1
|
Karnchanapandh K, Hanpaibool C, Sanachai K, Rungrotmongkol T. Elucidation of bezlotoxumab binding specificity to toxin B in Clostridioides difficile. J Biomol Struct Dyn 2024; 42:1617-1628. [PMID: 37098802 DOI: 10.1080/07391102.2023.2201360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/05/2023] [Indexed: 04/27/2023]
Abstract
C. difficile or Clostridioides difficile infection (CDI) is currently one of the major causes of epidemics worldwide. Toxin B from Clostridioides difficile toxin B (TcdB) infection is the main target protein inhibiting CDI recurrence. Clinical research suggested that bezlotoxumab's (Bez) efficiency is significantly reduced in neutralizing the B2 strain compared to the B1 strain. The monoclonal antibody (mAb) functions by binding to the epitope 1 and 2 regions in the combined repetitive oligopeptide (CROP) domain. Some binding residues are distinctively different between B1 and B2 strains. In this work, we aimed to elucidate and compare insights into the interaction of toxins B1 and B2 in complex with Bez by using all-atom molecular dynamics (MD) simulations and binding free energy calculations. The predicted ΔGbinding values suggested that the antibody (Ab) could bind to toxin B1 significantly better than B2, supported by higher salt bridge and hydrogen bonding (H-bonding) interactions, as well as the number of contact residues between the two focused proteins. The toxin B1 residues important for binding with Bez were E1878, T1901, E1902, F1905, N1941, V1946, N2031, T2032, E2033, V2076, V2077, and E2092. The lower susceptibility of Bez towards toxin B2 was primarily due to a change of residue E2033 from glutamate to alanine (A2033) and the loss of E1878 and E1902 contributions, as determined by the intermolecular interaction changes from the dynamic residue interaction network (dRIN) analysis. The obtained data strengthen our understanding of Bez/toxin B binding.
Collapse
Affiliation(s)
- Kun Karnchanapandh
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Chonnikan Hanpaibool
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Campidelli C, Bruxelle JF, Collignon A, Péchiné S. Immunization Strategies Against Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:117-150. [PMID: 38175474 DOI: 10.1007/978-3-031-42108-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is an important healthcare but also a community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients, and to prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to elicit immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile, and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product, and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins, and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens and either toxins or colonization factors.
Collapse
Affiliation(s)
- Camille Campidelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-François Bruxelle
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Anne Collignon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Severine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
3
|
Serum IgM antibody response to Clostridioides difficile polysaccharide PS-II vaccination in pony foals. Anaerobe 2022; 77:102635. [PMID: 36064161 DOI: 10.1016/j.anaerobe.2022.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Clostridioides difficile (formerly Clostridium difficile) is associated with colitis in foals and mature horses. C. difficile exposes specific phosphorylated polysaccharides (PSs), named PS-I, PS-II and PS-III. These cell-surface PSs are potential vaccine targets, especially the hexasaccharide phosphate PS-II, that has been found in all C. difficile ribotypes examined. Since we previously identified anti-PS-II circulating antibodies in horses, we postulated that vaccinating foals with PS-II may prevent colonization by C. difficile. In this study, we aim to evaluate the IgM antibody responses in foals to PS-II. METHODS To evaluate the reactogenicity and immunogenicity of C. difficile PS-II in foals, three-to four-month-old foals were vaccinated intramuscularly three times at intervals of three weeks with 100 μg/dose (3 foals) or 500 μg/dose (3 foals) of purified PS-II antigen with aluminum hydroxide adjuvant, or with a placebo preparation (2 foals) containing adjuvant alone. RESULTS No injection site swelling, pain or fever was observed after vaccination. Two of the three foals receiving 100 μg/dose, and three out of three foals receiving 500 μg/dose of PS-II responded with increases in serum IgM antibodies. No control foals that received the placebo had IgM responses to PS-II. There was a trend towards a higher response rate in foals receiving 500 μg PS-II one week after second vaccination when compared to control foals and towards higher concentrations of serum IgM antibodies in foals receiving 500 μg PS-II. CONCLUSIONS No adverse reactions were observed following vaccination with PS-II in foals; Serum IgM immune responses were induced by vaccination. A polysaccharide-based vaccine for C. difficile in horses deserves further investigation.
Collapse
|
4
|
Abdolmohammadi Khiav L, Zahmatkesh A. Major pathogenic Clostridia in human and progress toward the clostridial vaccines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1059-1068. [PMID: 36246067 PMCID: PMC9526890 DOI: 10.22038/ijbms.2022.65518.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022]
Abstract
The Clostridium genus is composed of a large spectrum of heterogeneous bacteria. They are Gram-positive, mostly mesophilic, and anaerobic spore-forming strains. Clostridia are widely distributed in oxygen-free habitats. They are found principally in the soil and intestines of ruminants as normal flora, but also are the cause of several infections in humans. The infections produced by important species in humans include botulism, tetanus, pseudomembranous colitis, antibiotics-associated diarrhea, and gas gangrene. Immunization with toxoid or bacterin-toxoid or genetically modified or other vaccines is a protective way against clostridial infection. Several experimental or commercial vaccines have been developed worldwide. Although conventional vaccines including toxoid vaccines are very important, the new generation of vaccines is an effective alternative to conventional vaccines. Recent advances have made it possible for new vaccines to increase immunogenicity. This review discusses briefly the important species of clostridia in humans, their toxins structure, and vaccine development and usage throughout the world.
Collapse
Affiliation(s)
- Lida Abdolmohammadi Khiav
- Department of Anaerobic Vaccine Research and Production, Specialized Clostridia Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Vaccine Research and Production, Specialized Clostridia Research Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
5
|
Haddad NS, Nozick S, Kim G, Ohanian S, Kraft C, Rebolledo PA, Wang Y, Wu H, Bressler A, Le SNT, Kuruvilla M, Cannon LE, Lee FEH, Daiss JL. Novel immunoassay for diagnosis of ongoing Clostridioides difficile infections using serum and medium enriched for newly synthesized antibodies (MENSA). J Immunol Methods 2021; 492:112932. [PMID: 33221459 DOI: 10.1016/j.jim.2020.112932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Clostridioides difficile infections (CDI) have been a challenging and increasingly serious concern in recent years. While early and accurate diagnosis is crucial, available assays have frustrating limitations. OBJECTIVE Develop a simple, blood-based immunoassay to accurately diagnose patients suffering from active CDI. MATERIALS AND METHODS Uninfected controls (N = 95) and CDI patients (N = 167) were recruited from Atlanta area hospitals. Blood samples were collected from patients within twelve days of a positive CDI test and processed to yield serum and PBMCs cultured to yield medium enriched for newly synthesized antibodies (MENSA). Multiplex immunoassays measured Ig responses to ten recombinant C. difficile antigens. RESULTS Sixty-six percent of CDI patients produced measurable responses to C. difficile antigens in their serum or MENSA within twelve days of a positive CDI test. Fifty-two of the 167 CDI patients (31%) were detectable in both serum and MENSA, but 32/167 (19%) were detectable only in MENSA, and 27/167 (16%) were detectable only in serum. DISCUSSION We describe the results of a multiplex immunoassay for the diagnosis of ongoing CDI in hospitalized patients. Our assay resolved patients into four categories: MENSA-positive only, serum-positive only, MENSA- and serum-positive, and MENSA- and serum-negative. The 30% of patients who were MENSA-positive only may be accounted for by nascent antibody secretion prior to seroconversion. Conversely, the serum-positive only subset may have been more advanced in their disease course. Immunocompromise and misdiagnosis may have contributed to the 34% of CDI patients who were not identified using MENSA or serum immunoassays. IMPORTANCE While there was considerable overlap between patients identified through MENSA and serum, each method detected a distinctive patient group. The combined use of both MENSA and serum to detect CDI patients resulted in the greatest identification of CDI patients. Together, longitudinal analysis of MENSA and serum will provide a more accurate evaluation of successful host humoral immune responses in CDI patients.
Collapse
Affiliation(s)
| | | | | | | | - Colleen Kraft
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Paulina A Rebolledo
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Grady Memorial Hospital, Atlanta, GA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Adam Bressler
- Infectious Disease Specialists of Atlanta, Decatur, GA, USA
| | - Sang Nguyet Thi Le
- Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Merin Kuruvilla
- Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | | | - F Eun-Hyung Lee
- MicroB-plex, Inc., Atlanta, GA, USA; Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - John L Daiss
- MicroB-plex, Inc., Atlanta, GA, USA; Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
6
|
Immunogenicity and Protection from Receptor-Binding Domains of Toxins as Potential Vaccine Candidates for Clostridium difficile. Vaccines (Basel) 2019; 7:vaccines7040180. [PMID: 31717334 PMCID: PMC6963439 DOI: 10.3390/vaccines7040180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
The receptor-binding domains (RBDs) located in toxin A and toxin B of Clostridium difficile are known to be nontoxic and immunogenic. We need to develop a new type vaccine based on RBDs. In this study, we expressed and purified recombinant proteins (named RBD-TcdA and RBD-TcdB) as vaccine candidates containing the RBDs of toxin A and toxin B, respectively, from the C. difficile reference strain VPI10463. The immunogenicity and protection of the vaccine candidates RBD-TcdA, RBD-TcdB, and RBD-TcdA/B was evaluated by ELISA and survival assays. The data indicated that mice immunized with all vaccine candidates displayed potent levels of RBD-specific serum IgG. Following intramuscular immunization of mice with RBD-TcdA and/or RBD-TcdB, these vaccine candidates triggered immune responses that protected mice compared to mice immunized with aluminum hydroxide alone. Taken together, the results of this study reveal that recombinant proteins containing RBDs of C. difficile toxins can be used for vaccine development. Additionally, we found that an RBD-TcdA/B vaccine can elicit a stronger humoral immune response and provide better immunoprotection than the univalent vaccines. This RBD vaccine candidate conferred significant protection against disease symptoms and death caused by toxins from a wild-type C. difficile strain.
Collapse
|
7
|
Peng Z, Simeon R, Mitchell SB, Zhang J, Feng H, Chen Z. Designed Ankyrin Repeat Protein (DARPin) Neutralizers of TcdB from Clostridium difficile Ribotype 027. mSphere 2019; 4:e00596-19. [PMID: 31578248 PMCID: PMC6796971 DOI: 10.1128/msphere.00596-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 02/08/2023] Open
Abstract
Clostridium difficile infection (CDI) is a leading cause of hospital-acquired diarrhea. In recent decades, the emergence of the "hypervirulent" BI/NAP1/027 strains of C. difficile significantly increased the morbidity and mortality of CDI. The pathogenesis of CDI is primarily mediated by the action of two toxins, TcdA and TcdB, with TcdB being the major virulent factor in humans. In this report, we describe the engineering of a panel of designed ankyrin repeat proteins (DARPins) that potently neutralize TcdB from the BI/NAP1/027 strains (e.g., TcdBUK1). The most effective DARPin, D16, inhibits TcdBUK1 with a 50% effective concentration (EC50) of 0.5 nM, which is >66-fold lower than that of the FDA-approved anti-TcdB antibody bezlotoxumab (EC50, ∼33 nM). Competitive enzyme-linked immunosorbent assays (ELISAs) showed that D16 blocks interactions between TcdB and its receptor, chondroitin sulfate proteoglycan 4 (CSPG4). The dimeric DARPin U3D16, which pairs D16 with DARPin U3, a disrupter of the interaction of TcdB with Frizzled 1/2/7 receptor, exhibits 10-fold-to-20-fold-enhanced neutralization potency against TcdB from C. difficile strains VPI 10463 (laboratory strain) and M68 (CF/NAP9/017) but identical activity against TcdBUK1 relative to D16. Subsequent ELISAs revealed that TcdBUK1 did not significantly interact with Frizzled 1/2/7. Computation modeling revealed 4 key differences at the Frizzled 1/2/7 binding interface which are likely responsible for the significantly reduced binding affinity.IMPORTANCE We report the engineering and characterization of designed ankyrin proteins as potent neutralizers of TcdB toxin secreted by a hypervirulent ribotype 027 strain of Clostridium difficile We further show that although TcdB toxins from both ribotype 027 and VPI 10461 interact efficiently with TcdB receptors CSPG4 and Pvrl3, TcdB027 lacks significant ability to bind the only known physiologically relevant TcdB receptor, Frizzled 1/2/7.
Collapse
Affiliation(s)
- Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Rudo Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Samuel B Mitchell
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas, USA
| |
Collapse
|
8
|
Giau VV, Lee H, An SSA, Hulme J. Recent advances in the treatment of C. difficile using biotherapeutic agents. Infect Drug Resist 2019; 12:1597-1615. [PMID: 31354309 PMCID: PMC6579870 DOI: 10.2147/idr.s207572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile (C. difficile) is rapidly becoming one of the most prevalent health care–associated bacterial infections in the developed world. The emergence of new, more virulent strains has led to greater morbidity and resistance to standard therapies. The bacterium is readily transmitted between people where it can asymptomatically colonize the gut environment, and clinical manifestations ranging from frequent watery diarrhea to toxic megacolon can arise depending on the age of the individual or their state of gut dysbiosis. Several inexpensive approaches are shown to be effective against virulent C. difficile in research settings such as probiotics, fecal microbiota transfer and immunotherapies. This review aims to highlight the current advantages and limitations of the aforementioned approaches with an emphasis on recent studies.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| | - Hyon Lee
- Department of Neurology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| | - John Hulme
- Department of BioNano Technology, Gachon University, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
9
|
Status of vaccine research and development for Clostridium difficile. Vaccine 2019; 37:7300-7306. [PMID: 30902484 DOI: 10.1016/j.vaccine.2019.02.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/21/2019] [Indexed: 12/15/2022]
Abstract
Clostridium difficile associated disease is fundamentally associated with dysbiosis of the gut microbiome as a consequence of antibiotic use. This is because this sporulating, obligate anaerobe germinates and proliferates rapidly in the dysbiotic gut, which is an indirect consequence of their use. During its growth, C. difficile produces two toxins, toxin A (TcdA) and toxin B (TcdB), which are responsible for the majority of clinical symptoms associated with the disease. Three parenterally delivered vaccines, based on detoxified or recombinant forms of these toxins, have undergone or are undergoing clinical trials. Each offers the opportunity to generate high titres of toxin neutralising antibodies. Whilst these data suggest these vaccines may reduce primary symptomatic disease, they do not in their current form reduce the capacity of the organism to persist and shed from the vaccinated host. The current progress of vaccine development is considered with advantages and limitations of each highlighted. In addition, several alternative approaches are described that seek to limit C. difficile germination, colonisation and persistence. It may yet prove that the most effective treatments to limit infection, disease and spread of the organism will require a combination of therapeutic approaches. The potential use and efficacy of these vaccines in low and middle income countries will be depend on the development of a cost effective vaccine and greater understanding of the distribution and extent of disease in these countries.
Collapse
|
10
|
Lectin Activity of the TcdA and TcdB Toxins of Clostridium difficile. Infect Immun 2019; 87:IAI.00676-18. [PMID: 30530621 PMCID: PMC6386544 DOI: 10.1128/iai.00676-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a major cause of hospital-acquired antibiotic-associated diarrhea. C. difficile produces two cytotoxins, TcdA and TcdB; both toxins are multidomain proteins that lead to cytotoxicity through the modification and inactivation of small GTPases of the Rho/Rac family. Previous studies have indicated that host glycans are targets for TcdA and TcdB, with interactions thought to be with both α- and β-linked galactose. In the current study, screening of glycan arrays with different domains of TcdA and TcdB revealed that the binding regions of both toxins interact with a wider range of host glycoconjugates than just terminal α- and β-linked galactose, including blood groups, Lewis antigens, N-acetylglucosamine, mannose, and glycosaminoglycans. The interactions of TcdA and TcdB with ABO blood group and Lewis antigens were assessed by surface plasmon resonance (SPR). The blood group A antigen was the highest-affinity ligand for both toxins. Free glycans alone or in combination were unable to abolish Vero cell cytotoxicity by TcdB. SPR competition assays indicate that there is more than one glycan binding site on TcdB. Host glycoconjugates are common targets of bacterial toxins, but typically this binding is to a specific structure or related structures. The binding of TcdA and TcdB is to a wide range of host glycans providing a wide range of target cells and tissues in vivo.
Collapse
|
11
|
Wang S, Wang Y, Cai Y, Kelly CP, Sun X. Novel Chimeric Protein Vaccines Against Clostridium difficile Infection. Front Immunol 2018; 9:2440. [PMID: 30405630 PMCID: PMC6204379 DOI: 10.3389/fimmu.2018.02440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of world-wide nosocomial acquired diarrhea in adults. Active vaccination is generally accepted as a logical and cost-effective approach to prevent CDI. In this paper, we have generated two novel chimeric proteins; one designated Tcd169, comprised of the glucosyltransferase domain (GT), the cysteine proteinase domain (CPD), and receptor binding domain (RBD) of TcdB, and the RBD of TcdA; the other designated Tcd169FI, which contains Salmonella typhimurium flagellin (sFliC) and Tcd169. Both proteins were expressed in and purified from Bacillus megaterium. Point mutations were made in the GT (W102A, D288N) and CPD (C698) of TcdB to ensure that Tcd169 and Tcd169FI were atoxic. Immunization with Tcd169 or Tcd169Fl induced protective immunity against TcdA/TcdB challenge through intraperitoneal injection, also provided mice full protection against infection with a hyper-virulent C. difficile strain (BI/NAP1/027). In addition, inclusion of sFlic in the fusion protein (Tcd169Fl) enhanced its protective immunity against toxin challenge, reduced C. difficile numbers in feces from Tcd169Fl-immunized mice infected C. difficile. Our data show that Tcd169 and Tcd169FI fusion proteins may represent alternative vaccine candidates against CDI.
Collapse
Affiliation(s)
- Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yuanguo Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ying Cai
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ciaran P. Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
12
|
Clostridium difficile Toxoid Vaccine Candidate Confers Broad Protection against a Range of Prevalent Circulating Strains in a Nonclinical Setting. Infect Immun 2018; 86:IAI.00742-17. [PMID: 29632249 PMCID: PMC5964523 DOI: 10.1128/iai.00742-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/11/2018] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection (CDI) is a leading cause of nosocomial and antibiotic-associated diarrhea. A vaccine, based on formalin-inactivated toxins A and B purified from anaerobic cultures of C. difficile strain VPI 10463 (toxinotype 0), has been in development for the prevention of symptomatic CDI. We evaluated the breadth of protection conferred by this C. difficile toxoid vaccine in cross-neutralization assessments using sera from vaccinated hamsters against a collection of 165 clinical isolates. Hamster antisera raised against the C. difficile toxoid vaccine neutralized the cytotoxic activity of culture supernatants from several toxinotype 0 strains and heterologous strains from 10 different toxinotypes. Further assessments performed with purified toxins confirmed that vaccine-elicited antibodies can neutralize both A and B toxins from a variety of toxinotypes. In the hamster challenge model, the vaccine conferred significant cross-protection against disease symptoms and death caused by heterologous C. difficile strains from the most common phylogenetic clades, including the most prevalent toxinotypes.
Collapse
|
13
|
Immunization Strategies Against Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:197-225. [PMID: 29383671 DOI: 10.1007/978-3-319-72799-8_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C. difficile infection (CDI) is an important healthcare- but also community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients and prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to restore immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens, either toxins or colonization factors.
Collapse
|
14
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
15
|
Abstract
Clostridium difficile is the cause of antibiotics-associated diarrhea and pseudomembranous colitis. The pathogen produces three protein toxins: C. difficile toxins A (TcdA) and B (TcdB), and C. difficile transferase toxin (CDT). The single-chain toxins TcdA and TcdB are the main virulence factors. They bind to cell membrane receptors and are internalized. The N-terminal glucosyltransferase and autoprotease domains of the toxins translocate from low-pH endosomes into the cytosol. After activation by inositol hexakisphosphate (InsP6), the autoprotease cleaves and releases the glucosyltransferase domain into the cytosol, where GTP-binding proteins of the Rho/Ras family are mono-O-glucosylated and, thereby, inactivated. Inactivation of Rho proteins disturbs the organization of the cytoskeleton and affects multiple Rho-dependent cellular processes, including loss of epithelial barrier functions, induction of apoptosis, and inflammation. CDT, the third C. difficile toxin, is a binary actin-ADP-ribosylating toxin that causes depolymerization of actin, thereby inducing formation of the microtubule-based protrusions. Recent progress in understanding of the toxins' actions include insights into the toxin structures, their interaction with host cells, and functional consequences of their actions.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| | - Thomas Jank
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany; , ,
| |
Collapse
|
16
|
Péchiné S, Janoir C, Collignon A. Emerging monoclonal antibodies against Clostridium difficile infection. Expert Opin Biol Ther 2017; 17:415-427. [PMID: 28274145 DOI: 10.1080/14712598.2017.1300655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Clostridium difficile infections are characterized by a high recurrence rate despite antibiotic treatments and there is an urgent need to develop new treatments such as fecal transplantation and immonotherapy. Besides active immunotherapy with vaccines, passive immunotherapy has shown promise, especially with monoclonal antibodies. Areas covered: Herein, the authors review the different assays performed with monoclonal antibodies against C. difficile toxins and surface proteins to treat or prevent primary or recurrent episodes of C. difficile infection in animal models and in clinical trials as well. Notably, the authors lay emphasis on the phase III clinical trial (MODIFY II), which allowed bezlotoxumab to be approved by the Food and Drug Administration and the European Medicines Agency. They also review new strategies for producing single domain antibodies and nanobodies against C. difficile and new approaches to deliver them in the digestive tract. Expert opinion: Only two human Mabs against TcdA and TcdB have been tested alone or in combination in clinical trials. However, many animal model studies have provided rationale for the use of Mabs and nanobodies in C. difficile infection and pave the way for further clinical investigation.
Collapse
Affiliation(s)
- Séverine Péchiné
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| | - Claire Janoir
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| | - Anne Collignon
- a EA4043 Faculté de Pharmacie , Univ Paris-Sud, Université Paris-Saclay , Chatenay-Malabry , France
| |
Collapse
|
17
|
Zhang BZ, Cai J, Yu B, Hua Y, Lau CC, Kao RYTT, Sze KH, Yuen KY, Huang JD. A DNA vaccine targeting TcdA and TcdB induces protective immunity against Clostridium difficile. BMC Infect Dis 2016; 16:596. [PMID: 27770789 PMCID: PMC5075199 DOI: 10.1186/s12879-016-1924-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/12/2016] [Indexed: 01/04/2023] Open
Abstract
Background Clostridium difficile-associated disease (CDAD) constitutes a great majority of hospital diarrhea cases in industrialized countries and is induced by two types of large toxin molecules: toxin A (TcdA) and toxin B (TcdB). Development of immunotherapeutic approaches, either active or passive, has seen a resurgence in recent years. Studies have described vaccine plasmids that express either TcdA and/or TcdB receptor binding domain (RBD). However, the effectiveness of one vector encoding both toxin RBDs against CDAD has not been evaluated. Methods In the study, we constructed highly optimized plasmids to express the receptor binding domains of both TcdA and TcdB from a single vector. The DNA vaccine was evaluated in two animal models for its immunogenicity and protective effects. Results The DNA vaccine induced high levels of serum antibodies to toxin A and/or B and demonstrated neutralizing activity in both in vitro and in vivo systems. In a C. difficile hamster infection model, immunization with the DNA vaccine reduced infection severity and conferred significant protection against a lethal C. difficile strain. Conclusions This study has demonstrated a single plasmid encoding the RBD domains of C. difficile TcdA and TcdB as a DNA vaccine that could provide protection from C. difficile disease.
Collapse
Affiliation(s)
- Bao-Zhong Zhang
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, 3/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China.,HKU-Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Jianpiao Cai
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China
| | - Bin Yu
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, 3/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yanhong Hua
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, 3/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Candy Choiyi Lau
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China
| | - Richard Yi-Tsun Tsun Kao
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China
| | - Kong-Hung Sze
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Pokfulam, Hong Kong, China.
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, 3/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China. .,HKU-Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China. .,The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China.
| |
Collapse
|
18
|
Péchiné S, Collignon A. Immune responses induced by Clostridium difficile. Anaerobe 2016; 41:68-78. [PMID: 27108093 DOI: 10.1016/j.anaerobe.2016.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
Abstract
The spectrum of Clostridium difficile infections is highly variable, ranging from asymptomatic carriage to fatal colitis depending on the strain virulence and on the host, its gut microbiota and its immune response. After disruption of the gut microbiota, C. difficile pathogenesis can be divided into three steps: 1) contamination by spores and their germination; 2) multiplication of vegetative cells and intestinal colonization using colonization factors; 3) production of the toxins TcdA and TcdB, and for some strains, the binary toxin, which are responsible for the clinical signs. Three lines of defense counteract C. difficile. The first line is the epithelial barrier, which is breached by the toxins. Then, a rapid innate immune response follows, which forms the second line of defense. It provides very quick defense reactions against C. difficile but is non-specific and does not confer memory. C. difficile and its virulence factors, the toxins and colonization factors, induce a highly pro-inflammatory response, which can be either beneficial or harmful, but triggers the adaptive immunity as the third line of defense required to control the infectious process. Adaptive immunity provides a highly specific immune response against C. difficile with memory and long lasting immunity. The innate and adaptive immune responses against the toxins and surface components are analyzed as well as their role in disease susceptibility, severity and recurrences.
Collapse
Affiliation(s)
- Séverine Péchiné
- Faculté de pharmacie, EA 4043 "Unité Bactéries Pathogènes et Santé", Univ. Paris-Sud, Université Paris-Saclay, 5 Rue Jean Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Anne Collignon
- Faculté de pharmacie, EA 4043 "Unité Bactéries Pathogènes et Santé", Univ. Paris-Sud, Université Paris-Saclay, 5 Rue Jean Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
19
|
Qiu H, Cassan R, Johnstone D, Han X, Joyee AG, McQuoid M, Masi A, Merluza J, Hrehorak B, Reid R, Kennedy K, Tighe B, Rak C, Leonhardt M, Dupas B, Saward L, Berry JD, Nykiforuk CL. Novel Clostridium difficile Anti-Toxin (TcdA and TcdB) Humanized Monoclonal Antibodies Demonstrate In Vitro Neutralization across a Broad Spectrum of Clinical Strains and In Vivo Potency in a Hamster Spore Challenge Model. PLoS One 2016; 11:e0157970. [PMID: 27336843 PMCID: PMC4919053 DOI: 10.1371/journal.pone.0157970] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/08/2016] [Indexed: 01/07/2023] Open
Abstract
Clostridium difficile (C. difficile) infection (CDI) is the main cause of nosocomial antibiotic-associated colitis and increased incidence of community-associated diarrhea in industrialized countries. At present, the primary treatment of CDI is antibiotic administration, which is effective but often associated with recurrence, especially in the elderly. Pathogenic strains produce enterotoxin, toxin A (TcdA), and cytotoxin, toxin B (TcdB), which are necessary for C. difficile induced diarrhea and gut pathological changes. Administration of anti-toxin antibodies provides an alternative approach to treat CDI, and has shown promising results in preclinical and clinical studies. In the current study, several humanized anti-TcdA and anti-TcdB monoclonal antibodies were generated and their protective potency was characterized in a hamster infection model. The humanized anti-TcdA (CANmAbA4) and anti-TcdB (CANmAbB4 and CANmAbB1) antibodies showed broad spectrum in vitro neutralization of toxins from clinical strains and neutralization in a mouse toxin challenge model. Moreover, co-administration of humanized antibodies (CANmAbA4 and CANmAbB4 cocktail) provided a high level of protection in a dose dependent manner (85% versus 57% survival at day 22 for 50 mg/kg and 20 mg/kg doses, respectively) in a hamster gastrointestinal infection (GI) model. This study describes the protective effects conferred by novel neutralizing anti-toxin monoclonal antibodies against C. difficile toxins and their potential as therapeutic agents in treating CDI.
Collapse
Affiliation(s)
- Hongyu Qiu
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Robyn Cassan
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Darrell Johnstone
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Xiaobing Han
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Antony George Joyee
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Monica McQuoid
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Andrea Masi
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - John Merluza
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Bryce Hrehorak
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Ross Reid
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Kieron Kennedy
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Bonnie Tighe
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Carla Rak
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Melanie Leonhardt
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Brian Dupas
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Laura Saward
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Jody D. Berry
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| | - Cory L. Nykiforuk
- Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., 155 Innovation Drive, Winnipeg, MB, R3T 5Y3, Canada
| |
Collapse
|
20
|
Maldarelli GA, Matz H, Gao S, Chen K, Hamza T, Yfantis HG, Feng H, Donnenberg MS. Pilin Vaccination Stimulates Weak Antibody Responses and Provides No Protection in a C57Bl/6 Murine Model of Acute Clostridium difficile Infection. JOURNAL OF VACCINES & VACCINATION 2016; 7:321. [PMID: 27375958 PMCID: PMC4927082 DOI: 10.4172/2157-7560.1000321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile is the leading cause of nosocomial infections in the United States, adding billions of dollars per year to health care costs. A vaccine targeted against the bacterium would be extremely beneficial in decreasing the morbidity and mortality caused by C. difficile-associated disease; a vaccine directed against a colonization factor would hinder the spread of the bacterium as well as prevent disease. Type IV pili (T4Ps) are extracellular appendages composed of protein monomers called pilins. They are involved in adhesion and colonization in a wide variety of bacteria and archaea, and are putative colonization factors in C. difficile. We hypothesized that vaccinating mice with pilins would lead to generation of anti-pilin antibodies, and would protect against C. difficile challenge. We found that immunizing C57Bl/6 mice with various pilins, whether combined or as individual proteins, led to low anti-pilin antibody titers and no protection upon C. difficile challenge. Passive transfer of anti-pilin antibodies led to high serum anti-pilin IgG titers, but to undetectable fecal anti-pilin IgG titers and did not protect against challenge. The low antibody titers observed in these experiments may be due to the particular strain of mice used. Further experiments, possibly with a different animal model of C. difficile infection, are needed to determine if an anti-T4P vaccine would be protective against C. difficile infection.
Collapse
Affiliation(s)
- Grace A Maldarelli
- Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hanover Matz
- Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Si Gao
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Kevin Chen
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Harris G Yfantis
- Department of Pathology and Laboratory Medicine, VAMHCS, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, USA
| | - Michael S Donnenberg
- Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Biochemical and Immunological Characterization of Truncated Fragments of the Receptor-Binding Domains of C. difficile Toxin A. PLoS One 2015; 10:e0135045. [PMID: 26271033 PMCID: PMC4536038 DOI: 10.1371/journal.pone.0135045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 07/17/2015] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is an emerging pathogen responsible for opportunistic infections in hospitals worldwide and is the main cause of antibiotic-associated pseudo-membranous colitis and diarrhea in humans. Clostridial toxins A and B (TcdA and TcdB) specifically bind to unknown glycoprotein(s) on the surface of epithelial cells in the host intestine, disrupting the intestinal barrier and ultimately leading to acute inflammation and diarrhea. The C-terminal receptor-binding domain (RBD) of TcdA, which is responsible for the initial binding of the toxin to host glycoproteins, has been predicted to contain 7 potential oligosaccharide-binding sites. To study the specific roles and functions of these 7 putative lectin-like binding regions, a consensus sequence of TcdA RBD derived from different C. difficile strains deposited in the NCBI protein database and three truncated fragments corresponding to the N-terminal (residues 1–411), middle (residues 296–701), and C-terminal portions (residues 524–911) of the RBD (F1, F2 and F3, respectively) were designed and expressed in Escherichia coli. In this study, the recombinant RBD (rRBD) and its truncated fragments were purified, characterized biologically and found to have the following similar properties: (a) are capable of binding to the cell surface of both Vero and Caco-2 cells; (b) possess Toll-like receptor agonist-like adjuvant activities that can activate dendritic cell maturation and increase the secretion of pro-inflammatory cytokines; and (c) function as potent adjuvants in the intramuscular immunization route to enhance immune responses against weak immunogens. Although F1, F2 and F3 have similar repetitive amino acid sequences and putative oligosaccharide-binding domains, they do not possess the same biological and immunological properties: (i) TcdA rRBD and its fragments bind to the cell surface, but only TcdA rRBD and F3 internalize into Vero cells within 15 min; (ii) the fragments exhibit various levels of hemagglutinin (HA) activity, with the exception of the F1 fragment, which demonstrates no HA activity; and (iii) in the presence of alum, all fragments elicit various levels of anti-toxin A-neutralizing antibody responses, but those neutralizing antibodies elicited by F2 did not protect mice against a TcdA challenge. Because TcdA rRBD, F1 and F3 formulated with alum can elicit immune protective responses against the cytotoxicity of TcdA, they represent potential components of future candidate vaccines against C. difficile-associated diseases.
Collapse
|
22
|
Wang YK, Yan YX, Kim HB, Ju X, Zhao S, Zhang K, Tzipori S, Sun X. A chimeric protein comprising the glucosyltransferase and cysteine proteinase domains of toxin B and the receptor binding domain of toxin A induces protective immunity against Clostridium difficile infection in mice and hamsters. Hum Vaccin Immunother 2015; 11:2215-22. [PMID: 26036797 PMCID: PMC4635733 DOI: 10.1080/21645515.2015.1052352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Clostridium difficile is the major cause of hospital-acquired infectious diarrhea and colitis in developed countries. The pathogenicity of C. difficile is mainly mediated by the release of 2 large potent exotoxins, toxin A (TcdA) and toxin B (TcdB), both of which require neutralization to prevent disease occurrence. We have generated a novel chimeric protein, designated mTcd138, comprised of the glucosyltransferase and cysteine proteinase domains of TcdB and the receptor binding domain of TcdA and expressed it in Bacillus megaterium. To ensure that mTcd138 is atoxic, 2 point mutations were introduced to the glucosyltransferase domain of TcdB, which essentially eliminates toxicity of mTcd138. Parenteral immunizations of mice and hamsters with mTcd138 induced protective antibodies to both toxins and provided protection against infection with the hyper-virulent C. difficile strain UK6.
Collapse
Affiliation(s)
- Yuan-Kai Wang
- a Department of Infectious Diseases and Global Health ; Tufts University Cummings School of Veterinary Medicine ; North Grafton , MA USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Guo S, Yan W, McDonough SP, Lin N, Wu KJ, He H, Xiang H, Yang M, Moreira MAS, Chang YF. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model. Vaccine 2015; 33:1586-95. [DOI: 10.1016/j.vaccine.2015.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 01/05/2023]
|
24
|
Larabee JL, Krumholz A, Hunt JJ, Lanis JM, Ballard JD. Exposure of neutralizing epitopes in the carboxyl-terminal domain of TcdB is altered by a proximal hypervariable region. J Biol Chem 2015; 290:6975-85. [PMID: 25614625 DOI: 10.1074/jbc.m114.612184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sequence, activity, and antigenicity of TcdB varies between different strains of Clostridium difficile. As a result, ribotype-specific forms of TcdB exhibit different toxicities and are not strongly cross-neutralized. Using a combination of biochemical and immunological approaches, we compared two important variants of TcdB (TcdB012 and TcdB027) to identify the mechanisms through which sequence differences alter epitopes and activity of the toxin. These analyses led to the discovery of a critical variation in the 1753-1851 (B2') region of TcdB, which affects the exposure of neutralizing epitopes in the toxin. Sequence comparisons found that the B2' region exhibits only 77% identity and is the most variable sequence between the two forms of TcdB. A combination of biochemical, analytical, and mutagenesis experiments revealed that the B2' region promotes protein-protein interactions. These interactions appear to shield neutralizing epitopes that would otherwise be exposed in the toxin, an event found to be less prominent in TcdB012 due to sequence differences in the 1773-1780 and 1791-1798 regions of the B2' domain. When the carboxyl-terminal domains of TcdB012 and TcdB027 are swapped, neutralization experiments suggest that the amino terminus of TcdB interacts with the B2' region and impacts the exposure of neutralizing epitopes in the carboxyl terminus. Collectively, these data suggest that variations in the B2' region affect protein-protein interactions within TcdB and that these interactions influence the exposure of neutralizing epitopes.
Collapse
Affiliation(s)
- Jason L Larabee
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Aleze Krumholz
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jonathan J Hunt
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jordi M Lanis
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jimmy D Ballard
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
25
|
Mizrahi A, Collignon A, Péchiné S. Passive and active immunization strategies against Clostridium difficile infections: State of the art. Anaerobe 2014; 30:210-9. [DOI: 10.1016/j.anaerobe.2014.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
|
26
|
Sun X, Hirota SA. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol 2014; 63:193-202. [PMID: 25242213 DOI: 10.1016/j.molimm.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 02/08/2023]
Abstract
Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of C. difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis.
Collapse
Affiliation(s)
- Xingmin Sun
- Tufts University Cummings School of Veterinary Medicine, Department of Infectious Diseases and Global Health, North Grafton, MA 01536, USA; Tufts University, Clinical and Translational Science Institute, Boston, MA 02111, USA.
| | - Simon A Hirota
- University of Calgary, Snyder Institute for Chronic Diseases, Departments of Physiology & Pharmacology and Microbiology, Immunology & Infectious Diseases, Calgary, AB T2N4N1, Canada
| |
Collapse
|
27
|
Heinrichs JH, Therien AG. Prevention of Clostridium difficile infections—The role of vaccines and therapeutic immunoglobulins. SEMINARS IN COLON AND RECTAL SURGERY 2014. [DOI: 10.1053/j.scrs.2014.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Antibodies for treatment of Clostridium difficile infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:913-23. [PMID: 24789799 DOI: 10.1128/cvi.00116-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibodies for the treatment of Clostridium difficile infection (CDI) have been demonstrated to be effective in the research and clinical environments. Early uncertainties about molecular and treatment modalities now appear to have converged upon the systemic dosing of mixtures of human IgG1. Although multiple examples of high-potency monoclonal antibodies (MAbs) exist, significant difficulties were initially encountered in their discovery. This minireview describes historical and contemporary MAbs and highlights differences between the most potent MAbs, which may offer insight into the pathogenesis and treatment of CDI.
Collapse
|
29
|
Recombinant Clostridium difficile toxin fragments as carrier protein for PSII surface polysaccharide preserve their neutralizing activity. Toxins (Basel) 2014; 6:1385-96. [PMID: 24759173 PMCID: PMC4014741 DOI: 10.3390/toxins6041385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/06/2014] [Accepted: 04/09/2014] [Indexed: 11/29/2022] Open
Abstract
Clostridium difficile is a Gram-positive bacterium and is the most commonly diagnosed cause of hospital-associated and antimicrobial-associated diarrhea. Despite the emergence of epidemic C. difficile strains having led to an increase in the incidence of the disease, a vaccine against this pathogen is not currently available. C. difficile strains produce two main toxins (TcdA and TcdB) and express three highly complex cell-surface polysaccharides (PSI, PSII and PSIII). PSII is the more abundantly expressed by most C. difficile ribotypes offering the opportunity of the development of a carbohydrate-based vaccine. In this paper, we evaluate the efficacy, in naive mice model, of PSII glycoconjugates where recombinant toxins A and B fragments (TcdA_B2 and TcdB_GT respectively) have been used as carriers. Both glycoconjugates elicited IgG titers anti-PSII although only the TcdB_GT conjugate induced a response comparable to that obtained with CRM197. Moreover, TcdA_B2 and TcdB_GT conjugated to PSII retained the ability to elicit IgG with neutralizing activity against the respective toxins. These results are a crucial proof of concept for the development of glycoconjugate vaccines against C. difficile infection (CDI) that combine different C. difficile antigens to potentially prevent bacterial colonization of the gut and neutralize toxin activity.
Collapse
|
30
|
Yang Z, Schmidt D, Liu W, Li S, Shi L, Sheng J, Chen K, Yu H, Tremblay JM, Chen X, Piepenbrink KH, Sundberg EJ, Kelly CP, Bai G, Shoemaker CB, Feng H. A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice. J Infect Dis 2014; 210:964-72. [PMID: 24683195 DOI: 10.1093/infdis/jiu196] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The incidence of Clostridium difficile infection (CDI) and associated mortality have increased rapidly worldwide in recent years. Therefore, it is critical to develop new therapies for CDI. In this study, we generated a novel, potently neutralizing, tetravalent, and bispecific antibody composed of 2 heavy-chain-only VH (VHH) binding domains against both TcdA and TcdB (designated "ABA") that reverses fulminant CDI in mice infected with an epidemic 027 strain after a single injection of the antibody. We demonstrated that ABA bound to both toxins simultaneously and displayed a significantly enhanced neutralizing activity both in vitro and in vivo. Additionally, ABA was able to broadly neutralize toxins from clinical C. difficile isolates that express both TcdA and TcdB but failed to neutralize the toxin from TcdA(-)TcdB(+) C. difficile strains. This study thus provides a rationale for the development of multivalent VHHs that target both toxins and are broadly neutralizing for treating severe CDI.
Collapse
Affiliation(s)
| | - Diane Schmidt
- Tufts Cummings School of Veterinary Medicine, North Grafton
| | - Weilong Liu
- Tufts Cummings School of Veterinary Medicine, North Grafton
| | - Shan Li
- Department of Microbial Pathogenesis
| | | | | | | | - Hua Yu
- Department of Microbial Pathogenesis
| | | | - Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Eric J Sundberg
- Institute of Human Virology Department of Medicine Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ciaran P Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Guang Bai
- Department of Neural and Pain Sciences, University of Maryland Dental School
| | | | | |
Collapse
|
31
|
Leuzzi R, Adamo R, Scarselli M. Vaccines against Clostridium difficile. Hum Vaccin Immunother 2014; 10:1466-77. [PMID: 24637887 DOI: 10.4161/hv.28428] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile infection (CDI) is recognized as a major cause of nosocomial diseases ranging from antibiotic related diarrhea to fulminant colitis. Emergence during the last 2 decades of C. difficile strains associated with high incidence, severity and lethal outcomes has increased the challenges for CDI treatment. A limited number of drugs have proven to be effective against CDI and concerns about antibiotic resistance as well as recurring disease solicited the search for novel therapeutic strategies. Active vaccination provides the attractive opportunity to prevent CDI, and intense research in recent years led to development of experimental vaccines, 3 of which are currently under clinical evaluation. This review summarizes recent achievements and remaining challenges in the field of C. difficile vaccines, and discusses future perspectives in view of newly-identified candidate antigens.
Collapse
|
32
|
Spencer J, Leuzzi R, Buckley A, Irvine J, Candlish D, Scarselli M, Douce GR. Vaccination against Clostridium difficile using toxin fragments: Observations and analysis in animal models. Gut Microbes 2014; 5:225-32. [PMID: 24637800 PMCID: PMC4063849 DOI: 10.4161/gmic.27712] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile is a major cause of antibiotic associated diarrhea. Recently, we have shown that effective protection can be mediated in hamsters through the inclusion of specific recombinant fragments from toxin A and B in a systemically delivered vaccine. Interestingly while neutralizing antibodies to the binding domains of both toxin A and B are moderately protective, enhanced survival is observed when fragments from the glucosyltransferase region of toxin B replace those from the binding domain of this toxin. In this addendum, we discuss additional information that has been derived from such vaccination studies. This includes observations on efficacy and cross-protection against different ribotypes mediated by these vaccines and the challenges that remain for a vaccine which prevents clinical symptoms but not colonization. The use and value of vaccination both in the prevention of infection and for treatment of disease relapse will be discussed.
Collapse
Affiliation(s)
- Janice Spencer
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | | | - Anthony Buckley
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | - June Irvine
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | - Denise Candlish
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK
| | | | - Gillian R Douce
- Institute of Infection, Immunity, and Inflammation; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow, UK,Correspondence to: Gillian R Douce,
| |
Collapse
|
33
|
Burke KE, Lamont JT. Clostridium difficile infection: a worldwide disease. Gut Liver 2014; 8:1-6. [PMID: 24516694 PMCID: PMC3916678 DOI: 10.5009/gnl.2014.8.1.1] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile, an anaerobic toxigenic bacterium, causes a severe infectious colitis that leads to significant morbidity and mortality worldwide. Both enhanced bacterial toxins and diminished host immune response contribute to symptomatic disease. C. difficile has been a well-established pathogen in North America and Europe for decades, but is just emerging in Asia. This article reviews the epidemiology, microbiology, pathophysiology, and clinical management of C. difficile. Prompt recognition of C. difficile is necessary to implement appropriate infection control practices.
Collapse
Affiliation(s)
- Kristin E. Burke
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - J. Thomas Lamont
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
34
|
Murase T, Eugenio L, Schorr M, Hussack G, Tanha J, Kitova EN, Klassen JS, Ng KKS. Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile. J Biol Chem 2013; 289:2331-43. [PMID: 24311789 DOI: 10.1074/jbc.m113.505917] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Tomohiko Murase
- From the Department of Biological Sciences and Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The incidence and severity of Clostridium difficile infection (CDI) have dramatically increased in the Western world in recent years. In contrast, CDI is rarely reported in China, possibly due to under-diagnosis. This article briefly summarizes CDI incidence, management and preventive strategies. The authors intend to raise awareness of this disease among Chinese physicians and health workers, in order to minimize the medical and economic burden of a potential epidemic in the future.
Collapse
Affiliation(s)
- Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|