1
|
Kramer A, Lexow F, Bludau A, Köster AM, Misailovski M, Seifert U, Eggers M, Rutala W, Dancer SJ, Scheithauer S. How long do bacteria, fungi, protozoa, and viruses retain their replication capacity on inanimate surfaces? A systematic review examining environmental resilience versus healthcare-associated infection risk by "fomite-borne risk assessment". Clin Microbiol Rev 2024:e0018623. [PMID: 39388143 DOI: 10.1128/cmr.00186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYIn healthcare settings, contaminated surfaces play an important role in the transmission of nosocomial pathogens potentially resulting in healthcare-associated infections (HAI). Pathogens can be transmitted directly from frequent hand-touch surfaces close to patients or indirectly by staff and visitors. HAI risk depends on exposure, extent of contamination, infectious dose (ID), virulence, hygiene practices, and patient vulnerability. This review attempts to close a gap in previous reviews on persistence/tenacity by only including articles (n = 171) providing quantitative data on re-cultivable pathogens from fomites for a better translation into clinical settings. We have therefore introduced the new term "replication capacity" (RC). The RC is affected by the degree of contamination, surface material, temperature, relative humidity, protein load, organic soil, UV-light (sunlight) exposure, and pH value. In general, investigations into surface RC are mainly performed in vitro using reference strains with high inocula. In vitro data from studies on 14 Gram-positive, 26 Gram-negative bacteria, 18 fungi, 4 protozoa, and 37 viruses. It should be regarded as a worst-case scenario indicating the upper bounds of risks when using such data for clinical decision-making. Information on RC after surface contamination could be seen as an opportunity to choose the most appropriate infection prevention and control (IPC) strategies. To help with decision-making, pathogens characterized by an increased nosocomial risk for transmission from inanimate surfaces ("fomite-borne") are presented and discussed in this systematic review. Thus, the review offers a theoretical basis to support local risk assessments and IPC recommendations.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Franziska Lexow
- Department for Infectious Diseases, Unit 14: Hospital Hygiene, Infection Prevention and Control, Robert Koch Institute, Berlin, Germany
| | - Anna Bludau
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University Göttingen, Göttingen, Germany
| | - Antonia Milena Köster
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University Göttingen, Göttingen, Germany
| | - Martin Misailovski
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University Göttingen, Göttingen, Germany
- Department of Geriatrics, University of Göttingen Medical Center, Göttingen, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology - Virology, University Medicine Greifswald, Greifswald, Germany
| | - Maren Eggers
- Labor Prof. Dr. G. Enders MVZ GbR, Stuttgart, Germany
| | - William Rutala
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Stephanie J Dancer
- Department of Microbiology, University Hospital Hairmyres, Glasgow, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Simone Scheithauer
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Lansbury N, Memmott PC, Wyber R, Burgen C, Barnes SK, Daw J, Cannon J, Bowen AC, Burgess R, Frank PN, Redmond AM. Housing Initiatives to Address Strep A Infections and Reduce RHD Risks in Remote Indigenous Communities in Australia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1262. [PMID: 39338145 PMCID: PMC11431237 DOI: 10.3390/ijerph21091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Group A Streptococcus (Strep A) skin infections (impetigo) can contribute to the development of acute rheumatic fever (ARF) and rheumatic heart disease (RHD). This is of particular concern for Indigenous residents of remote communities, where rates of ARF and RHD are much higher than their urban and non-Indigenous counterparts. There are three main potential Strep A transmission pathways: skin to skin, surface to skin, and transmission through the air (via droplets or aerosols). Despite a lack of scientific certainty, the physical environment may be modified to prevent Strep A transmission through environmental health initiatives in the home, identifying a strong role for housing. This research sought to provide an outline of identified household-level environmental health initiatives to reduce or interrupt Strep A transmission along each of these pathways. The identified initiatives addressed the ability to wash bodies and clothes, to increase social distancing through improving the livability of yard spaces, and to increase ventilation in the home. To assist with future pilots and evaluation, an interactive costing tool was developed against each of these initiatives. If introduced and evaluated to be effective, the environmental health initiatives are likely to also interrupt other hygiene-related infections.
Collapse
Affiliation(s)
- Nina Lansbury
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul C Memmott
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosemary Wyber
- Yardhura Walani, National Centre for Epidemiology and Public Health, Australian National University, Canberra, ACT 0200, Australia
- The Kids Research Institute, Perth, WA 6009, Australia
| | | | - Samuel K Barnes
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jessica Daw
- The Kids Research Institute, Perth, WA 6009, Australia
| | | | - Asha C Bowen
- The Kids Research Institute, Perth, WA 6009, Australia
- Perth Children's Hospital, Perth, WA 6009, Australia
| | | | | | - Andrew M Redmond
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
- Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
He W, Ma P, Li L, Wang D, Li X, Wen X, Zuo Y, Guo Q, Zhang Y, Cheng R, Wang Z. Efficacy and safety of preventing catheter-associated urinary tract infection by inhibiting catheter bacterial biofilm formation: a multicenter randomized controlled trial. Antimicrob Resist Infect Control 2024; 13:96. [PMID: 39218889 PMCID: PMC11367937 DOI: 10.1186/s13756-024-01450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Catheter-associated urinary tract infection (CAUTI) remains the most significant challenge among hospital-acquired infections (HAIs), yet still unresolved. The present study aims to evaluate the preventive effectiveness of JUC Spray Dressing (name of U.S. FDA and CE certifications, while the medical device name in China is Long-acting Antimicrobial Material) alone for CAUTI without combining with antibiotics and to evaluate the impact of bacterial biofilm formation on CAUTI results on the inserted catheters of patients. METHODS In this multicenter, randomized, double-blind study, we enrolled adults who suffered from acute urinary retention (AUR) and required catheterization in 6 hospitals in China. Participants were randomly allocated 1:1 according to a random number table to receive JUC Spray Dressing (JUC group) or normal saline (placebo group). The catheters were pretreated with JUC Spray Dressing or normal saline respectively before catheterization. Urine samples and catheter samples were collected after catheterization by trial staff for further investigation. RESULTS From April 2012 to April 2020, we enrolled 264 patients and randomly assigned them to the JUC group (n = 132) and the placebo group (n = 132). Clinical symptoms and urine bacterial cultures showed the incidence of CAUTI of the JUC group was significantly lower than the placebo group (P < 0.01). In addition, another 30 patients were enrolled to evaluate the biofilm formation on catheters after catheter insertion in the patients' urethra (10 groups, 3 each). The results of scanning electron microscopy (SEM) showed that bacterial biofilm formed on the 5th day in the placebo group, while no bacterial biofilm formed on the 5th day in the JUC group. In addition, no adverse reactions were reported using JUC Spray Dressing. CONCLUSION Continued indwelling urinary catheters for 5 days resulted in bacterial biofilm formation, and pretreatment of urethral catheters with JUC Spray Dressing can prevent bacterial biofilm formation by forming a physical antimicrobial film, and significantly reduce the incidence of CAUTI. This is the first report of a study on inhibiting bacterial biofilm formation on the catheters in CAUTI patients.
Collapse
Affiliation(s)
- Wei He
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Peifen Ma
- Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, 730030, People's Republic of China
| | - Lu Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Dongmin Wang
- Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, 730030, People's Republic of China
| | - Xin Li
- Beijing Hospital, Beijing, China
| | - Xingqiao Wen
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Zuo
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Guo
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhong Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ru Cheng
- Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiping Wang
- Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, 730030, People's Republic of China.
| |
Collapse
|
4
|
Hiller NL, Orihuela CJ. Biological puzzles solved by using Streptococcus pneumoniae: a historical review of the pneumococcal studies that have impacted medicine and shaped molecular bacteriology. J Bacteriol 2024; 206:e0005924. [PMID: 38809015 PMCID: PMC11332154 DOI: 10.1128/jb.00059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
The major human pathogen Streptococcus pneumoniae has been the subject of intensive clinical and basic scientific study for over 140 years. In multiple instances, these efforts have resulted in major breakthroughs in our understanding of basic biological principles as well as fundamental tenets of bacterial pathogenesis, immunology, vaccinology, and genetics. Discoveries made with S. pneumoniae have led to multiple major public health victories that have saved the lives of millions. Studies on S. pneumoniae continue today, where this bacterium is being used to dissect the impact of the host on disease processes, as a powerful cell biology model, and to better understand the consequence of human actions on commensal bacteria at the population level. Herein we review the major findings, i.e., puzzle pieces, made with S. pneumoniae and how, over the years, they have come together to shape our understanding of this bacterium's biology and the practice of medicine and modern molecular biology.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Schapira AJ, Dramé M, Olive C, Marion-Sanchez K. Bacterial viability in dry-surface biofilms in healthcare facilities: a systematic review. J Hosp Infect 2024; 144:94-110. [PMID: 38029859 DOI: 10.1016/j.jhin.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Bacteria are known to live inside architectural structures called biofilms. Though standard biofilms have been studied extensively for more than 50 years, little is known about dry-surface biofilms (DSBs). Since 2012, DSBs have been described in several scientific papers, but basic knowledge about the viability and culturability of bacteria remains limited. AIM To conduct a systematic review to determine whether bacteria inside DSBs are viable, culturable, and enumerable. METHODS Eligible articles had to deal with DSBs containing at least one bacterial species involved in healthcare-associated infections, which developed in actual healthcare environments (in-situ) or with the help of any biofilm model (in-vitro). FINDINGS Twenty-four articles were included in the review. Whereas most of them isolated viable bacteria (87% in situ; 100% in vitro), no in-situ study quantified culturable bacteria in the biofilm per unit area. Conversely, 100% of in-vitro studies cultured the bacteria from controls and 94.4% supplied an enumeration of them. Culturable bacteria also grew after 78% of the cleaning, disinfection, or sterilization protocols tested. Microscopic observations after staining the samples with live/dead fluorescent probes (Baclight®) showed large amounts of viable cells in culture-negative samples. CONCLUSION Our study questions the efficacy of current methods for microbiological monitoring of surfaces, since these methods are only based on bacterial culturability. To improve both surface monitoring and cleaning and disinfection protocols, it is necessary to integrate the concept of DSBs which appears to contain a significant amount of viable but non-culturable bacteria.
Collapse
Affiliation(s)
- A-J Schapira
- CHU Martinique, Department of Bacteriology, Hygiene and Environment Laboratory, Fort-de-France Cedex, Martinique; Paris Cité University, Faculty of Health, Paris, France
| | - M Dramé
- CHU Martinique, Department of Clinical Research and Innovation, Fort-de-France Cedex, Martinique; University of the French West Indies, Faculty of Medicine, EpiCliV Research Unit, Martinique
| | - C Olive
- CHU Martinique, Department of Bacteriology, Hygiene and Environment Laboratory, Fort-de-France Cedex, Martinique
| | - K Marion-Sanchez
- CHU Martinique, Department of Bacteriology, Hygiene and Environment Laboratory, Fort-de-France Cedex, Martinique; PCCEI, University of Montpellier, University of the Antilles, INSERM, EFS, Montpellier, France.
| |
Collapse
|
6
|
Lane JR, Tata M, Yasmin R, Im H, Briles DE, Orihuela CJ. PspA-mediated aggregation protects Streptococcus pneumoniae against desiccation on fomites. mBio 2023; 14:e0263423. [PMID: 37982608 PMCID: PMC10746202 DOI: 10.1128/mbio.02634-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Spn is a dangerous human pathogen capable of causing pneumonia and invasive disease. The virulence factor PspA has been studied for nearly four decades with well-established roles in pneumococcal evasion of C-reactive protein and neutralization of lactoferricin. Herein, we show that mammalian (m)GAPDH in mucosal secretions promotes aggregation of pneumococci in a PspA-dependent fashion, whereas lactoferrin counters this effect. PspA-mediated GAPDH-dependent bacterial aggregation protected Spn in nasal lavage elutes and grown in vitro from desiccation on fomites. Furthermore, surviving pneumococci within these aggregates retained their ability to colonize naïve hosts after desiccation. We report that Spn binds to and forms protein complexes on its surface composed of PspA, mGAPDH, and lactoferrin. Changes in the levels of these proteins therefore most likely have critical implications on Spn colonization, survival on fomites, and transmission.
Collapse
Affiliation(s)
- Jessica R. Lane
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Muralidhar Tata
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rahena Yasmin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hansol Im
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carlos J. Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Lane JR, Tata M, Yasmin R, Im H, Briles DE, Orihuela CJ. PspA-mediated aggregation protects Streptococcus pneumoniae against desiccation on fomites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559802. [PMID: 37808718 PMCID: PMC10557681 DOI: 10.1101/2023.09.27.559802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Streptococcus pneumoniae (Spn) resides in the nasopharynx where it can disseminate to cause disease. One key Spn virulence factor is pneumococcal surface protein A (PspA), which promotes survival by blocking the antimicrobial peptide lactoferricin. PspA has also been shown to mediate attachment to dying epithelial cells in the lower airway due to its binding of cell surface-bound mammalian (m)GAPDH. Importantly, the role of PspA during colonization is not well understood. Wildtype Spn was present in nasal lavage elutes collected from asymptomatically colonized mice at levels ~10-fold higher that its isogenic PspA-deficient mutant (ΔpspA). Wildtype Spn also formed aggregates in mucosal secretions composed of sloughed epithelial cells and hundreds of pneumococci, whereas ΔpspA did not. Spn within the center of these aggregates better survived prolonged desiccation on fomites than individual pneumococci and were capable of infecting naïve mice, indicating PspA-mediated aggregation conferred a survival/transmission advantage. Incubation of Spn in saline containing mGAPDH also enhanced tolerance to desiccation, but only for wildtype Spn. mGAPDH was sufficient to cause low-level aggregation of wildtype Spn but not ΔpspA. In strain WU2, the subdomain of PspA responsible for binding GAPDH (aa230-281) is ensconced within the lactoferrin (LF)-binding domain (aa167-288). We observed that LF inhibited GAPDH-mediated aggregation and desiccation tolerance. Using surface plasmon resonance, we determined that Spn forms multimeric complexes of PspA-GAPDH-LF on its surface and that LF dislodges GAPDH. Our findings have important implications regarding pneumococcal colonization/transmission processes and ongoing PspA-focused immunization efforts for this deadly pathogen.
Collapse
Affiliation(s)
- Jessica R. Lane
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Muralidhar Tata
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Rahena Yasmin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Hansol Im
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Carlos J. Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| |
Collapse
|
8
|
Wang X, Zhao Y, Wang D, Liu C, Qi Z, Tang H, Liu Y, Zhang S, Cui Y, Li Y, Liu R, Shen Y. ALK-JNK signaling promotes NLRP3 inflammasome activation and pyroptosis via NEK7 during Streptococcus pneumoniae infection. Mol Immunol 2023; 157:78-90. [PMID: 37001294 DOI: 10.1016/j.molimm.2023.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Streptococcus pneumoniae (S. pneumoniae), a clinically important pathogen worldwide, causes serious invasive diseases, such as pneumonia, otitis media, and meningitis. The NLR family pyrin domain-containing 3 (NLRP3) inflammasome, an important component of the innate immune system, plays a key role in defense against pathogen infection; however the specific activation mechanism induced by S. pneumoniae infection is not fully understood. Here, primary mouse macrophages were selected as the in vitro cell model, and the effect of kinases on S. pneumoniae infection-induced NLRP3 inflammasome activation was investigated in vivo and in vitro using the western blot/RT-PCR/Co-IP/immunofluorescence staining/ELISA with or without kinase inhibitor or siRNA pretreatment. In this study, we found that the formation of the NEK7-NLRP3 complex significantly increased during S. pneumoniae infection and that anaplastic lymphoma kinase (ALK) and Jun N-terminal kinase (JNK) were phosphorylated rapidly. ALK and JNK inhibitors significantly reduced the ability of bacterial killing, the gene expression of NLRP3 inflammasome, the formation of apoptosis-associated speck-like protein containing caspase-recruitment domain (ASC) specks and the NEK7-NLRP3 complex, which in turn decreased the activation level of NLRP3 inflammasome-associated molecules and the maturation of interleukin-1β (IL-1β). In addition, ALK regulated the phosphorylation of JNK. Interestingly, the ALK/JNK/NEK7-NLRP3 signaling pathway is also involved in regulating pyroptosis and IL-1β secretion triggered by S. pneumoniae infection. In conclusion, our data suggest, for the first time, that the ALK/JNK/NEK7-NLRP3 signaling pathway may play an important role in NLRP3 inflammasome activation and pyroptosis and consequently regulate the host immune response upon S. pneumoniae infection.
Collapse
Affiliation(s)
- Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan Zhao
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China
| | - Dan Wang
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China
| | - Chang Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, PR China
| | - Zhi Qi
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, PR China
| | - Huixin Tang
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China
| | - Yashan Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China
| | - Shiqi Zhang
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yingying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Ruiqing Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China; The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, PR China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, PR China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, PR China; Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, PR China.
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, PR China.
| |
Collapse
|
9
|
Petrović V, Milosavljević B, Djilas M, Marković M, Vuković V, Andrijević I, Ristić M. Pneumococcal nasopharyngeal carriage in children under 5 years of age at an outpatient healthcare facility in Novi Sad, Serbia during the COVID-19 pandemic. IJID REGIONS 2022; 4:88-96. [PMID: 35865274 PMCID: PMC9294645 DOI: 10.1016/j.ijregi.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 11/05/2022]
Abstract
The prevalence of nasopharyngeal pneumococcal carriage in children aged 24–60 months was 31.7%. The prevalence was high and increased during the coronavirus disease 2019 (COVID-19) pandemic. This ruled out a major role of COVID-19 in suppressing carriage and, probably, transmission. The dominant serotypes were 15B, 6B, 19F, 11A, 6C, 6A, 3, 23F and 19A.
Objectives To assess whether pneumococcal nasopharyngeal carriage among children aged 24–60 months reduced during the coronavirus disease 2019 (COVID-19) pandemic in Novi Sad, Serbia, and to investigate the overall prevalence of carriage, serotype distribution and dominant serotypes 2–3 years after the introduction of pneumococcal conjugate vaccine 10. Design and methods This prospective, observational study was conducted in February–March 2020, September–November 2020 and April–June 2021, enabling the comparison of results in the pre-pandemic/early pandemic period with two periods during the COVID-19 pandemic. Pneumococci were identified by standard microbiological methods. Serotype identification was performed using conventional multiplex polymerase chain reaction assays. Results Among 1623 children tested, 515 (31.7%, 95% confidence interval 29.4–34.0%) carried pneumococci. A significant increase in prevalence was found between February–March 2020 and September–November 2020 (P=0.0085), with no difference found between September–November 2020 and April–June 2021 (P=0.0524). Pneumococcal colonization was significantly higher in children who were fully vaccinated and among children who attended day care centres. The dominant serotypes were 15B, 6B, 19F, 11A, 6C, 6A, 3, 23F and 19A, representing 66.4% of all isolates. Conclusions This study found that pneumococcal nasopharyngeal carriage in children aged 24–60 months was high before the COVID-19 pandemic, and then increased during the pandemic. This rules out a major role of COVID-19 in the suppression of carriage and, probably, transmission.
Collapse
|
10
|
Gupta V, Shekhawat SS, Kulshreshtha NM, Gupta AB. A systematic review on chlorine tolerance among bacteria and standardization of their assessment protocol in wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:261-291. [PMID: 35906907 DOI: 10.2166/wst.2022.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though chlorine is a cost-effective disinfectant for water and wastewaters, the bacteria surviving after chlorination pose serious public health and environmental problems. This review critically assesses the mechanism of chlorine disinfection as described by various researchers; factors affecting chlorination efficacy; and the re-growth potential of microbial contaminations in treated wastewater post chlorination to arrive at meaningful doses for ensuring health safety. Literature analysis shows procedural inconsistencies in the assessment of chlorine tolerant bacteria, making it extremely difficult to compare the tolerance characteristics of different reported tolerant bacteria. A comparison of logarithmic reduction after chlorination and the concentration-time values for prominent pathogens led to the generation of a standard protocol for the assessment of chlorine tolerance. The factors that need to be critically monitored include applied chlorine doses, contact time, determination of chlorine demands of the medium, and the consideration of bacterial counts immediately after chlorination and in post chlorinated samples (regrowth). The protocol devised here appropriately assesses the chlorine-tolerant bacteria and urges the scientific community to report the regrowth characteristics as well. This would increase the confidence in data interpretation that can provide a better understanding of chlorine tolerance in bacteria and aid in formulating strategies for effective chlorination.
Collapse
Affiliation(s)
- Vinayak Gupta
- Alumnus, Department of Civil and Environmental Engineering, National University of Singapore, Singapore; School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Sandeep Singh Shekhawat
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail: ; School of Life and Basic Sciences, SIILAS Campus, Jaipur National University Jaipur, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| |
Collapse
|
11
|
Kherabi Y, Zeller V, Kerroumi Y, Meyssonnier V, Heym B, Lidove O, Marmor S. Streptococcal and Staphylococcus aureus prosthetic joint infections: are they really different? BMC Infect Dis 2022; 22:555. [PMID: 35715754 PMCID: PMC9206280 DOI: 10.1186/s12879-022-07532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Staphylococci and streptococci are the most frequent pathogens isolated from prosthetic joint infections (PJIs). The aim of this study was to analyze the outcome of streptococcal and methicillin-susceptible Staphylococcus aureus (MSSA) PJIs. Methods All monomicrobial streptococcal and MSSA PJIs managed in a French Referral Center (2010–2017) were sampled from the prospective PJIs cohort study. The primary outcome of interest was the cumulative reinfection-free survival at a 2-year follow-up. Results Two hundred and nine patients with 91 streptococcal and 132 staphylococcal infections were analyzed. Patients with streptococcal PJI were older, and infection was more frequently hematogenous. Reinfection-free survival rates at 2-years after all treatment strategies were higher for patients with streptococcal PJI (91% vs 81%; P = .012), but differed according to the strategy. After exchange arthroplasty, no outcome differences were observed (89% vs 93%; P = .878); after debridement, antibiotics and implant retention (DAIR), the reinfection-free survival rate was higher for patients with streptococcal PJI (87% vs 60%; P = .062). For patients managed with prolonged suppressive antibiotic therapy (SAT) alone, those with streptococcal PJIs had a 100% infection-free survival (100% vs 31%; P < .0001). Conclusions Reinfection-free survival after DAIR and SAT was better for patients with streptococcal than those with MSSA PJIs. No difference was observed after prosthesis exchange. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07532-x.
Collapse
Affiliation(s)
- Yousra Kherabi
- Centre de Référence des Infections Ostéo-Articulaires Complexes, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France. .,Service de Médecine Interne et Infectiologie, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France.
| | - Valérie Zeller
- Centre de Référence des Infections Ostéo-Articulaires Complexes, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France.,Service de Médecine Interne et Infectiologie, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France
| | - Younes Kerroumi
- Centre de Référence des Infections Ostéo-Articulaires Complexes, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France.,Service de Chirurgie Osseuse et Traumatologique, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France
| | - Vanina Meyssonnier
- Centre de Référence des Infections Ostéo-Articulaires Complexes, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France.,Service de Médecine Interne et Infectiologie, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France
| | - Beate Heym
- Centre de Référence des Infections Ostéo-Articulaires Complexes, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France.,Laboratoire des Centres de Santé et Hôpitaux d'Île-de-France, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France
| | - Olivier Lidove
- Service de Médecine Interne et Infectiologie, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France
| | - Simon Marmor
- Centre de Référence des Infections Ostéo-Articulaires Complexes, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France.,Service de Chirurgie Osseuse et Traumatologique, Groupe Hospitalier Diaconesses-Croix Saint-Simon, 125, rue d'Avron, 75020, Paris, France
| |
Collapse
|
12
|
Nabarro LE, Brown CS, Balasegaram S, Decraene V, Elston J, Kapadia S, Harrington P, Hoffman P, Mearkle R, Patel B, Ready D, Robinson E, Lamagni T. Invasive Group A Streptococcus Outbreaks Associated with Home Healthcare, England, 2018-2019. Emerg Infect Dis 2022; 28. [PMID: 35451366 PMCID: PMC9045425 DOI: 10.3201/eid2805.211497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
emm typing and whole-genome sequencing can help identify case clusters. Healthcare-associated invasive group A Streptococcus (iGAS) outbreaks are common worldwide, but only England has reported outbreaks associated with home healthcare (HHC). We describe 10 outbreaks during 2018–2019 in England. A total of 96 iGAS cases (range 2–39 per outbreak) and 28 deaths (case-fatality rate 29%) occurred. Outbreak duration ranged from 3–517 days; median time between sequential cases was 20.5 days (range 1–225 days). Outbreak identification was difficult, but emm typing and whole-genome sequencing improved detection. Network analyses indicated multiple potential transmission routes. Screening of 366 HHC workers from 9 outbreaks identified group A Streptococcus carriage in just 1 worker. Outbreak control required multiple interventions, including improved infection control, equipment decontamination, and antimicrobial prophylaxis for staff. Transmission routes and effective interventions are not yet clear, and iGAS outbreaks likely are underrecognized. To improve patient safety and reduce deaths, public health agencies should be aware of HHC-associated iGAS.
Collapse
|
13
|
Gingerich AD, Mousa JJ. Diverse Mechanisms of Protective Anti-Pneumococcal Antibodies. Front Cell Infect Microbiol 2022; 12:824788. [PMID: 35155281 PMCID: PMC8834882 DOI: 10.3389/fcimb.2022.824788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
The gram-positive bacterium Streptococcus pneumoniae is a leading cause of pneumonia, otitis media, septicemia, and meningitis in children and adults. Current prevention and treatment efforts are primarily pneumococcal conjugate vaccines that target the bacterial capsule polysaccharide, as well as antibiotics for pathogen clearance. While these methods have been enormously effective at disease prevention and treatment, there has been an emergence of non-vaccine serotypes, termed serotype replacement, and increasing antibiotic resistance among these serotypes. To combat S. pneumoniae, the immune system must deploy an arsenal of antimicrobial functions. However, S. pneumoniae has evolved a repertoire of evasion techniques and is able to modulate the host immune system. Antibodies are a key component of pneumococcal immunity, targeting both the capsule polysaccharide and protein antigens on the surface of the bacterium. These antibodies have been shown to play a variety of roles including increasing opsonophagocytic activity, enzymatic and toxin neutralization, reducing bacterial adherence, and altering bacterial gene expression. In this review, we describe targets of anti-pneumococcal antibodies and describe antibody functions and effectiveness against S. pneumoniae.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- *Correspondence: Jarrod J. Mousa,
| |
Collapse
|
14
|
Willen L, Ekinci E, Cuypers L, Theeten H, Desmet S. Infant Pneumococcal Carriage in Belgium Not Affected by COVID-19 Containment Measures. Front Cell Infect Microbiol 2022; 11:825427. [PMID: 35111700 PMCID: PMC8801737 DOI: 10.3389/fcimb.2021.825427] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/30/2021] [Indexed: 12/31/2022] Open
Abstract
Streptococcus pneumoniae is an important and frequently carried respiratory pathogen that has the potential to cause serious invasive diseases, such as pneumonia, meningitis, and sepsis. Young children and older adults are among the most vulnerable to developing serious disease. With the arrival of the COVID-19 pandemic and the concomitant restrictive measures, invasive disease cases caused by respiratory bacterial species, including pneumococci, decreased substantially. Notably, the stringency of the containment measures as well as the visible reduction in the movement of people appeared to coincide with the drop in invasive disease cases. One could argue that wearing protective masks and adhering to social distancing guidelines to halt the spread of the SARS-CoV-2 virus, also led to a reduction in the person-to-person transmission of respiratory bacterial species. Although plausible, this conjecture is challenged by novel data obtained from our nasopharyngeal carriage study which is performed yearly in healthy daycare center attending children. A sustained and high pneumococcal carriage rate was observed amid periods of stringent restrictive measures. This finding prompts us to revisit the connection between nasopharyngeal colonization and invasion and invites us to look closer at the nasopharyngeal microbiome as a whole.
Collapse
Affiliation(s)
- Laura Willen
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- *Correspondence: Laura Willen,
| | - Esra Ekinci
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Lize Cuypers
- Department of Laboratory Medicine, National Reference Centre for Pneumococci, University Hospitals Leuven, Leuven, Belgium
| | - Heidi Theeten
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Stefanie Desmet
- Department of Laboratory Medicine, National Reference Centre for Pneumococci, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
15
|
A Tn-seq Screen of Streptococcus pneumoniae Uncovers DNA Repair as the Major Pathway for Desiccation Tolerance and Transmission. Infect Immun 2021; 89:e0071320. [PMID: 34031124 DOI: 10.1128/iai.00713-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen that is a common cause of serious invasive diseases such as pneumonia, bacteremia, meningitis, and otitis media. Transmission of this bacterium has classically been thought to occur through inhalation of respiratory droplets and direct contact with nasal secretions. However, the demonstration that S. pneumoniae is desiccation tolerant and, therefore, environmentally stable for extended periods of time opens up the possibility that this pathogen is also transmitted via contaminated surfaces (fomites). To better understand the molecular mechanisms that enable S. pneumoniae to survive periods of desiccation, we performed a high-throughput transposon sequencing (Tn-seq) screen in search of genetic determinants of desiccation tolerance. We identified 42 genes whose disruption reduced desiccation tolerance and 45 genes that enhanced desiccation tolerance. The nucleotide excision repair pathway was the most enriched category in our Tn-seq results, and we found that additional DNA repair pathways are required for desiccation tolerance, demonstrating the importance of maintaining genome integrity after desiccation. Deletion of the nucleotide excision repair gene uvrA resulted in a delay in transmission between infant mice, indicating a correlation between desiccation tolerance and pneumococcal transmssion. Understanding the molecular mechanisms that enable pneumococcal persistence in the environment may enable targeting of these pathways to prevent fomite transmission, thereby preventing the establishment of new colonization and any resulting invasive disease.
Collapse
|
16
|
Perkins A, Tudorica DA, Teixeira RD, Schirmer T, Zumwalt L, Ogba OM, Cassidy CK, Stansfeld PJ, Guillemin K. A Bacterial Inflammation Sensor Regulates c-di-GMP Signaling, Adhesion, and Biofilm Formation. mBio 2021; 12:e0017321. [PMID: 34154415 PMCID: PMC8262984 DOI: 10.1128/mbio.00173-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteria that colonize animals must overcome, or coexist, with the reactive oxygen species products of inflammation, a front-line defense of innate immunity. Among these is the neutrophilic oxidant bleach, hypochlorous acid (HOCl), a potent antimicrobial that plays a primary role in killing bacteria through nonspecific oxidation of proteins, lipids, and DNA. Here, we report that in response to increasing HOCl levels, Escherichia coli regulates biofilm production via activation of the diguanylate cyclase DgcZ. We identify the mechanism of DgcZ sensing of HOCl to be direct oxidation of its regulatory chemoreceptor zinc-binding (CZB) domain. Dissection of CZB signal transduction reveals that oxidation of the conserved zinc-binding cysteine controls CZB Zn2+ occupancy, which in turn regulates the catalysis of c-di-GMP by the associated GGDEF domain. We find DgcZ-dependent biofilm formation and HOCl sensing to be regulated in vivo by the conserved zinc-coordinating cysteine. Additionally, point mutants that mimic oxidized CZB states increase total biofilm. A survey of bacterial genomes reveals that many pathogenic bacteria that manipulate host inflammation as part of their colonization strategy possess CZB-regulated diguanylate cyclases and chemoreceptors. Our findings suggest that CZB domains are zinc-sensitive regulators that allow host-associated bacteria to perceive host inflammation through reactivity with HOCl. IMPORTANCE Immune cells are well equipped to eliminate invading bacteria, and one of their primary tools is the synthesis of bleach, hypochlorous acid (HOCl), the same chemical used as a household disinfectant. In this work, we present findings showing that many host-associated bacteria possess a bleach-sensing protein that allows them to adapt to the presence of this chemical in their environment. We find that the bacterium Escherichia coli responds to bleach by hunkering down and producing a sticky matrix known as biofilm, which helps it aggregate and adhere to surfaces. This behavior may play an important role in pathogenicity for E. coli and other bacteria, as it allows the bacteria to detect and adapt to the weapons of the host immune system.
Collapse
Affiliation(s)
- Arden Perkins
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Dan A. Tudorica
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | | | - Lindsay Zumwalt
- Department of Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - O. Maduka Ogba
- Department of Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - C. Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Phillip J. Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Bonadonna L, Briancesco R, Coccia AM, Meloni P, Rosa GL, Moscato U. Microbial Air Quality in Healthcare Facilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6226. [PMID: 34207509 PMCID: PMC8296088 DOI: 10.3390/ijerph18126226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022]
Abstract
There is increasing evidence that indoor air quality and contaminated surfaces provide an important potential source for transmission of pathogens in hospitals. Airborne hospital microorganisms are apparently harmless to healthy people. Nevertheless, healthcare settings are characterized by different environmental critical conditions and high infective risk, mainly due to the compromised immunologic conditions of the patients that make them more vulnerable to infections. Thus, spread, survival and persistence of microbial communities are important factors in hospital environments affecting health of inpatients as well as of medical and nursing staff. In this paper, airborne and aerosolized microorganisms and their presence in hospital environments are taken into consideration, and the factors that collectively contribute to defining the infection risk in these facilities are illustrated.
Collapse
Affiliation(s)
- Lucia Bonadonna
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Rossella Briancesco
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Anna Maria Coccia
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Pierluigi Meloni
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Giuseppina La Rosa
- Department of Environment and Health, Italian National Institute of Health, 00161 Rome, Italy; (R.B.); (A.M.C.); (P.M.); (G.L.R.)
| | - Umberto Moscato
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Section of Occupational Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
18
|
Wright T, Karis D, Millik SC, Tomkovic T, Hatzikiriakos SG, Nelson A, Wolf MO. Photocross-Linked Antimicrobial Amino-Siloxane Elastomers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22195-22203. [PMID: 33944560 DOI: 10.1021/acsami.1c02863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mechanically robust bulk antimicrobial polymers are one way to address disease transmission via contaminated surfaces. Here, we demonstrate the visible light photo-oxidative cross-linking of amine-containing PDMS using a single-component, solvent-free system where amines have a dual role as antimicrobial functionalities and cross-linking sites. Rose Bengal, a xanthene dye used as a fluorescent stain, is thermally reacted with the polymer to give a solvent-free liquid siloxane that can generate reactive singlet oxygen upon aerobic green light irradiation, coupling the amine functionalities into imine cross-links. Photorheological experiments demonstrate that light intensity is the largest kinetic factor in the photo-oxidative curing of these polymers. Room temperature irradiation under an ambient atmosphere results in free-standing elastic materials with mechanical properties that depend on the amount of Rose Bengal present. An ultimate elongation strain of 117% and Young's modulus of 2.15 MPa were observed for the highest dye loading, with both mechanical properties found to be higher than those for the same solution-based dye amounts. We demonstrate that the solvent-free nature of the material can be exploited to generate 3D structures using low-temperature deposition as well as direct-write patterning and photolithography on glass substrates. The antimicrobial activity was investigated, with the cross-linked material demonstrating greater efficacy against E. coli (Gram negative) compared with MRSA (Gram positive) bacterial strains and inducing complete cell lysis of incubated CHO-K1 mammalian cells, demonstrating applicability as a mechanically robust single-component antimicrobial elastomer.
Collapse
Affiliation(s)
- Taylor Wright
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Dylan Karis
- Department of Chemistry, 109 Bagley Hall, University of Washington, Seattle, Washington 98195-1700, United States
| | - S Cem Millik
- Department of Chemistry, 109 Bagley Hall, University of Washington, Seattle, Washington 98195-1700, United States
| | - Tanja Tomkovic
- Department of Chemical and Biological Engineering, 2360 East Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Savvas G Hatzikiriakos
- Department of Chemical and Biological Engineering, 2360 East Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alshakim Nelson
- Department of Chemistry, 109 Bagley Hall, University of Washington, Seattle, Washington 98195-1700, United States
| | - Michael O Wolf
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
19
|
Morimura A, Hamaguchi S, Akeda Y, Tomono K. Mechanisms Underlying Pneumococcal Transmission and Factors Influencing Host-Pneumococcus Interaction: A Review. Front Cell Infect Microbiol 2021; 11:639450. [PMID: 33996623 PMCID: PMC8113816 DOI: 10.3389/fcimb.2021.639450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pneumoniae (also called pneumococcus) is not only a commensal that frequently colonizes the human upper respiratory tract but also a pathogen that causes pneumonia, sepsis, and meningitis. The mechanism of pneumococcal infection has been extensively studied, but the process of transmission has not been fully elucidated because of the lack of tractable animal models. Novel animal models of transmission have enabled further progress in investigating pneumococcal transmission mechanisms including the processes such as pneumococcal shedding, survival in the external environment, and adherence to the nasopharynx of a new host. Herein, we present a review on these animal models, recent research findings about pneumococcal transmission, and factors influencing the host-pneumococcus interaction.
Collapse
Affiliation(s)
- Ayumi Morimura
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeto Hamaguchi
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan
| | - Yukihiro Akeda
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan
| |
Collapse
|
20
|
Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms 2021; 9:microorganisms9020343. [PMID: 33572303 PMCID: PMC7916105 DOI: 10.3390/microorganisms9020343] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
For the prevention of infectious diseases, knowledge about transmission routes is essential. In addition to respiratory, fecal-oral, and sexual transmission, the transfer of pathogens via surfaces plays a vital role for human pathogenic infections-especially nosocomial pathogens. Therefore, information about the survival of pathogens on surfaces can have direct implications on clinical measures, including hygiene guidelines and disinfection strategies. In this review, we reviewed the existing literature regarding viral, bacterial, and fungal persistence on inanimate surfaces. In particular, the current knowledge of the survival time and conditions of clinically relevant pathogens is summarized. While many pathogens persist only for hours, common nosocomial pathogens can survive for days to weeks under laboratory conditions and thereby potentially form a continuous source of transmission if no adequate inactivation procedures are performed.
Collapse
|
21
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
22
|
Prevalence of Bacteria in Primary Schools. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic microorganisms are serious threats in schools, where contact with many microorganisms occur frequently throughout the school day. Classrooms are considered an optimal place for contact between microorganisms and young children. The aim of the current study was to study the prevalence of bacteria isolated in samples from different sites in primary schools and to show whether schools are sanitized and clean for children or it is just the core reason for their illness. The study was done in a highly standard private school and a public school in order to study the effect of variance in the social classes on the cleanliness of the schools. Different colonies were separated and identified by staining techniques and biochemical tests. Thirteen different types of bacteria with different amounts were isolated from 176 samples collected from different surfaces. It was found that the number of bacteria in public school is higher than that of the private school. The distribution of bacterial strains isolated from the two schools averaged 37.1% for Staphylococcus sp. followed by 11.3% for Enterobacter sp. and then 7.3%, 7.1% and 6.3% for Yersinia sp. Streptococcus sp. and Micrococcus sp. respectively. Other strains ranged between 5.9% to 1.5%. Bacterial isolates were tested for their susceptibility by well diffusion test against three commercial disinfectants commonly used for surface and hand cleaning in schools, namely; Clorox, Renol and Dettol. The highest percentage of resistance was seen against Renol (50%) followed by Dettol (38%) and was identified to be Escherichia coli, while least resistance occurring among all isolates was noticed against Clorox (18%). Children in private and public schools are at high risk of catching serious bacterial infections and they are surrounded by a cram of microorganisms. The current research shows that new ways must be developed to improve our schools’ hygiene to make it a healthier and safer place to learn in.
Collapse
|
23
|
Vyas HKN, Proctor EJ, McArthur J, Gorman J, Sanderson-Smith M. Current Understanding of Group A Streptococcal Biofilms. Curr Drug Targets 2020; 20:982-993. [PMID: 30947646 PMCID: PMC6700754 DOI: 10.2174/1389450120666190405095712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/01/2023]
Abstract
Background: It has been proposed that GAS may form biofilms. Biofilms are microbial communities that aggregate on a surface, and exist within a self-produced matrix of extracellular polymeric substances. Biofilms offer bacteria an increased survival advantage, in which bacteria persist, and resist host immunity and antimicrobial treatment. The biofilm phenotype has long been recognized as a virulence mechanism for many Gram-positive and Gram-negative bacteria, however very little is known about the role of biofilms in GAS pathogenesis. Objective: This review provides an overview of the current knowledge of biofilms in GAS pathogenesis. This review assesses the evidence of GAS biofilm formation, the role of GAS virulence factors in GAS biofilm formation, modelling GAS biofilms, and discusses the polymicrobial nature of biofilms in the oropharynx in relation to GAS. Conclusion: Further study is needed to improve the current understanding of GAS as both a mono-species biofilm, and as a member of a polymicrobial biofilm. Improved modelling of GAS biofilm formation in settings closely mimicking in vivo conditions will ensure that biofilms generated in the lab closely reflect those occurring during clinical infection.
Collapse
Affiliation(s)
- Heema K N Vyas
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Emma-Jayne Proctor
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Jason McArthur
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Jody Gorman
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
24
|
Survival of Group A Streptococcus (GAS) is Enhanced Under Desiccated Culture Conditions. Curr Microbiol 2020; 77:1518-1524. [PMID: 32240341 PMCID: PMC8238923 DOI: 10.1007/s00284-020-01967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 11/01/2022]
Abstract
AbstractStreptococcus pyogenes or Group A Streptococcus (GAS) infections are the leading cause of bacterial tonsillopharyngitis. The bacterium can survive and persist within the human host for a long time as it is observed in up to 40% of the population who are considered as carriers. Recurrent tonsillopharyngitis is a particular problem in children which is caused either by relapses due to failed bacterial clearance or by reinfection. A prolonged survival in tonsillar crypts or on inanimate surfaces might be sources for reinfection. We therefore examined 64 clinical GAS isolates from children with tonsillopharyngitis for their long-term survival under either liquid or desiccated culture conditions. After 6 weeks, the overall GAS survival rate was 400-fold increased under desiccated culture conditions compared to liquid culture conditions, but varied depending on the emm-type between 20-fold (emm4) and 14000-fold (emm3). The survival rates of isolates from emm75 were significantly lower which is probably due to their production of hydrogen peroxide up to fatal doses. No hydrogen peroxide production could be detected for other emm-types. Furthermore, 11 isolates from patients with recurrent tonsillopharyngitis were compared to isolates of the same emm-type from patients with single episodes of tonsillopharyngitis. A significant elevated pH value and an increased survival rate for isolates from patients with recurrent infections were observed. In conclusion, significant differences in long-term survival of different GAS isolates as well as survival under desiccated culture conditions might contribute to both failed bacterial clearance and reinfection in patients with recurrent tonsillopharyngitis.
Collapse
|
25
|
Nishimoto AT, Rosch JW, Tuomanen EI. Pneumolysin: Pathogenesis and Therapeutic Target. Front Microbiol 2020; 11:1543. [PMID: 32714314 PMCID: PMC7343714 DOI: 10.3389/fmicb.2020.01543] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen responsible for widespread illness and is a major global health issue for children, the elderly, and the immunocompromised population. Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) and key pneumococcal virulence factor involved in all phases of pneumococcal disease, including transmission, colonization, and infection. In this review we cover the biology and cytolytic function of PLY, its contribution to S. pneumoniae pathogenesis, and its known interactions and effects on the host with regard to tissue damage and immune response. Additionally, we review statins as a therapeutic option for CDC toxicity and PLY toxoid as a vaccine candidate in protein-based vaccines.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jason W Rosch
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Elaine I Tuomanen
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
26
|
Matsue M, Ogura K, Sugiyama H, Miyoshi-Akiyama T, Takemori-Sakai Y, Iwata Y, Wada T, Okamoto S. Pathogenicity Characterization of Prevalent-Type Streptococcus dysgalactiae subsp. equisimilis Strains. Front Microbiol 2020; 11:97. [PMID: 32117127 PMCID: PMC7010647 DOI: 10.3389/fmicb.2020.00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/17/2020] [Indexed: 12/26/2022] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging human pathogen that causes severe invasive streptococcal diseases. Recent reports have shown that SDSE exhibits high pathogenicity with different mechanisms from that of Streptococcus pyogenes, although the two streptococci possess some common virulence factors such as streptolysin, streptokinase, and cell-binding proteins. To date, only a few studies have examined the variety of mechanisms expressing the pathogenicity of SDSE. Among nine SDSE clinical isolates sequenced in this study, we present in vitro and in vivo analyses of KNZ01 and KNZ03, whose emm and multilocus species types (MLSTs) are prevalent in Japan and other countries. For the comparison of pathogenicity, we also utilized the ATCC 12394 strain. The whole-genome analysis showed that KNZ03 and ATCC 12394 are categorized into an identical clonal complex by MLST and are phylogenetically close. However, the three strains exhibited different characteristics for pathogenicity in vitro; ATCC 12394 showed significant cytotoxicity to human keratinocytes and release of streptolysin O (SLO) compared to KNZ01 and KNZ03; KNZ03 exhibited significantly high hemolytic activity, but did not secrete SLO. KNZ01 and KNZ03 adhered to human keratinocytes at a higher rate than ATCC 12394; KNZ03 showed a higher rate of survival after a brief (30 min) incubation with human neutrophils compared to the other two strains; also, KNZ01 grew more rapidly in the presence of human serum. In vivo subcutaneous infection commonly resulted in ulcer formation in the three strains 7 days after infection. KNZ01-infected mice showed significant body weight loss 2 days after infection. Besides, on post-infection day 2, only KNZ01 remained in the cutaneous tissues of mice. Scanning electron microscopy analysis revealed that KNZ01 formed an extracellular structure (biofilm), which was probably composed of cell wall-anchoring proteins, in the presence of glucose and human serum. The extracellular structure of ATCC 12394 was also changed dramatically in response to culture conditions, whereas that of KNZ03 did not. Our study proposed that each SDSE strain possesses different virulence factors characteristics for mediating pathogenicity in humans.
Collapse
Affiliation(s)
- Miki Matsue
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hironori Sugiyama
- Division of Instrumental Analysis, Engineering and Technology Department, Kanazawa University, Kanazawa, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Shinjuku, Japan
| | - Yukiko Takemori-Sakai
- Division of Clinical Laboratory Medicine, Kanazawa University, Kanazawa, Japan.,Division of Infection Control, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Division of Infection Control, Kanazawa University, Kanazawa, Japan.,Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Takashi Wada
- Division of Clinical Laboratory Medicine, Kanazawa University, Kanazawa, Japan.,Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
27
|
Qian W, Wang W, Zhang J, Liu M, Fu Y, Li X, Wang T, Li Y. Sanguinarine Inhibits Mono- and Dual-Species Biofilm Formation by Candida albicans and Staphylococcus aureus and Induces Mature Hypha Transition of C. albicans. Pharmaceuticals (Basel) 2020; 13:ph13010013. [PMID: 31941090 PMCID: PMC7168937 DOI: 10.3390/ph13010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 02/07/2023] Open
Abstract
Previous studies have reported that sanguinarine possesses inhibitory activities against several microorganisms, but its effects on mono- and dual-species biofilms of C. albicans and S. aureus have not been fully elucidated. In this study, we aimed to evaluate the efficacy of sanguinarine for mono- and dual-species biofilms and explore its ability to induce the hypha-to-yeast transition of C. albicans. The results showed that the minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC90) of sanguinarine against C. albicans and S. aureus mono-species biofilms was 4, and 2 μg/mL, respectively, while the MIC and MBIC90 of sanguinarine against dual-species biofilms was 8, and 4 μg/mL, respectively. The decrease in the levels of matrix component and tolerance to antibiotics of sanguinarine-treated mono- and dual-species biofilms was revealed by confocal laser scanning microscopy combined with fluorescent dyes, and the gatifloxacin diffusion assay, respectively. Meanwhile, sanguinarine at 128 and 256 μg/mL could efficiently eradicate the preformed 24-h biofilms by mono- and dual-species, respectively. Moreover, sanguinarine at 8 μg/mL could result in the transition of C. albicans from the mature hypha form to the unicellular yeast form. Hence, this study provides useful information for the development of new agents to combat mono- and dual-species biofilm-associated infections, caused by C. albicans and S. aureus.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Wenjing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Jianing Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Miao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Yuting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Xiang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (W.W.); (J.Z.); (M.L.); (Y.F.); (X.L.)
- Correspondence: (T.W.); (Y.L.); Tel.: +86-29-86168583 (T.W.)
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
- Correspondence: (T.W.); (Y.L.); Tel.: +86-29-86168583 (T.W.)
| |
Collapse
|
28
|
Silva MD, Sillankorva S. Otitis media pathogens – A life entrapped in biofilm communities. Crit Rev Microbiol 2019; 45:595-612. [DOI: 10.1080/1040841x.2019.1660616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Daniela Silva
- CEB – Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Sanna Sillankorva
- CEB – Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
29
|
Abstract
Streptococcus pneumoniae (the pneumoccus) is the leading cause of otitis media, community-acquired pneumonia, and bacterial meningitis. The success of the pneumococcus stems from its ability to persist in the population as a commensal and avoid killing by immune system. This chapter first reviews the molecular mechanisms that allow the pneumococcus to colonize and spread from one anatomical site to the next. Then, it discusses the mechanisms of inflammation and cytotoxicity during emerging and classical pneumococcal infections.
Collapse
|
30
|
Watts V, Balasegaram S, Brown CS, Mathew S, Mearkle R, Ready D, Saliba V, Lamagni T. Increased Risk for Invasive Group A Streptococcus Disease for Household Contacts of Scarlet Fever Cases, England, 2011-2016. Emerg Infect Dis 2019; 25:529-537. [PMID: 30602121 PMCID: PMC6390732 DOI: 10.3201/eid2503.181518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The incidence of scarlet fever in England and Wales is at its highest in 50 years. We estimated secondary household risk for invasive group A Streptococcus (iGAS) disease within 60 days after onset of scarlet fever. Reports of scarlet fever in England during 2011–2016 were matched by residential address to persons with laboratory-confirmed iGAS infections. We identified 11 iGAS cases in ≈189,684 household contacts and a 60-day incidence rate of 35.3 cases/100,000 person-years, which was 12.2-fold higher than the background rate (2.89). Infants and contacts >75 years of age were at highest risk. Three cases were fatal; sepsis and cellulitis were the most common manifestations. Typing for 6 iGAS cases identified emm 1.0 (n = 4), emm 4.0 (n = 1), and emm 12.0 (n = 1). Although absolute risk in household contacts was low, clinicians assessing household contacts should be aware of the risk to expedite diagnosis and initiate life-saving treatment.
Collapse
|
31
|
Alves-Barroco C, Roma-Rodrigues C, Balasubramanian N, Guimarães MA, Ferreira-Carvalho BT, Muthukumaran J, Nunes D, Fortunato E, Martins R, Santos-Silva T, Figueiredo AMS, Fernandes AR, Santos-Sanches I. Biofilm development and computational screening for new putative inhibitors of a homolog of the regulatory protein BrpA in Streptococcus dysgalactiae subsp. dysgalactiae. Int J Med Microbiol 2019; 309:169-181. [PMID: 30799091 DOI: 10.1016/j.ijmm.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 01/15/2023] Open
Abstract
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), a Lancefield group C streptococci (GCS), is a frequent cause of bovine mastitis. This highly prevalent disease is the costliest in dairy industry. Adherence and biofilm production are important factors in streptoccocal pathogenesis. We have previously described the adhesion and internalization of SDSD isolates in human cells and now we describe the biofilm production capability of this bacterium. In this work we integrated microbiology, imaging and computational methods to evaluate the biofilm production capability of SDSD isolates; to assess the presence of biofilm regulatory protein BrpA homolog in the biofilm producers; and to predict a structural model of BrpA-like protein and its binding to putative inhibitors. Our results show that SDSD isolates form biofilms on abiotic surface such as glass (hydrophilic) and polystyrene (hydrophobic), with the strongest biofilm formation observed in glass. This ability was mainly associated with a proteinaceous extracellular matrix, confirmed by the dispersion of the biofilms after proteinase K and trypsin treatment. The biofilm formation in SDSD isolates was also confirmed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Under SEM observation, VSD16 isolate formed cell aggregates during biofilm growth while VSD9 and VSD10 formed smooth and filmy layers. We show that brpA-like gene is present and expressed in SDSD biofilm-producing isolates and its expression levels correlated with the biofilm production capability, being more expressed in the late exponential phase of planktonic growth compared to biofilm growth. Fisetin, a known biofilm inhibitor and a putative BrpA binding molecule, dramatically inhibited biofilm formation by the SDSD isolates but did not affect planktonic growth, at the tested concentrations. Homology modeling was used to predict the 3D structure of BrpA-like protein. Using high throughput virtual screening and molecular docking, we selected five ligand molecules with strong binding affinity to the hydrophobic cleft of the protein, making them potential inhibitor candidates of the SDSD BrpA-like protein. These results warrant further investigations for developing novel strategies for SDSD anti-biofilm therapy.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Natesan Balasubramanian
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal; Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | | | | | - Jayaraman Muthukumaran
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Daniela Nunes
- i3N/CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Elvira Fortunato
- i3N/CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Rodrigo Martins
- i3N/CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Agnes M S Figueiredo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| | - Ilda Santos-Sanches
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
32
|
Leung MH, Tong X, Lee PK. Indoor Microbiome and Airborne Pathogens. COMPREHENSIVE BIOTECHNOLOGY 2019. [PMCID: PMC7151935 DOI: 10.1016/b978-0-444-64046-8.00477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Chao Y, Bergenfelz C, Hakansson AP. Growing and Characterizing Biofilms Formed by Streptococcus pneumoniae. Methods Mol Biol 2019; 1968:147-171. [PMID: 30929213 DOI: 10.1007/978-1-4939-9199-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is estimated that over 80% of bacterial infections are associated with biofilm formation. Biofilms are organized bacterial communities formed on abiotic surfaces, such as implanted or inserted medical devices, or on biological surfaces, such as epithelial linings and mucosal surfaces. Biofilm growth is advantageous for the bacterial organism as it protects the bacteria from antimicrobial host factors and allows the bacteria to reside in the host without causing excessive inflammation. Like many other opportunistic pathogens of the respiratory tract, Streptococcus pneumoniae forms biofilms during asymptomatic carriage, which promotes, among other things, persistence in the niche, intraspecies and interspecies communication, and spread of bacterial DNA. Changes within the colonizing environment resulting from host assaults, such as virus infection, can induce biofilm dispersion where bacteria leave the biofilm and disseminate to other sites with ensuing infection. In this chapter, we present methodology to form complex biofilms in the nasopharynx of mice and to evaluate the biofilm structure and function in this environment. Furthermore, we present methods that recapitulate this biofilm phenotype in vitro by incorporating crucial factors associated with the host environment and describe how these models can be used to study biofilm function, transformation, and dispersion.
Collapse
Affiliation(s)
- Yashuan Chao
- Wallenberg Laboratory, Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Caroline Bergenfelz
- Wallenberg Laboratory, Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anders P Hakansson
- Wallenberg Laboratory, Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
34
|
Stephens B, Azimi P, Thoemmes MS, Heidarinejad M, Allen JG, Gilbert JA. Microbial Exchange via Fomites and Implications for Human Health. CURRENT POLLUTION REPORTS 2019; 5:198-213. [PMID: 34171005 PMCID: PMC7149182 DOI: 10.1007/s40726-019-00123-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
PURPOSE OF REVIEW Fomites are inanimate objects that become colonized with microbes and serve as potential intermediaries for transmission to/from humans. This review summarizes recent literature on fomite contamination and microbial survival in the built environment, transmission between fomites and humans, and implications for human health. RECENT FINDINGS Applications of molecular sequencing techniques to analyze microbial samples have increased our understanding of the microbial diversity that exists in the built environment. This growing body of research has established that microbial communities on surfaces include substantial diversity, with considerable dynamics. While many microbial taxa likely die or lay dormant, some organisms survive, including those that are potentially beneficial, benign, or pathogenic. Surface characteristics also influence microbial survival and rates of transfer to and from humans. Recent research has combined experimental data, mechanistic modeling, and epidemiological approaches to shed light on the likely contributors to microbial exchange between fomites and humans and their contributions to adverse (and even potentially beneficial) human health outcomes. SUMMARY In addition to concerns for fomite transmission of potential pathogens, new analytical tools have uncovered other microbial matters that can be transmitted indirectly via fomites, including entire microbial communities and antibiotic-resistant bacteria. Mathematical models and epidemiological approaches can provide insight on human health implications. However, both are subject to limitations associated with study design, and there is a need to better understand appropriate input model parameters. Fomites remain an important mechanism of transmission of many microbes, along with direct contact and short- and long-range aerosols.
Collapse
Affiliation(s)
- Brent Stephens
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Alumni Memorial Hall 228E, 3201 South Dearborn Street, Chicago, IL 60616 USA
| | - Parham Azimi
- Environmental Health Department, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Megan S. Thoemmes
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, CA USA
| | - Mohammad Heidarinejad
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Alumni Memorial Hall 228E, 3201 South Dearborn Street, Chicago, IL 60616 USA
| | - Joseph G. Allen
- Environmental Health Department, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, CA USA
| |
Collapse
|
35
|
Brooks LRK, Mias GI. Streptococcus pneumoniae's Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Front Immunol 2018; 9:1366. [PMID: 29988379 PMCID: PMC6023974 DOI: 10.3389/fimmu.2018.01366] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae is an infectious pathogen responsible for millions of deaths worldwide. Diseases caused by this bacterium are classified as pneumococcal diseases. This pathogen colonizes the nasopharynx of its host asymptomatically, but overtime can migrate to sterile tissues and organs and cause infections. Pneumonia is currently the most common pneumococcal disease. Pneumococcal pneumonia is a global health concern and vastly affects children under the age of five as well as the elderly and individuals with pre-existing health conditions. S. pneumoniae has a large selection of virulence factors that promote adherence, invasion of host tissues, and allows it to escape host immune defenses. A clear understanding of S. pneumoniae's virulence factors, host immune responses, and examining the current techniques available for diagnosis, treatment, and disease prevention will allow for better regulation of the pathogen and its diseases. In terms of disease prevention, other considerations must include the effects of age on responses to vaccines and vaccine efficacy. Ongoing work aims to improve on current vaccination paradigms by including the use of serotype-independent vaccines, such as protein and whole cell vaccines. Extending our knowledge of the biology of, and associated host immune response to S. pneumoniae is paramount for our improvement of pneumococcal disease diagnosis, treatment, and improvement of patient outlook.
Collapse
Affiliation(s)
- Lavida R. K. Brooks
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
36
|
Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018; 16:355-367. [PMID: 29599457 PMCID: PMC5949087 DOI: 10.1038/s41579-018-0001-8] [Citation(s) in RCA: 560] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Streptococcus pneumoniae has a complex relationship with its obligate human host. On the one hand, the pneumococci are highly adapted commensals, and their main reservoir on the mucosal surface of the upper airways of carriers enables transmission. On the other hand, they can cause severe disease when bacterial and host factors allow them to invade essentially sterile sites, such as the middle ear spaces, lungs, bloodstream and meninges. Transmission, colonization and invasion depend on the remarkable ability of S. pneumoniae to evade or take advantage of the host inflammatory and immune responses. The different stages of pneumococcal carriage and disease have been investigated in detail in animal models and, more recently, in experimental human infection. Furthermore, widespread vaccination and the resulting immune pressure have shed light on pneumococcal population dynamics and pathogenesis. Here, we review the mechanistic insights provided by these studies on the multiple and varied interactions of the pneumococcus and its host.
Collapse
|
37
|
Gomez-Silvan C, Leung MHY, Grue KA, Kaur R, Tong X, Lee PKH, Andersen GL. A comparison of methods used to unveil the genetic and metabolic pool in the built environment. MICROBIOME 2018; 6:71. [PMID: 29661230 PMCID: PMC5902888 DOI: 10.1186/s40168-018-0453-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/28/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND A majority of indoor residential microbes originate from humans, pets, and outdoor air and are not adapted to the built environment (BE). Consequently, a large portion of the microbes identified by DNA-based methods are either dead or metabolically inactive. Although many exceptions have been noted, the ribosomal RNA fraction of the sample is more likely to represent either viable or metabolically active cells. We examined methodological variations in sample processing using a defined, mock BE microbial community to better understand the scope of technique-based vs. biological-based differences in both ribosomal transcript (rRNA) and gene (DNA) sequence community analysis. Based on in vitro tests, a protocol was adopted for the analysis of the genetic and metabolic pool (DNA vs. rRNA) of air and surface microbiomes within a residential setting. RESULTS We observed differences in DNA/RNA co-extraction efficiency for individual microbes, but overall, a greater recovery of rRNA using FastPrep (> 50%). Samples stored with various preservation methods at - 80°C experienced a rapid decline in nucleic acid recovery starting within the first week, although post-extraction rRNA had no significant degradation when treated with RNAStable. We recommend that co-extraction samples be processed as quickly as possible after collection. The in vivo analysis revealed significant differences in the two components (genetic and metabolic pool) in terms of taxonomy, community structure, and microbial association networks. Rare taxa present in the genetic pool showed higher metabolic potential (RNA:DNA ratio), whereas commonly detected taxa of outdoor origins based on DNA sequencing, especially taxa of the Sphingomonadales order, were present in lower relative abundances in the viable community. CONCLUSIONS Although methodological variations in sample preparations are high, large differences between the DNA and RNA fractions of the total microbial community demonstrate that direct examination of rRNA isolated from a residential BE microbiome has the potential to identify the more likely viable or active portion of the microbial community. In an environment that has primarily dead and metabolically inactive cells, we suggest that the rRNA fraction of BE samples is capable of providing a more ecologically relevant insight into the factors that drive indoor microbial community dynamics.
Collapse
Affiliation(s)
- Cinta Gomez-Silvan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Marcus H. Y. Leung
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Katherine A. Grue
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Current affiliation: Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA USA
| | - Randeep Kaur
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Patrick K. H. Lee
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Gary L. Andersen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
38
|
Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiol Rev 2018; 98:781-811. [PMID: 29488821 PMCID: PMC5966719 DOI: 10.1152/physrev.00040.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
It has long been thought that respiratory infections are the direct result of acquisition of pathogenic viruses or bacteria, followed by their overgrowth, dissemination, and in some instances tissue invasion. In the last decades, it has become apparent that in contrast to this classical view, the majority of microorganisms associated with respiratory infections and inflammation are actually common members of the respiratory ecosystem and only in rare circumstances do they cause disease. This suggests that a complex interplay between host, environment, and properties of colonizing microorganisms together determines disease development and its severity. To understand the pathophysiological processes that underlie respiratory infectious diseases, it is therefore necessary to understand the host-bacterial interactions occurring at mucosal surfaces, along with the microbes inhabiting them, during symbiosis. Current knowledge regarding host-bacterial interactions during asymptomatic colonization will be discussed, including a plausible role for the human microbiome in maintaining a healthy state. With this as a starting point, we will discuss possible disruptive factors contributing to dysbiosis, which is likely to be a key trigger for pathobionts in the development and pathophysiology of respiratory diseases. Finally, from this renewed perspective, we will reflect on current and potential new approaches for treatment in the future.
Collapse
Affiliation(s)
- A P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - C J Orihuela
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - D Bogaert
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
39
|
Mahida N, Prescott K, Yates C, Spencer F, Weston V, Boswell T. Outbreak of invasive group A streptococcus: investigations using agar settle plates detect perineal shedding from a healthcare worker. J Hosp Infect 2018; 100:e209-e215. [PMID: 29605189 DOI: 10.1016/j.jhin.2018.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/23/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Outbreaks of group A streptococcus (GAS) infections may occur in healthcare settings. Transmission to patients is sometimes linked to colonized healthcare workers (HCWs) and/or a contaminated environment. AIM To describe the investigation and control of an outbreak of healthcare-associated GAS on an elderly care medical ward, over six months. METHODS Four patients developed septicaemia due to GAS infection without a clinically obvious site of infection. The outbreak team undertook an investigation involving a retrospective review of GAS cases, prospective case finding, HCW screening and environmental sampling using both swabs and settle plates. Immediate control measures included source isolation and additional cleaning of the ward environment with a chlorine disinfectant and hydrogen peroxide. FINDINGS Prospective patient screening identified one additional patient with throat GAS carriage. Settle plate positivity for GAS was strongly associated with the presence of one individual HCW on the ward, who was subsequently found to have GAS perineal carriage. Contamination of a fabric-upholstered chair in an office adjacent to the ward, used by the HCW, was also detected. In total, three asymptomatic HCWs had throat GAS carriage and one HCW had both perineal and throat carriage. All isolates were typed as emm 28. CONCLUSION This is the first outbreak report demonstrating the use of settle plates in a GAS outbreak investigation on a medical ward, to identify the likely source of the outbreak. Based on this report we recommend that both throat and perineal sites should be sampled if HCW screening is undertaken during an outbreak of GAS. Fabric, soft furnishings should be excluded from clinical areas as well as any adjacent offices because pathogenic bacteria such as GAS may contaminate this environment.
Collapse
Affiliation(s)
- N Mahida
- Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - K Prescott
- Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - C Yates
- Infection Prevention and Control Department, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - F Spencer
- Infection Prevention and Control Department, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - V Weston
- Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - T Boswell
- Department of Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
40
|
Beblo-Vranesevic K, Bohmeier M, Perras AK, Schwendner P, Rabbow E, Moissl-Eichinger C, Cockell CS, Vannier P, Marteinsson VT, Monaghan EP, Ehrenfreund P, Garcia-Descalzo L, Gómez F, Malki M, Amils R, Gaboyer F, Westall F, Cabezas P, Walter N, Rettberg P. Lack of correlation of desiccation and radiation tolerance in microorganisms from diverse extreme environments tested under anoxic conditions. FEMS Microbiol Lett 2018; 365:4883205. [PMID: 29474542 PMCID: PMC5939664 DOI: 10.1093/femsle/fny044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
Four facultative anaerobic and two obligate anaerobic bacteria were isolated from extreme environments (deep subsurface halite mine, sulfidic anoxic spring, mineral-rich river) in the frame MASE (Mars Analogues for Space Exploration) project. The isolates were investigated under anoxic conditions for their survivability after desiccation up to 6 months and their tolerance to ionizing radiation up to 3000 Gy. The results indicated that tolerances to both stresses are strain-specific features. Yersinia intermedia MASE-LG-1 showed a high desiccation tolerance but its radiation tolerance was very low. The most radiation-tolerant strains were Buttiauxella sp. MASE-IM-9 and Halanaerobium sp. MASE-BB-1. In both cases, cultivable cells were detectable after an exposure to 3 kGy of ionizing radiation, but cells only survived desiccation for 90 and 30 days, respectively. Although a correlation between desiccation and ionizing radiation resistance has been hypothesized for some aerobic microorganisms, our data showed that there was no correlation between tolerance to desiccation and ionizing radiation, suggesting that the physiological basis of both forms of tolerances is not necessarily linked. In addition, these results indicated that facultative and obligate anaerobic organisms living in extreme environments possess varied species-specific tolerances to extremes.
Collapse
Affiliation(s)
- Kristina Beblo-Vranesevic
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| | - Maria Bohmeier
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| | - Alexandra K Perras
- Department of Internal Medicine, Medical University of Graz, Auerbruggerplatz 15, 8010 Graz, Austria
- Department of Microbiology and Archaea, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Petra Schwendner
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh, UK
| | - Elke Rabbow
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University of Graz, Auerbruggerplatz 15, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Charles S Cockell
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh, UK
| | | | - Viggo T Marteinsson
- MATISProkaria, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavík, Iceland
| | - Euan P Monaghan
- Leiden Observatory, Universiteit Leiden, Niels Bohrweg 2, 2333 Leiden, Netherland
| | - Pascale Ehrenfreund
- Leiden Observatory, Universiteit Leiden, Niels Bohrweg 2, 2333 Leiden, Netherland
- Space Policy Institute, George Washington University, 1957 E Street, 20052 Washington DC, USA
| | - Laura Garcia-Descalzo
- Instituto Nacional de Técnica Aeroespacial-Centro de Astrobiología (INTA-CAB), Torrejón de Ardoz, 28850 Madrid, Spain
| | - Felipe Gómez
- Instituto Nacional de Técnica Aeroespacial-Centro de Astrobiología (INTA-CAB), Torrejón de Ardoz, 28850 Madrid, Spain
| | - Moustafa Malki
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Frédéric Gaboyer
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071 Orléans, France
| | - Frances Westall
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071 Orléans, France
| | - Patricia Cabezas
- European Science Foundation (ESF), Quai Lezay-Marnésia, 67080 Strasbourg, France
| | - Nicolas Walter
- European Science Foundation (ESF), Quai Lezay-Marnésia, 67080 Strasbourg, France
| | - Petra Rettberg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| |
Collapse
|
41
|
Mycobacterium abscessus Smooth and Rough Morphotypes Form Antimicrobial-Tolerant Biofilm Phenotypes but Are Killed by Acetic Acid. Antimicrob Agents Chemother 2018; 62:AAC.01782-17. [PMID: 29311080 PMCID: PMC5826145 DOI: 10.1128/aac.01782-17] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium abscessus has emerged as an important pathogen in people with chronic inflammatory lung diseases such as cystic fibrosis, and recent reports suggest that it may be transmissible by fomites. M. abscessus exhibits two major colony morphology variants: a smooth morphotype (MaSm ) and a rough morphotype (MaRg ). Biofilm formation, prolonged intracellular survival, and colony variant diversity can each contribute to the persistence of M. abscessus and other bacterial pathogens in chronic pulmonary diseases. A prevailing paradigm of chronic M. abscessus infection is that MaSm is a noninvasive, biofilm-forming, persistent phenotype and MaRg an invasive phenotype that is unable to form biofilms. We show that MaRg is hyperaggregative and forms biofilm-like aggregates, which, like MaSm biofilm aggregates, are significantly more tolerant than planktonic variants to acidic pHs, hydrogen peroxide (H2O2), and treatment with amikacin or azithromycin. We further show that both variants are recalcitrant to antibiotic treatment inside human macrophage-like cells and that MaRg is more refractory than MaSm to azithromycin. Our results indicate that biofilm-like aggregation and protracted intracellular survival may each contribute to the persistence of this problematic pathogen in the face of antimicrobial agents regardless of morphotype. Biofilms of each M. abscessus variant are rapidly killed, however, by acetic acid, which may help to prevent local fomite transmission.
Collapse
|
42
|
Capsule Prolongs Survival of Streptococcus pneumoniae during Starvation. Infect Immun 2018; 86:IAI.00802-17. [PMID: 29311231 DOI: 10.1128/iai.00802-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022] Open
Abstract
Person-to-person transmission of Streptococcus pneumoniae (the pneumococcus) may occur via environmental sources in close contact with carriers. Pneumococcal polysaccharide capsules, the determinant of serotype (or type), are heterogeneous in structure and amount, and these differences affect rates of transmission. In this study, we examined the contribution of capsule and its variations to the maintenance of pneumococcal viability under starvation conditions. S. pneumoniae retained its ability to colonize infant mice even after incubation for 24 h in phosphate-buffered saline at 25°C. The expression of capsule by the cps locus prolonged survival under these and other nutrient-poor conditions. Analysis of capsule-switch constructs showed that strain-to-strain differences in survival were due to capsule type rather than genetic background. The addition of glucose was sufficient to rescue the survival defect of the capsule-deficient derivative, demonstrating that in the absence of capsule, survival depends upon nutrient availability. During starvation, there was a decrease in capsule size and amount of capsular polysaccharide that was dependent on bacterial viability and the presence of the cps locus. These observations suggest that pneumococci catabolize their own capsular polysaccharide using the genes involved in its biosynthesis to maintain viability when other carbon sources are unavailable. Our findings describe a new role of the pneumococcal capsule: the prolongation of viability under nutrient-limiting conditions as would be encountered during periods when the organism is between hosts.
Collapse
|
43
|
Streptococcus pneumoniae Modulates Staphylococcus aureus Biofilm Dispersion and the Transition from Colonization to Invasive Disease. mBio 2018; 9:mBio.02089-17. [PMID: 29317512 PMCID: PMC5760742 DOI: 10.1128/mbio.02089-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae and Staphylococcus aureus are ubiquitous upper respiratory opportunistic pathogens. Individually, these Gram-positive microbes are two of the most common causative agents of secondary bacterial pneumonia following influenza A virus infection, and they constitute a significant source of morbidity and mortality. Since the introduction of the pneumococcal conjugate vaccine, rates of cocolonization with both of these bacterial species have increased, despite the traditional view that they are antagonistic and mutually exclusive. The interactions between S. pneumoniae and S. aureus in the context of colonization and the transition to invasive disease have not been characterized. In this report, we show that S. pneumoniae and S. aureus form stable dual-species biofilms on epithelial cells in vitro. When these biofilms are exposed to physiological changes associated with viral infection, S. pneumoniae disperses from the biofilm, whereas S. aureus dispersal is inhibited. These findings were supported by results of an in vivo study in which we used a novel mouse cocolonization model. In these experiments, mice cocolonized in the nares with both bacterial species were subsequently infected with influenza A virus. The coinfected mice almost exclusively developed pneumococcal pneumonia. These results indicate that despite our previous report that S. aureus disseminates into the lungs of mice stably colonized with these bacteria following influenza A virus infection, cocolonization with S. pneumoniae in vitro and in vivo inhibits S. aureus dispersal and transition to disease. This study provides novel insight into both the interactions between S. pneumoniae and S. aureus during carriage and the transition from colonization to secondary bacterial pneumonia. In this study, we demonstrate that Streptococcus pneumoniae can modulate the pathogenic potential of Staphylococcus aureus in a model of secondary bacterial pneumonia. We report that host physiological signals related to viral infection cease to elicit a dispersal response from S. aureus while in a dual-species setting with S. pneumoniae, in direct contrast to results of previous studies with each species individually. This study underscores the importance of studying polymicrobial communities and their implications in disease states.
Collapse
|
44
|
Zafar MA, Wang Y, Hamaguchi S, Weiser JN. Host-to-Host Transmission of Streptococcus pneumoniae Is Driven by Its Inflammatory Toxin, Pneumolysin. Cell Host Microbe 2017; 21:73-83. [PMID: 28081446 DOI: 10.1016/j.chom.2016.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/28/2016] [Accepted: 12/06/2016] [Indexed: 01/05/2023]
Abstract
Host-to-host transmission is a critical step for infection. Here we studied transmission of the opportunistic pathogen Streptococcus pneumoniae in an infant mouse model. Transmission from nasally colonized pups required high levels of bacterial shedding in nasal secretions and was temporally correlated with, and dependent upon, the acute inflammatory response. Pneumolysin, a pore-forming cytotoxin and major virulence determinant, was both necessary and sufficient to promote inflammation, which increased shedding and allowed for intralitter transmission. Direct contact between pups was not required for transmission indicating the importance of an environmental reservoir. An additional in vivo effect of pneumolysin was to enhance bacterial survival outside of the host. Our findings provide experimental evidence of a microbial strategy for transit to new hosts and explain why an organism expresses a toxin that damages the host upon which it depends.
Collapse
Affiliation(s)
- M Ammar Zafar
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Yang Wang
- School of Medicine, Tsinghua University, 100084 Beijing, China; Department of Microbiology, New York University, New York, NY 10016, USA
| | - Shigeto Hamaguchi
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Jeffrey N Weiser
- Department of Microbiology, New York University, New York, NY 10016, USA.
| |
Collapse
|
45
|
The Pneumococcal Serotype 15C Capsule Is Partially O-Acetylated and Allows for Limited Evasion of 23-Valent Pneumococcal Polysaccharide Vaccine-Elicited Anti-Serotype 15B Antibodies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017. [PMID: 28637806 DOI: 10.1128/cvi.00099-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As a species, Streptococcus pneumoniae (the pneumococcus) utilizes a diverse array of capsular polysaccharides to evade the host. In contrast to large variations in sugar composition and linkage formation, O-acetylation is a subtle capsular modification that nonetheless has a large impact on capsular shielding and recognition of the capsule by vaccine-elicited antibodies. Serotype 15B, which is included in the 23-valent pneumococcal polysaccharide vaccine (PPV23), carries the putative O-acetyltransferase gene wciZ The coding sequence of wciZ contains eight consecutive TA repeats [(TA)8]. Replication slippage is thought to result in the addition or loss of TA repeats, subsequently causing frameshift and truncation of WciZ to yield a nonacetylated serotype, 15C. Using sensitive serological tools, we show that serotype 15C isolates whose wciZ contains seven or nine TA repeats retain partial O-acetylation, while serotype 15C isolates whose wciZ contains six TA repeats have barely detectable O-acetylation. We confirmed by inhibition enzyme-linked immunosorbent assay that (TA)7 serotype 15C is ∼0.1% as acetylated as serotype 15B, while serotype 15X is nonacetylated. To eliminate the impact of genetic background, we created isogenic serotype 15B, (TA)7 serotype 15C, and 15BΔwciZ (15X) strains and found that reduction or absence of WciZ-mediated O-acetylation did not affect capsular shielding from phagocytes, biofilm formation, adhesion to nasopharyngeal cells, desiccation tolerance, or murine colonization. Sera from PPV23-immunized persons opsonized serotype 15B significantly but only slightly better than serotypes 15C and 15X; thus, PPV23 may not result in expansion of serotype 15C.
Collapse
|
46
|
Position of O-Acetylation within the Capsular Repeat Unit Impacts the Biological Properties of Pneumococcal Serotypes 33A and 33F. Infect Immun 2017; 85:IAI.00132-17. [PMID: 28438972 DOI: 10.1128/iai.00132-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/13/2017] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) produces many capsule types that differ in their abilities to evade host immune recognition. To explain these serotype-dependent protective capacities, many studies have investigated capsular thickness or the interaction of the capsule with complement proteins, but the effects of small chemical modifications of the capsule on its function have not been studied. One small chemical modification found frequently among pneumococcal capsules is O-acetylation. Pneumococcal serotype 33A has two membrane-bound O-acetyltransferase genes, wciG and wcjE A 33A wcjE-deficient variant, 33F, occurs naturally and is increasing in prevalence in the wake of widespread conjugate vaccine use, but no wciG-deficient variants have been reported. To study the biological consequence of the loss of O-acetylation, we created wciG-deficient variants in both serotypes 33A and 33F, which we named 33X1 (ΔwciG) and 33X2 (ΔwciG ΔwcjE). Serotypes 33X1 and 33X2 express novel capsule types based on serological and biochemical analyses. We found that loss of WcjE-mediated O-acetylation appears not to affect cell wall shielding, since serotypes 33A and 33F exhibit comparable nonspecific opsonophagocytic killing, biofilm production, and adhesion to nasopharyngeal cells, though serotype 33F survived short-term drying better than serotype 33A. Loss of WciG-mediated O-acetylation in serotypes 33X1 and 33X2, however, resulted in a phenotype resembling that of nonencapsulated strains: increased cell wall accessibility, increased nonspecific opsonophagocytic killing, enhanced biofilm formation, and increased adhesion to nasopharyngeal cells. We conclude that WciG-mediated, but not WcjE-mediated, O-acetylation is important for producing protective capsules in 33A and that small chemical changes to the capsule can drastically affect its biological properties.
Collapse
|
47
|
Sued BPR, Pereira PMA, Faria YV, Ramos JN, Binatti VB, Santos KRND, Seabra SH, Hirata R, Vieira VV, Mattos-Guaraldi AL, Pereira JAA. Sphygmomanometers and thermometers as potential fomites of Staphylococcus haemolyticus: biofilm formation in the presence of antibiotics. Mem Inst Oswaldo Cruz 2017; 112:188-195. [PMID: 28225903 PMCID: PMC5319369 DOI: 10.1590/0074-02760160381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/22/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The association between Staphylococcus haemolyticus and severe nosocomial infections is increasing. However, the extent to which fomites contribute to the dissemination of this pathogen through patients and hospital wards remains unknown. OBJECTIVES In the present study, sphygmomanometers and thermometers were evaluated as potential fomites of oxacillin-resistant S. haemolyticus (ORSH). The influence of oxacillin and vancomycin on biofilm formation by ORSH strains isolated from fomites was also investigated. METHODS The presence of ORSH on swabs taken from fomite surfaces in a Brazilian hospital was assessed using standard microbiological procedures. Antibiotic susceptibility profiles were determined by the disk diffusion method, and clonal distribution was assessed in pulsed-field gel electrophoresis (PFGE) assays. Minimum inhibitory concentrations (MICs) of oxacillin and vancomycin were evaluated via the broth microdilution method. Polymerase chain reaction (PCR) assays were performed to detect the mecA and icaAD genes. ORSH strains grown in media containing 1/4 MIC of vancomycin or oxacillin were investigated for slime production and biofilm formation on glass, polystyrene and polyurethane catheter surfaces. FINDINGS ORSH strains comprising five distinct PFGE types were isolated from sphygmomanometers (n = 5) and a thermometer (n = 1) used in intensive care units and surgical wards. ORSH strains isolated from fomites showed susceptibility to only linezolid and vancomycin and were characterised as multi-drug resistant (MDR). Slime production, biofilm formation and the survival of sessile bacteria differed and were independent of the presence of the icaAD and mecA genes, PFGE type and subtype. Vancomycin and oxacillin did not inhibit biofilm formation by vancomycin-susceptible ORSH strains on abiotic surfaces, including on the catheter surface. Enhanced biofilm formation was observed in some situations. Moreover, a sub-lethal dose of vancomycin induced biofilm formation by an ORSH strain on polystyrene. MAIN CONCLUSIONS Sphygmomanometers and thermometers are fomites for the transmission of ORSH. A sub-lethal dose of vancomycin may favor biofilm formation by ORSH on fomites and catheter surfaces.
Collapse
Affiliation(s)
- Bruna Pinto Ribeiro Sued
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Rio de Janeiro, RJ, Brasil
| | | | - Yuri Vieira Faria
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Rio de Janeiro, RJ, Brasil
| | - Juliana Nunes Ramos
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Vanessa Batista Binatti
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Rio de Janeiro, RJ, Brasil
| | | | - Sérgio Henrique Seabra
- Centro Universitário Estadual da Zona Oeste, Laboratório de Tecnologia em Bioquímica e Microscopia, Rio de Janeiro, RJ, Brasil
| | - Raphael Hirata
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Rio de Janeiro, RJ, Brasil
| | - Verônica Viana Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
48
|
Ng CG, Loke MF, Goh KL, Vadivelu J, Ho B. Biofilm formation enhances Helicobacter pylori survivability in vegetables. Food Microbiol 2016; 62:68-76. [PMID: 27889168 DOI: 10.1016/j.fm.2016.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/12/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Abstract
To date, the exact route and mode of transmission of Helicobacter pylori remains elusive. The detection of H. pylori in food using molecular approaches has led us to postulate that the gastric pathogen may survive in the extragastric environment for an extended period. In this study, we show that H. pylori prolongs its survival by forming biofilm and micro-colonies on vegetables. The biofilm forming capability of H. pylori is both strain and vegetable dependent. H. pylori strains were classified into high and low biofilm formers based on their highest relative biofilm units (BU). High biofilm formers survived longer on vegetables compared to low biofilm formers. The bacteria survived better on cabbage compared to other vegetables tested. In addition, images captured on scanning electron and confocal laser scanning microscopes revealed that the bacteria were able to form biofilm and reside as micro-colonies on vegetable surfaces, strengthening the notion of possible survival of H. pylori on vegetables for an extended period of time. Taken together, the ability of H. pylori to form biofilm on vegetables (a common food source for human) potentially plays an important role in its survival, serving as a mode of transmission of H. pylori in the extragastric environment.
Collapse
Affiliation(s)
- Chow Goon Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Mun Fai Loke
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khean Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bow Ho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Singapore Precision Medicine Centre Pte Ltd, Singapore 608783, Singapore.
| |
Collapse
|
49
|
Blanchette KA, Shenoy AT, Milner J, Gilley RP, McClure E, Hinojosa CA, Kumar N, Daugherty SC, Tallon LJ, Ott S, King SJ, Ferreira DM, Gordon SB, Tettelin H, Orihuela CJ. Neuraminidase A-Exposed Galactose Promotes Streptococcus pneumoniae Biofilm Formation during Colonization. Infect Immun 2016; 84:2922-32. [PMID: 27481242 PMCID: PMC5038079 DOI: 10.1128/iai.00277-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/21/2016] [Indexed: 01/26/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen that colonizes the nasopharynx. Herein we show that carbon availability is distinct between the nasopharynx and bloodstream of adult humans: glucose is absent from the nasopharynx, whereas galactose is abundant. We demonstrate that pneumococcal neuraminidase A (NanA), which cleaves terminal sialic acid residues from host glycoproteins, exposed galactose on the surface of septal epithelial cells, thereby increasing its availability during colonization. We observed that S. pneumoniae mutants deficient in NanA and β-galactosidase A (BgaA) failed to form biofilms in vivo despite normal biofilm-forming abilities in vitro Subsequently, we observed that glucose, sucrose, and fructose were inhibitory for biofilm formation, whereas galactose, lactose, and low concentrations of sialic acid were permissive. Together these findings suggested that the genes involved in biofilm formation were under some form of carbon catabolite repression (CCR), a regulatory network in which genes involved in the uptake and metabolism of less-preferred sugars are silenced during growth with preferred sugars. Supporting this notion, we observed that a mutant deficient in pyruvate oxidase, which converts pyruvate to acetyl-phosphate under non-CCR-inducing growth conditions, was unable to form biofilms. Subsequent comparative transcriptome sequencing (RNA-seq) analyses of planktonic and biofilm-grown pneumococci showed that metabolic pathways involving the conversion of pyruvate to acetyl-phosphate and subsequently leading to fatty acid biosynthesis were consistently upregulated during diverse biofilm growth conditions. We conclude that carbon availability in the nasopharynx impacts pneumococcal biofilm formation in vivo Additionally, biofilm formation involves metabolic pathways not previously appreciated to play an important role.
Collapse
Affiliation(s)
- Krystle A Blanchette
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Anukul T Shenoy
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey Milner
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ryan P Gilley
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Erin McClure
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cecilia A Hinojosa
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Nikhil Kumar
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sean C Daugherty
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Luke J Tallon
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sandra Ott
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Samantha J King
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen B Gordon
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Carlos J Orihuela
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
50
|
Leung MHY, Lee PKH. The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review. MICROBIOME 2016; 4:21. [PMID: 27216717 PMCID: PMC4877933 DOI: 10.1186/s40168-016-0165-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/11/2016] [Indexed: 05/10/2023]
Abstract
Recent high-throughput sequencing technology has led to an expansion of knowledge regarding the microbial communities (microbiome) across various built environments (BEs). The microbiome of the BE is dependent upon building factors and conditions that govern how outdoor microbes enter and persist in the BE. Additionally, occupants are crucial in shaping the microbiome of the BE by releasing human-associated microorganisms and resuspending microbes on floors and surfaces. Therefore, both the outdoors and occupants act as major sources of microorganisms found in the BE. However, most characterizations of the microbiome of the BE have been conducted in the Western world. Notably, outdoor locations and population groups present geographical variations in outdoor and human microbiomes, respectively. Given the influences of the outdoor and human microbiomes on BE microbiology, and the geographical variations in outdoor and human microbiomes, it is likely that the microbiomes of BEs also vary by location. The summation of microbiomes between BEs contribute to a potential BE pan-microbiome, which will both consist of microbes that are ubiquitous in indoor environments around the world, and microbes that appear to be endemic to particular geographical locations. Importantly, the BE pan-microbiome can potentially question the global application of our current views on indoor microbiology. In this review, we first provide an assessment on the roles of building and occupant properties on shaping the microbiome of the BE. This is then followed by a description of geographical variations in the microbiomes of the outdoors and humans, the two main sources of microbes in BEs. We present evidence of differences in microbiomes of BEs around the world, demonstrating the existence of a global pan-microbiome of the BE that is larger than the microbiome of any single indoor environment. Finally, we discuss the significance of understanding the BE pan-microbiome and identifying universal and location-specific relationships between building and occupant characteristics and indoor microbiology. This review highlights the much needed efforts towards determining the pan-microbiome of the BE, thereby identifying general and location-specific links between the microbial communities of the outdoors, human, and BE ecosystems, ultimately improving the health, comfort, and productivity of occupants around the world.
Collapse
Affiliation(s)
- Marcus H. Y. Leung
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, B5423-AC1 Hong Kong
| | - Patrick K. H. Lee
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, B5423-AC1 Hong Kong
| |
Collapse
|