1
|
Richards PJ, Almutrafy A, Liang L, Flaujac Lafontaine GM, King E, Fish NM, Connerton AJ, Connerton PL, Connerton IF. Prebiotic galactooligosaccharide feed modifies the chicken gut microbiota to efficiently clear Salmonella. mSystems 2024; 9:e0075424. [PMID: 39082804 PMCID: PMC11334501 DOI: 10.1128/msystems.00754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Chicken meat is contaminated with Salmonella from the gut of infected chickens during slaughter. Eradication of Salmonella from broiler chickens through hygiene measures and/or vaccination is not cost-effective; complementary approaches are required. A mature gut microbiota obstructs Salmonella infection in chickens, and deliberate fortification of colonization resistance through prebiotic feed formulations would benefit public health and poultry production. Prebiotic galactooligosaccharides hastens Salmonella clearance from the gut of infected chickens. To better understand the role of galactooligosaccharides in colonization resistance, broiler chickens were raised on a wheat-soybean meal-based feed, with or without galactooligosaccharides for the first 24 days of life. Chickens were orally challenged with Salmonella enterica serovar Enteritidis at 20 days and the effect of supplementary galactooligosaccharides characterized by profiling Salmonella colonization, gut microbiota, innate immune response, and cecal short-chain fatty acid concentrations. Exposure to dietary galactooligosaccharides shortened the time to clear S. Enteritidis from the ceca. Differential abundance analysis of the cecal microbiota associated Salmonella challenge with a bacterial taxon belonging to the Acidaminococcaceae family (P < 0.005). Increased cecal concentrations of the short-chain fatty acids propionate and valerate were measured in Salmonella-challenged chickens sustained on either control or galactooligosaccharide-supplemented feed relative to mock-challenged controls; but far greater concentrations were detected in chickens fed a galactooligosaccharide-supplemented diet in early life. The abundance of the Acidaminococcaceae taxon exhibited a positive correlation with the cecal concentrations of propionate (ρ = 0.724, P = 0.008) and valerate (ρ = 0.71, P = 0.013). The absence of cecal pro-inflammatory transcriptional responses suggest that the rapid Salmonella clearance observed for the galactooligosaccharide-supplemented diet was not linked to innate immune function. IMPORTANCE Work presented here identifies bacterial taxa responsible for colonization resistance to Salmonella in broiler chickens. Deliberate cultivation of these taxa with prebiotic galactooligosaccharide has potential as a straight-forward, safe, and cost-effective intervention against Salmonella. We hypothesize that catabolism of galactooligosaccharide and its breakdown products by indigenous microorganisms colonizing the chicken gut produce excess levels of propionate. In the absence of gross inflammation, propionate is inimical to Salmonella and hastens intestinal clearance.
Collapse
Affiliation(s)
- Philip J. Richards
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Abeer Almutrafy
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Lu Liang
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Geraldine M. Flaujac Lafontaine
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Elizabeth King
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Neville M. Fish
- Saputo Dairy UK (c/o Simon Hunt), Saputo Dairy UK Innovation Centre, Harper Adams University, Edgmond, Newport, United Kingdom
| | - Amber J. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Phillippa L. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Ian F. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
2
|
Saraiva MMS, Benevides VP, Guerra PR, Campos IC, Rodrigues Alves LB, Paiva JB, Muniz LM, Almeida AM, Freitas Neto OC, Olsen JE, Berchieri Junior A. Deletions of ttrA and pduA genes in Salmonella enterica affect survival within chicken-derived HD-11 macrophages. Curr Genet 2024; 70:14. [PMID: 39150461 DOI: 10.1007/s00294-024-01299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
In mammals, enteric salmonellas can use tetrathionate (ttr), formed as a by-product from the inflammatory process in the intestine, as electron acceptor in anaerobic respiration, and it can fuel its energy metabolism by degrading the microbial fermentation product 1,2-propanediol. However, recent studies have shown that this mechanism is not important for Salmonella infection in the intestine of poultry, while it prolongs the persistence of Salmonella at systemic sites in this species. In the current study, we show that ΔttrApduA strains of Salmonella enterica have lower net survival within chicken-derived HD-11 macrophages, as CFU was only 2.3% (S. Enteritidis ΔttrApduA), 2.3% (S. Heidelberg ΔttrApduA), and 3.0% (S. Typhimurium ΔttrApduA) compared to wild-type strains after 24 h inside HD-11 macrophage cells. The difference was not related to increased lysis of macrophages, and deletion of ttrA and pduA did not impair the ability of the strains to grow anaerobically. Further studies are indicated to determine the reason why Salmonella ΔttrApduA strains survive less well inside macrophage cell lines.
Collapse
Affiliation(s)
- Mauro M S Saraiva
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
- Department of Veterinary and Animal Sciences, University of Copenhagen (UK), Frederiksberg C., 1870, Denmark.
| | - Valdinete P Benevides
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen (UK), Frederiksberg C., 1870, Denmark
| | - Priscila R Guerra
- Department of Veterinary and Animal Sciences, University of Copenhagen (UK), Frederiksberg C., 1870, Denmark
| | - Isabella C Campos
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Lucas B Rodrigues Alves
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen (UK), Frederiksberg C., 1870, Denmark
| | - Jacqueline B Paiva
- R&D Department, BioCamp Laboratories Ltda, Campinas, SP, 13082-020, Brazil
| | - Lauanda M Muniz
- R&D Department, BioCamp Laboratories Ltda, Campinas, SP, 13082-020, Brazil
| | - Adriana M Almeida
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Oliveiro C Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31279-901, Brazil
| | - John E Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen (UK), Frederiksberg C., 1870, Denmark
| | - Angelo Berchieri Junior
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
3
|
Muñoz-Cazalla A, de Quinto I, Álvaro-Llorente L, Rodríguez-Beltrán J, Herencias C. The role of bacterial metabolism in human gut colonization. Int Microbiol 2024:10.1007/s10123-024-00550-6. [PMID: 38937311 DOI: 10.1007/s10123-024-00550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Can we anticipate the emergence of the next pandemic antibiotic-resistant bacterial clone? Addressing such an ambitious question relies on our ability to comprehensively understand the ecological and epidemiological factors fostering the evolution of high-risk clones. Among these factors, the ability to persistently colonize and thrive in the human gut is crucial for most high-risk clones. Nonetheless, the causes and mechanisms facilitating successful gut colonization remain obscure. Here, we review recent evidence that suggests that bacterial metabolism plays a pivotal role in determining the ability of high-risk clones to colonize the human gut. Subsequently, we outline novel approaches that enable the exploration of microbial metabolism at an unprecedented scale and level of detail. A thorough understanding of the constraints and opportunities of bacterial metabolism in gut colonization will foster our ability to predict the emergence of high-risk clones and take appropriate containment strategies.
Collapse
Affiliation(s)
- Ada Muñoz-Cazalla
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ignacio de Quinto
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Laura Álvaro-Llorente
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Cristina Herencias
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas-CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Payne M, Williamson S, Wang Q, Zhang X, Sintchenko V, Pavic A, Lan R. Emergence of Poultry-Associated Human Salmonella enterica Serovar Abortusovis Infections, New South Wales, Australia. Emerg Infect Dis 2024; 30:691-700. [PMID: 38526124 PMCID: PMC10977856 DOI: 10.3201/eid3004.230958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Salmonella enterica serovar Abortusovis is a ovine-adapted pathogen that causes spontaneous abortion. Salmonella Abortusovis was reported in poultry in 2009 and has since been reported in human infections in New South Wales, Australia. Phylogenomic analysis revealed a clade of 51 closely related isolates from Australia originating in 2004. That clade was genetically distinct from ovine-associated isolates. The clade was widespread in New South Wales poultry production facilities but was only responsible for sporadic human infections. Some known virulence factors associated with human infections were only found in the poultry-associated clade, some of which were acquired through prophages and plasmids. Furthermore, the ovine-associated clade showed signs of genome decay, but the poultry-associated clade did not. Those genomic changes most likely led to differences in host range and disease type. Surveillance using the newly identified genetic markers will be vital for tracking Salmonella Abortusovis transmission in animals and to humans and preventing future outbreaks.
Collapse
|
5
|
Maurer JJ, Cheng Y, Pedroso A, Thompson KK, Akter S, Kwan T, Morota G, Kinstler S, Porwollik S, McClelland M, Escalante-Semerena JC, Lee MD. Peeling back the many layers of competitive exclusion. Front Microbiol 2024; 15:1342887. [PMID: 38591029 PMCID: PMC11000858 DOI: 10.3389/fmicb.2024.1342887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024] Open
Abstract
Baby chicks administered a fecal transplant from adult chickens are resistant to Salmonella colonization by competitive exclusion. A two-pronged approach was used to investigate the mechanism of this process. First, Salmonella response to an exclusive (Salmonella competitive exclusion product, Aviguard®) or permissive microbial community (chicken cecal contents from colonized birds containing 7.85 Log10Salmonella genomes/gram) was assessed ex vivo using a S. typhimurium reporter strain with fluorescent YFP and CFP gene fusions to rrn and hilA operon, respectively. Second, cecal transcriptome analysis was used to assess the cecal communities' response to Salmonella in chickens with low (≤5.85 Log10 genomes/g) or high (≥6.00 Log10 genomes/g) Salmonella colonization. The ex vivo experiment revealed a reduction in Salmonella growth and hilA expression following co-culture with the exclusive community. The exclusive community also repressed Salmonella's SPI-1 virulence genes and LPS modification, while the anti-virulence/inflammatory gene avrA was upregulated. Salmonella transcriptome analysis revealed significant metabolic disparities in Salmonella grown with the two different communities. Propanediol utilization and vitamin B12 synthesis were central to Salmonella metabolism co-cultured with either community, and mutations in propanediol and vitamin B12 metabolism altered Salmonella growth in the exclusive community. There were significant differences in the cecal community's stress response to Salmonella colonization. Cecal community transcripts indicated that antimicrobials were central to the type of stress response detected in the low Salmonella abundance community, suggesting antagonism involved in Salmonella exclusion. This study indicates complex community interactions that modulate Salmonella metabolism and pathogenic behavior and reduce growth through antagonism may be key to exclusion.
Collapse
Affiliation(s)
- John J. Maurer
- School of Animal Sciences, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ying Cheng
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Adriana Pedroso
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Kasey K. Thompson
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Shamima Akter
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Tiffany Kwan
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Gota Morota
- School of Animal Sciences, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Sydney Kinstler
- School of Animal Sciences, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | | | - Margie D. Lee
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
6
|
Martinez-Soto CE, McClelland M, Kropinski AM, Lin JT, Khursigara CM, Anany H. Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance. MICROLIFE 2024; 5:uqae003. [PMID: 38545601 PMCID: PMC10972627 DOI: 10.1093/femsml/uqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.
Collapse
Affiliation(s)
- Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine,
University of California, Irvine, 811 Health Sciences Road,
CA 92614, United States
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of
Guelph, Guelph, 419 Gordon St, Guelph, ON N1G
2W1, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food
Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario,
Canada
- Department of Molecular and Cellular Biology, College of Biological
Science, University of Guelph, 50 Stone Rd E, N1G 2W1,
Guelph, Ontario, Canada
| |
Collapse
|
7
|
Richards AK, Siceloff AT, Simmons M, Tillman GE, Shariat NW. Poultry Processing Interventions Reduce Salmonella Serovar Complexity on Postchill Young Chicken Carcasses as Determined by Deep Serotyping. J Food Prot 2024; 87:100208. [PMID: 38142825 DOI: 10.1016/j.jfp.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Nearly 20% of salmonellosis cases are attributed to broilers, with renewed efforts to reduce Salmonella during broiler production and processing. A limitation to Salmonella culture is that often a single colony is picked for characterization, favoring isolation of the most abundant serovar found in a sample, while low abundance serovars can remain undetected. We used a deep serotyping approach, CRISPR-SeroSeq (serotyping by sequencing the clustered regularly interspaced palindromic repeats), to assess Salmonella serovar complexity during broiler processing and to determine the impact of antimicrobial interventions upon serovar population dynamics. Paired hot rehang and postchill young chicken carcasses were collected from establishments across the United States from August to November 2022. CRISPR-SeroSeq was performed on Salmonella culture-positive hot rehang (n = 153) and postchill (n = 38) samples, including 31 paired hot rehang and postchill samples. Multiple serovars were detected in 48.4% (74/153) and 7.9% (3/38) of hot rehang and postchill samples, respectively. On average, hot rehang carcasses contained 1.6 serovars, compared to 1.1 serovars at postchill (Mann Whitney U, p = 0.00018). Nineteen serovars were identified with serovar Kentucky the most common at hot rehang (72.5%; 111/153) and postchill (73.7%; 28/38). Serovar Infantis prevalence was higher at hot rehang (39.9%; 61/153) than in postchill (7.9%; 3/38). At hot rehang, serovar Enteritidis was outnumbered by other serovars 81.3% (13/16) of the time but was always the single or most abundant serovar detected when it was present at postchill (n = 5). We observed 98.4% (188/191) concordance between traditional isolation with serotyping and CRISPR-SeroSeq. Deep serotyping was able to explain serovar discrepancies between paired hot rehang and postchill samples when only traditional isolation and serotyping methods were used. These data demonstrate that processing interventions are effective in reducing Salmonella serovar complexity.
Collapse
Affiliation(s)
- Amber K Richards
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Amy T Siceloff
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Mustafa Simmons
- Eastern Laboratory, U. S. Department of Agriculture's Food Safety and Inspection Service, Athens, GA, USA
| | - Glenn E Tillman
- Eastern Laboratory, U. S. Department of Agriculture's Food Safety and Inspection Service, Athens, GA, USA
| | - Nikki W Shariat
- Department of Population Health, University of Georgia, Athens, GA, USA; Center for Food Safety, University of Georgia, Griffin, GA, USA.
| |
Collapse
|
8
|
Mohammed BT. Identification and bioinformatic analysis of invA gene of Salmonella in free range chicken. BRAZ J BIOL 2024; 84:e263363. [DOI: 10.1590/1519-6984.263363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Salmonella is a serious cause of the health issues in human and animal worldwide. Salmonella has been isolated from different biological samples and it considers as the key role in induction of inflammation of gastrointestinal tract which in turn cause diarrhoea in different species. To further understand the involvement of Salmonella in contaminating and infecting fresh eggs and meat of free-range chicken. This study aimed to establish the microbiological and molecular detections of Salmonella in the cloaca of the free-range chicken and to identify predicted biological functions using Kyoto Encyclopedia of Gene and Genomic (KEGG) pathways and protein-protein interaction. Cloacal swabs were collected from free range chicken raised in the local farm in Duhok city. The isolates were cultured and biochemical test performed using XLD and TSI, respectively. Molecular detection and functional annotation of invA gene was carried out using Conventional PCR and bioinformatics approaches. The present study found that Salmonella was detected in 36 out of 86 samples using microbiological methods. To confirm these findings, invA gene was utilised and 9 out of 36 Salmonella isolates have shown a positive signal of invA by agarose gel. In addition, bioinformatic analysis revealed that invA gene was mainly associated with bacterial secretion processes as well as their KEGG terms and Protein-Protein Interaction were involved in bacterial invasion and secretion pathways. These findings suggested that invA gene plays important role in regulating colonization and invasion processes of Salmonella within the gut host in the free range chicken.
Collapse
|
9
|
Fargeas M, Faure F, Douadi C, Chevarin C, Birer A, Sivignon A, Rodrigues M, Denizot J, Billard E, Barnich N, Buisson A. ChiA: a major player in the virulence of Crohn's disease-associated adherent and invasive Escherichia coli (AIEC). Gut Microbes 2024; 16:2412667. [PMID: 39397494 PMCID: PMC11486038 DOI: 10.1080/19490976.2024.2412667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
We investigated the role of ChiA and its associated polymorphisms in the interaction between Crohn's disease (CD)-associated adherent-invasive Escherichia coli (AIEC) and intestinal mucosa. We observed a higher abundance of chiA among the metagenome of CD patients compared to healthy subjects. In dextran sulfate sodium-induced colitis mice model, AIEC-LF82∆chiA colonization was reduced in ileal, colonic and fecal samples compared to wild-type LF82. The binding of ChiA to recombinant human CHI3L1 or mucus was higher with the pathogenic polymorphism. The strength of ChiA-mucin interaction was 300-fold stronger than ChiA-rhCHI3L1. ChiA was able to degrade mucin to promote its growth and enabled LF82 to get closer to epithelial cells. The pathogenic polymorphism of ChiA had a stronger impact on mucus degradation than on the binding capability of AIEC to adhere to the intestinal epithelium. We observed that ChiA could favor an efficient bacterial invasion of intestinal crypts, and that ChiA, especially its pathogenic polymorphism, gives LF82 an advantage to uptake within Peyer's patches, macrophages and mesenteric lymph nodes. All together, these data support the role of ChiA in the virulence of AIEC and show that it could be a promising target to reduce AIEC colonization in patients with CD.
Collapse
Affiliation(s)
- Margot Fargeas
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Frederic Faure
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
- 3iHP, CHU Clermont-Ferrand, Service d’Hépato-Gastro Entérologie, Université Clermont Auvergne, Inserm, Clermont-Ferrand, France
| | - Clara Douadi
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, France
| | - Caroline Chevarin
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Aurélien Birer
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Adeline Sivignon
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Michael Rodrigues
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Jérémy Denizot
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Elisabeth Billard
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
| | - Anthony Buisson
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Université Clermont Auvergne/Inserm, Clermont-Ferrand, France
- 3iHP, CHU Clermont-Ferrand, Service d’Hépato-Gastro Entérologie, Université Clermont Auvergne, Inserm, Clermont-Ferrand, France
| |
Collapse
|
10
|
Quinton AR, McDowell HB, Hoiczyk E. Encapsulins: Nanotechnology's future in a shell. ADVANCES IN APPLIED MICROBIOLOGY 2023; 125:1-48. [PMID: 38783722 DOI: 10.1016/bs.aambs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Encapsulins, virus capsid-like bacterial nanocompartments have emerged as promising tools in medicine, imaging, and material sciences. Recent work has shown that these protein-bound icosahedral 'organelles' possess distinct properties that make them exceptionally usable for nanotechnology applications. A key factor contributing to their appeal is their ability to self-assemble, coupled with their capacity to encapsulate a wide range of cargos. Their genetic manipulability, stability, biocompatibility, and nano-size further enhance their utility, offering outstanding possibilities for practical biotechnology applications. In particular, their amenability to engineering has led to their extensive modification, including the packaging of non-native cargos and the utilization of the shell surface for displaying immunogenic or targeting proteins and peptides. This inherent versatility, combined with the ease of expressing encapsulins in heterologous hosts, promises to provide broad usability. Although mostly not yet commercialized, encapsulins have started to demonstrate their vast potential for biotechnology, from drug delivery to biofuel production and the synthesis of valuable inorganic materials. In this review, we will initially discuss the structure, function and diversity of encapsulins, which form the basis for these emerging applications, before reviewing ongoing practical uses and highlighting promising applications in medicine, engineering and environmental sciences.
Collapse
Affiliation(s)
- Amy Ruth Quinton
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Harry Benjamin McDowell
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Egbert Hoiczyk
- School of Biosciences, The Krebs Institute, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
11
|
Abstract
It has been widely appreciated that numerous bacterial species express chitinases for the purpose of degrading environmental chitin. However, chitinases and chitin-binding proteins are also expressed by pathogenic bacterial species during infection even though mammals do not produce chitin. Alternative molecular targets are therefore likely present within the host. Here, we will describe our current understanding of chitinase/chitin-binding proteins as virulence factors that promote bacterial colonization and infection. The targets of these chitinases in the host have been shown to include immune system components, mucins, and surface glycans. Bacterial chitinases have also been shown to interact with other microorganisms, targeting the peptidoglycan or chitin in the bacterial and fungal cell wall, respectively. This review highlights that even though the name "chitinase" implies activity toward chitin, chitinases can have a wide diversity of targets, including ones relevant to host infection. Chitinases may therefore be useful as a target of future anti-infective therapeutics.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Lyimu WM, Leta S, Everaert N, Paeshuyse J. Influence of Live Attenuated Salmonella Vaccines on Cecal Microbiome Composition and Microbiota Abundances in Young Broiler Chickens. Vaccines (Basel) 2023; 11:1116. [PMID: 37376505 DOI: 10.3390/vaccines11061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Salmonellosis is a global food safety challenge caused by Salmonella, a gram-negative bacterium of zoonotic importance. Poultry is considered a major reservoir for the pathogen, and humans are exposed through consumption of raw or undercooked products derived from them. Prophylaxis of Salmonella in poultry farms generally mainly involves biosecurity measures, flock testing and culling, use of antibiotics, and vaccination programs. For decades, the use of antibiotics has been a common practice to limit poultry contamination with important pathogenic bacteria such as Salmonella at the farm level. However, due to an increasing prevalence of resistance, non-therapeutic use of antibiotics in animal production has been banned in many parts of the world. This has prompted the search for non-antimicrobial alternatives. Live vaccines are among the developed and currently used methods for Salmonella control. However, their mechanism of action, particularly the effect they might have on commensal gut microbiota, is not well understood. In this study, three different commercial live attenuated Salmonella vaccines (AviPro® Salmonella Vac T, AviPro® Salmonella DUO, and AviPro® Salmonella Vac E) were used to orally vaccinate broiler chickens, and cecal contents were collected for microbiomes analysis by 16S rRNA next generation sequencing. Quantitative real-time PCR (qPCR) was used to study the cecal immune-related genes expression in the treatment groups, while Salmonella-specific antibodies were analyzed from sera and cecal extracts by enzyme-linked immunosorbent assay (ELISA). We show that vaccination with live attenuated Salmonella vaccines had a significant influence on the variability of the broiler cecal microbiota (p = 0.016). Furthermore, the vaccines AviPro® Salmonella Vac T and AviPro® Salmonella DUO, but not AviPro® Salmonella Vac E, had a significant effect (p = 0.024) on microbiota composition. This suggests that the live vaccine type used can differently alter the microbiota profiles, driving the gut colonization resistance and immune responses to pathogenic bacteria, and might impact the overall chicken health and productivity. Further investigation is, however, required to confirm this.
Collapse
Affiliation(s)
- Wilfred Michael Lyimu
- Laboratory of Host-Pathogen Interactions in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Samson Leta
- Laboratory of Host-Pathogen Interactions in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Nadia Everaert
- The Nutrition and Animal Microbiota Ecosystems Laboratory, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Jan Paeshuyse
- Laboratory of Host-Pathogen Interactions in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Obe T, Siceloff AT, Crowe MG, Scott HM, Shariat NW. Combined Quantification and Deep Serotyping for Salmonella Risk Profiling in Broiler Flocks. Appl Environ Microbiol 2023; 89:e0203522. [PMID: 36920215 PMCID: PMC10132105 DOI: 10.1128/aem.02035-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
Despite a reduction of Salmonella contamination on final poultry products, the level of human salmonellosis cases attributed to poultry has remained unchanged over the last few years. There needs to be improved effort to target serovars which may survive antimicrobial interventions and cause illness, as well as to focus on lessening the amount of contamination entering the processing plant. Advances in molecular enumeration approaches allow for the rapid detection and quantification of Salmonella in pre- and postharvest samples, which can be combined with deep serotyping to properly assess the risk affiliated with a poultry flock. In this study, we collected a total of 160 boot sock samples from 20 broiler farms across four different integrators with different antibiotic management programs. Overall, Salmonella was found in 85% (68/80) of the houses, with each farm having at least one Salmonella-positive house. The average Salmonella quantity across all four complexes was 3.6 log10 CFU/sample. Eleven different serovars were identified through deep serotyping, including all three key performance indicators (KPIs; serovars Enteritidis, Infantis, and Typhimurium) defined by the U.S. Department of Agriculture-Food Safety and Inspection Service (USDA-FSIS). There were eight multidrug resistant isolates identified in this study, and seven which were serovar Infantis. We generated risk scores for each flock based on the presence or absence of KPIs, the relative abundance of each serovar as calculated with CRISPR-SeroSeq (serotyping by sequencing the clustered regularly interspaced palindromic repeats), and the quantity of Salmonella organisms detected. The work presented here provides a framework to develop directed processing approaches and highlights the limitations of conventional Salmonella sampling and culturing methods. IMPORTANCE Nearly one in five foodborne Salmonella illnesses are derived from chicken, making it the largest single food category to cause salmonellosis and indicating a need for effective pathogen mitigation. Although industry has successfully reduced Salmonella incidence in poultry products, there has not been a concurrent reduction in human salmonellosis linked to chicken consumption. New efforts are focused on improved control at preharvest, which requires improved Salmonella surveillance. Here, we present a high-resolution surveillance approach that combines quantity and identity of Salmonella in broiler flocks prior to processing which will further support improved Salmonella controls in poultry. We developed a framework for this approach, indicating that it is possible and important to harness deep serotyping and molecular enumeration to inform on-farm management practices and to minimize risk of cross-contamination between flocks at processing. Additionally, this framework could be adapted to Salmonella surveillance in other food animal production systems.
Collapse
Affiliation(s)
- Tomi Obe
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Amy T. Siceloff
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Megan G. Crowe
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - H. Morgan Scott
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Nikki W. Shariat
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Alvarado-Martinez Z, Tabashsum Z, Aditya A, Suh G, Wall M, Hshieh K, Biswas D. Purified Plant-Derived Phenolic Acids Inhibit Salmonella Typhimurium without Alteration of Microbiota in a Simulated Chicken Cecum Condition. Microorganisms 2023; 11:microorganisms11040957. [PMID: 37110380 PMCID: PMC10144919 DOI: 10.3390/microorganisms11040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (ST) remains a predominant zoonotic pathogen because of its colonization in poultry, survivability in the environment, and increasing antibiotic-resistance pattern. Plant-derived phenolics, gallic acid (GA), protocatechuic acid (PA), and vanillic acids (VA) have demonstrated antimicrobial activity in vitro; therefore, this study collected chicken cecal fluid and supplemented it with these phenolics to evaluate their potential for eliminating ST and mod-ulating the microbiota of complex environments. ST was quantified through plating, while micro-biome analysis was performed through pair-end 16S-rRNA gene sequencing. CFU/mL of ST in cecal fluid with GA was significantly reduced by 3.28 and 2.78 log at 24 h and 48 h, while PA only had a slight numerical decrease. VA significantly reduced ST by 4.81 and 5.20 log at 24 h and 48 h. Changes in relative abundance of major phyla were observed at 24 h for samples with GA and VA as Firmicute levels increased 8.30% and 20.90%, while Proteobacteria decreased 12.86% and 18.48%, respectively. Significant changes in major genre were observed in Acinetobacter (3.41% for GA) and Escherichia (13.53% for VA), while Bifidobacterium increased (3.44% for GA) and Lactobacillus remained unchanged. Results suggest that phenolic compounds exert different effects on certain pathogens, while supporting some commensal bacteria.
Collapse
Affiliation(s)
- Zabdiel Alvarado-Martinez
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland-College Park, College Park, MD 20742, USA
| | - Zajeba Tabashsum
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland-College Park, College Park, MD 20742, USA
| | - Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland-College Park, College Park, MD 20742, USA
| | - Grace Suh
- Department of Biology, University of Maryland-College Park, College Park, MD 20742, USA
| | - Matthew Wall
- Department of Biology, University of Maryland-College Park, College Park, MD 20742, USA
| | - Katherine Hshieh
- Department of Biology, University of Maryland-College Park, College Park, MD 20742, USA
| | - Debabrata Biswas
- Biological Sciences Program-Molecular and Cellular Biology, University of Maryland-College Park, College Park, MD 20742, USA
- Department of Animal and Avian Sciences, University of Maryland-College Park, College Park, MD 20742, USA
- Center for Food Safety and Security Systems, University of Maryland-College Park, College Park, MD 20742, USA
| |
Collapse
|
15
|
Elankumuran P, Browning GF, Marenda MS, Kidsley A, Osman M, Haenni M, Johnson JR, Trott DJ, Reid CJ, Djordjevic SP. Identification of genes influencing the evolution of Escherichia coli ST372 in dogs and humans. Microb Genom 2023; 9:mgen000930. [PMID: 36752777 PMCID: PMC9997745 DOI: 10.1099/mgen.0.000930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
ST372 are widely reported as the major Escherichia coli sequence type in dogs globally. They are also a sporadic cause of extraintestinal infections in humans. Despite this, it is unknown whether ST372 strains from dogs and humans represent shared or distinct populations. Furthermore, little is known about genomic traits that might explain the prominence of ST372 in dogs or presence in humans. To address this, we applied a variety of bioinformatics analyses to a global collection of 407 ST372 E. coli whole-genome sequences to characterize their epidemiological features, population structure and associated accessory genomes. We confirm that dogs are the dominant host of ST372 and that clusters within the population structure exhibit distinctive O:H types. One phylogenetic cluster, 'cluster M', comprised almost half of the sequences and showed the divergence of two human-restricted clades that carried different O:H types to the remainder of the cluster. We also present evidence supporting transmission between dogs and humans within different clusters of the phylogeny, including M. We show that multiple acquisitions of the pdu propanediol utilization operon have occurred in clusters dominated by isolates of canine source, possibly linked to diet, whereas loss of the pdu operon and acquisition of K antigen virulence genes characterize human-restricted lineages.
Collapse
Affiliation(s)
- Paarthiphan Elankumuran
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Amanda Kidsley
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marisa Haenni
- ANSES, Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | | | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia
| | - Cameron J. Reid
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Steven P. Djordjevic
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- *Correspondence: Steven P. Djordjevic,
| |
Collapse
|
16
|
Fan HH, Fang SB, Chang YC, Huang ST, Huang CH, Chang PR, Chang WC, Yang LTL, Lin PC, Cheng HY. Effects of colonization-associated gene yqiC on global transcriptome, cellular respiration, and oxidative stress in Salmonella Typhimurium. J Biomed Sci 2022; 29:102. [PMID: 36457101 PMCID: PMC9714038 DOI: 10.1186/s12929-022-00885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND yqiC is required for colonizing the Salmonella enterica serovar Typhimurium (S. Typhimurium) in human cells; however, how yqiC regulates nontyphoidal Salmonella (NTS) genes to influence bacteria-host interactions remains unclear. METHODS The global transcriptomes of S. Typhimurium yqiC-deleted mutant (ΔyqiC) and its wild-type strain SL1344 after 2 h of in vitro infection with Caco-2 cells were obtained through RNA sequencing to conduct comparisons and identify major yqiC-regulated genes, particularly those involved in Salmonella pathogenicity islands (SPIs), ubiquinone and menaquinone biosynthesis, electron transportation chains (ETCs), and carbohydrate/energy metabolism. A Seahorse XFp Analyzer and assays of NADH/NAD+ and H2O2 were used to compare oxygen consumption and extracellular acidification, glycolysis parameters, adenosine triphosphate (ATP) generation, NADH/NAD+ ratios, and H2O2 production between ΔyqiC and SL1344. RESULTS After S. Typhimurium interacts with Caco-2 cells, yqiC represses gene upregulation in aspartate carbamoyl transferase, type 1 fimbriae, and iron-sulfur assembly, and it is required for expressing ilvB operon, flagellin, tdcABCD, and dmsAB. Furthermore, yqiC is required for expressing mainly SPI-1 genes and specific SPI-4, SPI-5, and SPI-6 genes; however, it diversely regulates SPI-2 and SPI-3 gene expression. yqiC significantly contributes to menD expression in menaquinone biosynthesis. A Kyoto Encyclopedia of Genes and Genomes analysis revealed the extensive association of yqiC with carbohydrate and energy metabolism. yqiC contributes to ATP generation, and the analyzer results demonstrate that yqiC is required for maintaining cellular respiration and metabolic potential under energy stress and for achieving glycolysis, glycolytic capacity, and glycolytic reserve. yqiC is also required for expressing ndh, cydA, nuoE, and sdhB but suppresses cyoC upregulation in the ETC of aerobically and anaerobically grown S. Typhimurium; priming with Caco-2 cells caused a reversed regulation of yiqC toward upregulation in these ETC complex genes. Furthermore, yqiC is required for maintaining NADH/NAD+ redox status and H2O2 production. CONCLUSIONS Specific unreported genes that were considerably regulated by the colonization-associated gene yqiC in NTS were identified, and the key role and tentative mechanisms of yqiC in the extensive modulation of virulence factors, SPIs, ubiquinone and menaquinone biosynthesis, ETCs, glycolysis, and oxidative stress were discovered.
Collapse
Affiliation(s)
- Hung-Hao Fan
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412955.e0000 0004 0419 7197Department of Emergency Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shiuh-Bin Fang
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Master Program for Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chu Chang
- grid.412896.00000 0000 9337 0481Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Tung Huang
- grid.412087.80000 0001 0001 3889Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chih-Hung Huang
- grid.412087.80000 0001 0001 3889Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Pei-Ru Chang
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- grid.412896.00000 0000 9337 0481Master Program for Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Lauderdale Tsai-Ling Yang
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Chun Lin
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan
| | - Hung-Yen Cheng
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan
| |
Collapse
|
17
|
Peng M, Joo J, Alvarado-Martinez Z, Tabashsum Z, Aditya A, Biswas D. Intracellular autolytic whole cell Salmonella vaccine prevents colonization of pathogenic Salmonella Typhimurium in chicken. Vaccine 2022; 40:6880-6892. [PMID: 36272875 DOI: 10.1016/j.vaccine.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/16/2022] [Accepted: 10/09/2022] [Indexed: 11/08/2022]
Abstract
Salmonella enterica (SE) is a major foodborne bacterial pathogen in the United States, commonly found as the normal flora of various animals that is attributed to causing at least 1.2 million infections annually. Poultry plays a major role in disseminating SE through direct contact with live animals and consumption of contaminated products. Vaccinating poultry against SE is a sustainable approach that can reduce SE in the host, preventing future infections in humans. An intracellular autolytic SE serovar Typhimurium vaccine (STLT2+P13+19) was developed by integrating genes 13 (holin) and 19 (lysozyme) of bacteriophage P22 into the bacterial chromosome. These were inserted downstream of sseA, an SPI-2 chaperone in SE that expresses during the intracellular phase of SE. Intracellular viability of STLT2+P13+19 reduced by 94.42% at 24 hr compared to the wild type in chicken macrophage cells (HD-11), whereas growth rate and adhesion ability remained unchanged. Inoculating STLT2+P13+19 in HD-11 significantly enhanced the relative log fold expression of genes associated to production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12 p40, IL-18, and GM-CSF) and Toll-like-receptors (TRL-3 and 7). Vaccination of an in vivo chicken model demonstrated significant changes in secretion of iNOS, IL-6, IL-8, IL-12, and TNF-α, as well as a reduction in the intestinal colonization of SE serovar Typhimurium. Microbiome analysis of cecal fluid using 16S rRNA gene sequencing also showed modulation of intestinal microbial composition, specifically a decrease in relative abundance of Proteobacteria and increasing Firmicutes. This study provides insight into a novel vaccine design that could make food products safer without the use of synthetic compounds.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Jungsoo Joo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Zabdiel Alvarado-Martinez
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA.
| | - Zajeba Tabashsum
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA.
| | - Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA.
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA; Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA.
| |
Collapse
|
18
|
Characterization and comparative transcriptome analyses of Salmonella enterica Enteritidis strains possessing different chlorine tolerance profiles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Wellawa DH, Lam PKS, White AP, Allan B, Köster W. Characterization of colonization kinetics and virulence potential of Salmonella Enteritidis in chickens by photonic detection. Front Vet Sci 2022; 9:948448. [PMID: 35982923 PMCID: PMC9378992 DOI: 10.3389/fvets.2022.948448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The light emitting module lux operon (luxCDABE) of Photorhabdus luminescens can be integrated into a “dark” bacterium for expression under a suitable promoter. The technique has been used to monitor kinetics of infection, e.g., by studying gene expression in Salmonella using mouse models in vivo and ex vivo. Here, we applied the bioluminescence imaging (BLI) technique to track Salmonella Enteritidis (SEn) strains carrying the lux operon expressed under a constitutive promoter sequence (sigma 70) in chicken after oral challenge. Detectable photon signals were localized in the crop, small intestine, cecum, and yolk sac in orally gavaged birds. The level of colonization was determined by quantification of signal intensity and SEn prevalence in the cecum and yolk sac. Furthermore, an isogenic SEn mutant strain tagged with the lux operon allowed for us to assess virulence determinants regarding their role in colonization of the cecum and yolk sac. Interestingly, mutations of SPI-1(Salmonella Pathogenicity Island 1) and fur (ferric uptake regulator) showed significantly decreased colonization in yolk sac that was correlated with the BLI data. A similar trend was detected in a ΔtonB strain by analyzing enrichment culture data. The inherently low quantum yield, light scattering, and absorption by tissues did not facilitate detection of signals from live birds. However, the detection limit of lux operon has the potential to be improved by resonance energy transfer to a secondary molecule. As a proof-of-concept, we were able to show that sensitization of a fluorescent-bound molecule known as the lumazine protein (LumP) improved the limit of detection to a certain extent.
Collapse
Affiliation(s)
- Dinesh H. Wellawa
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Po-King S. Lam
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brenda Allan
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Wolfgang Köster
| |
Collapse
|
20
|
Abstract
Subcellular compartmentalization is a defining feature of all cells. In prokaryotes, compartmentalization is generally achieved via protein-based strategies. The two main classes of microbial protein compartments are bacterial microcompartments and encapsulin nanocompartments. Encapsulins self-assemble into proteinaceous shells with diameters between 24 and 42 nm and are defined by the viral HK97-fold of their shell protein. Encapsulins have the ability to encapsulate dedicated cargo proteins, including ferritin-like proteins, peroxidases, and desulfurases. Encapsulation is mediated by targeting sequences present in all cargo proteins. Encapsulins are found in many bacterial and archaeal phyla and have been suggested to play roles in iron storage, stress resistance, sulfur metabolism, and natural product biosynthesis. Phylogenetic analyses indicate that they share a common ancestor with viral capsid proteins. Many pathogens encode encapsulins, and recent evidence suggests that they may contribute toward pathogenicity. The existing information on encapsulin structure, biochemistry, biological function, and biomedical relevance is reviewed here.
Collapse
Affiliation(s)
- Tobias W. Giessen
- Departments of Biomedical Engineering and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Antagonistic activity and mechanism of Lactobacillus rhamnosus SQ511 against Salmonella enteritidis. 3 Biotech 2022; 12:126. [PMID: 35573802 DOI: 10.1007/s13205-022-03176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/26/2022] [Indexed: 11/01/2022] Open
Abstract
Salmonella enteritidis is an important food-borne pathogen. The use of antibiotics is a serious threat to animal and human health, owing to the existence of resistant strains and drug residues. Lactic acid bacteria, as a new alternative to antibiotics, has attracted much attention. In this study, we investigated the antibacterial potential and underlying mechanism of Lactobacillus rhamnosus SQ511 against S. enteritidis ATCC13076. The results revealed that L. rhamnosus SQ511 significantly inhibited S. enteritidis ATCC13076 growth or even caused death. Laser confocal microscopic imaging revealed that the cell-free supernatant (CFS) of L. rhamnosus SQ511 elevated the reactive oxygen species level and bacterial membrane depolarization in S. enteritidis ATCC13076, leading to cell death. Furthermore, L. rhamnosus SQ511 CFS had severely deleterious effects on S. enteritidis ATCC13076, causing membrane destruction and the release of cellular materials. In addition, L. rhamnosus SQ511 CFS significantly reduced the expression of virulence, motility, adhesion, and invasion genes in S. enteritidis ATCC13076 (P < 0.05), and considerably inhibited motility and biofilm formation capacity (P < 0.05). Thus, antimicrobial compounds produced by L. rhamnosus SQ511 strongly inhibited S. enteritidis growth, mobility, biofilm formation, membrane disruption, and reactive oxygen species generation, and regulated virulence-related gene expressions, presenting promising applications as a probiotic agent.
Collapse
|
22
|
Devlin JR, Santus W, Mendez J, Peng W, Yu A, Wang J, Alejandro-Navarreto X, Kiernan K, Singh M, Jiang P, Mechref Y, Behnsen J. Salmonella enterica serovar Typhimurium chitinases modulate the intestinal glycome and promote small intestinal invasion. PLoS Pathog 2022; 18:e1010167. [PMID: 35482787 PMCID: PMC9049507 DOI: 10.1371/journal.ppat.1010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, S. Typhimurium produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species, and the S. Typhimurium genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during S. Typhimurium pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously, and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. S. Typhimurium lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient S. Typhimurium strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed S. Typhimurium dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type S. Typhimurium, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of S. Typhimurium chitinases. This analysis also revealed a differential abundance of Lewis X/A-containing glycans that is likely a result of host cell modulation due to the detection of S. Typhimurium chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that S. Typhimurium chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - William Santus
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Jorge Mendez
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Xiomarie Alejandro-Navarreto
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Kaitlyn Kiernan
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Manmeet Singh
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
23
|
Wellawa DH, Lam PKS, White AP, Gomis S, Allan B, Köster W. High Affinity Iron Acquisition Systems Facilitate but Are Not Essential for Colonization of Chickens by Salmonella Enteritidis. Front Microbiol 2022; 13:824052. [PMID: 35308377 PMCID: PMC8928163 DOI: 10.3389/fmicb.2022.824052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023] Open
Abstract
The roles of TonB mediated Fe3+ (ferric iron) uptake via enterobactin (involving biosynthesis genes entABCDEF) and Fe2+ (ferrous iron) uptake through the FeoABC transporter are poorly defined in the context of chicken-Salmonella interactions. Both uptake systems are believed to be the major contributors of iron supply in the Salmonella life cycle. Current evidence suggests that these iron uptake systems play a major role in pathogenesis in mammals and as such, they represent promising antibacterial targets with therapeutic potential. We investigated the role of these iron uptake mechanisms regarding the ability of Salmonella Enteritidis (SEn) strains to colonize in a chicken infection model. Further we constructed a bioluminescent reporter to sense iron limitation during gastrointestinal colonization of Salmonella in chicken via ex vivo imaging. Our data indicated that there is some redundancy between the ferric and ferrous iron uptake mechanisms regarding iron acquisition during SEn pathogenesis in chicken. We believe that this redundancy of iron acquisition in the host reservoir may be the consequence of adaptation to unique avian environments, and thus warrants further investigation. To our knowledge, this the first report providing direct evidence that both enterobactin synthesis and FeoABC mediated iron uptake contribute to the virulence of SEn in chickens.
Collapse
Affiliation(s)
- Dinesh H Wellawa
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Po-King S Lam
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P White
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brenda Allan
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
24
|
Jung B, Park S, Kim E, Yoon H, Hahn TW. Salmonella Typhimurium lacking phoBR as a live vaccine candidate against poultry infection. Vet Microbiol 2022; 266:109342. [PMID: 35063827 DOI: 10.1016/j.vetmic.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Salmonella enterica serovar Typhimurium, with a broad-host range, is a predominant cause of non-typhoidal Salmonella infection in humans, and the infectious source is highly associated with food animals, especially poultry. Considering the horizontal transmission of S. Typhimurium from farm animals to humans, vaccination has been strongly recommended in industrial animals. In an effort to eradicate S. Typhimurium in poultry farms, a live candidate vaccine strain lacking the phoBR genes, which encode the PhoB/PhoR two-component regulatory system responsible for cellular phosphate signaling, was evaluated in mice and chickens. Lack of the phoBR genes promoted overgrowth of intracellular Salmonella. However, notably, in BALB/c mouse models, the ΔphoBR mutant showed attenuated virulence and instead, provided protection against infection with virulent Salmonella, thereby clearing out Salmonella in the spleen and liver. Accordingly, immunization with the ΔphoBR mutant increased immunoglobulin (Ig)G and IgM antibody responses and also tended to increase the IgG2a/IgG1 ratio, which is indicative of T helper (Th)1-mediated cellular immunity. In chicken challenge models, immunization with the ΔphoBR mutant significantly boosted the production of IgG and IgM antibodies after the second vaccination. The vaccinated chickens ceased fecal shedding of challenged Salmonella earlier than the non-vaccinated ones and showed no Salmonella in their caecum and ileum. These results demonstrate the potential of the S. Typhimurium ΔphoBR mutant as a vaccine in chickens.
Collapse
Affiliation(s)
- Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
25
|
Goodall ECA, Isom GL, Rooke JL, Pullela K, Icke C, Yang Z, Boelter G, Jones A, Warner I, Da Costa R, Zhang B, Rae J, Tan WB, Winkle M, Delhaye A, Heinz E, Collet JF, Cunningham AF, Blaskovich MA, Parton RG, Cole JA, Banzhaf M, Chng SS, Vollmer W, Bryant JA, Henderson IR. Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genet 2021; 17:e1009586. [PMID: 34941903 PMCID: PMC8741058 DOI: 10.1371/journal.pgen.1009586] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/07/2022] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target. All life depends on a cell envelope to enclose the chemical reactions that make life possible. But how do cell envelopes grow? How each component of the cell envelope is incorporated into the envelope at the correct amount, in the correct place, and at the correct time, to prevent cell death, has been a long-standing question in bacteriology. Using a unique combination of high throughput chemical genetic screens we identified yhcB, a conserved gene of unknown function, required for the maintenance of cell envelope integrity in Escherichia coli. Loss of YhcB results in aberrant cell size driven by the production of excess membrane phospholipids. Subsequent molecular and biochemical analyses suggest YhcB influences the spatiotemporal biogenesis of LPS, peptidoglycan and membrane phospholipids. Our data indicate YhcB is a key regulator of cell envelope growth in Gram-negative bacteria playing a crucial role in coordinating cell width, elongation, and division to maintain cell envelope integrity.
Collapse
Affiliation(s)
- Emily C. A. Goodall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| | - Georgia L. Isom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jessica L. Rooke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Zihao Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Gabriela Boelter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Isabel Warner
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Rochelle Da Costa
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Bing Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Wee Boon Tan
- Department of Chemistry, National University of Singapore, Singapore
| | - Matthias Winkle
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antoine Delhaye
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Adam F. Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Mark A. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Australia
| | - Jeff A. Cole
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jack A. Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| |
Collapse
|
26
|
Burrichter AG, Dörr S, Bergmann P, Haiß S, Keller A, Fournier C, Franchini P, Isono E, Schleheck D. Bacterial microcompartments for isethionate desulfonation in the taurine-degrading human-gut bacterium Bilophila wadsworthia. BMC Microbiol 2021; 21:340. [PMID: 34903181 PMCID: PMC8667426 DOI: 10.1186/s12866-021-02386-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
Background Bilophila wadsworthia, a strictly anaerobic, sulfite-reducing bacterium and common member of the human gut microbiota, has been associated with diseases such as appendicitis and colitis. It is specialized on organosulfonate respiration for energy conservation, i.e., utilization of dietary and host-derived organosulfonates, such as taurine (2-aminoethansulfonate), as sulfite donors for sulfite respiration, producing hydrogen sulfide (H2S), an important intestinal metabolite that may have beneficial as well as detrimental effects on the colonic environment. Its taurine desulfonation pathway involves the glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslAB), which cleaves isethionate (2-hydroxyethanesulfonate) into acetaldehyde and sulfite. Results We demonstrate that taurine metabolism in B. wadsworthia 3.1.6 involves bacterial microcompartments (BMCs). First, we confirmed taurine-inducible production of BMCs by proteomic, transcriptomic and ultra-thin sectioning and electron-microscopical analyses. Then, we isolated BMCs from taurine-grown cells by density-gradient ultracentrifugation and analyzed their composition by proteomics as well as by enzyme assays, which suggested that the GRE IslAB and acetaldehyde dehydrogenase are located inside of the BMCs. Finally, we are discussing the recycling of cofactors in the IslAB-BMCs and a potential shuttling of electrons across the BMC shell by a potential iron-sulfur (FeS) cluster-containing shell protein identified by sequence analysis. Conclusions We characterized a novel subclass of BMCs and broadened the spectrum of reactions known to take place enclosed in BMCs, which is of biotechnological interest. We also provided more details on the energy metabolism of the opportunistic pathobiont B. wadsworthia and on microbial H2S production in the human gut. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02386-w.
Collapse
Affiliation(s)
- Anna G Burrichter
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany. .,Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany.
| | - Stefanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paavo Bergmann
- Electron Microscopy Centre, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sebastian Haiß
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anja Keller
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
27
|
Andreas MP, Giessen TW. Large-scale computational discovery and analysis of virus-derived microbial nanocompartments. Nat Commun 2021; 12:4748. [PMID: 34362927 PMCID: PMC8346489 DOI: 10.1038/s41467-021-25071-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Encapsulins are a class of microbial protein compartments defined by the viral HK97-fold of their capsid protein, self-assembly into icosahedral shells, and dedicated cargo loading mechanism for sequestering specific enzymes. Encapsulins are often misannotated and traditional sequence-based searches yield many false positive hits in the form of phage capsids. Here, we develop an integrated search strategy to carry out a large-scale computational analysis of prokaryotic genomes with the goal of discovering an exhaustive and curated set of all HK97-fold encapsulin-like systems. We find over 6,000 encapsulin-like systems in 31 bacterial and four archaeal phyla, including two novel encapsulin families. We formulate hypotheses about their potential biological functions and biomedical relevance, which range from natural product biosynthesis and stress resistance to carbon metabolism and anaerobic hydrogen production. An evolutionary analysis of encapsulins and related HK97-type virus families shows that they share a common ancestor, and we conclude that encapsulins likely evolved from HK97-type bacteriophages.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Prentice MB. Bacterial microcompartments and their role in pathogenicity. Curr Opin Microbiol 2021; 63:19-28. [PMID: 34107380 DOI: 10.1016/j.mib.2021.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Catabolic bacterial microcompartments (BMC), or metabolosomes, are self-assembling structures formed by enzymes enclosed by porous protein shells. They provide a specialised environment inside bacterial cells separating a short catabolic pathway with reactive or toxic intermediates from the cytoplasm. Substrates for microcompartment metabolism like ethanolamine and 1,2-propanediol are constantly produced in the human intestine by bacterial metabolism of food or host cell components. Enteric pathogens gain a competitive advantage in the intestine by metabolising these substrates, an advantage enhanced by the host inflammatory response. They exploit the intestinal specificity of signature metabolosome substrates by adopting substrate sensors and regulators encoded by BMC operons for governance of non-metabolic processes in pathogenesis. In turn, products of microcompartment metabolism regulate the host immune system.
Collapse
Affiliation(s)
- Michael B Prentice
- Department of Pathology, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
29
|
Saraiva MMS, Rodrigues Alves LB, Monte DFM, Ferreira TS, Benevides VP, Barbosa FO, Freitas Neto OC, Almeida AM, Barrow PA, Berchieri Junior A. Deciphering the role of ttrA and pduA genes for Salmonella enterica serovars in a chicken infection model. Avian Pathol 2021; 50:1-12. [PMID: 33779420 DOI: 10.1080/03079457.2021.1909703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Salmonella enterica serovars use self-induced intestinal inflammation to increase electron acceptor availability and to obtain a growth advantage in the host gut. There is evidence suggesting that the ability of Salmonella to use tetrathionate and 1,2-propanediol provides an advantage in murine infection. Thus, we present here the first study to evaluate both systemic infection and faecal excretion in commercial poultry challenged by Salmonella Enteritidis (SE) and S. Typhimurium (STM) harbouring deletions in ttrA and pduA genes, which are crucial to the metabolism of tetrathionate and 1,2-propanediol, respectively. Mutant strains were excreted at higher rates when compared to the wild-type strains. The highest rates were observed with white egg-layer and brown egg-layer chicks (67.5%), and broiler chicks (56.7%) challenged by SEΔttrAΔpduA, and brown egg-layer chicks (64.8%) challenged by STMΔttrAΔpduA. SEΔttrAΔpduA presented higher bacterial counts in the liver and spleen of the three chicken lineages and caecal contents from the broiler chickens, whereas STMΔttrAΔpduA presented higher counts in the liver and spleen of the broiler and brown-egg chickens for 28 days post-infection (P < 0.05). The ttrA and pduA genes do not appear to be major virulence determinants in faecal excretion or invasiveness for SE and STM in chickens. RESEARCH HIGHLIGHTSttrA and pudA do not impair gut colonization or systemic infection in chicks.Mutant strains were present in higher numbers in broilers than in laying chicks.Mutants of SE and STM showed greater pathogenicity in broiler chicks than layers.
Collapse
Affiliation(s)
- M M S Saraiva
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - L B Rodrigues Alves
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - D F M Monte
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - T S Ferreira
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - V P Benevides
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - F O Barbosa
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - O C Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - A M Almeida
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| | - P A Barrow
- School of Veterinary Medicine and Science, University of Surrey, Guildford, UK
| | - A Berchieri Junior
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, Sao Paulo State University (FCAV-Unesp), Jaboticabal, Brazil
| |
Collapse
|
30
|
Tan Z, Lu P, Adewole D, Diarra M, Gong J, Yang C. Iron requirement in the infection of Salmonella and its relevance to poultry health. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2020.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
31
|
Groaz A, Moghimianavval H, Tavella F, Giessen TW, Vecchiarelli AG, Yang Q, Liu AP. Engineering spatiotemporal organization and dynamics in synthetic cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1685. [PMID: 33219745 DOI: 10.1002/wnan.1685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Yang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Jia S, McWhorter AR, Andrews DM, Underwood GJ, Chousalkar KK. Challenges in Vaccinating Layer Hens against Salmonella Typhimurium. Vaccines (Basel) 2020; 8:E696. [PMID: 33228065 PMCID: PMC7712944 DOI: 10.3390/vaccines8040696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 12/22/2022] Open
Abstract
Salmonella Typhimurium is among the most common causes of bacterial foodborne gastrointestinal disease in humans. Food items containing raw or undercooked eggs are frequently identified during traceback investigation as the source of the bacteria. Layer hens can become persistently infected with Salmonella Typhimurium and intermittently shed the bacteria over the course of their productive lifetime. Eggs laid in a contaminated environment are at risk of potential exposure to bacteria. Thus, mitigating the bacterial load on farms aids in the protection of the food supply chain. Layer hen producers use a multifaceted approach for reducing Salmonella on farms, including the all-in-all-out management strategy, strict biosecurity, sanitization, and vaccination. The use of live attenuated Salmonella vaccines is favored because they elicit a broader host immune response than killed or inactivated vaccines that have been demonstrated to provide cross-protection against multiple serovars. Depending on the vaccine, two to three doses of Salmonella Typhimurium vaccines are generally administered to layer hens within the first few weeks. The productive life of a layer hen, however, can exceed 70 weeks and it is unclear whether current vaccination regimens are effective for that extended period. The objective of this review is to highlight layer hen specific challenges that may affect vaccine efficacy.
Collapse
Affiliation(s)
- Siyuan Jia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (S.J.); (A.R.M.)
| | - Andrea R. McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (S.J.); (A.R.M.)
| | - Daniel M. Andrews
- Bioproperties Pty Ltd., Ringwood, VIC 3134, Australia; (D.M.A.); (G.J.U.)
| | | | - Kapil K. Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (S.J.); (A.R.M.)
| |
Collapse
|
33
|
Glowacki RWP, Martens EC. If you eat it, or secrete it, they will grow: the expanding list of nutrients utilized by human gut bacteria. J Bacteriol 2020; 203:JB.00481-20. [PMID: 33168637 PMCID: PMC8092160 DOI: 10.1128/jb.00481-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In order to persist, successful bacterial inhabitants of the human gut need to adapt to changing nutrient conditions, which are influenced by host diet and a variety of other factors. For members of the Bacteroidetes and several other phyla, this has resulted in diversification of a variety of enzyme-based systems that equip them to sense and utilize carbohydrate-based nutrients from host, diet, and bacterial origin. In this review, we focus first on human gut Bacteroides and describe recent findings regarding polysaccharide utilization loci (PULs) and the mechanisms of the multi-protein systems they encode, including their regulation and the expanding diversity of substrates that they target. Next, we highlight previously understudied substrates such as monosaccharides, nucleosides, and Maillard reaction products that can also affect the gut microbiota by feeding symbionts that possess specific systems for their metabolism. Since some pathogens preferentially utilize these nutrients, they may represent nutrient niches competed for by commensals and pathogens. Finally, we address recent work to describe nutrient acquisition mechanisms in other important gut species such as those belonging to the Gram-positive anaerobic phyla Actinobacteria and Firmicutes, as well as the Proteobacteria Because gut bacteria contribute to many aspects of health and disease, we showcase advances in the field of synthetic biology, which seeks to engineer novel, diet-controlled nutrient utilization pathways within gut symbionts to create rationally designed live therapeutics.
Collapse
Affiliation(s)
- Robert W. P. Glowacki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
34
|
Stewart KL, Stewart AM, Bobik TA. Prokaryotic Organelles: Bacterial Microcompartments in E. coli and Salmonella. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0025-2019. [PMID: 33030141 PMCID: PMC7552817 DOI: 10.1128/ecosalplus.esp-0025-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in Escherichia coli and Salmonella: the propanediol utilization (pdu), ethanolamine utilization (eut), choline utilization (cut), and glycyl radical propanediol (grp) MCPs. Although the great majority of work done on catabolic MCPs has been carried out with Salmonella and E. coli, research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Katie L. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Andrew M. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Thomas A. Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| |
Collapse
|
35
|
Wellawa DH, Allan B, White AP, Köster W. Iron-Uptake Systems of Chicken-Associated Salmonella Serovars and Their Role in Colonizing the Avian Host. Microorganisms 2020; 8:E1203. [PMID: 32784620 PMCID: PMC7465098 DOI: 10.3390/microorganisms8081203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential micronutrient for most bacteria. Salmonella enterica strains, representing human and animal pathogens, have adopted several mechanisms to sequester iron from the environment depending on availability and source. Chickens act as a major reservoir for Salmonella enterica strains which can lead to outbreaks of human salmonellosis. In this review article we summarize the current understanding of the contribution of iron-uptake systems to the virulence of non-typhoidal S. enterica strains in colonizing chickens. We aim to address the gap in knowledge in this field, to help understand and define the interactions between S. enterica and these important hosts, in comparison to mammalian models.
Collapse
Affiliation(s)
- Dinesh H. Wellawa
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Brenda Allan
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
| | - Aaron P. White
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
36
|
Rimet CS, Maurer JJ, Berghaus RD, Jordan BJ, da Silva LHA, Stabler LJ, Johnson KK, Tensa LR, Segovia KM, França MS. The Contribution of Eimeria Coinfection and Intestinal Inflammation to Cecal Colonization and Systemic Spread of Salmonella Typhimurium Deficient in Tetrathionate Reductase or Type III Secretion Systems Salmonella Pathogenicity Island 1 or 2. Avian Dis 2020; 63:559-567. [PMID: 31865669 DOI: 10.1637/aviandiseases-d-19-00082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/19/2019] [Indexed: 11/05/2022]
Abstract
Intestinal inflammation may provide a growth advantage for Salmonella and enhance its systemic spread in chickens. Salmonella triggers intestinal inflammation in the host by using type III secretion systems (T3SS) and produces the inflammatory end product tetrathionate. In mice, tetrathionate respiration confers a growth advantage for Salmonella Typhimurium over the competitive microbiome in the inflamed intestine. Coccidia also promote intestinal inflammation and enhance Salmonella intestinal growth and systemic spread in chickens. The objective of this study was to evaluate the contribution of inflammation, induced by Eimeria spp. or Salmonella Typhimurium, to Salmonella colonization and dissemination in chickens. In addition, the fitness costs associated with defects in tetrathionate reductase and T3SS associated with Salmonella Pathogenicity Island 1 or 2 (SPI-1 or SPI-2) were evaluated in in vivo competition experiments with wild-type Salmonella strain, with or without Eimeria coinfection. One-day-old specific-pathogen-free chickens were orally inoculated with a sham inoculum or with 4 × 102 Eimeria oocysts cocktail of Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria mitis. At 6 days of age, birds were orally administered a 1:1 ratio of Salmonella Typhimurium wild-type and mutant deficient in tetrathionate reductase, SPI-1, or SPI-2 (108 colony forming units/bird). Ceca, livers, and drumsticks were collected at 3, 7, 14, and 42 days after Salmonella infection, for bacteriology. Intestinal inflammation was scored by histology. Significantly higher intestinal inflammation was observed in challenge groups compared with the control. However, there were no significant differences in intestinal inflammation scores between groups coinfected with both Eimeria spp. and Salmonella Typhimurium and birds infected with Salmonella alone, and Eimeria coinfection did not increase Salmonella prevalence or abundance. Contrary to mouse studies, tetrathionate reductase did not enhance Salmonella Typhimurium cecal colonization or systemic spread in chickens. SPI-1 and SPI-2 played a significant role in Salmonella dissemination and cecal colonization in chickens, respectively.
Collapse
Affiliation(s)
- Claire-Sophie Rimet
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - John J Maurer
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Roy D Berghaus
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - Brian J Jordan
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601.,Poultry Science Department, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30601
| | - Luciana Helena Antoniassi da Silva
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601.,Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, SP, 13083-862, Brazil
| | - Lisa J Stabler
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - Kasey K Johnson
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - Laura R Tensa
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - Karen M Segovia
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - Monique S França
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601,
| |
Collapse
|
37
|
Dunn LL, Smith DM, Critzer FJ. Transcriptomic Behavior of Salmonella enterica Newport in Response to Oxidative Sanitizers. J Food Prot 2020; 83:221-232. [PMID: 31934775 DOI: 10.4315/0362-028x.jfp-19-299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/04/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Agricultural water is a known source of contamination to fresh produce and can contain foodborne pathogens including Salmonella enterica, pathogenic Escherichia coli, Listeria monocytogenes, and Campylobacter jejuni. To mitigate such risks, antimicrobial agents such as hypochlorites and peroxyacetic acid (PAA) can be applied to in-line irrigation systems as well as to water used in postharvest washing. Although these compounds are effective and widely used, some pathogenic bacteria adapt to survive exposure. RNA sequencing was used to analyze the Salmonella Newport transcriptome after exposure to sodium hypochlorite (NaOCl) and PAA in a simulated agricultural water system. Overall cellular adaptive response was determined quantitatively as a function of overall gene expression of the >4,000 genes in the Salmonella Newport genome. Differentially expressed genes ranged from 11 due to 10-ppm NaOCl treatment, 316 due to 20-ppm NaOCl treatment, 1,719 due to 10-ppm PAA treatment, and 2,010 due to 20-ppm PAA treatment compared with that of the controls (water only). Differentially expressed transcripts included cellular functions such as biosynthesis, degradation, energy generation, and nonmetabolically linked functions. Oxidative exposure upregulated genes associated with key virulence, attachment, and gene transfer. Amino acid biosynthesis was upregulated due to NaOCl exposure but primarily downregulated when Salmonella Newport was exposed to PAA. Slight upregulation occurred in nucleoside and nucleotide biosynthesis, a known DNA repair mechanism seen during exposure to sanitizers. Our results indicate that Salmonella Newport reacts differently when exposed to NaOCl versus PAA, despite oxidative activity being the primary modes of antimicrobial action of both compounds. HIGHLIGHTS
Collapse
Affiliation(s)
- Laurel L Dunn
- Department of Food Science and Technology, Food Science Building, University of Georgia, 100 Cedar Street, Athens, Georgia 30602 (ORCID: https://orcid.org/0000-0003-0786-5253 [L.L.D.])
| | - Dara M Smith
- Department of Food Science, University of Tennessee, 2600 River Drive, Knoxville, Tennessee 37996
| | - Faith J Critzer
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, 24106 North Bunn Road, Prosser, Washington 99350, USA
| |
Collapse
|
38
|
Glowacki RWP, Pudlo NA, Tuncil Y, Luis AS, Sajjakulnukit P, Terekhov AI, Lyssiotis CA, Hamaker BR, Martens EC. A Ribose-Scavenging System Confers Colonization Fitness on the Human Gut Symbiont Bacteroides thetaiotaomicron in a Diet-Specific Manner. Cell Host Microbe 2019; 27:79-92.e9. [PMID: 31901520 DOI: 10.1016/j.chom.2019.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/03/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Efficient nutrient acquisition in the human gut is essential for microbial persistence. Although polysaccharides have been well-studied nutrients for the gut microbiome, other resources such as nucleic acids and nucleosides are less studied. We describe several ribose-utilization systems (RUSs) that are broadly represented in Bacteroidetes and appear to have diversified to access ribose from a variety of substrates. One Bacteroides thetaiotaomicron RUS variant is critical for competitive gut colonization in a diet-specific fashion. We used molecular genetics to probe the required functions of the system and the nature of the nutrient source(s) underlying this phenotype. Two RUS-encoded ribokinases were the only components required for this effect, presumably because they generate ribose-phosphate derivatives from products of an unlinked but essential nucleoside phosphorylase. Our results underscore the extensive mechanisms that gut symbionts have evolved to access nutrients and the potential for unexpected dependencies among systems that mediate colonization and persistence.
Collapse
Affiliation(s)
- Robert W P Glowacki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicholas A Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yunus Tuncil
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| | - Ana S Luis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anton I Terekhov
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bruce R Hamaker
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
39
|
Shi S, Qi Z, Sheng T, Tu J, Shao Y, Qi K. Antagonistic trait of Lactobacillus reuteri S5 against Salmonella enteritidis and assessment of its potential probiotic characteristics. Microb Pathog 2019; 137:103773. [PMID: 31604155 DOI: 10.1016/j.micpath.2019.103773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 01/11/2023]
Abstract
Salmonella enteritidis is an important foodborne pathogen that has caused multiple outbreaks of infection associated with poultry and egg consumption. Thus, the prevention and inhibition of Salmonella enteritidis infection are of great concern. Lactic acid bacteria have anti-pathogenic activity; however, their underlying mechanisms and modes of action have not yet been clarified. In this study, the antibacterial mechanism of Lactobacillus reuteri S5 (L. reuteri S5) against Salmonella enteritidis ATCC13076 (S. enteritidis ATCC13076) was studied by different methods. We found that L. reuteri S5 was able to form a stable biofilm formation, colonizing the entire intestinal tract of chickens. In addition, bacterial cultures and the cell-free supernatant (CFS) of L. reuteri S5 inhibited SE ATCC13076 growth, and this growth inhibition was also observed in the co-culture assay. This effect may be predominantly caused by antimicrobial metabolites produced by L. reuteri S5. Furthermore, treatment with the CFS of L. reuteri S5 resulted in a significant reduction in the expression of Salmonella virulence, motility and adhesion genes and a significant reduction in the motility ability and inhibitory effect on biofilm formation. In addition, the damage to the membrane structure and intracellular structure induced by the CFS of L. reuteri S5 could be observed on Transmission electron microscopy images and dodecyl sulfate, sodium salt (SDS)-Polyacrylamide gel electrophoresis confirmed the disruptive action of the CFS of L. reuteri S5 on the cytoplasmic membrane. Our findings demonstrate that L. reuteri S5, an intestinal Lactobacillus species associated with chicken health, is able to form biofilm and stably colonize chicken intestines. It also possesses anti-SE activity, preventing SE growth, inhibits the expression of SE genes involved in adhesion and invasion, virulence and cell membrane integrity, inhibits SE biofilm formation and motility, damages or destroys bacterial structures, and inhibits intracellular protein synthesis. L. reuteri S5 therefore has potential applications as a probiotic agent.
Collapse
Affiliation(s)
- Shuiqin Shi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Zhao Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Tingting Sheng
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Yin Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
40
|
Abstract
1. There is huge emphasis in veterinary and agricultural science in understanding the basics of processes and exploiting them for benefits to the economy and human and animal welfare. It is always valuable to be able to step back from existing or favourite hypotheses and paradigms to look at an area of work or problem and see whether a different approach might be productive particularly by drawing parallels with other sometimes unrelated problems. 2. This approach has been used to explore (i) the use of live, attenuated Salmonella vaccines to generate a new form of competitive exclusion, (ii) gene expression technology for the design of improved inactivated vaccines (iii) use of cytokine therapy to reduce persistent carriage by Salmonella, (iv) using bacteriophages to reduce carcass contamination by food-borne pathogens and reduce carriage of antibiotic resistance plasmids. 3. The potential for extending virus therapy to parasite infections is also discussed.
Collapse
Affiliation(s)
- P Barrow
- School of Veterinary Medicine and Science, University of Nottingham , Loughborough, Leicestershire , UK
| |
Collapse
|
41
|
Canals R, Hammarlöf DL, Kröger C, Owen SV, Fong WY, Lacharme-Lora L, Zhu X, Wenner N, Carden SE, Honeycutt J, Monack DM, Kingsley RA, Brownridge P, Chaudhuri RR, Rowe WPM, Predeus AV, Hokamp K, Gordon MA, Hinton JCD. Adding function to the genome of African Salmonella Typhimurium ST313 strain D23580. PLoS Biol 2019; 17:e3000059. [PMID: 30645593 PMCID: PMC6333337 DOI: 10.1371/journal.pbio.3000059] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Salmonella Typhimurium sequence type (ST) 313 causes invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa, targeting susceptible HIV+, malarial, or malnourished individuals. An in-depth genomic comparison between the ST313 isolate D23580 and the well-characterized ST19 isolate 4/74 that causes gastroenteritis across the globe revealed extensive synteny. To understand how the 856 nucleotide variations generated phenotypic differences, we devised a large-scale experimental approach that involved the global gene expression analysis of strains D23580 and 4/74 grown in 16 infection-relevant growth conditions. Comparison of transcriptional patterns identified virulence and metabolic genes that were differentially expressed between D23580 versus 4/74, many of which were validated by proteomics. We also uncovered the S. Typhimurium D23580 and 4/74 genes that showed expression differences during infection of murine macrophages. Our comparative transcriptomic data are presented in a new enhanced version of the Salmonella expression compendium, SalComD23580: http://bioinf.gen.tcd.ie/cgi-bin/salcom_v2.pl. We discovered that the ablation of melibiose utilization was caused by three independent SNP mutations in D23580 that are shared across ST313 lineage 2, suggesting that the ability to catabolize this carbon source has been negatively selected during ST313 evolution. The data revealed a novel, to our knowledge, plasmid maintenance system involving a plasmid-encoded CysS cysteinyl-tRNA synthetase, highlighting the power of large-scale comparative multicondition analyses to pinpoint key phenotypic differences between bacterial pathovariants.
Collapse
Affiliation(s)
- Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Disa L. Hammarlöf
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Kröger
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Siân V. Owen
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Wai Yee Fong
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lizeth Lacharme-Lora
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Xiaojun Zhu
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nicolas Wenner
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sarah E. Carden
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jared Honeycutt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Philip Brownridge
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Roy R. Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Will P. M. Rowe
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Alexander V. Predeus
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Ireland
| | - Melita A. Gordon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Malawi, Central Africa
| | - Jay C. D. Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
42
|
Kwan G, Plagenz B, Cowles K, Pisithkul T, Amador-Noguez D, Barak JD. Few Differences in Metabolic Network Use Found Between Salmonella enterica Colonization of Plants and Typhoidal Mice. Front Microbiol 2018; 9:695. [PMID: 29867780 PMCID: PMC5951976 DOI: 10.3389/fmicb.2018.00695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/26/2018] [Indexed: 01/17/2023] Open
Abstract
The human enteric pathogen Salmonella enterica leads a cross-kingdom lifestyle, actively colonizing and persisting on plants in between animal hosts. One of the questions that arises from this dual lifestyle is how S. enterica is able to adapt to such divergent hosts. Metabolic pathways required for S. enterica animal colonization and virulence have been previously identified, but the metabolism of this bacterium on plants is poorly understood. To determine the requirements for plant colonization by S. enterica, we first screened a library of metabolic mutants, previously examined in a systemic mouse typhoidal model, for competitive plant colonization fitness on alfalfa seedlings. By comparing our results to those reported in S. enterica-infected murine spleens, we found that the presence of individual nutrients differed between the two host niches. Yet, similar metabolic pathways contributed to S. enterica colonization of both plants and animals, such as the biosynthesis of amino acids, purines, and vitamins and the catabolism of glycerol and glucose. However, utilization of at least three metabolic networks differed during the bacterium's plant- and animal-associated lifestyles. Whereas both fatty acid biosynthesis and degradation contributed to S. enterica animal colonization, only fatty acid biosynthesis was required during plant colonization. Though serine biosynthesis was required in both hosts, S. enterica used different pathways within the serine metabolic network to achieve this outcome. Lastly, the metabolic network surrounding manA played different roles during colonization of each host. In animal models of infection, O-antigen production downstream of manA facilitates immune evasion. We discovered that manA contributed to S. enterica attachment, to seeds and germinated seedlings, and was essential for growth in early seedling exudates, when mannose is limited. However, only seedling attachment was linked to O-antigen production, indicating that manA played additional roles critical for plant colonization that were independent of surface polysaccharide production. The integrated view of S. enterica metabolism throughout its life cycle presented here provides insight on how metabolic versatility and adaption of known physiological pathways for alternate functions enable a zoonotic pathogen to thrive in niches spanning across multiple kingdoms of life.
Collapse
Affiliation(s)
- Grace Kwan
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Brett Plagenz
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kimberly Cowles
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Tippapha Pisithkul
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
43
|
Abstract
Bacterial microcompartments (BMCs) are self-assembling organelles that consist of an enzymatic core that is encapsulated by a selectively permeable protein shell. The potential to form BMCs is widespread and found across the kingdom Bacteria. BMCs have crucial roles in carbon dioxide fixation in autotrophs and the catabolism of organic substrates in heterotrophs. They contribute to the metabolic versatility of bacteria, providing a competitive advantage in specific environmental niches. Although BMCs were first visualized more than 60 years ago, it is mainly in the past decade that progress has been made in understanding their metabolic diversity and the structural basis of their assembly and function. This progress has not only heightened our understanding of their role in microbial metabolism but is also beginning to enable their use in a variety of applications in synthetic biology. In this Review, we focus on recent insights into the structure, assembly, diversity and function of BMCs.
Collapse
Affiliation(s)
- Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Clement Aussignargues
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jan Zarzycki
- Max-Planck-Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Fei Cai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
44
|
Muyyarikkandy MS, Amalaradjou MA. Lactobacillus bulgaricus, Lactobacillus rhamnosus and Lactobacillus paracasei Attenuate Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium Colonization and Virulence Gene Expression In Vitro. Int J Mol Sci 2017; 18:E2381. [PMID: 29120368 PMCID: PMC5713350 DOI: 10.3390/ijms18112381] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Salmonella Enteritidis (SE), Salmonella Typhimurium (ST), and Salmonella Heidelberg (SH) have been responsible for numerous outbreaks associated with the consumption of poultry meat and eggs. Salmonella colonization in chicken is characterized by initial attachment to the cecal epithelial cells (CEC) followed by dissemination to the liver, spleen, and oviduct. Since cecal colonization is critical to Salmonella transmission along the food chain continuum, reducing this intestinal association could potentially decrease poultry meat and egg contamination. Hence, this study investigated the efficacy of Lactobacillus delbreuckii sub species bulgaricus (NRRL B548; LD), Lactobacillus paracasei (DUP-13076; LP), and Lactobacillus rhamnosus (NRRL B442; LR) in reducing SE, ST, and SH colonization in CEC and survival in chicken macrophages. Additionally, their effect on expression of Salmonella virulence genes essential for cecal colonization and survival in macrophages was evaluated. All three probiotics significantly reduced Salmonella adhesion and invasion in CEC and survival in chicken macrophages (p < 0.05). Further, the probiotic treatment led to a significant reduction in Salmonella virulence gene expression (p < 0.05). Results of the study indicate that LD, LP, and LR could potentially be used to control SE, ST, and SH colonization in chicken. However, these observations warrant further in vivo validation.
Collapse
|
45
|
Yang HJ, Bogomolnaya L, McClelland M, Andrews-Polymenis H. De novo pyrimidine synthesis is necessary for intestinal colonization of Salmonella Typhimurium in chicks. PLoS One 2017; 12:e0183751. [PMID: 29040285 PMCID: PMC5644981 DOI: 10.1371/journal.pone.0183751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 11/18/2022] Open
Abstract
pyrE (STM3733) encodes orotate phosphoribosyltransferase (OPRTase; EC 2.4.2.10), the fifth enzyme of the de novo pyrimidine biosynthetic pathway. We identified a ΔpyrE mutant as under selection in screening of a Salmonella mutant library in 4-day old chicks. Here, we confirm that a ΔpyrE mutant colonizes 4-day old chicks poorly in competitive infection with isogenic wild type, and that the ability of this mutant to colonize chicks could be restored by providing a copy of pyrE in trans. We further show that our ΔpyrE mutant grows poorly in nutrient poor conditions in vitro, and that the ability of this mutant to grow is restored, both in vitro and in chicks, when precursors to the pyrimidine salvage pathway were provided. This finding suggests that the environment in the chick intestine during our infections lacks sufficient precursors of the pyrimidine salvage pathway to support Salmonella growth. Finally, we show that the colonization defect of a ΔpyrE mutant during infection occurs in to chicks, but not in CBA/J mice or ligated ileal loops in calves. Our data suggest that de novo pyrimidine synthesis is necessary for colonization of Salmonella Typhimurium in the chick, and that the salvage pathway is not used in this niche.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, Bryan, TX, United States of America
| | - Lydia Bogomolnaya
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, Bryan, TX, United States of America
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, and Pathology and Laboratory Medicine, University of California, Irvine, CA, United States of America
| | - Helene Andrews-Polymenis
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, Bryan, TX, United States of America
- * E-mail:
| |
Collapse
|
46
|
Kollanoor Johny A, Frye JG, Donoghue A, Donoghue DJ, Porwollik S, McClelland M, Venkitanarayanan K. Gene Expression Response of Salmonella enterica Serotype Enteritidis Phage Type 8 to Subinhibitory Concentrations of the Plant-Derived Compounds Trans-Cinnamaldehyde and Eugenol. Front Microbiol 2017; 8:1828. [PMID: 29018419 PMCID: PMC5623010 DOI: 10.3389/fmicb.2017.01828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
Background:Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two plant-derived compounds generally recognized as safe (GRAS), trans-cinnamaldehyde (TC), and eugenol (EG), significantly reduced S. Enteritidis colonization in broiler and layer chickens. To elucidate potential PT8 genes affected by TC and EG during colonization, a whole-genome microarray analysis of the bacterium treated with TC and EG was conducted. Results:S. Enteritidis PT8 was grown in Luria-Bertani broth at 37°C to an OD600 of ~0.5. Subinhibitory concentrations (SICs; concentration that does not inhibit bacterial growth) of TC (0.01%; 0.75 mM) or EG (0.04%; 2.46 mM) were then added to the culture. S. Enteritidis PT8 RNA was extracted before and 30 min after TC or EG addition. Labeled cDNA from three replicate experiments was subsequently hybridized to a microarray of over 99% of S. Enteritidis PT4 genes, and the hybridization signals were quantified. The plant-derived compounds down-regulated (P < 0.005) expression of S. Enteritidis PT8 genes involved in flagellar motility, regulation of the Salmonella Pathogenicity Island 1, and invasion of intestinal epithelial cells. TC and EG also suppressed transcription of genes encoding multiple transport systems and outer membrane proteins. Moreover, several metabolic and biosynthetic pathways in the pathogen were down-regulated during exposure to the plant-derived compounds. Both TC and EG stimulated the transcription of heat shock genes, such as dnaK, dnaJ, ibpB, and ibpA in S. Enteritidis PT8 (P < 0.005). The results obtained from microarray were validated using a quantitative real-time PCR. Conclusion: The plant-derived compounds TC and EG exert antimicrobial effects on S. Enteritidis PT8 by affecting multiple genes, including those associated with virulence, colonization, cell membrane composition, and transport systems.
Collapse
Affiliation(s)
- Anup Kollanoor Johny
- Department of Animal Science, University of Minnesota, Saint Paul, MN, United States
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, USDA-ARS, Richard B. Russell Research Center, Athens, GA, United States
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, USDA, Fayetteville, AR, United States
| | - Dan J Donoghue
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
47
|
Mahanti A, Ghosh P, Samanta I, Joardar SN, Bandyopadhyay S, Bhattacharyya D, Banerjee J, Batabyal S, Sar TK, Dutta TK. Prevalence of CTX-M-Producing Klebsiella spp. in Broiler, Kuroiler, and Indigenous Poultry in West Bengal State, India. Microb Drug Resist 2017; 24:299-306. [PMID: 28829687 DOI: 10.1089/mdr.2016.0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This study was undertaken to detect the prevalence of CTX-M-producing Klebsiella spp. in healthy broiler, indigenous, and kuroiler birds reared in West Bengal (India) during November 2014-February 2015. In addition to CTX-M gene, the study was also conducted to reveal the occurrence of other β-lactamase and class I integron genes in Klebsiella spp. isolates along with their clonal relationship. A total of 321 cloacal swabs from healthy broiler, indigenous, and kuroiler birds were collected from different places of West Bengal, India. Klebsiella spp. isolation rate varies among different types of poultry birds (43.8-72.3%). In total, 33 (10.7%) Klebsiella spp. isolates were detected phenotypically as CTX-M producers and all the isolates possessed blaCTX-M in polymerase chain reaction. Whereas 17 (51.5%) and 16 (48.5%) Klebsiella spp. isolates possessed blaSHV, and blaTEM with blaCTX-M, respectively. None of the CTX-M-producing Klebsiella spp. isolates in this study possessed class I integron gene. Randomly amplified polymorphic DNA-based phylogenetic tree revealed the presence of clonal relationship among the CTX-M-producing Klebsiella spp. isolates, recovered from broilers and indigenous birds. This study identified broilers and indigenous game birds as a potential reservoir of CTX-M-producing Klebsiella spp., which could be transmitted to the human food chain directly or indirectly.
Collapse
Affiliation(s)
- Achintya Mahanti
- 1 Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences , Kolkata, India
| | - Pratik Ghosh
- 1 Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences , Kolkata, India
| | - Indranil Samanta
- 1 Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences , Kolkata, India
| | - Siddhartha Narayan Joardar
- 1 Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences , Kolkata, India
| | | | | | - Jaydeep Banerjee
- 2 Eastern Regional Station, Indian Veterinary Research Institute , Kolkata, India
| | - Subhasis Batabyal
- 3 Department of Veterinary Biochemistry, West Bengal University of Animal and Fishery Sciences , Kolkata, India
| | - Tapas Kumar Sar
- 4 Department of Veterinary Pharmacology and Toxicology, West Bengal University of Animal and Fishery Sciences , Kolkata, India
| | - Tapan Kumar Dutta
- 5 Department of Veterinary Microbiology, Central Agricultural University , Aizawl, India
| |
Collapse
|
48
|
Ximenes E, Hoagland L, Ku S, Li X, Ladisch M. Human pathogens in plant biofilms: Formation, physiology, and detection. Biotechnol Bioeng 2017; 114:1403-1418. [PMID: 28067424 DOI: 10.1002/bit.26247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Eduardo Ximenes
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
| | - Lori Hoagland
- Horticulture and Landscape Architecture; Purdue University; West Lafayette Indiana
| | - Seockmo Ku
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
| | - Xuan Li
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
| | - Michael Ladisch
- Laboratory of Renewable Resources Engineering; Purdue University; West Lafayette Indiana 47907-2022
- Department of Agricultural and Biological Engineering; Purdue University; West Lafayette Indiana
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette Indiana
| |
Collapse
|
49
|
Faber F, Thiennimitr P, Spiga L, Byndloss MX, Litvak Y, Lawhon S, Andrews-Polymenis HL, Winter SE, Bäumler AJ. Respiration of Microbiota-Derived 1,2-propanediol Drives Salmonella Expansion during Colitis. PLoS Pathog 2017; 13:e1006129. [PMID: 28056091 PMCID: PMC5215881 DOI: 10.1371/journal.ppat.1006129] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
Intestinal inflammation caused by Salmonella enterica serovar Typhimurium increases the availability of electron acceptors that fuel a respiratory growth of the pathogen in the intestinal lumen. Here we show that one of the carbon sources driving this respiratory expansion in the mouse model is 1,2-propanediol, a microbial fermentation product. 1,2-propanediol utilization required intestinal inflammation induced by virulence factors of the pathogen. S. Typhimurium used both aerobic and anaerobic respiration to consume 1,2-propanediol and expand in the murine large intestine. 1,2-propanediol-utilization did not confer a benefit in germ-free mice, but the pdu genes conferred a fitness advantage upon S. Typhimurium in mice mono-associated with Bacteroides fragilis or Bacteroides thetaiotaomicron. Collectively, our data suggest that intestinal inflammation enables S. Typhimurium to sidestep nutritional competition by respiring a microbiota-derived fermentation product. Salmonella enterica serovar Typhimurium induces intestinal inflammation to induce the generation of host-derived respiratory electron acceptors, thereby driving a respiratory pathogen expansion, which aids infectious transmission by the fecal oral route. However, the identity of nutrients serving as electron donors to enable S. Typhimurium to edge out competing microbes in the competitive environment of the gut are just beginning to be worked out. Here we demonstrate that aerobic and anaerobic respiratory pathways cooperate to promote growth of Salmonella on the microbial fermentation product 1,2-propanediol. We propose that pathogen-induced intestinal inflammation enables Salmonella to sidestep nutritional competition with the largely anaerobic microbiota by respiring a microbe-derived metabolite that cannot be consumed by fermentation.
Collapse
Affiliation(s)
- Franziska Faber
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, United States of America
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Luisella Spiga
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Mariana X. Byndloss
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, United States of America
| | - Yael Litvak
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, United States of America
| | - Sara Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
| | - Helene L. Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States of America
| | - Sebastian E. Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Andreas J. Bäumler
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
50
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|