1
|
Szczerbiec D, Glińska S, Kamińska J, Drzewiecka D. Outer Membrane Vesicles Formed by Clinical Proteus mirabilis Strains May Be Incorporated into the Outer Membrane of Other P. mirabilis Cells and Demonstrate Lytic Properties. Molecules 2024; 29:4836. [PMID: 39459204 PMCID: PMC11509992 DOI: 10.3390/molecules29204836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Outer membrane vesicles (OMVs) are extracellular structures, ranging in size from 10 to 300 nm, produced by Gram-negative bacteria. They can be incorporated into the outer membrane of a recipient's cells, which may enable the transfer of substances with lytic properties. Due to the scarce information regarding the OMVs produced by Proteus mirabilis, the aim of this study was to test the blebbing abilities of the clinical P. mirabilis O77 and O78 strains and to determine the blebs' interactions with bacterial cells, including their possible bactericidal activities. The production of OMVs was visualised by Transmission electron microscopy (TEM). The presence of OMVs in the obtained samples as well as the phenomenon of OMV fusion to recipient cells were confirmed by Enzyme-Linked ImmunoSorbent Assay (ELISA) and Western blotting assays. The bacteriolytic activity of the OMVs was examined against P. mirabilis clinical strains and reference Staphylococcus aureus and Escherichia coli strains. It was shown that each of the two tested P. mirabilis strains could produce OMVs which were able to fuse into the cells of the other strain. The lytic properties of the O78 OMVs against another P. mirabilis O78 strain were also demonstrated. This promising result may help in the future to better understand the mechanisms of the pathogenesis and to treat the infections caused by P. mirabilis.
Collapse
Affiliation(s)
- Dominika Szczerbiec
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (J.K.)
| | - Sława Glińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Justyna Kamińska
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (J.K.)
| | - Dominika Drzewiecka
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (J.K.)
| |
Collapse
|
2
|
Singh K, Vashishtha S, Chakraborty A, Kumar A, Thakur S, Kundu B. The Salmonella typhi Cell Division Activator Protein StCAP Impacts Pathogenesis by Influencing Critical Molecular Events. ACS Infect Dis 2024; 10:1990-2001. [PMID: 38815059 DOI: 10.1021/acsinfecdis.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Conserved molecular signatures in multidrug-resistant Salmonella typhi can serve as novel therapeutic targets for mitigation of infection. In this regard, we present the S. typhi cell division activator protein (StCAP) as a conserved target across S. typhi variants. From in silico and fluorimetric assessments, we found that StCAP is a DNA-binding protein. Replacement of the identified DNA-interacting residue Arg34 of StCAP with Ala34 showed a dramatic (15-fold) increase in Kd value compared to the wild type (Kd 546 nm) as well as a decrease in thermal stability (10 °C shift). Out of the two screened molecules against the DNA-binding pocket of StCAP, eltrombopag, and nilotinib, the former displayed better binding. Eltrombopag inhibited the stand-alone S. typhi culture with an IC50 of 38 μM. The effect was much more pronounced on THP-1-derived macrophages (T1Mac) infected with S. typhi where colony formation was severely hindered with IC50 reduced further to 10 μM. Apoptotic protease activating factor1 (Apaf1), a key molecule for intrinsic apoptosis, was identified as an StCAP-interacting partner by pull-down assay against T1Mac. Further, StCAP-transfected T1Mac showed a significant increase in LC3 II (autophagy marker) expression and downregulation of caspase 3 protein. From these experiments, we conclude that StCAP provides a crucial survival advantage to S. typhi during infection, thereby making it a potent alternative therapeutic target.
Collapse
Affiliation(s)
- Kritika Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ankan Chakraborty
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ashish Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sheetal Thakur
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
3
|
Peregrino ES, Castañeda-Casimiro J, Vázquez-Flores L, Estrada-Parra S, Wong-Baeza C, Serafín-López J, Wong-Baeza I. The Role of Bacterial Extracellular Vesicles in the Immune Response to Pathogens, and Therapeutic Opportunities. Int J Mol Sci 2024; 25:6210. [PMID: 38892397 PMCID: PMC11172497 DOI: 10.3390/ijms25116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Pathogenic bacteria have several mechanisms to evade the host's immune response and achieve an efficient infection. Bacterial extracellular vesicles (EVs) are a relevant cellular communication mechanism, since they can interact with other bacterial cells and with host cells. In this review, we focus on the EVs produced by some World Health Organization (WHO) priority Gram-negative and Gram-positive pathogenic bacteria; by spore-producing bacteria; by Mycobacterium tuberculosis (a bacteria with a complex cell wall); and by Treponema pallidum (a bacteria without lipopolysaccharide). We describe the classification and the general properties of bacterial EVs, their role during bacterial infections and their effects on the host immune response. Bacterial EVs contain pathogen-associated molecular patterns that activate innate immune receptors, which leads to cytokine production and inflammation, but they also contain antigens that induce the activation of B and T cell responses. Understanding the many effects of bacterial EVs on the host's immune response can yield new insights on the pathogenesis of clinically important infections, but it can also lead to the development of EV-based diagnostic and therapeutic strategies. In addition, since EVs are efficient activators of both the innate and the adaptive immune responses, they constitute a promising platform for vaccine development.
Collapse
Affiliation(s)
- Eliud S. Peregrino
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
| | - Jessica Castañeda-Casimiro
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Luis Vázquez-Flores
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Carlos Wong-Baeza
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| |
Collapse
|
4
|
Wang S, Chen CC, Hu MH, Cheng M, Tu HF, Tsai YC, Yang JM, Wu TC, Huang CH, Hung CF. Arginine-linked HPV-associated E7 displaying bacteria-derived outer membrane vesicles as a potent antigen-specific cancer vaccine. J Transl Med 2024; 22:378. [PMID: 38649894 PMCID: PMC11036690 DOI: 10.1186/s12967-024-05195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Bacteria-based cancer therapy have demonstrated innovative strategies to combat tumors. Recent studies have focused on gram-negative bacterial outer membrane vesicles (OMVs) as a novel cancer immunotherapy strategy due to its intrinsic properties as a versatile carrier. METHOD Here, we developed an Human Papillomavirus (HPV)-associated E7 antigen displaying Salmonella-derived OMV vaccine, utilizing a Poly(L-arginine) cell penetrating peptide (CPP) to enhance HPV16 E7 (aa49-67) H-2 Db and OMV affinity, termed SOMV-9RE7. RESULTS Due to OMV's intrinsic immunogenic properties, SOMV-9RE7 effectively activates adaptive immunity through antigen-presenting cell uptake and antigen cross-presentation. Vaccination of engineered OMVs shows immediate tumor suppression and recruitment of infiltrating tumor-reactive immune cells. CONCLUSION The simplicity of the arginine coating strategy boasts the versatility of immuno-stimulating OMVs that can be broadly implemented to personalized bacterial immunotherapeutic applications.
Collapse
Affiliation(s)
- Suyang Wang
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Chao-Cheng Chen
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Ming-Hung Hu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Michelle Cheng
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Jr-Ming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - T C Wu
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chuan-Hsiang Huang
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II 307, Baltimore, MD, 21287, USA.
| |
Collapse
|
5
|
Sirisaengtaksin N, O'Donoghue EJ, Jabbari S, Roe AJ, Krachler AM. Bacterial outer membrane vesicles provide an alternative pathway for trafficking of Escherichia coli O157 type III secreted effectors to epithelial cells. mSphere 2023; 8:e0052023. [PMID: 37929984 PMCID: PMC10732017 DOI: 10.1128/msphere.00520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Bacteria can package protein cargo into nanosized membrane blebs that are shed from the bacterial membrane and released into the environment. Here, we report that a type of pathogenic bacteria called enterohemorrhagic Escherichia coli O157 (EHEC) uses their membrane blebs (outer membrane vesicles) to package components of their type 3 secretion system and send them into host cells, where they can manipulate host signaling pathways including those involved in infection response, such as immunity. Usually, EHEC use a needle-like apparatus to inject these components into host cells, but packaging them into membrane blebs that get taken up by host cells is another way of delivery that can bypass the need for a functioning injection system.
Collapse
Affiliation(s)
- Natalie Sirisaengtaksin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eloise J. O'Donoghue
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sara Jabbari
- School of Mathematics, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew J. Roe
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Zangara MT, Darwish L, Coombes BK. Characterizing the Pathogenic Potential of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. EcoSal Plus 2023; 11:eesp00182022. [PMID: 37220071 PMCID: PMC10729932 DOI: 10.1128/ecosalplus.esp-0018-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 01/28/2024]
Abstract
The microbiome of Crohn's disease (CD) patients is composed of a microbial community that is considered dysbiotic and proinflammatory in nature. The overrepresentation of Enterobacteriaceae species is a common feature of the CD microbiome, and much attention has been given to understanding the pathogenic role this feature plays in disease activity. Over 2 decades ago, a new Escherichia coli subtype called adherent-invasive E. coli (AIEC) was isolated and linked to ileal Crohn's disease. Since the isolation of the first AIEC strain, additional AIEC strains have been isolated from both inflammatory bowel disease (IBD) patients and non-IBD individuals using the original in vitro phenotypic characterization methods. Identification of a definitive molecular marker of the AIEC pathotype has been elusive; however, significant advancements have been made in understanding the genetic, metabolic, and virulence determinants of AIEC infection biology. Here, we review the current knowledge of AIEC pathogenesis to provide additional, objective measures that could be considered in defining AIEC and their pathogenic potential.
Collapse
Affiliation(s)
- Megan T. Zangara
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lena Darwish
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Pérez Jorge G, Gontijo MTP, Brocchi M. Salmonella enterica and outer membrane vesicles are current and future options for cancer treatment. Front Cell Infect Microbiol 2023; 13:1293351. [PMID: 38116133 PMCID: PMC10728604 DOI: 10.3389/fcimb.2023.1293351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Conventional cancer therapies have many limitations. In the last decade, it has been suggested that bacteria-mediated immunotherapy may circumvent the restrictions of traditional treatments. For example, Salmonella enterica is the most promising bacteria for treating cancer due to its intrinsic abilities, such as killing tumor cells, targeting, penetrating, and proliferating into the tumor. S. enterica has been genetically modified to ensure safety and increase its intrinsic antitumor efficacy. This bacterium has been used as a vector for delivering anticancer agents and as a combination therapy with chemotherapy, radiotherapy, or photothermic. Recent studies have reported the antitumor efficacy of outer membrane vesicles (OMVs) derived from S. enterica. OMVs are considered safer than attenuated bacteria and can stimulate the immune system as they comprise most of the immunogens found on the surface of their parent bacteria. Furthermore, OMVs can also be used as nanocarriers for antitumor agents. This review describes the advances in S. enterica as immunotherapy against cancer and the mechanisms by which Salmonella fights cancer. We also highlight the use of OMVs as immunotherapy and nanocarriers of anticancer agents. OMVs derived from S. enterica are innovative and promising strategies requiring further investigation.
Collapse
Affiliation(s)
- Genesy Pérez Jorge
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| | - Marco Túlio Pardini Gontijo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Marcelo Brocchi
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| |
Collapse
|
8
|
Alqurashi H, Alsharief M, Perciato ML, Raven B, Ren K, Lambert DW. Message in a bubble: the translational potential of extracellular vesicles. J Physiol 2023; 601:4895-4905. [PMID: 37795936 PMCID: PMC10952456 DOI: 10.1113/jp282047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-enclosed vesicles released by cells into the extracellular milieu. They are found in all body fluids and contain a variety of functional cargo including DNA, RNA, proteins, glycoproteins and lipids, able to provoke phenotypic responses in cells, both locally and at distant sites. They are implicated in a wide array of physiological and pathological processes and hence have attracted considerable attention in recent years as potential therapeutic targets, drug delivery vehicles and biomarkers of disease. In this review we summarise the major functions of EVs in health and disease and discuss their translational potential, highlighting opportunities of - and challenges to - capitalising on our rapidly increasing understanding of EV biology for patient benefit.
Collapse
Affiliation(s)
- H. Alqurashi
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- College of DentistryKing Faisal UniversitySaudi Arabia
| | - M. Alsharief
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - M. L. Perciato
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - B. Raven
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- Healthy Lifespan InstituteUniversity of SheffieldSheffieldUK
| | - K. Ren
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - D. W. Lambert
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- Healthy Lifespan InstituteUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
9
|
Xu Y, Xie C, Liu Y, Qin X, Liu J. An update on our understanding of Gram-positive bacterial membrane vesicles: discovery, functions, and applications. Front Cell Infect Microbiol 2023; 13:1273813. [PMID: 37860067 PMCID: PMC10582989 DOI: 10.3389/fcimb.2023.1273813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles released from cells into the extracellular environment, and are separated from eukaryotic cells, bacteria, and other organisms with cellular structures. EVs alter cell communication by delivering their contents and performing various functions depending on their cargo and release into certain environments or other cells. The cell walls of Gram-positive bacteria have a thick peptidoglycan layer and were previously thought to be unable to produce EVs. However, recent studies have demonstrated that Gram-positive bacterial EVs are crucial for health and disease. In this review, we have summarized the formation, composition, and characteristics of the contents, resistance to external stress, participation in immune regulation, and other functions of Gram-positive bacterial EVs, as well as their application in clinical diagnosis and treatment, to provide a new perspective to further our understanding of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
| | | | | | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
10
|
Toppi V, Scattini G, Musa L, Stefanetti V, Pascucci L, Chiaradia E, Tognoloni A, Giovagnoli S, Franciosini MP, Branciari R, Proietti PC. Evaluation of β-Lactamase Enzyme Activity in Outer Membrane Vesicles (OMVs) Isolated from Extended Spectrum β-Lactamase (ESBL) Salmonella Infantis Strains. Antibiotics (Basel) 2023; 12:antibiotics12040744. [PMID: 37107107 PMCID: PMC10135247 DOI: 10.3390/antibiotics12040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Outer membrane vesicles (OMVs) are nanoparticles released by Gram-negative bacteria, which contain different cargo molecules and mediate several biological processes. Recent studies have shown that OMVs are involved in antibiotic-resistance (AR) mechanisms by including β-lactamase enzymes in their lumen. Since no studies have as yet been conducted on Salmonella enterica subs. enterica serovar Infantis' OMVs, the aim of the work was to collect OMVs from five S. Infantis β-lactam resistant strains isolated from a broiler meat production chain and to investigate whether β-lactamase enzymes are included in OMVs during their biogenesis. OMVs were isolated by means of ultrafiltration and a Nitrocefin assay quantified the presence of β-lactamase enzymes in the OMVs. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to identify the OMVs. The results showed that all strains release spherical OMVs, ranging from 60 to 230 nm. The Nitrocefin assay highlighted the presence of β-lactamase enzymes within the OMVs. This suggests that β-lactamase enzymes also get packaged into OMVs from bacterial periplasm during OMV biogenesis. An investigation into the possible role played by OMVs in AR mechanisms would open the door for an opportunity to develop new, therapeutic strategies.
Collapse
Affiliation(s)
- Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Gabriele Scattini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maria Pia Franciosini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | | |
Collapse
|
11
|
Quinn C, Tomás-Cortázar J, Ofioritse O, Cosgrave J, Purcell C, McAloon C, Frost S, McClean S. GlnH, a Novel Antigen That Offers Partial Protection against Verocytotoxigenic Escherichia coli Infection. Vaccines (Basel) 2023; 11:175. [PMID: 36680019 PMCID: PMC9863631 DOI: 10.3390/vaccines11010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Verotoxin-producing Escherichia coli (VTEC) causes zoonotic infections, with potentially devastating complications, and children under 5 years old are particularly susceptible. Antibiotic treatment is contraindicated, and due to the high proportion of infected children that suffer from severe and life-changing complications, there is an unmet need for a vaccine to prevent VTEC infections. Bacterial adhesins represent promising candidates for the successful development of a vaccine against VTEC. Using a proteomic approach to identify bacterial proteins interacting with human gastrointestinal epithelial Caco-2 and HT-29 cells, we identified eleven proteins by mass spectrometry. These included a glutamine-binding periplasmic protein, GlnH, a member of the ABC transporter family. The glnH gene was identified in 13 of the 15 bovine and all 5 human patient samples tested, suggesting that it is prevalent. We confirmed that GlnH is involved in the host cell attachment of an O157:H7 prototype E. coli strain to gastrointestinal cells in vitro. Recombinant GlnH was expressed and purified prior to the immunisation of mice. When alum was used as an adjuvant, GlnH was highly immunogenic, stimulating strong serological responses in immunised mice, and it resulted in a modest reduction in faecal shedding but did not reduce colonisation. GlnH immunisation with a T-cell-inducing adjuvant (SAS) also showed comparable antibody responses and an IgG1/IgG2a ratio suggestive of a mixed Th1/Th2 response but was partially protective, with a 1.5-log reduction in colonisation of the colon and caecum at 7 days relative to the adjuvant only (p = 0.0280). It is clear that future VTEC vaccine developments should consider the contribution of adjuvants in addition to antigens. Moreover, it is likely that a combined cellular and humoral response may prove more beneficial in providing protective interventions against VTEC.
Collapse
Affiliation(s)
- Conor Quinn
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
- APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, D18 DH5 Co. Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| | - Oritsejolomi Ofioritse
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Cosgrave
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Purcell
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanna Frost
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| |
Collapse
|
12
|
Qu M, Zhu H, Zhang X. Extracellular vesicle-mediated regulation of macrophage polarization in bacterial infections. Front Microbiol 2022; 13:1039040. [PMID: 36619996 PMCID: PMC9815515 DOI: 10.3389/fmicb.2022.1039040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-enveloped vesicles secreted by prokaryotic and eukaryotic cells, which are commonly defined as membrane vesicles (MVs) and exosomes, respectively. They play critical roles in the bacteria-bacteria and bacteria-host interactions. In infectious diseases caused by bacteria, as the first line of defense against pathogens, the macrophage polarization mode commonly determines the success or failure of the host's response to pathogen aggression. M1-type macrophages secrete pro-inflammatory factors that support microbicidal activity, while alternative M2-type macrophages secrete anti-inflammatory factors that perform an antimicrobial immune response but partially allow pathogens to replicate and survive intracellularly. Membrane vesicles (MVs) released from bacteria as a distinctive secretion system can carry various components, including bacterial effectors, nucleic acids, or lipids to modulate macrophage polarization in host-pathogen interaction. Similar to MVs, bacteria-infected macrophages can secrete exosomes containing a variety of components to manipulate the phenotypic polarization of "bystander" macrophages nearby or long distance to differentiate into type M1 or M2 to regulate the course of inflammation. Exosomes can also repair tissue damage associated with the infection by upregulating the levels of anti-inflammatory factors, downregulating the pro-inflammatory factors, and regulating cellular biological behaviors. The study of the mechanisms by which EVs modulate macrophage polarization has opened new frontiers in delineating the molecular machinery involved in bacterial pathogenesis and challenges in providing new strategies for diagnosis and therapy.
Collapse
Affiliation(s)
- Mingjuan Qu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, China,*Correspondence: Xingxiao Zhang, ✉
| |
Collapse
|
13
|
Abstract
This review focuses on nonlytic outer membrane vesicles (OMVs), a subtype of bacterial extracellular vesicles (BEVs) produced by Gram-negative organisms focusing on the mechanisms of their biogenesis, cargo, and function. Throughout, we highlight issues concerning the characterization of OMVs and distinguishing them from other types of BEVs. We also highlight the shortcomings of commonly used methodologies for the study of BEVs that impact the interpretation of their functionality and suggest solutions to standardize protocols for OMV studies.
Collapse
Affiliation(s)
| | - Simon R. Carding
- Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
14
|
Jiang M, Wang Z, Xia F, Wen Z, Chen R, Zhu D, Wang M, Zhuge X, Dai J. Reductions in bacterial viability stimulate the production of Extra-intestinal Pathogenic Escherichia coli (ExPEC) cytoplasm-carrying Extracellular Vesicles (EVs). PLoS Pathog 2022; 18:e1010908. [PMID: 36260637 PMCID: PMC9621596 DOI: 10.1371/journal.ppat.1010908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Extra-intestinal Pathogenic Escherichia coli (ExPEC) is defined as an extra-intestinal foodborne pathogen, and several dominant sequence types (STs) ExPEC isolates are highly virulent, with zoonotic potential. Bacteria extracellular vesicles (EVs) carry specific subsets of molecular cargo, which affect various biological processes in bacteria and host. The mechanisms of EVs formation in ExPEC remains to be elucidated. Here, the purified EVs of ExPEC strains of different STs were isolated with ultracentrifugation processes. A comparative analysis of the strain proteomes showed that cytoplasmic proteins accounted for a relatively high proportion of the proteins among ExPEC EVs. The proportion of cytoplasm-carrying vesicles in ExPEC EVs was calculated with a simple green fluorescent protein (GFP) expression method. The RecA/LexA-dependent SOS response is a critical mediator of generation of cytoplasm-carrying EVs. The SOS response activates the expression of prophage-associated endolysins, Epel1, Epel2.1, and Epel2.2, which triggered cell lysis, increasing the production of ExPEC cytoplasm-carrying EVs. The repressor LexA controlled directly the expression of these endolysins by binding to the SOS boxes in the endolysin promoter regions. Reducing bacterial viability stimulated the production of ExPEC EVs, especially cytoplasm-carrying EVs. The imbalance in cell division caused by exposure to H2O2, the deletion of ftsK genes, or t6A synthesis defects activated the RecA/LexA-dependent SOS response, inducing the expression of endolysins, and thus increasing the proportion of cytoplasm-carrying EVs in the total ExPEC EVs. Antibiotics, which decreased bacterial viability, also increase the production of ExPEC cytoplasm-carrying EVs through the SOS response. Changes in the proportion of cytoplasm-carrying EVs affected the total DNA content of ExPEC EVs. When macrophages are exposed to a higher proportion of cytoplasm-carrying vesicles, ExPEC EVs were more cytotoxic to macrophages, accompanied with more-severe mitochondrial disruption and a higher level of induced intrinsic apoptosis. In summary, we offered comprehensive insight into the proteome analysis of ExPEC EVs. This study demonstrated the novel formation mechanisms of E. coli cytoplasm-carrying EVs. Bacteria can release extracellular vesicles (EVs) into the extracellular environment. Bacterial EVs are primarily composed of protein, DNA, RNA, lipopolysaccharide (LPS), and diverse metabolite molecules. The molecular cargoes of EVs are critical for the interaction between microbes and their hosts, and affected various host biological processes. However, the mechanisms underlying the biogenesis of bacterial EVs had not been fully clarified in extra-intestinal pathogenic Escherichia coli (ExPEC). In this study, we demonstrated ExPEC EVs contained at least three types of vesicles, including outer membrane vesicles (OMVs), outer-inner membrane vesicles (OIMVs), and explosive outer membrane vesicles (EOMVs). Our results systematically identified important factors affecting the production of ExPEC cytoplasm-carrying EVs, especially EOMVs. A reduction in bacterial viability activated the RecA/LexA-dependent SOS response, inducing the expression of endolysins, which increased the production of ExPEC cytoplasm-carrying EVs. This increase in the proportion of cytoplasm-carrying EVs increased the cytotoxicity of EVs. It was noteworthy that antibiotics increased the production of ExPEC EVs, especially the numbers of cytoplasm-carrying EVs, which in turn increased EV cytotoxicity, suggesting that the treatment of infections of multidrug-resistant strains infection with antibiotics might cause greater host damage. Our study should improve the prevention and treatment of ExPEC infections.
Collapse
Affiliation(s)
- Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Zhongxing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Fufang Xia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Zhe Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Rui Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Dongyu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China,* E-mail: (XZ); (JD)
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,College of Pharmacy, China Pharmaceutical University, Nanjing, China,* E-mail: (XZ); (JD)
| |
Collapse
|
15
|
Michel LV, Gaborski T. Outer membrane vesicles as molecular biomarkers for Gram-negative sepsis: Taking advantage of nature's perfect packages. J Biol Chem 2022; 298:102483. [PMID: 36108741 PMCID: PMC9576880 DOI: 10.1016/j.jbc.2022.102483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/13/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Sepsis is an often life-threatening response to infection, occurring when host proinflammatory immune responses become abnormally elevated and dysregulated. To diagnose sepsis, the patient must have a confirmed or predicted infection, as well as other symptoms associated with the pathophysiology of sepsis. However, a recent study found that a specific causal organism could not be determined in the majority (70.1%) of sepsis cases, likely due to aggressive antibiotics or localized infections. The timing of a patient's sepsis diagnosis is often predictive of their clinical outcome, underlining the need for a more definitive molecular diagnostic test. Here, we outline the advantages and challenges to using bacterial outer membrane vesicles (OMVs), nanoscale spherical buds derived from the outer membrane of Gram-negative bacteria, as a diagnostic biomarker for Gram-negative sepsis. Advantages include OMV abundance, their robustness in the presence of antibiotics, and their unique features derived from their parent cell that could allow for differentiation between bacterial species. Challenges include the rigorous purification methods required to isolate OMVs from complex biofluids and the additional need to separate OMVs from similarly sized extracellular vesicles, which can share physical properties with OMVs.
Collapse
Affiliation(s)
- Lea Vacca Michel
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA.
| | - Thomas Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
16
|
Nguyen J, Fuhrmann G. Extracellular Vesicles - A Versatile Biomaterial. Adv Healthc Mater 2022; 11:e2200192. [PMID: 35233995 DOI: 10.1002/adhm.202200192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Juliane Nguyen
- Eshelman School of Pharmacy Division of Pharmacoengineering and Molecular Pharmaceutics University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Gregor Fuhrmann
- Chair of Pharmaceutical Biology Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Staudtstr. 5 Erlangen 91058 Germany
| |
Collapse
|
17
|
Zhang K, Ge H, He J, Hu M, Xu Z, Jiao X, Chen X. Salmonella Typhimurium ST34 Isolate Was More Resistant than the ST19 Isolate in China, 2007 - 2019. Foodborne Pathog Dis 2021; 19:62-69. [PMID: 34520252 DOI: 10.1089/fpd.2021.0047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To disclose the antimicrobial susceptibility and wide adaptability of commonly occurring genotypes of Salmonella enterica serovar Typhimurium, the antimicrobial resistance and multilocus sequence typing (MLST) profiles of 196 Salmonella Typhimurium isolates (136 from food-producing animals, 19 from environments, 15 from markets, and 26 from humans) in China between 2007 and 2019 were analyzed. Tests of susceptibility to 19 antimicrobial agents using the broth microdilution method showed that 84.7% of the isolates were resistant to at least one antimicrobial. Antimicrobial susceptibility analysis demonstrated that 66.8% of the isolates were multidrug-resistant (MDR) strains, with resistance to three or more antimicrobials. The highest antidrug resistance was to ampicillin, amoxicillin/clavulanic acid, and tetracycline. Three MLST types were detected, and sequence type (ST) 19 was the most common ST. However, ST34 was associated with a higher MDR rate and more complex MDR patterns, than ST19 and ST99, although the exact mechanism has not been reported. Our study highlights the variation of drug resistance and STs from different sources and the association between STs and drug resistance, providing useful information for epidemiological research and developing a public health strategy.
Collapse
Affiliation(s)
- Kai Zhang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Haojie Ge
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jingjing He
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Maozhi Hu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Schorey JS, Cheng Y, McManus WR. Bacteria- and host-derived extracellular vesicles - two sides of the same coin? J Cell Sci 2021; 134:268991. [PMID: 34081134 DOI: 10.1242/jcs.256628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intracellular bacterial pathogens spend portions of their life cycle both inside and outside host cells. While in these two distinct environments, they release or shed bacterial components, including virulence factors that promote their survival and replication. Some of these components are released through extracellular vesicles, which are either derived from the bacteria themselves or from the host cells. Bacteria- and host-derived vesicles have been studied almost exclusively in isolation from each other, with little discussion of the other type of secreted vesicles, despite the fact that both are generated during an in vivo infection and both are likely play a role in bacterial pathogenesis and host immunity. In this Review, we aim to bridge this gap and discuss what we know of bacterial membrane vesicles in their generation and composition. We will compare and contrast this with the composition of host-derived vesicles with regard to bacterial components. We will also compare host cell responses to the different vesicles, with a focus on how these vesicles modulate the immune response, using Mycobacterium, Listeria and Salmonella as specific examples for these comparisons.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yong Cheng
- Department of Biochemistry and Molecular Biology, Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - William R McManus
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
19
|
Increased Production of Outer Membrane Vesicles by Salmonella Interferes with Complement-Mediated Innate Immune Attack. mBio 2021; 12:e0086921. [PMID: 34061589 PMCID: PMC8262969 DOI: 10.1128/mbio.00869-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) enriched with bioactive proteins, toxins, and virulence factors play a critical role in host-pathogen and microbial interactions. The two-component system PhoP-PhoQ (PhoPQ) of Salmonella enterica orchestrates the remodeling of outer membrane lipopolysaccharide (LPS) molecules and concomitantly upregulates OMV production. In this study, we document a novel use of nanoparticle tracking analysis to determine bacterial OMV size and number. Among the PhoPQ-activated genes tested, pagC expression had the most significant effect on the upregulation of OMV production. We provide the first evidence that PhoPQ-mediated upregulation of OMV production contributes to bacterial survival by interfering with complement activation. OMVs protected bacteria in a dose-dependent manner, and bacteria were highly susceptible to complement-mediated killing in their absence. OMVs from bacteria expressing PagC bound to complement component C3b in a dose-dependent manner and inactivated it by recruiting complement inhibitor Factor H. As we also found that Factor H binds to PagC, we propose that PagC interferes with complement-mediated killing of Salmonella in the following two steps: first by engaging Factor H, and second, through the production of PagC-enriched OMVs that divert and inactivate the complement away from the bacteria. Since PhoPQ activation occurs intracellularly, the resultant increase in PagC expression and OMV production is suggested to contribute to the local and systemic spread of Salmonella released from dying host cells that supports the infection of new cells. IMPORTANCE Bacterial outer membrane vesicles (OMVs) mediate critical bacterium-bacterium and host-microbial interactions that influence pathogenesis through multiple mechanisms, including the elicitation of inflammatory responses, delivery of virulence factors, and enhancement of biofilm formation. As such, there is a growing interest in understanding the underlying mechanisms of OMV production. Recent studies have revealed that OMV biogenesis is a finely tuned physiological process that requires structural organization and selective sorting of outer membrane components into the vesicles. In Salmonella, outer membrane remodeling and OMV production are tightly regulated by its PhoPQ system. In this study, we demonstrate that PhoPQ-regulated OMV production plays a significant role in defense against host innate immune attack. PhoPQ-activated PagC expression recruits the complement inhibitor Factor H and degrades the active C3 component of complement. Our results provide valuable insight into the combination of tools and environmental signals that Salmonella employs to evade complement-mediated lysis, thereby suggesting a strong evolutionary adaptation of this facultative intracellular pathogen to protect itself during its extracellular stage in the host.
Collapse
|
20
|
Patel JG, Narra HP, Sepuru KM, Sahni A, Golla SR, Sahni A, Singh A, Schroeder CLC, Chowdhury IH, Popov VL, Sahni SK. Evolution, purification, and characterization of RC0497: a peptidoglycan amidase from the prototypical spotted fever species Rickettsia conorii. Biol Chem 2021; 401:249-262. [PMID: 31299006 DOI: 10.1515/hsz-2018-0389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 06/29/2019] [Indexed: 12/12/2022]
Abstract
Rickettsial species have independently lost several genes owing to reductive evolution while retaining those predominantly implicated in virulence, survival, and biosynthetic pathways. In this study, we have identified a previously uncharacterized Rickettsia conorii gene RC0497 as an N-acetylmuramoyl-L-alanine amidase constitutively expressed during infection of cultured human microvascular endothelial cells at the levels of both mRNA transcript and encoded protein. A homology-based search of rickettsial genomes reveals that RC0497 homologs, containing amidase_2 family and peptidoglycan binding domains, are highly conserved among the spotted fever group (SFG) rickettsiae. The recombinant RC0497 protein exhibits α-helix secondary structure, undergoes a conformational change in the presence of zinc, and exists as a dimer at higher concentrations. We have further ascertained the enzymatic activity of RC0497 via demonstration of its ability to hydrolyze Escherichia coli peptidoglycan. Confocal microscopy on E. coli expressing RC0497 and transmission immunoelectron microscopy of R. conorii revealed its localization predominantly to the cell wall, septal regions of replicating bacteria, and the membrane of vesicles pinching off the cell wall. In summary, we have identified and functionally characterized RC0497 as a peptidoglycan hydrolase unique to spotted fever rickettsiae, which may potentially serve as a novel moonlighting protein capable of performing multiple functions during host-pathogen interactions.
Collapse
Affiliation(s)
- Jignesh G Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sandhya R Golla
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Aishwarya Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amber Singh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Casey L C Schroeder
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Imran H Chowdhury
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
21
|
Sokaribo AS, Perera SR, Sereggela Z, Krochak R, Balezantis LR, Xing X, Lam S, Deck W, Attah-Poku S, Abbott DW, Tamuly S, White AP. A GMMA-CPS-Based Vaccine for Non-Typhoidal Salmonella. Vaccines (Basel) 2021; 9:vaccines9020165. [PMID: 33671372 PMCID: PMC7922415 DOI: 10.3390/vaccines9020165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Non-typhoidal Salmonella are a major cause of gastroenteritis worldwide, as well as causing bloodstream infections in sub-Saharan Africa with a high fatality rate. No vaccine is currently available for human use. Current vaccine development strategies are focused on capsular polysaccharides (CPS) present on the surface of non-typhoidal Salmonella. This study aimed to boost the amount of CPS purified from S. Typhimurium for immunization trials. Random mutagenesis with Tn10 transposon increased the production of CPS colanic acid, by 10-fold compared to wildtype. Immunization with colanic acid or colanic acid conjugated to truncated glycoprotein D or inactivated diphtheria toxin did not induce a protective immune response in mice. However, immunization with Generalized Modules for Membrane Antigens (GMMAs) isolated from colanic acid overproducing isolates reduced Salmonella colonization in mice. Our results support the development of a GMMA-CPS-based vaccine against non-typhoidal Salmonella.
Collapse
Affiliation(s)
- Akosiererem S. Sokaribo
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Sumudu R. Perera
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Zoe Sereggela
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Ryan Krochak
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Lindsay R. Balezantis
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - Xiaohui Xing
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J4B1, Canada; (X.X.); (D.W.A.)
| | - Shirley Lam
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - William Deck
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - Sam Attah-Poku
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
| | - Dennis Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J4B1, Canada; (X.X.); (D.W.A.)
| | - Shantanu Tamuly
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 781022, Assam, India;
| | - Aaron P. White
- Vaccine and Infectious Disease Organization-International Vaccine Centre, Saskatoon, SK S7N5E3, Canada; (A.S.S.); (S.R.P.); (Z.S.); (R.K.); (L.R.B.); (S.L.); (W.D.); (S.A.-P.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
- Correspondence: ; Tel.: +01-306-966-7485
| |
Collapse
|
22
|
Extracellular RNAs in Bacterial Infections: From Emerging Key Players on Host-Pathogen Interactions to Exploitable Biomarkers and Therapeutic Targets. Int J Mol Sci 2020; 21:ijms21249634. [PMID: 33348812 PMCID: PMC7766527 DOI: 10.3390/ijms21249634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are key regulators of post-transcriptional gene expression in prokaryotic and eukaryotic organisms. These molecules can interact with mRNAs or proteins, affecting a variety of cellular functions. Emerging evidence shows that intra/inter-species and trans-kingdom regulation can also be achieved with exogenous RNAs, which are exported to the extracellular medium, mainly through vesicles. In bacteria, membrane vesicles (MVs) seem to be the more common way of extracellular communication. In several bacterial pathogens, MVs have been described as a delivery system of ncRNAs that upon entry into the host cell, regulate their immune response. The aim of the present work is to review this recently described mode of host-pathogen communication and to foster further research on this topic envisaging their exploitation in the design of novel therapeutic and diagnostic strategies to fight bacterial infections.
Collapse
|
23
|
Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis. PLoS One 2020; 15:e0227657. [PMID: 33216751 PMCID: PMC7679012 DOI: 10.1371/journal.pone.0227657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
When oral bacteria accidentally enter the bloodstream due to transient tissue damage during dental procedures, they have the potential to attach to the endocardium or an equivalent surface of an indwelling prosthesis and cause infection. Many bacterial species produce extracellular vesicles (EVs) as part of normal physiology, but also use it as a virulence strategy. In this study, it was hypothesized that Granulicatella adiacens produce EVs that possibly help it in virulence. Therefore, the objectives were to isolate and characterize EVs produced by G. adiacens and to investigate its immune-stimulatory effects. The reference strain G. adiacens CCUG 27809 was cultured on chocolate blood agar for 2 days. From subsequent broth culture, the EVs were isolated using differential centrifugation and filtration protocol and then observed using scanning electron microscopy. Proteins in the vesicle preparation were identified by nano LC-ESI-MS/MS. The EVs proteome was analyzed and characterized using different bioinformatics tools. The immune-stimulatory effect of the EVs was studied via ELISA quantification of IL-8, IL-1β and CCL5, major proinflammatory cytokines, produced from stimulated human PBMCs. It was revealed that G. adiacens produced EVs, ranging in diameter from 30 to 250 nm. Overall, G. adiacens EVs contained 112 proteins. The proteome consists of several ribosomal proteins, DNA associated proteins, binding proteins, and metabolic enzymes. It was also shown that these EVs carry putative virulence factors including moonlighting proteins. These EVs were able to induce the production of IL-8, IL-1β and CCL5 from human PBMCs. Further functional characterization of the G. adiacens EVs may provide new insights into virulence mechanisms of this important but less studied oral bacterial species.
Collapse
|
24
|
Yang J, Hwang I, Lee E, Shin SJ, Lee EJ, Rhee JH, Yu JW. Bacterial Outer Membrane Vesicle-Mediated Cytosolic Delivery of Flagellin Triggers Host NLRC4 Canonical Inflammasome Signaling. Front Immunol 2020; 11:581165. [PMID: 33312172 PMCID: PMC7708323 DOI: 10.3389/fimmu.2020.581165] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria-released components can modulate host innate immune response in the absence of direct host cell-bacteria interaction. In particular, bacteria-derived outer membrane vesicles (OMVs) were recently shown to activate host caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide. However, further precise understanding of innate immune-modulation by bacterial OMVs remains elusive. Here, we present evidence that flagellated bacteria-released OMVs can trigger NLRC4 canonical inflammasome activation via flagellin delivery to the cytoplasm of host cells. Salmonella typhimurium-derived OMVs caused a robust NLRC4-mediated caspase-1 activation and interleukin-1β secretion in macrophages in an endocytosis-dependent, but guanylate-binding protein-independent manner. Notably, OMV-associated flagellin is crucial for Salmonella OMV-induced inflammasome response. Flagellated Pseudomonas aeruginosa-released OMVs consistently promoted robust NLRC4 inflammasome activation, while non-flagellated Escherichia coli-released OMVs induced NLRC4-independent non-canonical inflammasome activation leading to NLRP3-mediated interleukin-1β secretion. Flagellin-deficient Salmonella OMVs caused a weak interleukin-1β production in a NLRP3-dependent manner. These findings indicate that Salmonella OMV triggers NLRC4 inflammasome activation via OMV-associated flagellin in addition to a mild induction of non-canonical inflammasome signaling via OMV-bound lipopolysaccharide. Intriguingly, flagellated Salmonella-derived OMVs induced more rapid inflammasome response than flagellin-deficient Salmonella OMV and non-flagellated Escherichia coli-derived OMVs. Supporting these in vitro results, Nlrc4-deficient mice showed significantly reduced interleukin-1β production after intraperitoneal challenge with Salmonella-released OMVs. Taken together, our results here propose that NLRC4 inflammasome machinery is a rapid sensor of bacterial OMV-bound flagellin as a host defense mechanism against bacterial pathogen infection.
Collapse
Affiliation(s)
- Jungmin Yang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunju Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, South Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Chen Y, Jie K, Li B, Yu H, Ruan H, Wu J, Huang X, Liu Q. Immunization With Outer Membrane Vesicles Derived From Major Outer Membrane Protein-Deficient Salmonella Typhimurium Mutants for Cross Protection Against Salmonella Enteritidis and Avian Pathogenic Escherichia coli O78 Infection in Chickens. Front Microbiol 2020; 11:588952. [PMID: 33329465 PMCID: PMC7720508 DOI: 10.3389/fmicb.2020.588952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
Colibacillosis is an economically important infectious disease in poultry, caused by avian pathogenic Escherichia coli (APEC). Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne diseases in human circulated through poultry-derived products, including meat and chicken eggs. Vaccine control is the mainstream approach for combating these infections, but it is difficult to create a vaccine for the broad-spectrum protection of poultry due to multiple serotypes of these pathogens. Our previous studies have shown that outer membrane vesicles (OMVs) derived from S. enterica serovar Typhimurium mutants with a remodeled outer membrane could induce cross-protection against heteroserotypic Salmonella infection. Therefore, in this study, we further evaluated the potential of broad-spectrum vaccines based on major outer membrane protein (OMP)-deficient OMVs, including ΔompA, ΔompC, and ΔompD, and determined the protection effectiveness of these candidate vaccines in murine and chicken infection models. The results showed that ΔompA led to an increase in the production of OMVs. Notably, ΔompAΔompCΔompD OMVs showed significantly better cross-protection against S. enterica serovar Choleraesuis, S. Enteritidis, APEC O78, and Shigella flexneri 2a than did other omp-deficient OMVs, with the exception of ΔompA OMVs. Subsequently, we verified the results in the chicken model, in which ΔompAΔompCΔompD OMVs elicited significant cross-protection against S. Enteritidis and APEC O78 infections. These findings further confirmed the feasibility of improving the immunogenicity of OMVs by remodeling the outer membrane and provide a new perspective for the development of broad-spectrum vaccines based on OMVs.
Collapse
Affiliation(s)
- Yuxuan Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Kaiwen Jie
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Biaoxian Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Haiyan Yu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Huan Ruan
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Jing Wu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,Key Laboratory of Tumor Pathogenesis and Molecular Pathology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Stephan MS, Broeker NK, Saragliadis A, Roos N, Linke D, Barbirz S. In vitro Analysis of O-Antigen-Specific Bacteriophage P22 Inactivation by Salmonella Outer Membrane Vesicles. Front Microbiol 2020; 11:510638. [PMID: 33072001 PMCID: PMC7541932 DOI: 10.3389/fmicb.2020.510638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions of Salmonella (S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host. In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system.
Collapse
Affiliation(s)
- Mareike S Stephan
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nina K Broeker
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Norbert Roos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Stefanie Barbirz
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
27
|
Lima S, Matinha-Cardoso J, Tamagnini P, Oliveira P. Extracellular Vesicles: An Overlooked Secretion System in Cyanobacteria. Life (Basel) 2020; 10:E129. [PMID: 32751844 PMCID: PMC7459746 DOI: 10.3390/life10080129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
In bacteria, the active transport of material from the interior to the exterior of the cell, or secretion, represents a very important mechanism of adaptation to the surrounding environment. The secretion of various types of biomolecules is mediated by a series of multiprotein complexes that cross the bacterial membrane(s), each complex dedicated to the secretion of specific substrates. In addition, biological material may also be released from the bacterial cell in the form of vesicles. Extracellular vesicles (EVs) are bilayered, nanoscale structures, derived from the bacterial cell envelope, which contain membrane components as well as soluble products. In cyanobacteria, the knowledge regarding EVs is lagging far behind compared to what is known about, for example, other Gram-negative bacteria. Here, we present a summary of the most important findings regarding EVs in Gram-negative bacteria, discussing aspects of their composition, formation processes and biological roles, and highlighting a number of technological applications tested. This lays the groundwork to raise awareness that the release of EVs by cyanobacteria likely represents an important, and yet highly disregarded, survival strategy. Furthermore, we hope to motivate future studies that can further elucidate the role of EVs in cyanobacterial cell biology and physiology.
Collapse
Affiliation(s)
- Steeve Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Jorge Matinha-Cardoso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Paulo Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; (S.L.); (J.M.-C.); (P.T.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
28
|
Ahmadi Badi S, Bruno SP, Moshiri A, Tarashi S, Siadat SD, Masotti A. Small RNAs in Outer Membrane Vesicles and Their Function in Host-Microbe Interactions. Front Microbiol 2020; 11:1209. [PMID: 32670219 PMCID: PMC7327240 DOI: 10.3389/fmicb.2020.01209] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/12/2020] [Indexed: 01/18/2023] Open
Affiliation(s)
- Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Arfa Moshiri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Andrea Masotti
- Research Laboratories, Children's Hospital Bambino Gesù-IRCCS, Rome, Italy
| |
Collapse
|
29
|
Dineshkumar K, Aparna V, Wu L, Wan J, Abdelaziz MH, Su Z, Wang S, Xu H. Bacterial bug-out bags: outer membrane vesicles and their proteins and functions. J Microbiol 2020; 58:531-542. [DOI: 10.1007/s12275-020-0026-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
|
30
|
Uddin MJ, Dawan J, Jeon G, Yu T, He X, Ahn J. The Role of Bacterial Membrane Vesicles in the Dissemination of Antibiotic Resistance and as Promising Carriers for Therapeutic Agent Delivery. Microorganisms 2020; 8:E670. [PMID: 32380740 PMCID: PMC7284617 DOI: 10.3390/microorganisms8050670] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
The rapid emergence and spread of antibiotic-resistant bacteria continues to be an issue difficult to deal with, especially in the clinical, animal husbandry, and food fields. The occurrence of multidrug-resistant bacteria renders treatment with antibiotics ineffective. Therefore, the development of new therapeutic methods is a worthwhile research endeavor in treating infections caused by antibiotic-resistant bacteria. Recently, bacterial membrane vesicles (BMVs) have been investigated as a possible approach to drug delivery and vaccine development. The BMVs are released by both pathogenic and non-pathogenic Gram-positive and Gram-negative bacteria, containing various components originating from the cytoplasm and the cell envelope. The BMVs are able to transform bacteria with genes that encode enzymes such as proteases, glycosidases, and peptidases, resulting in the enhanced antibiotic resistance in bacteria. The BMVs can increase the resistance of bacteria to antibiotics. However, the biogenesis and functions of BMVs are not fully understood in association with the bacterial pathogenesis. Therefore, this review aims to discuss BMV-associated antibiotic resistance and BMV-based therapeutic interventions.
Collapse
Affiliation(s)
- Md Jalal Uddin
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Jirapat Dawan
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Gibeom Jeon
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| | - Tao Yu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272033, China;
| | - Xinlong He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (M.J.U.); (J.D.); (G.J.)
| |
Collapse
|
31
|
Losier TT, Akuma M, McKee-Muir OC, LeBlond ND, Suk Y, Alsaadi RM, Guo Z, Reshke R, Sad S, Campbell-Valois FX, Gibbings DJ, Fullerton MD, Russell RC. AMPK Promotes Xenophagy through Priming of Autophagic Kinases upon Detection of Bacterial Outer Membrane Vesicles. Cell Rep 2020; 26:2150-2165.e5. [PMID: 30784596 DOI: 10.1016/j.celrep.2019.01.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/14/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022] Open
Abstract
The autophagy pathway is an essential facet of the innate immune response, capable of rapidly targeting intracellular bacteria. However, the initial signaling regulating autophagy induction in response to pathogens remains largely unclear. Here, we report that AMPK, an upstream activator of the autophagy pathway, is stimulated upon detection of pathogenic bacteria, before bacterial invasion. Bacterial recognition occurs through the detection of outer membrane vesicles. We found that AMPK signaling relieves mTORC1-mediated repression of the autophagy pathway in response to infection, positioning the cell for a rapid induction of autophagy. Moreover, activation of AMPK and inhibition of mTORC1 in response to bacteria is not accompanied by an induction of bulk autophagy. However, AMPK signaling is required for the selective targeting of bacteria-containing vesicles by the autophagy pathway through the activation of pro-autophagic kinase complexes. These results demonstrate a key role for AMPK signaling in coordinating the rapid autophagic response to bacteria.
Collapse
Affiliation(s)
- Truc T Losier
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Mercy Akuma
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Olivia C McKee-Muir
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Nicholas D LeBlond
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Yujin Suk
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Reham M Alsaadi
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Zhihao Guo
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Ryan Reshke
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - François-Xavier Campbell-Valois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, University of Ottawa, Pavillon D'Iorio Hall, 10 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Derrick J Gibbings
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Ryan C Russell
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; University of Ottawa Center for Infection, Immunity, and Inflammation, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
32
|
Avalos-Gómez C, Reyes-López M, Ramírez-Rico G, Díaz-Aparicio E, Zenteno E, González-Ruiz C, de la Garza M. Effect of apo-lactoferrin on leukotoxin and outer membrane vesicles of Mannheimia haemolytica A2. Vet Res 2020; 51:36. [PMID: 32138772 PMCID: PMC7059318 DOI: 10.1186/s13567-020-00759-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/17/2020] [Indexed: 01/17/2023] Open
Abstract
Mannheimia haemolytica serotype A2 is the principal cause of pneumonic mannheimiosis in ovine and caprine livestock; this disease is a consequence of immune suppression caused by stress and associated viruses and is responsible for significant economic losses in farm production worldwide. Gram-negative bacteria such as M. haemolytica produce outer membrane (OM)-derived spherical structures named outer membrane vesicles (OMVs) that contain leukotoxin and other biologically active virulence factors. In the present study, the relationship between M. haemolytica A2 and bovine lactoferrin (BLf) was studied. BLf is an 80 kDa glycoprotein that possesses bacteriostatic and bactericidal properties and is part of the mammalian innate immune system. Apo-BLf (iron-free) showed a bactericidal effect against M. haemolytica A2, with an observed minimal inhibitory concentration (MIC) of 16 µM. Sublethal doses (2–8 µM) of apo-BLf increased the release of OMVs, which were quantified by flow cytometry. Apo-BLf modified the normal structure of the OM and OMVs, as observed through transmission electron microscopy. Apo-BLf also induced lipopolysaccharide (LPS) release from bacteria, disrupting OM permeability and functionality, as measured by silver staining and SDS and polymyxin B cell permeability assays. Western blot results showed that apo-BLf increased the secretion of leukotoxin in M. haemolytica A2 culture supernatants, possibly through its iron-chelating activity. In contrast, holo-BLf (with iron) did not have this effect, possibly due to differences in the tertiary structure between these proteins. In summary, apo-BLf affected the levels of several M. haemolytica virulence factors and could be evaluated for use in animals as an adjuvant in the treatment of ovine mannheimiosis.
Collapse
Affiliation(s)
- Christian Avalos-Gómez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), 04510, Coyoacán, CdMx, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. Instituto Politécnico Nacional 2508, Zacatenco, 07360, CdMx, Mexico
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. Instituto Politécnico Nacional 2508, Zacatenco, 07360, CdMx, Mexico
| | - Gerardo Ramírez-Rico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), 54714, Cuautitlán Izcalli, Estado de México, Mexico
| | - Efrén Díaz-Aparicio
- Centro Nacional de Investigación Disciplinaria en Salud animal e inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), 05110, Cuajimalpa, CdMx, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Coyoacán, CdMx, Mexico
| | - Cynthia González-Ruiz
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), 54714, Cuautitlán Izcalli, Estado de México, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. Instituto Politécnico Nacional 2508, Zacatenco, 07360, CdMx, Mexico.
| |
Collapse
|
33
|
Lécrivain AL, Beckmann BM. Bacterial RNA in extracellular vesicles: A new regulator of host-pathogen interactions? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194519. [PMID: 32142907 DOI: 10.1016/j.bbagrm.2020.194519] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 01/26/2023]
Abstract
Extracellular vesicles (EVs) are released by cells from all kingdoms and represent one form of cell-cell interaction. This universal system of communication blurs cells type boundaries, offering an new avenue for pathogens to infect their hosts. EVs carry with them an arsenal of virulence factors that have been the focus of numerous studies. During the last years, the RNA content of EVs has also gained increasing attention, particularly in the context of infection. Secreted RNA in EVs (evRNA) from several bacterial pathogens have been characterised but the exact mechanisms promoting pathogenicity remain elusive. In this review, we evaluate the potential of such transcripts to directly interact with targets in infected cells and, by this, represent a novel angle of host cell manipulation during bacterial infection. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
|
34
|
Sudhakar P, Jacomin AC, Hautefort I, Samavedam S, Fatemian K, Ari E, Gul L, Demeter A, Jones E, Korcsmaros T, Nezis IP. Targeted interplay between bacterial pathogens and host autophagy. Autophagy 2019; 15:1620-1633. [PMID: 30909843 PMCID: PMC6693458 DOI: 10.1080/15548627.2019.1590519] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Due to the critical role played by autophagy in pathogen clearance, pathogens have developed diverse strategies to subvert it. Despite previous key findings of bacteria-autophagy interplay, asystems-level insight into selective targeting by the host and autophagy modulation by the pathogens is lacking. We predicted potential interactions between human autophagy proteins and effector proteins from 56 pathogenic bacterial species by identifying bacterial proteins predicted to have recognition motifs for selective autophagy receptors SQSTM1/p62, CALCOCO2/NDP52 and MAP1LC3/LC3. Using structure-based interaction prediction, we identified bacterial proteins capable to modify core autophagy components. Our analysis revealed that autophagy receptors in general potentially target mostly genus-specific proteins, and not those present in multiple genera. The complementarity between the predicted SQSTM1/p62 and CALCOCO2/NDP52 targets, which has been shown for Salmonella, Listeria and Shigella, could be observed across other pathogens. This complementarity potentially leaves the host more susceptible to chronic infections upon the mutation of autophagy receptors. Proteins derived from enterotoxigenic and non-toxigenic Bacillus outer membrane vesicles indicated that autophagy targets pathogenic proteins rather than non-pathogenic ones. We also observed apathogen-specific pattern as to which autophagy phase could be modulated by specific genera. We found intriguing examples of bacterial proteins that could modulate autophagy, and in turn being targeted by autophagy as ahost defense mechanism. We confirmed experimentally an interplay between a Salmonella protease, YhjJ and autophagy. Our comparative meta-analysis points out key commonalities and differences in how pathogens could affect autophagy and how autophagy potentially recognizes these pathogenic effectors. Abbreviations: ATG5: autophagy related 5; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; GST: glutathione S-transferase; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3 alpha; OMV: outer membrane vesicles; SQSTM1/p62: sequestosome 1; SCV: Salmonella containing vesicle; TECPR1: tectonin beta-propeller repeat containing 1; YhjJ: hypothetical zinc-protease.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Health and Microbes Programme, Quadram Institute, Norwich Research Park, Norwich, UK
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | | | | | - Siva Samavedam
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Koorosh Fatemian
- School of Life Sciences, University of Warwick, Coventry, UK
- Current affiliation:Exaelements LTD, Coventry, UK
| | - Eszter Ari
- Department of Genetics, Eotvos Lorand University, Budapest, Hungary
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Leila Gul
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Amanda Demeter
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Health and Microbes Programme, Quadram Institute, Norwich Research Park, Norwich, UK
- Department of Genetics, Eotvos Lorand University, Budapest, Hungary
| | - Emily Jones
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Health and Microbes Programme, Quadram Institute, Norwich Research Park, Norwich, UK
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK
- Gut Health and Microbes Programme, Quadram Institute, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
35
|
Shishpal P, Kasarpalkar N, Singh D, Bhor VM. Characterization of Gardnerella vaginalis membrane vesicles reveals a role in inducing cytotoxicity in vaginal epithelial cells. Anaerobe 2019; 61:102090. [PMID: 31442559 DOI: 10.1016/j.anaerobe.2019.102090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
Bacterial vaginosis (BV) is a common polymicrobial infection affecting women in the reproductive age and is associated with adverse obstetric and gynaecological outcomes. Gardnerella vaginalis is the most virulent anaerobic bacterial species predominantly associated with BV. However, a clear understanding of the mechanisms by which it contributes to the pathogenesis and persistence of BV is lacking. In this report, we demonstrate for the first time, the isolation of membrane vesicles (MVs) from G. vaginalis ATCC 14019. These MVs are approximately 120-260 nm in diameter. Proteomic characterization of the MVs by LC-MS/MS led to the identification of 417 proteins, including proteins involved in cellular metabolism as well as molecular chaperones and certain virulence factors. Immunoblot analysis of the MVs confirmed the presence of vaginolysin, the most well-characterized virulence factor of G. vaginalis. The exposure of the vaginal epithelial cells, VK2/E6E7 to the G. vaginalis MVs resulted in the internalization of the MVs. The MVs induced cytotoxicity and an increase in the levels of the pro-inflammatory cytokine, IL-8 in VK2 cells as well lysis of erythrocytes. The results of the study indicate that G. vaginalis MVs may be involved in the delivery of cytotoxic proteins and other virulence factors to the host cells and could thereby contribute towards enhancing the cellular damage associated with pathogenesis of BV.
Collapse
Affiliation(s)
- Parul Shishpal
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), J. M. Street, Parel, Mumbai, India
| | - Nandini Kasarpalkar
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), J. M. Street, Parel, Mumbai, India
| | - Dipty Singh
- Department of Neuroendocrinology and Transmission Electron Microscopy, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), J. M. Street, Parel, Mumbai, India
| | - Vikrant M Bhor
- Department of Molecular Immunology and Microbiology, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), J. M. Street, Parel, Mumbai, India.
| |
Collapse
|
36
|
Ji Y, Yin Y, Li Z, Zhang W. Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2019; 11:nu11081712. [PMID: 31349604 PMCID: PMC6724003 DOI: 10.3390/nu11081712] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Human gut microbiota has been increasingly recognized as a pivotal determinant of non-alcoholic fatty liver disease (NAFLD). Apart from the changes in the composition of gut microbiota, the components and metabolites derived from intestinal microbiota have emerged as key factors in modulating the pathological process of NAFLD. Compelling evidences have revealed that gut microbiota generates a variety of bioactive substances that interact with the host liver cells through the portal vein. These substances include the components derived from bacteria such as lipopolysaccharides, peptidoglycan, DNA, and extracellular vesicles, as well as the metabolites ranging from short-chain fatty acids, indole and its derivatives, trimethylamine, secondary bile acids, to carotenoids and phenolic compounds. The mechanisms underlying the hepatic responses to the bioactive substances from gut bacteria have been associated with the regulation of glycolipid metabolism, immune signaling response, and redox homeostasis. Illuminating the interplay between the unique factors produced from gut microbiome and the liver will provide a novel therapeutical target for NAFLD. The current review highlights the recent advances on the mechanisms by which the key ingredients and metabolites from gut microbiota modulate the development and progression of NAFLD.
Collapse
Affiliation(s)
- Yun Ji
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109-0346, USA
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
37
|
Futoma-Kołoch B, Bugla-Płoskońska G, Dudek B, Dorotkiewicz-Jach A, Drulis-Kawa Z, Gamian A. Outer Membrane Proteins of Salmonella as Potential Markers of Resistance to Serum, Antibiotics and Biocides. Curr Med Chem 2019; 26:1960-1978. [PMID: 30378478 DOI: 10.2174/0929867325666181031130851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/13/2018] [Accepted: 08/14/2018] [Indexed: 01/05/2023]
Abstract
Salmonellosis continues to be a significant worldwide health problem. Despite rapid progress in identifying mechanisms of Salmonella virulence and resistance to chemicals, our knowledge of these mechanisms remains limited. Furthermore, it appears that the resistance to antibiotics can be amplified by ubiquitous usage of the disinfectants (biocides), both by industry and by ordinary households. Salmonella, as other Gram-negative bacteria possess outer membrane proteins (OMPs), which participate in maintaining cell integrity, adapting to environment, and interacting with infected host. Moreover, the OMPs may also contribute to resistance to antibacterials. This review summarizes the role of OMPs in Salmonella serum resistance, antibiotics resistance and cross-resistance to biocides. Although collected data do not allow to assign OMPs as markers of the Salmonella susceptibility to the above-mentioned factors, some of these proteins retain a dominant presence in certain types of resistance.
Collapse
Affiliation(s)
- Bożena Futoma-Kołoch
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Agata Dorotkiewicz-Jach
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
38
|
Hong J, Dauros-Singorenko P, Whitcombe A, Payne L, Blenkiron C, Phillips A, Swift S. Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions. J Extracell Vesicles 2019; 8:1632099. [PMID: 31275533 PMCID: PMC6598517 DOI: 10.1080/20013078.2019.1632099] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
Bacteria release nano-sized extracellular vesicles (EVs) into the extracellular milieu. Bacterial EVs contain molecular cargo originating from the parent bacterium and have important roles in bacterial survival and pathogenesis. Using 8-plex iTRAQ approaches, we profiled the EV proteome of two Escherichia coli strains, uropathogenic (UPEC) 536 and probiotic Nissle 1917. For these strains, we compared the proteome of crude input EVs prepared by ultracentrifugation alone with EVs purified by either density gradient centrifugation (DGC) or size exclusion chromatography (SEC). We further compared the proteome of EVs from bacterial cultures that were grown in iron-restricted (R) and iron-supplemented (RF) conditions. Overall, outer membrane components were highly enriched, and bacterial inner membrane components were significantly depleted in both UPEC and Nissle EVs, in keeping with an outer membrane origin. In addition, we found enrichment of ribosome-related Gene Ontology terms in UPEC EVs and proteins involved in glycolytic processes and ligase activity in Nissle EVs. We have identified that three proteins (RbsB of UPEC in R; YoeA of UPEC in RF; BamA of Nissle in R) were consistently enriched in the DGC- and SEC-purified EV samples in comparison to their crude input EV, whereas conversely the 60 kDa chaperonin GroEL was enriched in the crude input EVs for both UPEC and Nissle in R condition. Such proteins may have utility as technical markers for assessing the purity of E. coli EV preparations. Several proteins were changed in their abundance depending on the iron availability in the media. Data are available via ProteomeXchange with identifier PXD011345. In summary, we have undertaken a comprehensive characterization of the protein content of E. coli EVs and found evidence of specific EV cargos for physiological activity and conserved protein cargo that may find utility as markers in the future. Abbreviation: DGC: density gradient centrifugation; DTT: 1,4-dithiothreitol; EV: extracellular vesicles; FDR: false discovery rate; GO: Gene Ontology; R: iron-restricted; RF: iron-supplemented; iTRAQ: isobaric tags for relative and absolute quantitation; OMV: outer membrane vesicle; SWATH-MS: sequential window acquisition of all theoretical mass spectra; SEC: size exclusion chromatography.
Collapse
Affiliation(s)
- Jiwon Hong
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Priscila Dauros-Singorenko
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Alana Whitcombe
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Leo Payne
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, University of Auckland, Auckland, New Zealand
| | - Anthony Phillips
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
39
|
Ebner P, Götz F. Bacterial Excretion of Cytoplasmic Proteins (ECP): Occurrence, Mechanism, and Function. Trends Microbiol 2019; 27:176-187. [DOI: 10.1016/j.tim.2018.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/11/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022]
|
40
|
Kim SI, Kim S, Kim E, Hwang SY, Yoon H. Secretion of Salmonella Pathogenicity Island 1-Encoded Type III Secretion System Effectors by Outer Membrane Vesicles in Salmonella enterica Serovar Typhimurium. Front Microbiol 2018; 9:2810. [PMID: 30532744 PMCID: PMC6266720 DOI: 10.3389/fmicb.2018.02810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical membranous structures released by Gram-negative bacteria. Several bacterial pathogens utilize OMVs as vehicles for the delivery of virulence factors into host cells. Results of our previous study on proteomic analysis revealed that OMVs isolated from Salmonellaenterica serovar Typhimurium had virulence effectors that are known to be translocated by Salmonella pathogenicity island 1 (SPI-1)-encoded type III secretion system (T3SS1) into the host cell. In the present study, immunoblot analysis confirmed the secretion of the six T3SS1 effector proteins, namely SipB and SipC (translocators of T3SS1), and SipA, SopA, SopB, and SopE2 (effectors translocated by T3SS1), by OMVs. Results of proteinase K treatment revealed the localization of these T3SS1 effector proteins on the outer surface of OMVs. SipC and SopE2 were secreted by OMVs independent of the three secretion systems T3SS1, T3SS2, and flagella, signifying OMVs to be an alternative delivery system to T3SSs. T3SS1 effectors SipA, SipC, and SopE2 were internalized into the cytoplasm of the host cell by OMVs independent of cellular Salmonella–host cell contact. In epithelial cells, addition of OMVs harboring T3SS1 effectors stimulated the production of F-actin, thereby complementing the attenuated invasion of ΔsopE2 into host cells. These results suggest that S. Typhimurium might exploit OMVs as a long-distance vehicle to deliver T3SS1 effectors into the cytoplasm of the host cell independent of bacteria–host cell interaction.
Collapse
Affiliation(s)
- Seul I Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seongok Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seo Yeon Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
41
|
Taheri N, Mahmud AKMF, Sandblad L, Fällman M, Wai SN, Fahlgren A. Campylobacter jejuni bile exposure influences outer membrane vesicles protein content and bacterial interaction with epithelial cells. Sci Rep 2018; 8:16996. [PMID: 30451931 PMCID: PMC6242867 DOI: 10.1038/s41598-018-35409-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022] Open
Abstract
Campylobacter jejuni is a prevalent human pathogen and a major cause of bacterial gastroenteritis in the world. In humans, C. jejuni colonizes the intestinal tract and its tolerance to bile is crucial for bacteria to survive and establish infection. C. jejuni produces outer membrane vesicles (OMVs) which have been suggested to be involved in virulence. In this study, the proteome composition of C. jejuni OMVs in response to low concentration of bile was investigated. We showed that exposure of C. jejuni to low concentrations of bile, similar to the concentration in cecum, induced significant changes in the protein profile of OMVs released during growth without affecting the protein profile of the bacteria. This suggests that bile influences a selective packing of the OMVs after bacterial exposure to low bile. A low concentration of bile was found to increase bacterial adhesion to intestinal epithelial cells, likely by an enhanced hydrophobicity of the cell membrane following exposure to bile. The increased bacterial adhesiveness was not associated with increased invasion, instead bile exposure decreased C. jejuni invasion. OMVs released from bacteria upon exposure to low bile showed to increase both adhesion and invasion of non-bile-exposed bacteria into intestinal epithelial cells. These findings suggest that C. jejuni in environments with low concentrations of bile produce OMVs that facilitates colonization of the bacteria, and this could potentially contribute to virulence of C. jejuni in the gut.
Collapse
Affiliation(s)
- Nayyer Taheri
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden
| | - A K M Firoj Mahmud
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Maria Fällman
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umea, Sweden
| | - Anna Fahlgren
- Department of Molecular Biology, Umeå University, 90187, Umea, Sweden. .,Umeå Centre for Microbial Research (UCMR), Umeå University, 90187, Umea, Sweden.
| |
Collapse
|
42
|
Taboada H, Meneses N, Dunn MF, Vargas-Lagunas C, Buchs N, Castro-Mondragón JA, Heller M, Encarnación S. Proteins in the periplasmic space and outer membrane vesicles of Rhizobium etli CE3 grown in minimal medium are largely distinct and change with growth phase. MICROBIOLOGY-SGM 2018; 165:638-650. [PMID: 30358529 DOI: 10.1099/mic.0.000720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizobium etli CE3 grown in succinate-ammonium minimal medium (MM) excreted outer membrane vesicles (OMVs) with diameters of 40 to 100 nm. Proteins from the OMVs and the periplasmic space were isolated from 6 and 24 h cultures and identified by proteome analysis. A total of 770 proteins were identified: 73.8 and 21.3 % of these occurred only in the periplasm and OMVs, respectively, and only 4.9 % were found in both locations. The majority of proteins found in either location were present only at 6 or 24 h: in the periplasm and OMVs, only 24 and 9 % of proteins, respectively, were present at both sampling times, indicating a time-dependent differential sorting of proteins into the two compartments. The OMVs contained proteins with physiologically varied roles, including Rhizobium adhering proteins (Rap), polysaccharidases, polysaccharide export proteins, auto-aggregation and adherence proteins, glycosyl transferases, peptidoglycan binding and cross-linking enzymes, potential cell wall-modifying enzymes, porins, multidrug efflux RND family proteins, ABC transporter proteins and heat shock proteins. As expected, proteins with known periplasmic localizations (phosphatases, phosphodiesterases, pyrophosphatases) were found only in the periplasm, along with numerous proteins involved in amino acid and carbohydrate metabolism and transport. Nearly one-quarter of the proteins present in the OMVs were also found in our previous analysis of the R. etli total exproteome of MM-grown cells, indicating that these nanoparticles are an important mechanism for protein excretion in this species.
Collapse
Affiliation(s)
- Hermenegildo Taboada
- 1Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, México
| | - Niurka Meneses
- 1Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, México.,3Faculty of Science, Department of Chemistry and Biochemistry, University of Bern, 3010 Bern, Switzerland.,2Mass Spectrometry and Proteomics Laboratory, Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Michael F Dunn
- 1Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, México
| | - Carmen Vargas-Lagunas
- 1Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, México
| | - Natasha Buchs
- 2Mass Spectrometry and Proteomics Laboratory, Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Jaime A Castro-Mondragón
- 4Aix Marseille University, INSERM, TAGC, Theory and Approaches of Genomic Complexity, UMR_S 1090, Marseille, France
| | - Manfred Heller
- 2Mass Spectrometry and Proteomics Laboratory, Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Sergio Encarnación
- 1Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, México
| |
Collapse
|
43
|
Monnappa AK, Bari W, Seo JK, Mitchell RJ. The Cytotoxic Necrotizing Factor of Yersinia pseudotuberculosis (CNFy) is Carried on Extracellular Membrane Vesicles to Host Cells. Sci Rep 2018; 8:14186. [PMID: 30242257 PMCID: PMC6155089 DOI: 10.1038/s41598-018-32530-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
In this study we show Yersinia pseudotuberculosis secretes membrane vesicles (MVs) that contain different proteins and virulence factors depending on the strain. Although MVs from Y. pseudotuberculosis YPIII and ATCC 29833 had many proteins in common (68.8% of all the proteins identified), those located in the outer membrane fraction differed significantly. For instance, the MVs from Y. pseudotuberculosis YPIII harbored numerous Yersinia outer proteins (Yops) while they were absent in the ATCC 29833 MVs. Another virulence factor found solely in the YPIII MVs was the cytotoxic necrotizing factor (CNFy), a toxin that leads to multinucleation of host cells. The ability of YPIII MVs to transport this toxin and its activity to host cells was verified using HeLa cells, which responded in a dose-dependent manner; nearly 70% of the culture was multinucleated after addition of 5 µg/ml of the purified YPIII MVs. In contrast, less than 10% were multinucleated when the ATCC 29833 MVs were added. Semi-quantification of CNFy within the YPIII MVs found this toxin is present at concentrations of 5 ~ 10 ng per µg of total MV protein, a concentration that accounts for the cellular responses seen.
Collapse
Affiliation(s)
- Ajay K Monnappa
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Wasimul Bari
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| | - Robert J Mitchell
- School of Life Sciences, Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
44
|
Malabirade A, Habier J, Heintz-Buschart A, May P, Godet J, Halder R, Etheridge A, Galas D, Wilmes P, Fritz JV. The RNA Complement of Outer Membrane Vesicles From Salmonella enterica Serovar Typhimurium Under Distinct Culture Conditions. Front Microbiol 2018; 9:2015. [PMID: 30214435 PMCID: PMC6125333 DOI: 10.3389/fmicb.2018.02015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs), as well as OMV-associated small RNAs, have been demonstrated to play a role in host-pathogen interactions. The presence of larger RNA transcripts in OMVs has been less studied and their potential role in host-pathogen interactions remains largely unknown. Here we analyze RNA from OMVs secreted by Salmonella enterica serovar Typhimurium (S. Typhimurium) cultured under different conditions, which mimic host-pathogen interactions. S. Typhimurium was grown to exponential and stationary growth phases in minimal growth control medium (phosphate-carbon-nitrogen, PCN), as well as in acidic and phosphate-depleted PCN, comparable to the macrophage environment and inducing therefore the expression of Salmonella pathogenicity island 2 (SPI-2) genes. Moreover, Salmonella pathogenicity island 1 (SPI-1), which is required for virulence during the intestinal phase of infection, was induced by culturing S. Typhimurium to the stationary phase in Lysogeny Broth (LB). For each condition, we identified OMV-associated RNAs that are enriched in the extracellular environment relative to the intracellular space. All RNA classes could be observed, but a vast majority of rRNA was exported in all conditions in variable proportions with a notable decrease in LB SPI-1 inducing media. Several mRNAs and ncRNAs were specifically enriched in/on OMVs dependent on the growth conditions. Important to note is that some RNAs showed identical read coverage profiles intracellularly and extracellularly, whereas distinct coverage patterns were observed for other transcripts, suggesting a specific processing or degradation. Moreover, PCR experiments confirmed that distinct RNAs were present in or on OMVs as full-length transcripts (IsrB-1/2; IsrA; ffs; SsrS; CsrC; pSLT035; 10Sa; rnpB; STM0277; sseB; STM0972; STM2606), whereas others seemed to be rather present in a processed or degraded form. Finally, we show by a digestion protection assay that OMVs are able to prevent enzymatic degradation of given full-length transcripts (SsrS, CsrC, 10Sa, and rnpB). In summary, we show that OMV-associated RNA is clearly different in distinct culture conditions and that at least a fraction of the extracellular RNA is associated as a full-length transcripts with OMVs, indicating that some RNAs are protected by OMVs and thereby leaving open the possibility that those might be functionally active.
Collapse
Affiliation(s)
- Antoine Malabirade
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janine Habier
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Julien Godet
- UMR CNRS 7021, Laboratoire de BioImagerie et Pathologies, Université de Strasbourg, Strasbourg, France
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alton Etheridge
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - David Galas
- Pacific Northwest Research Institute, Seattle, WA, United States
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Joëlle V Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
45
|
Arunima A, Yelamanchi SD, Padhi C, Jaiswal S, Ryan D, Gupta B, Sathe G, Advani J, Gowda H, Prasad TSK, Suar M. "Omics" of Food-Borne Gastroenteritis: Global Proteomic and Mutagenic Analysis of Salmonella enterica Serovar Enteritidis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:571-583. [PMID: 29049011 DOI: 10.1089/omi.2017.0112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Salmonella Enteritidis causes food-borne gastroenteritis by the two type three secretion systems (TTSS). TTSS-1 mediates invasion through intestinal lining, and TTSS-2 facilitates phagocytic survival. The pathogens' ability to infect effectively under TTSS-1-deficient background in host's phagocytes is poorly understood. Therefore, pathobiological understanding of TTSS-1-defective nontyphoidal Salmonellosis is highly important. We performed a comparative global proteomic analysis of the isogenic TTSS-1 mutant of Salmonella Enteritidis (M1511) and its wild-type isolate P125109. Our results showed 43 proteins were differentially expressed. Functional annotation further revealed that differentially expressed proteins belong to pathogenesis, tRNA and ncRNA metabolic processes. Three proteins, tryptophan subunit alpha chain, citrate lyase subunit alpha, and hypothetical protein 3202, were selected for in vitro analysis based on their functional annotations. Deletion mutants generated for the above proteins in the M1511 strain showed reduced intracellular survival inside macrophages in vitro. In sum, this study provides mass spectrometry-based evidence for seven hypothetical proteins, which will be subject of future investigations. Our study identifies proteins influencing virulence of Salmonella in the host. The study complements and further strengthens previously published research on proteins involved in enteropathogenesis of Salmonella and extends their role in noninvasive Salmonellosis.
Collapse
Affiliation(s)
| | - Soujanya D Yelamanchi
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India .,2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | | | | | - Daniel Ryan
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Bhawna Gupta
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Gajanan Sathe
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Jayshree Advani
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Harsha Gowda
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India .,2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - T S Keshava Prasad
- 2 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Mrutyunjay Suar
- 1 School of Biotechnology, KIIT University , Bhubaneswar, India
| |
Collapse
|
46
|
Oliver C, Hernández MA, Tandberg JI, Valenzuela KN, Lagos LX, Haro RE, Sánchez P, Ruiz PA, Sanhueza-Oyarzún C, Cortés MA, Villar MT, Artigues A, Winther-Larsen HC, Avendaño-Herrera R, Yáñez AJ. The Proteome of Biologically Active Membrane Vesicles from Piscirickettsia salmonis LF-89 Type Strain Identifies Plasmid-Encoded Putative Toxins. Front Cell Infect Microbiol 2017; 7:420. [PMID: 29034215 PMCID: PMC5625009 DOI: 10.3389/fcimb.2017.00420] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/12/2017] [Indexed: 01/16/2023] Open
Abstract
Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs) released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain.
Collapse
Affiliation(s)
- Cristian Oliver
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Universidad Andrés Bello, Viña del Mar, Chile.,Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Mauricio A Hernández
- Austral-OMICS, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Julia I Tandberg
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Karla N Valenzuela
- Microbiology and Immunology Department, Dalhousie University, Halifax, NS, Canada
| | - Leidy X Lagos
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ronie E Haro
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Patricio Sánchez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Pamela A Ruiz
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Constanza Sanhueza-Oyarzún
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Marcos A Cortés
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - María T Villar
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hanne C Winther-Larsen
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Universidad Andrés Bello, Viña del Mar, Chile.,Interdisciplinary Center for Aquaculture Research, Concepción, Chile
| | - Alejandro J Yáñez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Interdisciplinary Center for Aquaculture Research, Concepción, Chile.,Austral-OMICS, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
47
|
Liu Q, Yi J, Liang K, Zhang X, Liu Q. Salmonella Choleraesuis outer membrane vesicles: Proteomics and immunogenicity. J Basic Microbiol 2017; 57:852-861. [PMID: 28745825 DOI: 10.1002/jobm.201700153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/15/2023]
Abstract
Salmonella enterica serotype Choleraesuis (S. Choleraesuis), Gram-negative facultative intracellular pathogen is capable of inducing the cholera in pigs whose symptoms manifest as fever, depression, septicemia, arthritis, and diarrhea. Infections with S. Choleraesuis has resulted in great economic loss for the swine breeding operations. Bacterial outer membrane vesicles (OMVs) play an important role in pathogenicity and host-pathogen interaction. In this study, we purified OMVs released by S. Choleraesuis strain χ3545 and characterized their lipopolysaccharide (LPS) profile. The OMVs contained intact LPS molecules. By using LC-MS/MS, we identified 192 proteins in the OMVs. In addition, the subcellular location and biological functions of the vesicles was predicted. The proteins were mainly derived from outer membranes and cytoplasm. Several proteins were immunoreactive and associated with the secretion pathway. Some putative multi-drug resistance-associated proteins were also identified. Furthermore, immunization experiment via intranasal or intraperitoneal route in mice demonstrated that S. Choleraesuis OMVs could elicit strong humoral and mucosal immune responses. Although OMVs as vaccine did not provide strong protection against clinical strain of wild-type S. Choleraesuis, immunization of OMVs still prolonged the survival time of vaccinated mice after high dose of S. Choleraesuis infection. Overall, this study provides valuable fundamental information toward elucidating the pathogenicity and functions of OMVs secreted from S. Choleraesuis.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Yi
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Liang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
48
|
Jung AL, Herkt CE, Schulz C, Bolte K, Seidel K, Scheller N, Sittka-Stark A, Bertrams W, Schmeck B. Legionella pneumophila infection activates bystander cells differentially by bacterial and host cell vesicles. Sci Rep 2017; 7:6301. [PMID: 28740179 PMCID: PMC5524687 DOI: 10.1038/s41598-017-06443-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/13/2017] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles from eukaryotic cells and outer membrane vesicles (OMVs) released from gram-negative bacteria have been described as mediators of pathogen-host interaction and intercellular communication. Legionella pneumophila (L. pneumophila) is a causative agent of severe pneumonia. The differential effect of bacterial and host cell vesicles in L. pneumophila infection is unknown so far. We infected THP-1-derived or primary human macrophages with L. pneumophila and isolated supernatant vesicles by differential centrifugation. We observed an increase of exosomes in the 100 k pellet by nanoparticle tracking analysis, electron microscopy, and protein markers. This fraction additionally contained Legionella LPS, indicating also the presence of OMVs. In contrast, vesicles in the 16 k pellet, representing microparticles, decreased during infection. The 100 k vesicle fraction activated uninfected primary human alveolar epithelial cells, A549 cells, and THP-1 cells. Epithelial cell activation was reduced by exosome depletion (anti-CD63, or GW4869), or blocking of IL-1β in the supernatant. In contrast, the response of THP-1 cells to vesicles was reduced by a TLR2-neutralizing antibody, UV-inactivation of bacteria, or – partially – RNase-treatment of vesicles. Taken together, we found that during L. pneumophila infection, neighbouring epithelial cells were predominantly activated by exosomes and cytokines, whereas myeloid cells were activated by bacterial OMVs.
Collapse
Affiliation(s)
- Anna Lena Jung
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Christina Elena Herkt
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Christine Schulz
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Kathrin Bolte
- Department for Cell Biology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Kerstin Seidel
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Nicoletta Scheller
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Alexandra Sittka-Stark
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany.,Labor Berlin Services GmbH, 13353, Berlin, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany. .,Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University, 35043, Marburg, Germany.
| |
Collapse
|
49
|
Pastor Y, Camacho A, Gil AG, Ramos R, Ceráin ALD, Peñuelas I, Irache JM, Gamazo C. Effective protection of mice against Shigella flexneri with a new self-adjuvant multicomponent vaccine. J Med Microbiol 2017; 66:946-958. [PMID: 28721849 DOI: 10.1099/jmm.0.000527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The aim of this study was to develop an immunogenic protective product against Shigella flexneri by employing a simple and safe heat treatment-based strategy. METHODOLOGY The physicochemical characteristics of naturally produced (OMV) and heat-induced (HT) outer-membrane vesicles from S. flexneri were examined, including a comparison of the protein content of the products. Toxicological and biodistribution studies, and a preliminary experiment to examine the protective effectiveness of HT in a murine model of S. flexneri infection, were also included. RESULTS This method simultaneously achieves complete bacterial inactivation and the production of the HT vaccine product, leading to a safe working process. The obtained HT complex presented a similar morphology (electron microscopy) and chemical composition to the classical OMV, although it was enriched in some immunogens, such as lipoproteins, OmpA or OmpC, among others. The HT formulation was not toxic and biodistribution studies performed in mice demonstrated that the vaccine product remained in the small intestine after nasal administration. Finally, a single dose of HT administered nasally was able to protect mice against S. flexneri 2a. CONCLUSION The convenient and safe manufacturing process, and the preliminary biological evaluation, support the use of the self-adjuvanted HT complex as a new vaccine candidate to face shigellosis. Further development is required, such as additional immune analyses, to evaluate whether this new subunit vaccine can be useful in achieving full protection against Shigella.
Collapse
Affiliation(s)
- Yadira Pastor
- Department of Microbiology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| | - Ana Camacho
- Department of Microbiology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| | - Ana Gloria Gil
- Department of Toxicology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| | - Rocío Ramos
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Institute of Tropical Health, University of Navarra 31008, Pamplona, Spain
| | - Adela López de Ceráin
- Department of Toxicology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| | - Iván Peñuelas
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Institute of Tropical Health, University of Navarra 31008, Pamplona, Spain
| | - Juan M Irache
- Department of Pharmaceutical Technology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| | - Carlos Gamazo
- Department of Microbiology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
50
|
Orench-Rivera N, Kuehn MJ. Environmentally controlled bacterial vesicle-mediated export. Cell Microbiol 2017; 18:1525-1536. [PMID: 27673272 DOI: 10.1111/cmi.12676] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023]
Abstract
Over the past two decades, researchers studying both microbial and host cell communities have gained an appreciation for the ability of bacteria to produce, regulate, and functionally utilize outer membrane vesicles (OMVs) as a means to survive and interact with their cellular and acellular environments. Common ground has emerged, as it appears that vesicle production is an environmentally controlled and specific secretion process; however, it has been challenging to discover the principles that govern fundamentals of vesicle-mediated transport. Namely, there does not appear to be a single mechanism modulating OMV export, nor universal "markers" for OMV cargo incorporation, nor particular host cell responses common to treatment with all OMVs. Given the diversity of species studied, their differences in envelope architecture and composition, the diversity of environmentally regulated bacterial processes, and the variety of interactions between bacteria and their abiotic and biotic environments, this is hardly surprising. Nevertheless, the ability of bacteria to control exported material in the context of a packaged insoluble particle, a vesicle, is emerging as a significant contribution to bacterial viability, biofilm communities, and bacterial-host interactions. In this review, we focus on detailing important, recent findings regarding the content and functional differences in bacterially secreted vesicles that are influenced by growth conditions.
Collapse
Affiliation(s)
- Nichole Orench-Rivera
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Meta J Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA.
| |
Collapse
|