimental Sepsis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6053492. [PMID: 30538802 PMCID: PMC6260523 DOI: 10.1155/2018/6053492] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
The Mediterranean diet, rich in olive oil, is beneficial, reducing the risk of cardiovascular diseases and cancer. Olive oil is mostly composed of the monounsaturated fatty acid omega-9. We showed omega-9 protects septic mice modulating lipid metabolism. Sepsis is initiated by the host response to infection with organ damage, increased plasma free fatty acids, high levels of cortisol, massive cytokine production, leukocyte activation, and endothelial dysfunction. We aimed to analyze the effect of omega-9 supplementation on corticosteroid unbalance, inflammation, bacterial elimination, and peroxisome proliferator-activated receptor (PPAR) gamma expression, an omega-9 receptor and inflammatory modulator. We treated mice for 14 days with omega-9 and induced sepsis by cecal ligation and puncture (CLP). We measured systemic corticosterone levels, cytokine production, leukocyte and bacterial counts in the peritoneum, and the expression of PPAR gamma in both liver and adipose tissues during experimental sepsis. We further studied omega-9 effects on leukocyte rolling in mouse cremaster muscle-inflamed postcapillary venules and in the cerebral microcirculation of septic mice. Here, we demonstrate that omega-9 treatment is associated with increased levels of the anti-inflammatory cytokine IL-10 and decreased levels of the proinflammatory cytokines TNF-α and IL-1β in peritoneal lavage fluid of mice with sepsis. Omega-9 treatment also decreased systemic corticosterone levels. Neutrophil migration from circulation to the peritoneal cavity and leukocyte rolling on the endothelium were decreased by omega-9 treatment. Omega-9 also decreased bacterial load in the peritoneal lavage and restored liver and adipose tissue PPAR gamma expression in septic animals. Our data suggest a beneficial anti-inflammatory role of omega-9 in sepsis, mitigating leukocyte rolling and leukocyte influx, balancing cytokine production, and controlling bacterial growth possibly through a PPAR gamma expression-dependent mechanism. The significant reduction of inflammation detected after omega-9 enteral injection can further contribute to the already known beneficial properties facilitated by unsaturated fatty acid-enriched diets.
Collapse
|
35
|
Salivary Gland Extract from Aedes aegypti Improves Survival in Murine Polymicrobial Sepsis through Oxidative Mechanisms. Cells 2018; 7:cells7110182. [PMID: 30360497 PMCID: PMC6262460 DOI: 10.3390/cells7110182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Sepsis is a systemic disease with life-threatening potential and is characterized by a dysregulated immune response from the host to an infection. The organic dysfunction in sepsis is associated with the production of inflammatory cascades and oxidative stress. Previous studies showed that Aedes aegypti saliva has anti-inflammatory, immunomodulatory, and antioxidant properties. Considering inflammation and the role of oxidative stress in sepsis, we investigated the effect of pretreatment with salivary gland extract (SGE) from Ae. aegypti in the induction of inflammatory and oxidative processes in a murine cecum ligation and puncture (CLP) model. Here, we evaluated animal survival for 16 days, as well as bacterial load, leukocyte migration, and oxidative parameters. We found that the SGE pretreatment improved the survival of septic mice, reduced bacterial load and neutrophil influx, and increased nitric oxide (NO) production in the peritoneal cavity. With regard to oxidative status, SGE increased antioxidant defenses as measured by Trolox equivalent antioxidant capacity (TEAC) and glutathione (GSH), while reducing levels of the oxidative stress marker malondialdehyde (MDA). Altogether, these data suggest that SGE plays a protective role in septic animals, contributing to oxidative and inflammatory balance during sepsis. Therefore, Ae. aegypti SGE is a potential source for new therapeutic molecule(s) in polymicrobial sepsis, and this effect seems to be mediated by the control of inflammation and oxidative damage.
Collapse
|
36
|
Abstract
OBJECTIVE Our knowledge of the molecular mechanisms of sepsis has attained exponential growth. Yet, the pillars of its care remain antibiotics, fluid resuscitation, and physiologic support of failing organ systems. The inability to bring biologic breakthroughs to the bedside is not for lack of effort. Over 60 clinical trials of novel therapies, each heavily supported by the momentum of biologic data suggesting clinical utility, have been conducted and have failed to identify benefit. This mass of "negative" clinical data abut an equally towering mound of knowledge of sepsis biology, which collectively have led investigators to ask, "what happened?" DATA SOURCES Review of published scientific literature via MEDLINE searches using key terms related to the article topics. STUDY SELECTION Original articles, review articles, and systematic reviews were considered. DATA EXTRACTION Articles were selected for inclusion based upon author consensus. DATA SYNTHESIS Here, we present a synthetic review of some of the challenges in translating experimental animal models of sepsis to the bedside. We commence with the concept that the heterogeneity in the kinetics of the sepsis response serves as an important, often underappreciated but surmountable, source of translational impedance. Upon this groundwork, we discuss distinctions between animal experimentation and clinical trial design in the elements for hypothesis testing: cohort selection, power and sample size, randomization and blinding, and timing of intervention. From this concept, we develop a contextual framework for advancing the paradigm of animal-based investigations to facilitate science that transitions from molecule to medicine. CONCLUSIONS A persistent divide exists between the laboratory and clinical research arenas, which may be addressable via systematic targeting of identified translational gaps.
Collapse
Affiliation(s)
- Anthony J. Lewis
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Janet S. Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew R. Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
37
|
Kim S, Joe Y, Park SU, Jeong SO, Kim JK, Park SH, Pae HO, Surh YJ, Shin J, Chung HT. Induction of endoplasmic reticulum stress under endotoxin tolerance increases inflammatory responses and decreases Pseudomonas aeruginosa pneumonia. J Leukoc Biol 2018; 104:1003-1012. [PMID: 29924419 DOI: 10.1002/jlb.3a0317-106rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/13/2018] [Accepted: 05/20/2018] [Indexed: 12/19/2022] Open
Abstract
Endotoxin tolerance develops in the late phase of sepsis to protect cells from an early hyperinflammatory response. Nonetheless, because it induces an immunosuppressive environment, patients with sepsis in its late phase are affected by secondary infections, particularly bacterial pneumonia. Here, we showed that induction of endoplasmic reticulum (ER) stress leads to activation of glycogen synthase kinase 3β (GSK-3β) and X-box-binding protein 1 (XBP-1) in an inositol-requiring enzyme 1α (IRE1α)-mediated manner, which in turn restores the inflammatory response in endotoxin-tolerant macrophages. Animal and in vitro models of endotoxin tolerance were studied along with a model of LPS-induced endotoxin tolerance and a model of cecal ligation and puncture (CLP)-induced endotoxin tolerance. To detect the suppressed inflammatory response during endotoxin tolerance, inflammatory-cytokine expression levels were measured by quantitative real-time PCR and an ELISA. Our research revealed that induction of ER stress alleviated lung injury in a septic host infected with Pseudomonas aeruginosa via the activation of GSK-3β and XBP-1 in an IRE1α-mediated manner. Consequently, in the lungs of the septic host infected with P. aeruginosa, symptoms of pneumonia improved and the infecting bacteria were cleared. Thus, for septic patients, determination of immune status may guide the selection of appropriate immunomodulation, and ER stress can be a novel therapeutic strategy restoring the immune response in patients with endotoxin tolerance.
Collapse
Affiliation(s)
- Sena Kim
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Se-Ung Park
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Sun Oh Jeong
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Jin-Kyung Kim
- Department of Cosmetics, Wonkwang Health Science University, Iksan, South Korea
| | - Seong Hoon Park
- Department of Radiology, Wonkwang University School of Medicine, Institute for Metabolic Disease, Iksan, South Korea
| | - Hyun-Ock Pae
- Department of Microbiology and immunology, Wonkwang University School of Medicine, Iksan, South Korea
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jaekyoon Shin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
38
|
Aluisio AR, Garbern S, Wiskel T, Mutabazi ZA, Umuhire O, Ch'ng CC, Rudd KE, D'Arc Nyinawankusi J, Byiringiro JC, Levine AC. Mortality outcomes based on ED qSOFA score and HIV status in a developing low income country. Am J Emerg Med 2018; 36:2010-2019. [PMID: 29576257 DOI: 10.1016/j.ajem.2018.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/27/2018] [Accepted: 03/07/2018] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To evaluate the utility of the quick Sepsis-related Organ Failure Assessment (qSOFA) score to predict risks for emergency department (ED) and hospital mortality among patients in a sub-Saharan Africa (SSA) setting. METHODS This retrospective cohort study was carried out at a tertiary-care hospital, in Kigali, Rwanda and included patients ≥15years, presenting for ED care during 2013 with an infectious disease (ID). ED and overall hospital mortality were evaluated using multivariable regression, with qSOFA scores as the primary predictor (reference: qSOFA=0), to yield adjusted relative risks (aRR) with 95% confidence intervals (CI). Analyses were performed for the overall population and stratified by HIV status. RESULTS Among 15,748 cases, 760 met inclusion (HIV infected 197). The most common diagnoses were malaria and intra-abdominal infections. Prevalence of ED and hospital mortality were 12.5% and 25.4% respectively. In the overall population, ED mortality aRR was 4.8 (95% CI 1.9-12.0) for qSOFA scores equal to 1 and 7.8 (95% CI 3.1-19.7) for qSOFA scores ≥2. The aRR for hospital mortality in the overall cohort was 2.6 (95% 1.6-4.1) for qSOFA scores equal to 1 and 3.8 (95% 2.4-6.0) for qSOFA scores ≥2. For HIV infected cases, although proportional mortality increased with greater qSOFA score, statistically significant risk differences were not identified. CONCLUSION The qSOFA score provided risk stratification for both ED and hospital mortality outcomes in the setting studied, indicating utility in sepsis care in SSA, however, further prospective study in high-burden HIV populations is needed.
Collapse
Affiliation(s)
- Adam R Aluisio
- Department of Emergency Medicine, Brown University Alpert Medical School, Providence, USA.
| | - Stephanie Garbern
- Department of Emergency Medicine, Brown University Alpert Medical School, Providence, USA
| | - Tess Wiskel
- Department of Emergency Medicine, Brown University Alpert Medical School, Providence, USA
| | - Zeta A Mutabazi
- University of Rwanda College of Medicine and Health Sciences, Kigali, Rwanda
| | - Olivier Umuhire
- Department of Anesthesia, Emergency Medicine and Critical Care, University of Rwanda, Kigali, Rwanda
| | | | - Kristina E Rudd
- Department of Medicine, University of Washington, Seattle, USA
| | | | | | - Adam C Levine
- Department of Emergency Medicine, Brown University Alpert Medical School, Providence, USA
| |
Collapse
|
39
|
Wilmore JR, Gaudette BT, Gomez Atria D, Hashemi T, Jones DD, Gardner CA, Cole SD, Misic AM, Beiting DP, Allman D. Commensal Microbes Induce Serum IgA Responses that Protect against Polymicrobial Sepsis. Cell Host Microbe 2018; 23:302-311.e3. [PMID: 29478774 DOI: 10.1016/j.chom.2018.01.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023]
Abstract
Serum immunoglobulin A (IgA) antibodies are readily detected in mice and people, but the mechanisms underlying the induction of serum IgA and its role in host protection remain uncertain. We report that select commensal bacteria induce several facets of systemic IgA-mediated immunity. Exposing conventional mice to a unique but natural microflora that included several members of the Proteobacteria phylum led to T cell-dependent increases in serum IgA levels and the induction of large numbers of IgA-secreting plasma cells in the bone marrow. The resulting serum IgA bound to a restricted collection of bacterial taxa, and antigen-specific serum IgA antibodies were readily induced after intestinal colonization with the commensal bacterium Helicobacter muridarum. Finally, movement to a Proteobacteria-rich microbiota led to serum IgA-mediated resistance to polymicrobial sepsis. We conclude that commensal microbes overtly influence the serum IgA repertoire, resulting in constitutive protection against bacterial sepsis.
Collapse
Affiliation(s)
- Joel R Wilmore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Daniela Gomez Atria
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Tina Hashemi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Derek D Jones
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Christopher A Gardner
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA
| | - Stephen D Cole
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Ana M Misic
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Daniel P Beiting
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 36th and Hamilton Walk, 230 John Morgan Building, Philadelphia, PA 19104-6082, USA.
| |
Collapse
|
40
|
Restorative Mechanisms Regulating Protein Balance in Skeletal Muscle During Recovery From Sepsis. Shock 2018; 47:463-473. [PMID: 27749759 DOI: 10.1097/shk.0000000000000762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Muscle deconditioning is commonly observed in patients surviving sepsis. Little is known regarding the molecular mechanisms regulating muscle protein homeostasis during the recovery or convalescence phase. We adapted a sepsis-recovery mouse model that uses cecal ligation and puncture (CLP), followed 24 h later by cecal resection and antibiotic treatment, to identify putative cellular pathways regulating protein synthesis and breakdown in skeletal muscle. Ten days after CLP, body weight and food consumption did not differ between control and sepsis-recovery mice, but gastrocnemius weight was reduced. During sepsis-recovery, muscle protein synthesis was increased 2-fold and associated with enhanced mTOR kinase activity (4E-BP1 and S6K1 phosphorylation). The sepsis-induced increase in 4E-BP1 was associated with enhanced formation of the eIF4E-eIF4G active cap-dependent complex, while the increased S6K1 was associated with increased phosphorylation of downstream targets S6 and eIF4B. Proximal to mTOR, sepsis-recovery increased Akt and TSC2 phosphorylation, did not alter AMPK phosphorylation, and decreased REDD1 protein content. Despite the decreased mRNA content for the E3 ubiquitin ligases atrogin-1 and muscle RING-finger 1, proteasomal activity was increased 50%. In contrast, sepsis-recovery was associated with an apparent decrease in autophagy (e.g., increased ULK-1 phosphorylation, decreased LCB3-II, and increased p62). The mRNA content for IL-1β, IL-18, TNFα, and IL-6 in muscle was elevated in sepsis-recovery. During recovery after sepsis skeletal muscle responds with an increase in Akt-TSC2-mTOR-dependent protein synthesis and decreased autophagy, but full restoration of muscle protein content may be slowed by the continued stimulation of ubiquitin-proteasome activity.
Collapse
|
41
|
Mishra SK, Choudhury S. Experimental Protocol for Cecal Ligation and Puncture Model of Polymicrobial Sepsis and Assessment of Vascular Functions in Mice. Methods Mol Biol 2018; 1717:161-187. [PMID: 29468592 DOI: 10.1007/978-1-4939-7526-6_14] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sepsis is the systemic inflammatory response syndrome that occurs during infection and is exacerbated by the inappropriate immune response encountered by the affected individual. Despite extensive research, sepsis in humans is one of the biggest challenges for clinicians. The high mortality rate in sepsis is primarily due to hypoperfusion-induced multiorgan dysfunctions , resulting from a marked decrease in peripheral resistance. Vascular dysfunctions are further aggravated by sepsis-induced impairment in myocardial contractility. Circulatory failure in sepsis is characterized by refractory hypotension and vascular hyporeactivity (vasoplegia) to clinically used vasoconstrictors. To investigate the complex pathophysiology of sepsis and its associated multiple organ dysfunction, several animal models have been developed. However, cecal ligation and puncture (CLP) model of murine sepsis is still considered as 'gold standard' in sepsis research. In this protocol we have described the standard surgical procedure to induce polymicrobial sepsis by cecal ligation and puncture. Further, we have described the protocol to study the molecular mechanisms underlying vascular dysfunctions in sepsis.
Collapse
Affiliation(s)
- Santosh Kumar Mishra
- Division of Pharmacology & Toxicology, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India.
- , Bhubaneswar, Odisha, India.
| | - Soumen Choudhury
- Department of Pharmacology and Toxicology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, Uttar Pradesh, India
| |
Collapse
|
42
|
Huo R, Wang L, Wang X, Zhao Y, Wang Y, Zhao X, Chang L, Liu SL, Tong D, Zhang H, Huang Y. Removal of regulatory T cells prevents secondary chronic infection but increases the mortality of subsequent sub-acute infection in sepsis mice. Oncotarget 2017; 7:10962-75. [PMID: 26918357 PMCID: PMC4905451 DOI: 10.18632/oncotarget.7682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/16/2016] [Indexed: 01/08/2023] Open
Abstract
The immunosuppression following initial septic insult impairs resistance to secondary infection. Modulation of lymphocytes population may help to develop an effective therapeutic strategy. In this study, lipopolysaccharide (LPS)-induced endotoxemia was employed as the initial septic insult. 24 hours later, mice underwent cecal ligation and puncture to induce chronic or sub-acute peritonitis. Potential usefulness of T regs deletion antibody (anti-CD25) in improving LPS-induced immunosuppression and the survival of subsequent different infections were evaluated. LPS injection induced lymphocyte loss and led to decreased IL-6, TNF-α and IFN-γ, and weakened bacteria clearance upon chronic peritonitis at 24 h post-LPS, whereas reconstitution with lymphocytes reversed these changes. LPS-induced T regs expansion contributed to T and NK cells decrease in number and activity during sepsis. Depletion of T regs using anti-CD25 antibodies partly prevented lymphocyte loss and increased the responses of T and NK cells to subsequent stimulation, resulting in significantly increased bacterial clearance and survival in a 2-hit model of chronic peritonitis, but which significantly increased early mortality upon subsequently sub-acute infection. Yet, using lower dosage of anti-CD25 antibodies to moderate down-regulate T regs levels could partly improve bacterial clearance and survival in either chronic or sub-acute infection. These results demonstrate that using anti-CD25 antibodies to deplete T regs can ameliorate immunosuppression through increasing T cells and NK cells responses in sepsis, which is beneficial for preventing subsequently chronic infection, but will probably bring some deleterious effects for subsequent sub-acute infection.
Collapse
Affiliation(s)
- Ruichao Huo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lili Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoya Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhao
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yi Wang
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan-Lu Liu
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States of America
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hai Zhang
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
43
|
Wu J, Jin T, Wang H, Li ST. Sepsis decreases the activity of acetylcholinesterase by reducing its expression at the neuromuscular junction. Mol Med Rep 2017; 16:5263-5268. [PMID: 28849127 DOI: 10.3892/mmr.2017.7265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/28/2017] [Indexed: 11/05/2022] Open
Abstract
Our previous study demonstrated that sepsis may decrease the activity of acetylcholinesterase (AChE) at the neuromuscular junction (NMJ) of the diaphragm at 24 h, and thus improve the antagonistic action of neostigmine on rocuronium. The present study aimed to determine the effects of sepsis on AChE activity over 2 weeks, which is a more clinically relevant time period. Furthermore, the present study aimed to elucidate the association between AChE activity and its expression at the NMJ during sepsis. Male adult Sprague‑Dawley rats were randomly divided into the sham or sepsis groups. Sepsis was induced by cecal ligation and puncture. On days 1, 3, 7 and 14 after surgery, AChE activity at the NMJ of the diaphragm was detected using a modified Karnovsky and Roots method. Furthermore, AChE expression levels at the NMJ, and in the whole muscle fibers of the diaphragm, were detected by immunohistofluorescence staining and western blot analysis, respectively. AChE activity was significantly decreased in the sepsis group, with its lowest level detected on day 7; however, its activity had partially recovered on day 14 (P<0.01). AChE activity was positively correlated (r=0.975, P=0.025) with its expression at the NMJ, which showed a similar trend over 2 weeks of sepsis. The protein expression levels of AChE in the whole muscle fibers of the diaphragm were significantly decreased on days 1, 3 and 7 in the sepsis group (P<0.01), with the lowest level observed on day 3. In conclusion, sepsis decreased AChE activity by reducing its expression at the NMJ over 14 days; the reduced expression of AChE at the NMJ might be as a result of its reduced muscular production.
Collapse
Affiliation(s)
- Jin Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Tian Jin
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Hong Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
44
|
Stortz JA, Raymond SL, Mira JC, Moldawer LL, Mohr AM, Efron PA. Murine Models of Sepsis and Trauma: Can We Bridge the Gap? ILAR J 2017; 58:90-105. [PMID: 28444204 PMCID: PMC5886315 DOI: 10.1093/ilar/ilx007] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Sepsis and trauma are both leading causes of death in the United States and represent major public health challenges. Murine models have largely been used in sepsis and trauma research to better understand the pathophysiological changes that occur after an insult and to develop potential life-saving therapeutic agents. Mice are favorable subjects for this type of research given the variety of readily available strains including inbred, outbred, and transgenic strains. In addition, they are relatively easy to maintain and have a high fecundity. However, pharmacological therapies demonstrating promise in preclinical mouse models of sepsis and trauma often fail to demonstrate similar efficacy in human clinical trials, prompting considerable criticism surrounding the capacity of murine models to recapitulate complex human diseases like sepsis and traumatic injury. Fundamental differences between the two species include, but are not limited to, the divergence of the transcriptomic response, the mismatch of temporal response patterns, differences in both innate and adaptive immunity, and heterogeneity within the human population in comparison to the homogeneity of highly inbred mouse strains. Given the ongoing controversy, this narrative review aims to not only highlight the historical importance of the mouse as an animal research model but also highlight the current benefits and limitations of the model as it pertains to sepsis and trauma. Lastly, this review will propose future directions that may promote further use of the model.
Collapse
Affiliation(s)
- Julie A. Stortz
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Steven L. Raymond
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Juan C. Mira
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Lyle L. Moldawer
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Alicia M. Mohr
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Philip A. Efron
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
45
|
Use of Biotelemetry to Define Physiology-Based Deterioration Thresholds in a Murine Cecal Ligation and Puncture Model of Sepsis. Crit Care Med 2017; 44:e420-31. [PMID: 26862708 DOI: 10.1097/ccm.0000000000001615] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Murine models of critical illness are commonly used to test new therapeutic interventions. However, these interventions are often administered at fixed time intervals after the insult, perhaps ignoring the inherent variability in magnitude and temporality of the host response. We propose to use wireless biotelemetry monitoring to define and validate criteria for acute deterioration and generate a physiology-based murine cecal ligation and puncture model that is more similar to the conduct of human trials of sepsis. DESIGN Laboratory and animal research. SETTING University basic science laboratory. SUBJECTS Male C57BL/6 mice. INTERVENTIONS Mice underwent cecal ligation and puncture, and an HD-X11 wireless telemetry monitor (Data Sciences International) was implanted that enabled continuous, real-time measurement of heart rate, core temperature, and mobility. We performed a population-based analysis to determine threshold criteria that met face validity for acute physiologic deterioration. We assessed construct validity by temporally matching mice that met these acute physiologic deterioration thresholds with mice that had not yet met deterioration threshold. We analyzed matched blood samples for blood gas, inflammatory cytokine concentration, cystatin C, and alanine aminotransferase. MEASUREMENTS AND MAIN RESULTS We observed that a 10% reduction in both heart rate and temperature sustained for greater than or equal to 10 minutes defined acute physiologic deterioration. There was significant variability in the time to reach acute deterioration threshold across mice, ranging from 339 to 529 minutes after cecal ligation and puncture. We found adequate construct validity, as mice that met criteria for acute deterioration had significantly worse shock, systemic inflammation (elevated tumor necrosis factor-α, p = 0.003; interleukin-6, p = 0.01; interleukin-10, p = 0.005), and acute kidney injury when compared with mice that had not yet met acute deterioration criteria. CONCLUSIONS We defined a murine threshold for acute physiologic deterioration after cecal ligation and puncture that has adequate face and construct validity. This model may enable a more physiology-based model for evaluation of novel therapeutics in critical illness.
Collapse
|
46
|
Antagonism of the Neurokinin-1 Receptor Improves Survival in a Mouse Model of Sepsis by Decreasing Inflammation and Increasing Early Cardiovascular Function. Crit Care Med 2017; 45:e213-e221. [PMID: 27632670 DOI: 10.1097/ccm.0000000000002075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Sepsis remains a serious clinical problem despite intensive research efforts and numerous attempts to improve outcome by modifying the inflammatory response. Substance P, the principal ligand for the neurokinin-1 receptor, is a potent proinflammatory mediator that exacerbates inflammatory responses and cardiovascular variables in sepsis. DESIGN The current study examined whether inhibition of the neurokinin-1 receptor with a specific antagonist (CJ-12,255) would improve survival in the cecal ligation and puncture model of sepsis in adult female outbred mice. SETTING University basic science research laboratory. MEASUREMENTS AND MAIN RESULTS Neurokinin-1 receptor treatment at the initiation of sepsis improved survival in cecal ligation and puncture sepsis (neurokinin-1 receptor antagonist survival = 79% vs vehicle = 54%). Delaying therapy for as little as 8 hours postcecal ligation and puncture failed to provide a survival benefit. Neurokinin-1 receptor antagonist treatment did not prevent the sepsis-induced decrease in circulating WBCs, augment the early (6 hr postcecal ligation and puncture) recruitment of inflammatory cells to the peritoneum, or improve phagocytic cell killing of pathogens. However, the neurokinin-1 receptor antagonist significantly reduced both circulating and peritoneal cytokine concentrations. In addition, the cardiovascular variable, pulse distension (a surrogate for stroke volume) was improved in the neurokinin-1 receptor antagonist group during the first 6 hours of sepsis, and there was a significant reduction in loss of fluid into the intestine. CONCLUSION These data show that early activation of the neurokinin-1 receptor by substance P decreases sepsis survival through multiple mechanisms including depressing stroke volume, increasing fluid loss into the intestine, and increasing inflammatory cytokine production.
Collapse
|
47
|
Crowell KT, Soybel DI, Lang CH. Inability to replete white adipose tissue during recovery phase of sepsis is associated with increased autophagy, apoptosis, and proteasome activity. Am J Physiol Regul Integr Comp Physiol 2017; 312:R388-R399. [PMID: 28100477 DOI: 10.1152/ajpregu.00498.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/30/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022]
Abstract
Adipose tissue is an important energy depot and endocrine organ, and the degree of adiposity impacts the host response to infection. However, little is known regarding the mechanisms by which white adipose tissue (WAT) is lost acutely and then restored after the resolution of sepsis. Therefore, the signaling pathways governing protein synthesis, autophagy, apoptosis, and the ubiquitin-proteasome were investigated to identify potential mechanisms mediating the acute (24 h) loss of WAT after cecal ligation and puncture as well as the failure to replenish WAT during recovery (day 10). While whole body fat mass was decreased equally in pair-fed control and septic mice at 5 days after cecal ligation and puncture, fat mass remained 35% lower in septic mice at day 10 During sepsis-recovery, protein synthesis in epididymal WAT was increased compared with control values, and this increase was associated with an elevation in eukaryotic translation initiation factor (eIF)2Bε but no change in mammalian target of rapamycin complex 1 activity (eIF4E-binding protein-1 or S6 kinase 1 phosphorylation). Protein breakdown was increased during sepsis-recovery, as evidenced by the elevation in ubiquitin-proteasome activity. Moreover, indexes of autophagy (light chain 3B-II, autophagy-related protein 5/12, and beclin) were increased during sepsis-recovery and associated with increased AMP-activated kinase-dependent Ser555-phosphorylated Unc-51-like autophagy activating kinase-1. Apoptosis was increased, as suggested by the increased cleavage of caspase-3 and poly(ADP-ribose) polymerase. These changes were associated with increased inflammasome activity (increased NLR family, pyrin domain containing 3; TMS1; and caspase-1 cleavage) and the endoplasmic reticulum stress response (increased eIF2α and activating transcription factor-4) and browning (uncoupling protein-1) in epididymal WAT. Our data suggest that WAT stores remain depleted during recovery from sepsis due to sustained inflammation and elevations in protein and cellular degradation, despite the increase in protein synthesis.
Collapse
Affiliation(s)
- Kristen T Crowell
- Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania
| | - David I Soybel
- Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania.,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania; and.,Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania
| | - Charles H Lang
- Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania .,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania; and
| |
Collapse
|
48
|
Deng D, Li X, Liu C, Zhai Z, Li B, Kuang M, Li P, Shang S, Song Y, Cen Y, Qin R, Lu Y, Zhao Y, Cheng H, Zheng J, Zhou H. Systematic investigation on the turning point of over-inflammation to immunosuppression in CLP mice model and their characteristics. Int Immunopharmacol 2017; 42:49-58. [DOI: 10.1016/j.intimp.2016.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/30/2016] [Accepted: 11/12/2016] [Indexed: 12/31/2022]
|
49
|
Zhang Y, Ran K, Zhang SB, Jiang L, Wang D, Li ZJ. Dexmedetomidine may upregulate the expression of caveolin‑1 in lung tissues of rats with sepsis and improve the short‑term outcome. Mol Med Rep 2016; 15:635-642. [PMID: 28000867 PMCID: PMC5364843 DOI: 10.3892/mmr.2016.6050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
Dexmedetomidine (DXM) is a selective α2-adrenoceptor (α2‑AR) and imidazoline receptor (IR) agonist that has been reported to regulate inflammatory responses mediated by diverse signaling pathways through α2‑AR. The majority of the reported receptors or downstream molecules have been demonstrated to locate with caveolin‑1, a protein suggested to participate in regulating Toll‑like receptor 4 (TLR4)‑mediated inflammatory responses and the pathogen endocytosis capability of macrophages. The present study hypothesized that DXM may influence these pathways by regulating the expression of caveolin‑1 and mediating the subsequent effects. Using a cecal‑ligation and puncture‑induced rat sepsis model, it was initially observed that pre‑emptive DXM is able to upregulate and stabilize the amount of caveolin‑1 expression, which may be partly antagonized by both α2‑AR and the IR antagonist atepamezole (APZ). The pathophysiological parameters indicated that DXM is able to inhibit secondary lung injury, in addition to the rise of body temperature and arterial lactate accumulation, however it marginally increased arterial glucose and the murine sepsis score, which can be largely antagonized by APZ. The overall effect was beneficial and improved the 24‑h cumulative survival rate of rats with sepsis. In conclusion, preemptive clinical sedative doses of DXM may upregulate the expression of caveolin‑1 downregulated by sepsis, which may contribute to the inhibition of inflammatory pathways such as TLR4‑mediated pathways. Furthermore, DXM may favor the improvement of short‑term outcomes by the regulation of other metabolic pathways.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Anesthesiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ke Ran
- Department of Anesthesiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Shu-Bin Zhang
- Department of Cell Biology, School of Life Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lili Jiang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, P.R. China
| | - Dan Wang
- Department of Anesthesiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhi-Jian Li
- Department of Anesthesiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
50
|
Wang DW, Dong N, Wu Y, Zhu XM, Wang CT, Yao YM. Interleukin-37 Enhances the Suppressive Activity of Naturally Occurring CD4 +CD25 + Regulatory T Cells. Sci Rep 2016; 6:38955. [PMID: 27941849 PMCID: PMC5150235 DOI: 10.1038/srep38955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022] Open
Abstract
Naturally occurring CD4+CD25+ regulatory T cells (Tregs) are essential for the suppression of autoimmunity and can control the immune-mediated pathology during the early phase of sepsis. Our previous data showed that silencing interleukin-37 (IL-37) in human CD4+CD25+ Tregs obviously reduced the suppressive activity of CD4+CD25+ Tregs. Here, we found that rhIL-37 stimulation markedly enhanced the suppressive activity of CD4+CD25+ Tregs isolated from naive C57BL/6 J mice in the absence or presence of lipopolysaccharide (LPS). Treatment with rhIL-37 could significantly upregulate the expression of cytotoxic T-lymphocyte-associated antigen (CTLA)-4 and forkhead/winged helix transcription factor p3 (Foxp3) on CD4+CD25+ Tregs. Also, rhIL-37 stimulation promoted the production of transforming growth factor-β1 (TGF-β1) but not IL-10 in the supernatants of cultured CD4+CD25+ Tregs. Pretreated CD4+CD25+ Tregs with rhIL-37 in the presence or absence of LPS were cocultured with CD4+CD25− T cells, ratio of IL-4/interferon-γ in the supernatants obviously increased in IL-37-stimulated groups. In addition, early administration of IL-37 significantly improved the survival rate of septic mice induced by cecal ligation and puncture. Taken together, we concluded that rhIL-37 enhances the suppressive activity of CD4+CD25+ Tregs and might be a potential immunomodulator for the treatment of septic complications.
Collapse
Affiliation(s)
- Da-Wei Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250101, P. R.China.,Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, P. R.China
| | - Ning Dong
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, P. R.China
| | - Yao Wu
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, P. R.China
| | - Xiao-Mei Zhu
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, P. R.China
| | - Chun-Ting Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250101, P. R.China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, P. R.China.,State Key Laboratory of Kidney Disease, the Chinese PLA General Hospital, Beijing 100853, P. R.China
| |
Collapse
|