1
|
Kalizang'oma A, Richard D, Kwambana-Adams B, Coelho J, Broughton K, Pichon B, Hopkins KL, Chalker V, Beleza S, Bentley SD, Chaguza C, Heyderman RS. Population genomics of Streptococcus mitis in UK and Ireland bloodstream infection and infective endocarditis cases. Nat Commun 2024; 15:7812. [PMID: 39242612 PMCID: PMC11379897 DOI: 10.1038/s41467-024-52120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Streptococcus mitis is a leading cause of infective endocarditis (IE). However, our understanding of the genomic epidemiology and pathogenicity of IE-associated S. mitis is hampered by low IE incidence. Here we use whole genome sequencing of 129 S. mitis bloodstream infection (BSI) isolates collected between 2001-2016 from clinically diagnosed IE cases in the UK to investigate genetic diversity, antimicrobial resistance, and pathogenicity. We show high genetic diversity of IE-associated S. mitis with virtually all isolates belonging to distinct lineages indicating no predominance of specific lineages. Additionally, we find a highly variable distribution of known pneumococcal virulence genes among the isolates, some of which are overrepresented in disease when compared to carriage strains. Our findings suggest that S. mitis in patients with clinically diagnosed IE is not primarily caused by specific hypervirulent or antimicrobial resistant lineages, highlighting the accidental pathogenic nature of S. mitis in patients with clinically diagnosed IE.
Collapse
Affiliation(s)
- Akuzike Kalizang'oma
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK. akuzike.kalizang'
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi. akuzike.kalizang'
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences, Blantyre, Malawi. akuzike.kalizang'
| | - Damien Richard
- UCL Genetics Institute, University College London, London, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Juliana Coelho
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Karen Broughton
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Bruno Pichon
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Katie L Hopkins
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | | | - Sandra Beleza
- University of Leicester, Department of Genetics and Genome Biology, Leicester, UK
| | | | - Chrispin Chaguza
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
2
|
Pol S, Kallonen T, Mäklin T, Sar P, Hopkins J, Soeng S, Miliya T, Ling CL, Bentley SD, Corander J, Turner P. Exploring the pediatric nasopharyngeal bacterial microbiota with culture-based MALDI-TOF mass spectrometry and targeted metagenomic sequencing. mBio 2024; 15:e0078424. [PMID: 38682956 PMCID: PMC11237702 DOI: 10.1128/mbio.00784-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The nasopharynx is an important reservoir of disease-associated and antimicrobial-resistant bacterial species. This proof-of-concept study assessed the utility of a combined culture, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and targeted metagenomic sequencing workflow for the study of the pediatric nasopharyngeal bacterial microbiota. Nasopharyngeal swabs and clinical metadata were collected from Cambodian children during a hospital outpatient visit and then biweekly for 12 weeks. Swabs were cultured on chocolate and blood-gentamicin agar, and all colony morphotypes were identified by MALDI-TOF MS. Metagenomic sequencing was done on a scrape of all colonies from a chocolate agar culture and processed using the mSWEEP pipeline. One hundred one children were enrolled, yielding 620 swabs. MALDI-TOF MS identified 106 bacterial species/40 genera: 20 species accounted for 88.5% (2,190/2,474) of isolates. Colonization by Moraxella catarrhalis (92.1% of children on ≥1 swab), Haemophilus influenzae (87.1%), and Streptococcus pneumoniae (83.2%) was particularly common. In S. pneumoniae-colonized children, a median of two serotypes [inter-quartile range (IQR) 1-2, range 1-4] was detected. For the 21 bacterial species included in the mSWEEP database and identifiable by MALDI-TOF, detection by culture + MALDI-TOF MS and culture + mSWEEP was highly concordant with a median species-level agreement of 96.9% (IQR 86.8%-98.8%). mSWEEP revealed highly dynamic lineage-level colonization patterns for S. pneumoniae which were quite different to those for S. aureus. A combined culture, MALDI-TOF MS, targeted metagenomic sequencing approach for the exploration of the young child nasopharyngeal microbiome was technically feasible, and each component yielded complementary data. IMPORTANCE The human upper respiratory tract is an important source of disease-causing and antibiotic-resistant bacteria. However, understanding the interactions and stability of these bacterial populations is technically challenging. We used a combination of approaches to determine colonization patterns over a 3-month period in 101 Cambodian children. The combined approach was feasible to implement, and each component gave complementary data to enable a better understanding of the complex patterns of bacterial colonization.
Collapse
Affiliation(s)
- Sreymom Pol
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Teemu Kallonen
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Tommi Mäklin
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Poda Sar
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Jill Hopkins
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Sona Soeng
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Thyl Miliya
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Clare L Ling
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | | | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Davison C, Tallman S, de Ste-Croix M, Antonio M, Oggioni MR, Kwambana-Adams B, Freund F, Beleza S. Long-term evolution of Streptococcus mitis and Streptococcus pneumoniae leads to higher genetic diversity within rather than between human populations. PLoS Genet 2024; 20:e1011317. [PMID: 38843312 PMCID: PMC11185502 DOI: 10.1371/journal.pgen.1011317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/18/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024] Open
Abstract
Evaluation of the apportionment of genetic diversity of human bacterial commensals within and between human populations is an important step in the characterization of their evolutionary potential. Recent studies showed a correlation between the genomic diversity of human commensal strains and that of their host, but the strength of this correlation and of the geographic structure among human populations is a matter of debate. Here, we studied the genomic diversity and evolution of the phylogenetically related oro-nasopharyngeal healthy-carriage Streptococcus mitis and Streptococcus pneumoniae, whose lifestyles range from stricter commensalism to high pathogenic potential. A total of 119 S. mitis genomes showed higher within- and among-host variation than 810 S. pneumoniae genomes in European, East Asian and African populations. Summary statistics of the site-frequency spectrum for synonymous and non-synonymous variation and ABC modelling showed this difference to be due to higher ancestral bacterial population effective size (Ne) in S. mitis, whose genomic variation has been maintained close to mutation-drift equilibrium across (at least many) generations, whereas S. pneumoniae has been expanding from a smaller ancestral bacterial population. Strikingly, both species show limited differentiation among human populations. As genetic differentiation is inversely proportional to the product of effective population size and migration rate (Nem), we argue that large Ne have led to similar differentiation patterns, even if m is very low for S. mitis. We conclude that more diversity within than among human populations and limited population differentiation must be common features of the human microbiome due to large Ne.
Collapse
Affiliation(s)
- Charlotte Davison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sam Tallman
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Megan de Ste-Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
- Centre for Epidemic Preparedness and Response, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marco R. Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Brenda Kwambana-Adams
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi Liverpool Welcome Programme, Blantyre, Malawi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fabian Freund
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sandra Beleza
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
4
|
Taylor SL, Crabbé A, Hoffman LR, Chalmers JD, Rogers GB. Understanding the clinical implications of the "non-classical" microbiome in chronic lung disease: a viewpoint. Eur Respir J 2024; 63:2302281. [PMID: 38387999 DOI: 10.1183/13993003.02281-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Affiliation(s)
- Steven L Taylor
- Microbiome and Host Health, South Australia Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Luke R Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health, South Australia Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|
5
|
Rothman JA, Riis JL, Hamilton KR, Blair C, Granger DA, Whiteson KL. Oral microbial communities in children, caregivers, and associations with salivary biomeasures and environmental tobacco smoke exposure. mSystems 2023; 8:e0003623. [PMID: 37338237 PMCID: PMC10470043 DOI: 10.1128/msystems.00036-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
Human oral microbial communities are diverse, with implications for oral and systemic health. Oral microbial communities change over time; thus, it is important to understand how healthy versus dysbiotic oral microbiomes differ, especially within and between families. There is also a need to understand how the oral microbiome composition is changed within an individual including by factors such as environmental tobacco smoke (ETS) exposure, metabolic regulation, inflammation, and antioxidant potential. Using archived saliva samples collected from caregivers and children during a 90-month follow-up assessment in a longitudinal study of child development in the context of rural poverty, we used 16S rRNA gene sequencing to determine the salivary microbiome. A total of 724 saliva samples were available, 448 of which were from caregiver/child dyads, an additional 70 from children and 206 from adults. We compared children's and caregivers' oral microbiomes, performed "stomatotype" analyses, and examined microbial relations with concentrations of salivary markers associated with ETS exposure, metabolic regulation, inflammation, and antioxidant potential (i.e., salivary cotinine, adiponectin, C-reactive protein, and uric acid) assayed from the same biospecimens. Our results indicate that children and caregivers share much of their oral microbiome diversity, but there are distinct differences. Microbiomes from intrafamily individuals are more similar than microbiomes from nonfamily individuals, with child/caregiver dyad explaining 52% of overall microbial variation. Notably, children harbor fewer potential pathogens than caregivers, and participants' microbiomes clustered into two groups, with major differences being driven by Streptococcus spp. Differences in salivary microbiome composition associated with ETS exposure, and taxa associated with salivary analytes representing potential associations between antioxidant potential, metabolic regulation, and the oral microbiome. IMPORTANCE The human oral cavity is a multi-environment habitat that harbors a diversity of microorganisms. This oral microbiome is often transmitted between cohabitating individuals, which may associate oral and systemic health within family members. Furthermore, family social ecology plays a significant role in childhood development, which may be associated with lifelong health outcomes. In this study, we collected saliva from children and their caregivers and used 16S rRNA gene sequencing to characterize their oral microbiomes. We also analyzed salivary biomeasures of environmental tobacco smoke exposure, metabolic regulation, inflammation, and antioxidant potential. We show there are differences in individuals' oral microbiomes mainly due to Streptococcus spp. that family members share much of their microbes, and several bacterial taxa associate with the selected salivary biomeasures. Our results suggest there are large-scale oral microbiome patterns, and there are likely relationships between oral microbiomes and the social ecology of families.
Collapse
Affiliation(s)
- Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
| | - Jenna L. Riis
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Katrina R. Hamilton
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Clancy Blair
- Department of Population Health, New York University, New York, New York, USA
- Department of Applied Psychology, New York University, New York, New York, USA
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
- Department of Acute and Chronic Care, Johns Hopkins University School of Nursing, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Salivary Bioscience Laboratory, University of Nebraska, Lincoln, Nebraska, USA
- Department of Psychology, University of Nebraska, Lincoln, Nebraska, USA
| | - Katrine L. Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
| |
Collapse
|
6
|
Novel Multilocus Sequence Typing and Global Sequence Clustering Schemes for Characterizing the Population Diversity of Streptococcus mitis. J Clin Microbiol 2023; 61:e0080222. [PMID: 36515506 PMCID: PMC9879099 DOI: 10.1128/jcm.00802-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus mitis is a common oral commensal and an opportunistic pathogen that causes bacteremia and infective endocarditis; however, the species has received little attention compared to other pathogenic streptococcal species. Effective and easy-to-use molecular typing tools are essential for understanding bacterial population diversity and biology, but schemes specific for S. mitis are not currently available. We therefore developed a multilocus sequence typing (MLST) scheme and defined sequence clusters or lineages of S. mitis using a comprehensive global data set of 322 genomes (148 publicly available and 174 newly sequenced). We used internal 450-bp sequence fragments of seven housekeeping genes (accA, gki, hom, oppC, patB, rlmN, and tsf) to define the MLST scheme and derived the global S. mitis sequence clusters using the PopPUNK clustering algorithm. We identified an initial set of 259 sequence types (STs) and 258 global sequence clusters. The schemes showed high concordance (100%), capturing extensive S. mitis diversity with strains assigned to multiple unique STs and global sequence clusters. The tools also identified extensive within- and between-host S. mitis genetic diversity among isolates sampled from a cohort of healthy individuals, together with potential transmission events, supported by both phylogeny and pairwise single nucleotide polymorphism (SNP) distances. Our novel molecular typing and strain clustering schemes for S. mitis allow for the integration of new strain data, are electronically portable at the PubMLST database (https://pubmlst.org/smitis), and offer a standardized approach to understanding the population structure of S. mitis. These robust tools will enable new insights into the epidemiology of S. mitis colonization, disease and transmission.
Collapse
|
7
|
Optimization and Evaluation of the 30S-S11 rRNA Gene for Taxonomic Profiling of Oral Streptococci. Appl Environ Microbiol 2022; 88:e0045322. [PMID: 35730938 PMCID: PMC9275224 DOI: 10.1128/aem.00453-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dental caries is a multifactorial disease driven by interactions between the highly complex microbial biofilm community and host factors like diet, oral hygiene habits, and age. The oral streptococci are one of the most dominant members of the plaque biofilm and are implicated in disease but also in maintaining oral health. Current methods used for studying the supragingival plaque community commonly sequence portions of the16S rRNA gene, which often cannot taxonomically resolve members of the streptococcal community past the genus level due to their sequence similarity. The goal of this study was to design and evaluate a more reliable and cost-effective method to identify oral streptococci at the species level by applying a new locus, the 30S-S11 rRNA gene, for high-throughput amplicon sequencing. The study results demonstrate that the newly developed single-copy 30S-S11 gene locus resolved multiple amplicon sequence variants (ASVs) within numerous species, providing much improved taxonomic resolution over 16S rRNA V4. Moreover, the results reveal that different ASVs within a species were found to change in abundance at different stages of caries progression. These findings suggest that strains of a single species may perform distinct roles along a biochemical spectrum associated with health and disease. The improved identification of oral streptococcal species will provide a better understanding of the different ecological roles of oral streptococci and inform the design of novel oral probiotic formulations for prevention and treatment of dental caries. IMPORTANCE The microbiota associated with the initiation and progression of dental caries has yet to be fully characterized. Although much insight has been gained from 16S rRNA hypervariable region DNA sequencing, this approach has several limitations, including poor taxonomic resolution at the species level. This is particularly relevant for oral streptococci, which are abundant members of oral biofilm communities and major players in health and caries disease. Here, we develop a new method for taxonomic profiling of oral streptococci based on the 30S-S11 rRNA gene, which provides much improved resolution over 16S rRNA V4 (resolving 10 as opposed to 2 species). Importantly, 30S-S11 can resolve multiple amplicon sequence variants (ASVs) within species, providing an unprecedented insight into the ecological progression of caries. For example, our findings reveal multiple incidences of different ASVs within a species with contrasting associations with health or disease, a finding that has high relevance toward the informed design of prebiotic and probiotic therapy.
Collapse
|
8
|
Blum J, Silva M, Byrne SJ, Butler CA, Adams GG, Reynolds EC, Dashper SG. Temporal development of the infant oral microbiome. Crit Rev Microbiol 2022; 48:730-742. [PMID: 35015598 DOI: 10.1080/1040841x.2021.2025042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human oral microbiome is becoming recognized as playing roles in health and disease well beyond the oral cavity over the lifetime of the individual. The oral microbiome is hypothesized to result from specific colonization events followed by a reproducible and ordered development of complex bacterial communities. Colonization events, proliferation, succession and subsequent community development are dependent on a range of host and environmental factors, most notably the neonate diet. It is now becoming apparent that early childhood and prenatal influences can have long term effects on the development of human oral microbiomes. In this review, the temporal development of the infant human oral microbiome is examined, with the effects of prenatal and postnatal influences and the roles of specific bacteria. Dietary and environmental factors, especially breastfeeding, have a significant influence on the development of the infant oral microbiome. The evidence available regarding the roles and functions of early colonizing bacteria is still limited, and gaps in knowledge where further research is needed to elucidate these specific roles in relation to health and disease still exist.
Collapse
Affiliation(s)
- Jordan Blum
- Centre for Oral Health Research, Melbourne Dental School, University of Melbourne, Carlton, Australia
| | - Mihiri Silva
- Centre for Oral Health Research, Melbourne Dental School, University of Melbourne, Carlton, Australia
| | - Samantha J Byrne
- Centre for Oral Health Research, Melbourne Dental School, University of Melbourne, Carlton, Australia
| | - Catherine A Butler
- Centre for Oral Health Research, Melbourne Dental School, University of Melbourne, Carlton, Australia
| | - Geoffrey G Adams
- Centre for Oral Health Research, Melbourne Dental School, University of Melbourne, Carlton, Australia
| | - Eric C Reynolds
- Centre for Oral Health Research, Melbourne Dental School, University of Melbourne, Carlton, Australia
| | - Stuart G Dashper
- Centre for Oral Health Research, Melbourne Dental School, University of Melbourne, Carlton, Australia
| |
Collapse
|
9
|
Haran JP, Bradley E, Zeamer AL, Cincotta L, Salive MC, Dutta P, Mutaawe S, Anya O, Meza-Segura M, Moormann AM, Ward DV, McCormick BA, Bucci V. Inflammation-type dysbiosis of the oral microbiome associates with the duration of COVID-19 symptoms and long COVID. JCI Insight 2021; 6:e152346. [PMID: 34403368 PMCID: PMC8564890 DOI: 10.1172/jci.insight.152346] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
In the COVID-19 pandemic, caused by SARS-CoV-2, many individuals experience prolonged symptoms, termed long-lasting COVID-19 symptoms (long COVID). Long COVID is thought to be linked to immune dysregulation due to harmful inflammation, with the exact causes being unknown. Given the role of the microbiome in mediating inflammation, we aimed to examine the relationship between the oral microbiome and the duration of long COVID symptoms. Tongue swabs were collected from patients presenting with COVID-19 symptoms. Confirmed infections were followed until resolution of all symptoms. Bacterial composition was determined by metagenomic sequencing. We used random forest modeling to identify microbiota and clinical covariates that are associated with long COVID symptoms. Of the patients followed, 63% developed ongoing symptomatic COVID-19 and 37% went on to long COVID. Patients with prolonged symptoms had significantly higher abundances of microbiota that induced inflammation, such as members of the genera Prevotella and Veillonella, which, of note, are species that produce LPS. The oral microbiome of patients with long COVID was similar to that of patients with chronic fatigue syndrome. Altogether, our findings suggest an association with the oral microbiome and long COVID, revealing the possibility that dysfunction of the oral microbiome may have contributed to this draining disease.
Collapse
Affiliation(s)
- John P Haran
- Department of Emergency Medicine.,Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | - Evan Bradley
- Department of Emergency Medicine.,Program in Microbiome Dynamics, and
| | - Abigail L Zeamer
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | | | | | | | | | | | | | - Ann M Moormann
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Doyle V Ward
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems.,Program in Microbiome Dynamics, and
| |
Collapse
|
10
|
Turek EM, Cox MJ, Hunter M, Hui J, James P, Willis-Owen SAG, Cuthbertson L, James A, Musk AW, Moffatt MF, Cookson WOCM. Airway microbial communities, smoking and asthma in a general population sample. EBioMedicine 2021; 71:103538. [PMID: 34425308 PMCID: PMC8387768 DOI: 10.1016/j.ebiom.2021.103538] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Normal airway microbial communities play a central role in respiratory health but are poorly characterized. Cigarette smoking is the dominant global environmental influence on lung function, and asthma has become the most prevalent chronic respiratory disease worldwide. Both conditions have major microbial components that are incompletely defined. METHODS We investigated airway bacterial communities in a general population sample of 529 Australian adults. Posterior oropharyngeal swabs were analyzed by sequencing of the 16S rRNA gene. The microbiota were characterized according to their prevalence, abundance and network memberships. FINDINGS The microbiota were similar across the general population, and were strongly organized into co-abundance networks. Smoking was associated with diversity loss, negative effects on abundant taxa, profound alterations to network structure and expansion of Streptococcus spp. By contrast, the asthmatic microbiota were selectively affected by an increase in Neisseria spp. and by reduced numbers of low abundance but prevalent organisms. INTERPRETATION Our study shows that the healthy airway microbiota in this population were contained within a highly structured ecosystem, suggesting balanced relationships between the microbiome and human host factors. The marked abnormalities in smokers may contribute to chronic obstructive pulmonary disease (COPD) and lung cancer. The narrow spectrum of abnormalities in asthmatics encourages investigation of damaging and protective effects of specific bacteria. FUNDING The study was funded by the Asmarley Trust and a Wellcome Joint Senior Investigator Award to WOCC and MFM (WT096964MA and WT097117MA). The Busselton Healthy Ageing Study is supported by the Government of Western Australia (Office of Science, Department of Health) the City of Busselton, and private donations.
Collapse
Affiliation(s)
- Elena M Turek
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom
| | - Michael J Cox
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom
| | - Michael Hunter
- School of Population and Global Health, University of Western Australia, Australia; Busselton Population Medical Research Institute, Western Australia, Australia
| | - Jennie Hui
- School of Population and Global Health, University of Western Australia, Australia; Busselton Population Medical Research Institute, Western Australia, Australia; PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Western Australia, Australia
| | - Phillip James
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom
| | - Saffron A G Willis-Owen
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom
| | - Leah Cuthbertson
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom
| | - Alan James
- Busselton Population Medical Research Institute, Western Australia, Australia; Department of Pulmonary Physiology, Sir Charles Gairdner Hospital, UWA Medical School, University of Western Australia, Australia
| | - A William Musk
- School of Population and Global Health, University of Western Australia, Australia; Busselton Population Medical Research Institute, Western Australia, Australia; Department of Respiratory Medicine Sir Charles Gairdner Hospital, UWA Medical School, University of Western Australia, Australia
| | - Miriam F Moffatt
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom.
| | - William O C M Cookson
- National Heart and Lung Institute, Centre for Genomic Medicine, Imperial College London SW3 6LY, United Kingdom.
| |
Collapse
|
11
|
Shekhar S, Åmdal HA, Petersen FC. Vaccination With the Commensal Streptococcus mitis Expressing Pneumococcal Serotype 5 Capsule Elicits IgG/IgA and Th17 Responses Against Streptococcus pneumoniae. Front Immunol 2021; 12:676488. [PMID: 33953733 PMCID: PMC8089380 DOI: 10.3389/fimmu.2021.676488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Recent studies have identified a clinical isolate of the commensal Streptococcus mitis that expresses Streptococcus pneumoniae serotype 5 capsule (S. mitis serotype 5) and shows serospecificity toward pneumococcal serotype 5. However, it remains unknown whether S. mitis serotype 5 induces protective immunity against pneumococcal serotype 5. In this study, we evaluated the ability of S. mitis serotype 5 to generate protective immunity in a mouse model of lung infection with pneumococcal serotype 5. Upon challenge infection with S. pneumoniae serotype 5, mice intranasally immunized with S. mitis serotype 5 exhibited reduced pneumococcal loads in the lungs, nasal wash, and bronchoalveolar lavage fluid compared with those receiving PBS (control). The immunized mice displayed significantly higher levels of IgG and IgA antibodies reactive to S. mitis serotype 5, S. pneumoniae serotype 5 or S. pneumoniae serotype 4 than the antibody levels in control mice. In vaccinated mice, the IgG/IgA antibody levels reactive to S. mitis serotype 5 or S. pneumoniae serotype 5 were higher than the levels reactive to S. pneumoniae serotype 4. Furthermore, in-vitro restimulation of the lung-draining mediastinal lymph node cells and splenocytes from immunized mice with killed S. mitis serotype 5, S. pneumoniae serotype 5 or S. pneumoniae serotype 4 showed enhanced Th17, but not Th1 and Th2, responses. Overall, our findings show that mucosal immunization with S. mitis serotype 5 protects against S. pneumoniae serotype 5 infection and induces Th17 and predominant serotype-specific IgG/IgA antibody responses against pneumococcal infection.
Collapse
Affiliation(s)
| | - Heidi A Åmdal
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | | |
Collapse
|
12
|
Lundtorp-Olsen C, Enevold C, Twetman S, Belstrøm D. Probiotics Do Not Alter the Long-Term Stability of the Supragingival Microbiota in Healthy Subjects: A Randomized Controlled Trial. Pathogens 2021; 10:pathogens10040391. [PMID: 33805208 PMCID: PMC8064340 DOI: 10.3390/pathogens10040391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The purpose of the present study was to longitudinally characterize the supragingival microbiota throughout a three months period in orally healthy individuals. We tested the hypothesis that the supragingival microbiota shows a high degree of compositional stability, which is resilient against the external perturbation of regular use of probiotics, as long as oral health is maintained. Methods: The present study was a double-blinded, randomized, placebo-controlled clinical trial. The study population comprised a total of 110 oral and systemic healthy individuals, distributed in a probiotic (n = 55) and placebo (n = 55) group, where the test group consumed tablets with the probiotic strains Lacticaseibacillusrhamnosus (formerly Lactobacillus) PB01 DSM14870 and Latilactobacillus curvatus (formerly Lactobacillus) EB10 DSM32307 for a period of 12 weeks. Supragingival plaque samples and clinical registrations were performed at baseline, and after 4, 8, and 12 weeks, respectively. The supragingival microbiota was characterized by means of 16S rDNA sequencing. Sequences were referenced against the HOMD database. Results: No significant changes of the core microbiota, as expressed by relative abundance of predominant genera and species were evident during the three months observation period in the probiotic or the placebo group. Conclusions: Data from the present study clearly demonstrate long term compositional stability of the supragingival microbiota as long as oral health is maintained. In addition, the tested probiotics had no augmenting effect on the supragingival microbiota in oral health.
Collapse
Affiliation(s)
- Christine Lundtorp-Olsen
- Department of Odontology, Section for Clinical Oral Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.L.-O.); (S.T.)
| | - Christian Enevold
- Center for Rheumatology and Spine Diseases, Rigshospitalet, Institute for Inflammation Research, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
| | - Svante Twetman
- Department of Odontology, Section for Clinical Oral Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.L.-O.); (S.T.)
| | - Daniel Belstrøm
- Department of Odontology, Section for Clinical Oral Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.L.-O.); (S.T.)
- Correspondence: ; Tel.: +45-21-30-05-80
| |
Collapse
|
13
|
Pietras-Baczewska A, Jasińska E, Toro MD, Bonfiglio V, Reibaldi M, Avitabile T, Nowomiejska K, Rejdak R. Urgent Vitrectomy with Vancomycin Infusion, Silicone Oil Endotamponade, and General Antibiotic Treatment in Multiple Cases of Endophthalmitis from a Single Day of Intravitreal Injections-Case Series. J Clin Med 2021; 10:1059. [PMID: 33806541 PMCID: PMC7961493 DOI: 10.3390/jcm10051059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to report on the anatomical and functional results of surgical management of seven cases of endophthalmitis related to a single day of intravitreal aflibercept injections. Patients with signs of endophthalmitis who underwent aflibercept injections (seven eyes) performed on the same day were retrospectively evaluated. The data of visual acuity and optical coherence tomography (OCT) within nine months of the follow-up and the treatment and results of microbiological cultures are reported. Four of the total seven cases had a positive bacterial culture outcome (Streptococcus mitis). All patients underwent vitrectomy combined with phacoemulsification when the eyes were not pseudophakic, vancomycin infusion, and silicone oil tamponade within 24 h; additionally, systemic antibiotics were administered intravenously. The final best-corrected visual acuity (BCVA) after the treatment was finger counting or light perception in all cases, and all eyes were saved with disruption of the inner retinal layers and stabilization of the retina in regard to changes related to the wet age-related macular degeneration (AMD). Although the retinal anatomy was mostly preserved, most of the patients affected by Streptococcus mitis-induced endophthalmitis did not regain baseline vision after the therapy.
Collapse
Affiliation(s)
- Agata Pietras-Baczewska
- Department of General Ophthalmology, Medical University of Lublin, 20-059 Lublin, Poland; (E.J.); (M.D.T.); (K.N.); (R.R.)
| | - Ewa Jasińska
- Department of General Ophthalmology, Medical University of Lublin, 20-059 Lublin, Poland; (E.J.); (M.D.T.); (K.N.); (R.R.)
| | - Mario Damiano Toro
- Department of General Ophthalmology, Medical University of Lublin, 20-059 Lublin, Poland; (E.J.); (M.D.T.); (K.N.); (R.R.)
- Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszyński University, 01-815 Warsaw, Poland
| | - Vincenza Bonfiglio
- Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, 90133 Palermo, Italy;
| | - Michele Reibaldi
- Department of Surgical Sciences, Eye Clinic Section, University of Turin, 10124 Turin, Italy;
| | - Teresio Avitabile
- Department of Ophthalmology, University of Catania, 95124 Catania, Italy;
| | - Katarzyna Nowomiejska
- Department of General Ophthalmology, Medical University of Lublin, 20-059 Lublin, Poland; (E.J.); (M.D.T.); (K.N.); (R.R.)
| | - Robert Rejdak
- Department of General Ophthalmology, Medical University of Lublin, 20-059 Lublin, Poland; (E.J.); (M.D.T.); (K.N.); (R.R.)
| |
Collapse
|
14
|
Zuo T, Liu Q, Zhang F, Lui GCY, Tso EYK, Yeoh YK, Chen Z, Boon SS, Chan FKL, Chan PKS, Ng SC. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 2021; 70:276-284. [PMID: 32690600 PMCID: PMC7385744 DOI: 10.1136/gutjnl-2020-322294] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in faeces of patients with COVID-19, the activity and infectivity of the virus in the GI tract during disease course is largely unknown. We investigated temporal transcriptional activity of SARS-CoV-2 and its association with longitudinal faecal microbiome alterations in patients with COVID-19. DESIGN We performed RNA shotgun metagenomics sequencing on serial faecal viral extractions from 15 hospitalised patients with COVID-19. Sequencing coverage of the SARS-CoV-2 genome was quantified. We assessed faecal microbiome composition and microbiome functionality in association with signatures of faecal SARS-CoV-2 infectivity. RESULTS Seven (46.7%) of 15 patients with COVID-19 had stool positivity for SARS-CoV-2 by viral RNA metagenomic sequencing. Even in the absence of GI manifestations, all seven patients showed strikingly higher coverage (p=0.0261) and density (p=0.0094) of the 3' vs 5' end of SARS-CoV-2 genome in their faecal viral metagenome profile. Faecal viral metagenome of three patients continued to display active viral infection signature (higher 3' vs 5' end coverage) up to 6 days after clearance of SARS-CoV-2 from respiratory samples. Faecal samples with signature of high SARS-CoV-2 infectivity had higher abundances of bacterial species Collinsella aerofaciens, Collinsella tanakaei, Streptococcus infantis, Morganella morganii, and higher functional capacity for nucleotide de novo biosynthesis, amino acid biosynthesis and glycolysis, whereas faecal samples with signature of low-to-none SARS-CoV-2 infectivity had higher abundances of short-chain fatty acid producing bacteria, Parabacteroides merdae, Bacteroides stercoris, Alistipes onderdonkii and Lachnospiraceae bacterium 1_1_57FAA. CONCLUSION This pilot study provides evidence for active and prolonged 'quiescent' GI infection even in the absence of GI manifestations and after recovery from respiratory infection of SARS-CoV-2. Gut microbiota of patients with active SARS-CoV-2 GI infection was characterised by enrichment of opportunistic pathogens, loss of salutary bacteria and increased functional capacity for nucleotide and amino acid biosynthesis and carbohydrate metabolism.
Collapse
Affiliation(s)
- Tao Zuo
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China,State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qin Liu
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China,State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Fen Zhang
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China,State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Grace Chung-Yan Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China,Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Eugene YK Tso
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, Hong Kong
| | - Yun Kit Yeoh
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China,Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zigui Chen
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China,Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Siaw Shi Boon
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Francis KL Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Paul KS Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China,Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Siew C Ng
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China .,State Key Laboratory for digestive disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
15
|
Harth-Chu EN, Alves LA, Theobaldo JD, Salomão MF, Höfling JF, King WF, Smith DJ, Mattos-Graner RO. PcsB Expression Diversity Influences on Streptococcus mitis Phenotypes Associated With Host Persistence and Virulence. Front Microbiol 2019; 10:2567. [PMID: 31798545 PMCID: PMC6861525 DOI: 10.3389/fmicb.2019.02567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
S. mitis is an abundant member of the commensal microbiota of the oral cavity and pharynx, which has the potential to promote systemic infections. By analyzing a collection of S. mitis strains isolated from the oral cavity at commensal states or from systemic infections (blood strains), we established that S. mitis ubiquitously express the surface immunodominant protein, PcsB (also called GbpB), required for binding to sucrose-derived exopolysaccharides (EPS). Immuno dot blot assays with anti-PcsB antibodies and RT-qPCR transcription analyses revealed strain-specific profiles of PcsB production associated with diversity in pcsB transcriptional activities. Additionally, blood strains showed significantly higher levels of PcsB expression compared to commensal isolates. Because Streptococcus mutans co-colonizes S. mitis dental biofilms, and secretes glucosyltransferases (GtfB/C/D) for the synthesis of highly insoluble EPS from sucrose, profiles of S. mitis binding to EPS, biofilm formation and evasion of the complement system were assessed in sucrose-containing BHI medium supplemented or not with filter-sterilized S. mutans culture supernatants. These analyses showed significant S. mitis binding to EPS and biofilm formation in the presence of S. mutans supernatants supplemented with sucrose, compared to BHI or BHI-sucrose medium. In addition, these phenotypes were abolished if strains were grown in culture supernatants of a gtfBCD-defective S. mutans mutant. Importantly, GtfB/C/D-associated phenotypes were enhanced in high PcsB-expressing strains, compared to low PcsB producers. Increased PcsB expression was further correlated with increased resistance to deposition of C3b/iC3b of the complement system after exposure to human serum, when strains were previously grown in the presence of S. mutans supernatants. Finally, analyses of PcsB polymorphisms and bioinformatic prediction of epitopes with significant binding to MHC class II alleles revealed that blood isolates harbor PcsB polymorphisms in its functionally conserved CHAP-domain, suggesting antigenic variation. These findings reveal important roles of PcsB in S. mitis-host interactions under commensal and pathogenic states, highlighting the need for studies to elucidate mechanisms regulating PcsB expression in this species.
Collapse
Affiliation(s)
- Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Jéssica D Theobaldo
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Mariana F Salomão
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - William F King
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | - Daniel J Smith
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | | |
Collapse
|
16
|
Identification of Virulence-Associated Properties by Comparative Genome Analysis of Streptococcus pneumoniae, S. pseudopneumoniae, S. mitis, Three S. oralis Subspecies, and S. infantis. mBio 2019; 10:mBio.01985-19. [PMID: 31481387 PMCID: PMC6722419 DOI: 10.1128/mbio.01985-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae is one of the most important human pathogens but is closely related to Streptococcus mitis, with which humans live in harmony. The fact that the two species evolved from a common ancestor provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. By detailed comparisons of genomes of the two species and other related streptococci, we identified 224 genes associated with virulence and 25 genes unique to the mutualistic species. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms. From a common ancestor, Streptococcus pneumoniae and Streptococcus mitis evolved in parallel into one of the most important pathogens and a mutualistic colonizer of humans, respectively. This evolutionary scenario provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. We performed detailed comparisons of 60 genomes of S. pneumoniae, S. mitis, Streptococcus pseudopneumoniae, the three Streptococcus oralis subspecies oralis, tigurinus, and dentisani, and Streptococcus infantis. Nonfunctional remnants of ancestral genes in both S. pneumoniae and in S. mitis support the evolutionary model and the concept that evolutionary changes on both sides were required to reach their present relationship to the host. Confirmed by screening of >7,500 genomes, we identified 224 genes associated with virulence. The striking difference to commensal streptococci was the diversity of regulatory mechanisms, including regulation of capsule production, a significantly larger arsenal of enzymes involved in carbohydrate hydrolysis, and proteins known to interfere with innate immune factors. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. In addition to loss of these virulence-associated genes, adaptation of S. mitis to a mutualistic relationship with the host apparently required preservation or acquisition of 25 genes lost or absent from S. pneumoniae. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms.
Collapse
|
17
|
Abstract
The microbiome and the human body constitute an integrated superorganism, which is the result of millions of years of coevolution with mutual adaptation and functional integration, and confers significant benefits for both parties. This evolutionary process has resulted in a highly diverse oral microbiome, which covers the full spectrum of acidogenic, aciduric, inflammatory, and anti-inflammatory properties. The relative proportions of members of the microbiome are affected by factors associated with modern life, such as general diet patterns, sugar consumption, tobacco smoking, oral hygiene, use of antibiotics and other antimicrobials, and vaccines. A perturbed balance in the oral microbiome may result in caries, periodontal disease, or candidiasis, and oral bacteria passively transferred to normally sterile parts of the body may cause extra-oral infections. Nevertheless, it should never be our goal to eliminate the oral microbiome, but rather we have to develop ways to re-establish a harmonious coexistence that is lost because of the modern lifestyle. With regard to oral diseases, this goal can normally be achieved by optimal oral hygiene, exposure to fluoride, reduction of sucrose consumption, stimulation of our innate immune defense, smoking cessation, and control of diabetes.
Collapse
Affiliation(s)
- Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Daptomycin Dose-Ranging Evaluation with Single-Dose versus Multidose Ceftriaxone Combinations against Streptococcus mitis /oralis in an Ex Vivo Simulated Endocarditis Vegetation Model. Antimicrob Agents Chemother 2019; 63:AAC.00386-19. [PMID: 30962347 DOI: 10.1128/aac.00386-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The viridans group streptococci (VGS) are a heterogeneous group of organisms which are important components of the normal human oral flora. Among the VGS, the Streptococcus mitis /oralis subgroup is one of the most common causes of infective endocarditis (IE). Daptomycin (DAP) is a potential alternative therapeutic option for invasive S. mitis infections, given high rates of β-lactam resistance and vancomycin tolerance in such strains. However, the ability of these strains to rapidly evolve high-level and durable DAP resistance (DAP-R) is problematic. Recent data suggest that combination DAP-β-lactam therapy circumvents this issue. Human-simulated dose-escalating DAP-alone dose regimens (6, 8, 10, or 12 mg/kg/day times 4 days) versus DAP (6 mg/kg/day) plus ceftriaxone (CRO) (2 g once daily times 4 days or 0.5 g, single dose) were assessed against two prototypical DAP-susceptible (DAP-S) S. mitis /oralis strains (SF100 and 351), as measured by a pharmacokinetic/pharmacodynamic (PK/PD) model of simulated endocardial vegetations (SEVs). No DAP-alone regimen was effective, with regrowth of high-level DAP-R isolates observed for both strains over 96-h exposures. Combinations of DAP-CRO with either single- or multidose regimens yielded significant reductions in log10 CFU/g amounts within SEVs for both strains (∼6 log10 CFU/g) within 24 h. In addition, no DAP-R strains were detected in either DAP-CRO combination regimens over the 96-h exposure. In contrast to prior in vitro studies, no perturbations in two key cardiolipin biosynthetic genes (cdsA and pgsA) were identified in DAP-R SEV isolates emerging from strain 351, despite defective phospholipid production. The combination of DAP-CRO warrants further investigation for treatment of IE due to S. mitis /oralis.
Collapse
|
19
|
Alves LA, de Carli TR, Harth-Chu EN, Mariano FS, Höfling JF, Stipp RN, Mattos-Graner RO. Oral streptococci show diversity in resistance to complement immunity. J Med Microbiol 2019; 68:600-608. [PMID: 30843785 DOI: 10.1099/jmm.0.000955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Mechanisms underlying systemic infections by oral species of Mitis (Streptococcus mitis, Streptococcus oralis) and Sanguinis (Streptococcus gordonii, Streptococcus sanguinis) commensal streptococci are poorly understood. This study investigates profiles of susceptibility to complement-mediated host immunity in representative strains of these four species, which were isolated from oral sites or from the bloodstream. METHODOLOGY Deposition of complement opsonins (C3b/iC3b), and surface binding to C-reactive protein (CRP) and to IgG antibodies were quantified by flow cytometry in 34 strains treated with human serum (HS), and compared to rates of opsonophagocytosis by human PMN mediated by complement (CR1/3) and/or IgG Fc (FcγRII/III) receptors. RESULTS S. sanguinis strains showed reduced susceptibility to complement opsonization and low binding to CRP and to IgG compared to other species. Surface levels of C3b/iC3b in S. sanguinis strains were 4.5- and 7.8-fold lower than that observed in S. gordonii and Mitis strains, respectively. Diversity in C3b/iC3b deposition was evident among Mitis species, in which C3b/iC3b deposition was significantly associated with CR/FcγR-dependent opsonophagocytosis by PMN (P<0.05). Importantly, S. gordonii and Mitis group strains isolated from systemic infections showed resistance to complement opsonization when compared to oral isolates of the respective species (P<0.05). CONCLUSIONS This study establishes species-specific profiles of susceptibility to complement immunity in Mitis and Sanguinis streptococci, and indicates that strains associated with systemic infections have increased capacity to evade complement immunity. These findings highlight the need for studies identifying molecular functions involved in complement evasion in oral streptococci.
Collapse
Affiliation(s)
- Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Thaís R de Carli
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Flávia S Mariano
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Rafael N Stipp
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
20
|
Intranasal Immunization with the Commensal Streptococcus mitis Confers Protective Immunity against Pneumococcal Lung Infection. Appl Environ Microbiol 2019; 85:AEM.02235-18. [PMID: 30683742 DOI: 10.1128/aem.02235-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/02/2019] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pneumoniae is a bacterial pathogen that causes various diseases of public health concern worldwide. Current pneumococcal vaccines target the capsular polysaccharide surrounding the cells. However, only up to 13 of more than 90 pneumococcal capsular serotypes are represented in the current conjugate vaccines. In this study, we used two experimental approaches to evaluate the potential of Streptococcus mitis, a commensal that exhibits immune cross-reactivity with S. pneumoniae, to confer protective immunity to S. pneumoniae lung infection in mice. First, we assessed the immune response and protective effect of wild-type S. mitis against lung infection by S. pneumoniae strains D39 (serotype 2) and TIGR4 (serotype 4). Second, we examined the ability of an S. mitis mutant expressing the S. pneumoniae type 4 capsule (S. mitis TIGR4cps) to elicit focused protection against S. pneumoniae TIGR4. Our results showed that intranasal immunization of mice with S. mitis produced significantly higher levels of serum IgG and IgA antibodies reactive to both S. mitis and S. pneumoniae, as well as enhanced production of interleukin 17A (IL-17A), but not gamma interferon (IFN-γ) and IL-4, compared with control mice. The immunization resulted in a reduced bacterial load in respiratory tissues following lung infection with S. pneumoniae TIGR4 or D39 compared with control mice. With S. mitis TIGR4cps, protection upon challenge with S. pneumoniae TIGR4 was superior. Thus, these findings show the potential of S. mitis to elicit natural serotype-independent protection against two pneumococcal serotypes and to provide the benefits of the well-recognized protective effect of capsule-targeting vaccines.IMPORTANCE Streptococcus pneumoniae causes various diseases worldwide. Current pneumococcal vaccines protect against a limited number of more than 90 pneumococcal serotypes, accentuating the urgent need to develop novel prophylactic strategies. S. pneumoniae and the commensal Streptococcus mitis share immunogenic characteristics that make S. mitis an attractive vaccine candidate against S. pneumoniae In this study, we evaluated the potential of S. mitis and its mutant expressing pneumococcal capsule type 4 (S. mitis TIGR4cps) to induce protection against S. pneumoniae lung infection in mice. Our findings show that intranasal vaccination with S. mitis protects against S. pneumoniae strains D39 (serotype 2) and TIGR4 (serotype 4) in a serotype-independent fashion, which is associated with enhanced antibody and T cell responses. Furthermore, S. mitis TIGR4cps conferred additional protection against S. pneumoniae TIGR4, but not against D39. The findings highlight the potential of S. mitis to generate protection that combines both serotype-independent and serotype-specific responses.
Collapse
|
21
|
Characterization of a Signaling System in Streptococcus mitis That Mediates Interspecies Communication with Streptococcus pneumoniae. Appl Environ Microbiol 2019; 85:AEM.02297-18. [PMID: 30389765 DOI: 10.1128/aem.02297-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus mitis is found in the oral cavity and nasopharynx and forms a significant portion of the human microbiome. In this study, in silico analyses indicated the presence of an Rgg regulator and short hydrophobic peptide (Rgg/SHP) cell-to-cell communication system in S. mitis Although Rgg presented greater similarity to a repressor in Streptococcus pyogenes, autoinducing assays and genetic mutation analysis revealed that in S. mitis Rgg acts as an activator. Transcriptome analysis showed that in addition to shp, the system regulates two other downstream genes, comprising a segment of a putative lantibiotic gene cluster that is in a conjugative element locus in different members of the mitis group. Close comparison to a similar lantibiotic gene cluster in Streptococcus pneumoniae indicated that S. mitis lacked the full set of genes. Despite the potential of SHP to trigger a futile cycle of autoinduction, growth was not significantly affected for the rgg mutant under normal or antibiotic stress conditions. The S. mitis SHP was, however, fully functional in promoting cross-species communication and increasing S. pneumoniae surface polysaccharide production, which in this species is regulated by Rgg/SHP. The activity of SHPs produced by both species was detected in cocultures using a S. mitis reporter strain. In competitive assays, a slight advantage was observed for the rgg mutants. We conclude that the Rgg/SHP system in S. mitis regulates the expression of its own shp and activates an Rgg/SHP system in S. pneumoniae that regulates surface polysaccharide synthesis. Fundamentally, cross-communication of such systems may have a role during multispecies interactions.IMPORTANCE Bacteria secrete signal molecules into the environment which are sensed by other cells when the density reaches a certain threshold. In this study, we describe a communication system in Streptococcus mitis, a commensal species from the oral cavity, which we also found in several species and strains of streptococci from the mitis group. Further, we show that this system can promote cross-communication with S. pneumoniae, a closely related major human pathogen. Importantly, we show that this cross-communication can take place during coculture. While the genes regulated in S. mitis are likely part of a futile cycle of activation, the target genes in S. pneumoniae are potentially involved in virulence. The understanding of such complex communication networks can provide important insights into the dynamics of bacterial communities.
Collapse
|
22
|
Hong BY, Paulson JN, Stine OC, Weinstock GM, Cervantes JL. Meta-analysis of the lung microbiota in pulmonary tuberculosis. Tuberculosis (Edinb) 2018; 109:102-108. [DOI: 10.1016/j.tube.2018.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
|
23
|
Salk HM, Simon WL, Lambert ND, Kennedy RB, Grill DE, Kabat BF, Poland GA. Taxa of the Nasal Microbiome Are Associated with Influenza-Specific IgA Response to Live Attenuated Influenza Vaccine. PLoS One 2016; 11:e0162803. [PMID: 27643883 PMCID: PMC5028048 DOI: 10.1371/journal.pone.0162803] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022] Open
Abstract
Live attenuated influenza vaccine (LAIV) has demonstrated varying levels of efficacy against seasonal influenza; however, LAIV may be used as a tool to measure interactions between the human microbiome and a live, replicating virus. To increase our knowledge of this interaction, we measured changes to the nasal microbiome in subjects who received LAIV to determine if associations between influenza-specific IgA production and the nasal microbiome exist after immunization with a live virus vaccine. The anterior nares of 47 healthy subjects were swabbed pre- (Day 0) and post- (Days 7 and 28) LAIV administration, and nasal washes were conducted on Days 0 and 28. We performed next-generation sequencing on amplified 16s rRNA genes and measured mucosal influenza-specific IgA titers via enzyme-linked immunosorbent assay (ELISA). A significant increase in alpha diversity was identified (Observed, CHAO, and ACE) between Days 7 vs 0 (p-values = 0.017, 0.005, 0.005, respectively) and between Days 28 vs 0 (p-values = 0.054, 0.030, 0.050, respectively). Several significant associations between the presence of different microbial species, including Lactobacillus helveticus, Prevotella melaninogenica, Streptococcus infantis, Veillonella dispar, and Bacteroides ovatus, and influenza-specific H1 and H3 IgA antibody response were demonstrated. These data suggest that LAIV alters the nasal microbiome, allowing several less-abundant OTUs to establish a community niche. Additionally, specific alterations in the nasal microbiome are significantly associated with variations in influenza-specific IgA antibody production and could be clinically relevant.
Collapse
Affiliation(s)
- Hannah M. Salk
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Whitney L. Simon
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Nathaniel D. Lambert
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Richard B. Kennedy
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Diane E. Grill
- Division of Biostatistics, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Brian F. Kabat
- Division of Biostatistics, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Gregory A. Poland
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, United States of America
- * E-mail:
| |
Collapse
|
24
|
Plantar Purpura as the Initial Presentation of Viridians Streptococcal Shock Syndrome Secondary to Streptococcus gordonii Bacteremia. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2016; 2016:9463895. [PMID: 27366188 PMCID: PMC4904574 DOI: 10.1155/2016/9463895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/01/2016] [Indexed: 12/03/2022]
Abstract
Viridians streptococcal shock syndrome is a subtype of toxic shock syndrome. Frequently, the diagnosis is missed initially because the clinical features are nonspecific. However, it is a rapidly progressive disease, manifested by hypotension, rash, palmar desquamation, and acute respiratory distress syndrome within a short period. The disease course is generally fulminant and rarely presents initially as a purpura over the plantar region. We present a case of a 54-year-old female hospital worker diagnosed with viridians streptococcal shock syndrome caused by Streptococcus gordonii. Despite aggressive antibiotic treatment, fluid hydration, and use of inotropes and extracorporeal membrane oxygenation, the patient succumbed to the disease. Early diagnosis of the potentially fatal disease followed by a prompt antibiotic regimen and appropriate use of steroids are cornerstones in the management of this disease to reduce the risk of high morbidity and mortality.
Collapse
|
25
|
Roberts FA, Darveau RP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol 2000 2015; 69:18-27. [PMID: 26252399 PMCID: PMC4530467 DOI: 10.1111/prd.12087] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
This review discusses polymicrobial interactions with the host in both health and disease. As our ability to identify specific bacterial clonal types, with respect to their abundance and location in the oral biofilm, improves, we will learn more concerning their contribution to both oral health and disease. Recent studies examining host- bacteria interactions have revealed that commensal bacteria not only protect the host simply by niche occupation, but that bacterial interactions with host tissue can promote the development of proper tissue structure and function. These data indicate that our host-associated polymicrobial communities, such as those found in the oral cavity, co-evolved with us and have become an integral part of who we are. Understanding the microbial community factors that underpin the associations with host tissue that contribute to periodontal health may also reveal how dysbiotic periodontopathic oral communities disrupt normal periodontal tissue functions in disease. A disruption of the oral microbial community creates dysbiosis, either by overgrowth of specific or nonspecific microorganisms or by changes in the local host response where the community can now support a disease state. Dysbiosis provides the link between systemic changes (e.g. diabetes) and exogenous risk factors (e.g. smoking), and the dysbiotic community, and can drive the destruction of periodontal tissue. Many other risk factors associated with periodontal disease, such as stress, aging and genetics, are also likely to affect the microbial community, and more research is needed, utilizing sophisticated bacterial taxonomic techniques, to elucidate these effects on the microbiome and to develop strategies to target the dysbiotic mechanisms and improve periodontal health.
Collapse
Affiliation(s)
- Frank A. Roberts
- University of Washington, School of Dentistry, Department of Periodontics, 1959 NE Pacific Street, Box 357444, Seattle Washington 98195-7444, Phone: 206-685-9046, Fax: 206-616-7478
| | - Richard P. Darveau
- University of Washington, School of Dentistry, Department of Periodontics, 1959 NE Pacific Street, Box 357444, Seattle Washington 98195-7444, Phone: 206-543-9514, Fax: 206-616-7478
| |
Collapse
|
26
|
Rukke H, Engen S, Schenck K, Petersen F. Capsule expression inStreptococcus mitismodulates interaction with oral keratinocytes and alters susceptibility to human antimicrobial peptides. Mol Oral Microbiol 2015; 31:302-13. [DOI: 10.1111/omi.12123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Affiliation(s)
- H.V. Rukke
- Department of Oral Biology; Faculty of Dentistry; University of Oslo; Norway
| | - S.A. Engen
- Department of Oral Biology; Faculty of Dentistry; University of Oslo; Norway
| | - K. Schenck
- Department of Oral Biology; Faculty of Dentistry; University of Oslo; Norway
| | - F.C. Petersen
- Department of Oral Biology; Faculty of Dentistry; University of Oslo; Norway
| |
Collapse
|
27
|
García-Elorriaga G, Palma-Alaniz L, García-Bolaños C, Ruelas-Vargas C, Méndez-Tovar S, Del Rey-Pineda G. [Microbiology of bronchoalveolar lavage in infants with bacterial community-acquired pneumonia with poor outcome]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2015; 72:307-312. [PMID: 29421528 DOI: 10.1016/j.bmhimx.2015.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is one of the most common infectious causes of morbidity and mortality in children <5 years of age. The aim of the study was to clarify the bacterial etiologic diagnosis in infants with CAP. METHODS A prospective, cross-sectional and descriptive study in patients 6 months to 2 years 11 months of age with CAP with poor outcome was conducted. Patients were admitted to the Pediatric Pneumology Service and underwent bronchoscopy with bronchoalveolar lavage (BAL), taking appropriate measures during the procedure to limit the risk of contamination. RESULTS Aerobic bacteria isolated were Moraxella sp. 23%, Streptococcus mitis 23%, Streptococcus pneumoniae 18%, Haemophilus influenzae 12%, Streptococcus oralis 12%, and Streptococcus salivarius 12%. CONCLUSIONS In contrast to other reports, we found Moraxella sp. to be a major bacterial pathogen, possibly because of improved detection with bronchoscopy plus BAL.
Collapse
Affiliation(s)
- Guadalupe García-Elorriaga
- Hospital de Infectología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, México D.F., México.
| | - Laura Palma-Alaniz
- Laboratorio Clínico, Unidad Médica de Atención Especializada Gaudencio González Garza, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, México D.F., México
| | - Carlos García-Bolaños
- Neumología pediátrica, Unidad Médica de Atención Especializada Gaudencio González Garza, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, México D.F., México
| | - Consuelo Ruelas-Vargas
- Servicio de Endoscopia, Unidad Médica de Atención Especializada Gaudencio González Garza, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, México D.F., México
| | - Socorro Méndez-Tovar
- Laboratorio Clínico, Unidad Médica de Atención Especializada Gaudencio González Garza, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, México D.F., México
| | | |
Collapse
|
28
|
Straume D, Stamsås GA, Håvarstein LS. Natural transformation and genome evolution in Streptococcus pneumoniae. INFECTION GENETICS AND EVOLUTION 2014; 33:371-80. [PMID: 25445643 DOI: 10.1016/j.meegid.2014.10.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/16/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023]
Abstract
Streptococcus pneumoniae is a frequent colonizer of the human nasopharynx that has the potential to cause severe infections such as pneumonia, bacteremia and meningitis. Despite considerable efforts to reduce the burden of pneumococcal disease, it continues to be a major public health problem. After the Second World War, antimicrobial therapy was introduced to fight pneumococcal infections, followed by the first effective vaccines more than half a century later. These clinical interventions generated a selection pressure that drove the evolution of vaccine-escape mutants and strains that were highly resistant against antibiotics. The remarkable ability of S. pneumoniae to acquire drug resistance and evade vaccine pressure is due to its recombination-mediated genetic plasticity. S. pneumoniae is competent for natural genetic transformation, a property that enables the pneumococcus to acquire new traits by taking up naked DNA from the environment and incorporating it into its genome through homologous recombination. In the present paper, we review current knowledge on pneumococcal transformation, and discuss how the pneumococcus uses this mechanism to adapt and survive under adverse and fluctuating conditions.
Collapse
Affiliation(s)
- Daniel Straume
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Gro Anita Stamsås
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Leiv Sigve Håvarstein
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Ås, Norway.
| |
Collapse
|
29
|
Delorme C, Abraham AL, Renault P, Guédon E. Genomics of Streptococcus salivarius, a major human commensal. INFECTION GENETICS AND EVOLUTION 2014; 33:381-92. [PMID: 25311532 DOI: 10.1016/j.meegid.2014.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The salivarius group of streptococci is of particular importance for humans. This group consists of three genetically similar species, Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus. S. salivarius and S. vestibularis are commensal organisms that may occasionally cause opportunistic infections in humans, whereas S. thermophilus is a food bacterium widely used in dairy production. We developed Multilocus sequence typing (MLST) and comparative genomic analysis to confirm the clear separation of these three species. These analyses also identified a subgroup of four strains, with a core genome diverging by about 10%, in terms of its nucleotide sequence, from that of S. salivarius sensu stricto. S. thermophilus species displays a low level of nucleotide variability, due to its recent emergence with the development of agriculture. By contrast, nucleotide variability is high in the other two species of the salivarius group, reflecting their long-standing association with humans. The species of the salivarius group have genome sizes ranging from the smallest (∼ 1.7 Mb for S. thermophilus) to the largest (∼ 2.3 Mb for S. salivarius) among streptococci, reflecting genome reduction linked to a narrow, nutritionally rich environment for S. thermophilus, and natural, more competitive niches for the other two species. Analyses of genomic content have indicated that the core genes of S. salivarius account for about two thirds of the genome, indicating considerable variability of gene content and differences in potential adaptive features. Furthermore, we showed that the genome of this species is exceptionally rich in genes encoding surface factors, glycosyltransferases and response regulators. Evidence of widespread genetic exchanges was obtained, probably involving a natural competence system and the presence of diverse mobile elements. However, although the S. salivarius strains studied were isolated from several human body-related sites (all levels of the digestive tract, skin, breast milk, and body fluids) and included clinical strains, no genetic or genomic niche-specific features could be identified to discriminate specific group.
Collapse
Affiliation(s)
- Christine Delorme
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Anne-Laure Abraham
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Pierre Renault
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Eric Guédon
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France.
| |
Collapse
|
30
|
Henne K, Li J, Stoneking M, Kessler O, Schilling H, Sonanini A, Conrads G, Horz HP. Global analysis of saliva as a source of bacterial genes for insights into human population structure and migration studies. BMC Evol Biol 2014; 14:190. [PMID: 25183372 PMCID: PMC4360258 DOI: 10.1186/s12862-014-0190-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/13/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The genetic diversity of the human microbiome holds great potential for shedding light on the history of our ancestors. Helicobacter pylori is the most prominent example as its analysis allowed a fine-scale resolution of past migration patterns including some that could not be distinguished using human genetic markers. However studies of H. pylori require stomach biopsies, which severely limits the number of samples that can be analysed. By focussing on the house-keeping gene gdh (coding for the glucose-6-phosphate dehydrogenase), on the virulence gene gtf (coding for the glucosyltransferase) of mitis-streptococci and on the 16S-23S rRNA internal transcribed spacer (ITS) region of the Fusobacterium nucleatum/periodonticum-group we here tested the hypothesis that bacterial genes from human saliva have the potential for distinguishing human populations. RESULTS Analysis of 10 individuals from each of seven geographic regions, encompassing Africa, Asia and Europe, revealed that the genes gdh and ITS exhibited the highest number of polymorphic sites (59% and 79%, respectively) and most OTUs (defined at 99% identity) were unique to a given country. In contrast, the gene gtf had the lowest number of polymorphic sites (21%), and most OTUs were shared among countries. Most of the variation in the gdh and ITS genes was explained by the high clonal diversity within individuals (around 80%) followed by inter-individual variation of around 20%, leaving the geographic region as providing virtually no source of sequence variation. Conversely, for gtf the variation within individuals accounted for 32%, between individuals for 57% and among geographic regions for 11%. This geographic signature persisted upon extension of the analysis to four additional locations from the American continent. Pearson correlation analysis, pairwise Fst-cluster analysis as well as UniFrac analyses consistently supported a tree structure in which the European countries clustered tightly together and branched with American countries and South Africa, to the exclusion of Asian countries and the Congo. CONCLUSION This study shows that saliva harbours protein-coding bacterial genes that are geographically structured, and which could potentially be used for addressing previously unresolved human migration events.
Collapse
Affiliation(s)
- Karsten Henne
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Jing Li
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
- Current address: Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
| | - Olga Kessler
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Hildegard Schilling
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Anne Sonanini
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Hans-Peter Horz
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| |
Collapse
|
31
|
Kilian M, Riley DR, Jensen A, Brüggemann H, Tettelin H. Parallel evolution of Streptococcus pneumoniae and Streptococcus mitis to pathogenic and mutualistic lifestyles. mBio 2014; 5:e01490-14. [PMID: 25053789 PMCID: PMC4120201 DOI: 10.1128/mbio.01490-14] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 11/20/2022] Open
Abstract
The bacterium Streptococcus pneumoniae is one of the leading causes of fatal infections affecting humans. Intriguingly, phylogenetic analysis shows that the species constitutes one evolutionary lineage in a cluster of the otherwise commensal Streptococcus mitis strains, with which humans live in harmony. In a comparative analysis of 35 genomes, including phylogenetic analyses of all predicted genes, we have shown that the pathogenic pneumococcus has evolved into a master of genomic flexibility while lineages that evolved into the nonpathogenic S. mitis secured harmonious coexistence with their host by stabilizing an approximately 15%-reduced genome devoid of many virulence genes. Our data further provide evidence that interspecies gene transfer between S. pneumoniae and S. mitis occurs in a unidirectional manner, i.e., from S. mitis to S. pneumoniae. Import of genes from S. mitis and other mitis, anginosus, and salivarius group streptococci ensured allelic replacements and antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae. Our study explains how the unique structural diversity of the pneumococcal capsule emerged and conceivably will continue to increase and reveals a striking example of the fragile border between the commensal and pathogenic lifestyles. While genomic plasticity enabling quick adaptation to environmental stress is a necessity for the pathogenic streptococci, the commensal lifestyle benefits from stability. Importance: One of the leading causes of fatal infections affecting humans, Streptococcus pneumoniae, and the commensal Streptococcus mitis are closely related obligate symbionts associated with hominids. Faced with a shortage of accessible hosts, the two opposing lifestyles evolved in parallel. We have shown that the nonpathogenic S. mitis secured harmonious coexistence with its host by stabilizing a reduced genome devoid of many virulence genes. Meanwhile, the pathogenic pneumococcus evolved into a master of genomic flexibility and imports genes from S. mitis and other related streptococci. This process ensured antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae, which conceivably will continue to increase and present a challenge to disease prevention.
Collapse
Affiliation(s)
- Mogens Kilian
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - David R Riley
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anders Jensen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Choi CW, An HY, Lee YJ, Lee YG, Yun SH, Park EC, Hong Y, Kim GH, Park JE, Baek SJ, Kim HS, Kim SI. Characterization of Streptococcus pneumoniae N-acetylglucosamine-6-phosphate deacetylase as a novel diagnostic marker. J Microbiol 2013; 51:659-64. [PMID: 24173645 DOI: 10.1007/s12275-013-3451-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/16/2013] [Indexed: 01/30/2023]
Abstract
The identification of novel diagnostic markers of pathogenic bacteria is essential for improving the accuracy of diagnoses and for developing targeted vaccines. Streptococcus pneumoniae is a significant human pathogenic bacterium that causes pneumonia. N-acetylglucosamine-6-phosphate deacetylase (NagA) was identified in a protein mixture secreted by S. pneumoniae and its strong immunogenicity was confirmed in an immuno-proteomic assay against the anti-serum of the secreted protein mixture. In this study, recombinant S. pneumoniae NagA protein was expressed and purified to analyze its protein characteristics, immunospecificity, and immunogenicity, thereby facilitating its evaluation as a novel diagnostic marker for S. pneumoniae. Mass spectrometry analysis showed that S. pneumoniae NagA contains four internal disulfide bonds and that it does not undergo post-translational modification. S. pneumoniae NagA antibodies successfully detected NagA from different S. pneumoniae strains, whereas NagA from other pathogenic bacteria species was not detected. In addition, mice infected with S. pneumoniae generated NagA antibodies in an effective manner. These results suggest that NagA has potential as a novel diagnostic marker for S. pneumoniae because of its high immunogenicity and immunospecificity.
Collapse
Affiliation(s)
- Chi-Won Choi
- Division of Life Science, Korea Basic Science Institute (KBSI), Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fitzsimons MS, Novotny M, Lo CC, Dichosa AEK, Yee-Greenbaum JL, Snook JP, Gu W, Chertkov O, Davenport KW, McMurry K, Reitenga KG, Daughton AR, He J, Johnson SL, Gleasner CD, Wills PL, Parson-Quintana B, Chain PS, Detter JC, Lasken RS, Han CS. Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome. Genome Res 2013; 23:878-88. [PMID: 23493677 PMCID: PMC3638143 DOI: 10.1101/gr.142208.112] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The majority of microbial genomic diversity remains unexplored. This is largely due to our inability to culture most microorganisms in isolation, which is a prerequisite for traditional genome sequencing. Single-cell sequencing has allowed researchers to circumvent this limitation. DNA is amplified directly from a single cell using the whole-genome amplification technique of multiple displacement amplification (MDA). However, MDA from a single chromosome copy suffers from amplification bias and a large loss of specificity from even very small amounts of DNA contamination, which makes assembling a genome difficult and completely finishing a genome impossible except in extraordinary circumstances. Gel microdrop cultivation allows culturing of a diverse microbial community and provides hundreds to thousands of genetically identical cells as input for an MDA reaction. We demonstrate the utility of this approach by comparing sequencing results of gel microdroplets and single cells following MDA. Bias is reduced in the MDA reaction and genome sequencing, and assembly is greatly improved when using gel microdroplets. We acquired multiple near-complete genomes for two bacterial species from human oral and stool microbiome samples. A significant amount of genome diversity, including single nucleotide polymorphisms and genome recombination, is discovered. Gel microdroplets offer a powerful and high-throughput technology for assembling whole genomes from complex samples and for probing the pan-genome of naturally occurring populations.
Collapse
Affiliation(s)
- Michael S Fitzsimons
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kennedy DM, Stanton JAL, García JA, Mason C, Rand CJ, Kieser JA, Tompkins GR. Microbial analysis of bite marks by sequence comparison of streptococcal DNA. PLoS One 2012; 7:e51757. [PMID: 23284761 PMCID: PMC3526645 DOI: 10.1371/journal.pone.0051757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 11/05/2012] [Indexed: 12/25/2022] Open
Abstract
Bite mark injuries often feature in violent crimes. Conventional morphometric methods for the forensic analysis of bite marks involve elements of subjective interpretation that threaten the credibility of this field. Human DNA recovered from bite marks has the highest evidentiary value, however recovery can be compromised by salivary components. This study assessed the feasibility of matching bacterial DNA sequences amplified from experimental bite marks to those obtained from the teeth responsible, with the aim of evaluating the capability of three genomic regions of streptococcal DNA to discriminate between participant samples. Bite mark and teeth swabs were collected from 16 participants. Bacterial DNA was extracted to provide the template for PCR primers specific for streptococcal 16S ribosomal RNA (16S rRNA) gene, 16S–23S intergenic spacer (ITS) and RNA polymerase beta subunit (rpoB). High throughput sequencing (GS FLX 454), followed by stringent quality filtering, generated reads from bite marks for comparison to those generated from teeth samples. For all three regions, the greatest overlaps of identical reads were between bite mark samples and the corresponding teeth samples. The average proportions of reads identical between bite mark and corresponding teeth samples were 0.31, 0.41 and 0.31, and for non-corresponding samples were 0.11, 0.20 and 0.016, for 16S rRNA, ITS and rpoB, respectively. The probabilities of correctly distinguishing matching and non-matching teeth samples were 0.92 for ITS, 0.99 for 16S rRNA and 1.0 for rpoB. These findings strongly support the tenet that bacterial DNA amplified from bite marks and teeth can provide corroborating information in the identification of assailants.
Collapse
Affiliation(s)
- Darnell M. Kennedy
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - José A. García
- Department of Preventative and Social Medicine, University of Otago, Dunedin, New Zealand
| | - Chris Mason
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Christy J. Rand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jules A. Kieser
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| | - Geoffrey R. Tompkins
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
35
|
Fine DH, Sreenivasan PK, McKiernan M, Tischio-Bereski D, Furgang D. Whole mouth antimicrobial effects after oral hygiene: comparison of three dentifrice formulations. J Clin Periodontol 2012; 39:1056-64. [DOI: 10.1111/j.1600-051x.2012.01938.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel H. Fine
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey; New Jersey Dental School, - UMDNJ; Newark; NJ; USA
| | | | - Marie McKiernan
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey; New Jersey Dental School, - UMDNJ; Newark; NJ; USA
| | - Debra Tischio-Bereski
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey; New Jersey Dental School, - UMDNJ; Newark; NJ; USA
| | - David Furgang
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey; New Jersey Dental School, - UMDNJ; Newark; NJ; USA
| |
Collapse
|
36
|
Amplification of oral streptococcal DNA from human incisors and bite marks. Curr Microbiol 2012; 65:207-11. [PMID: 22638842 DOI: 10.1007/s00284-012-0148-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
Challenges to the evidentiary value of morphometric determinations have led to a requirement for scientifically substantiated approaches to the forensic analysis of bite marks. Human teeth support genotypically distinctive populations of bacteria that could be exploited for forensic purposes. This study explored the feasibility of directly amplifying bacterial DNA from bite marks for comparison with that from teeth. Samples from self-inflicted experimental bite marks (n = 24) and human incisors were amplified by PCR using primers specific for streptococcal 16S ribosomal DNA. Amplicon profiles (resolved by denaturing gradient gel electrophoresis) from bite mark samples aligned significantly more closely with profiles generated from the teeth responsible than with those from other teeth. Streptococcal amplicons were generated from dental samples applied to excised porcine skin for up to 48 h. These findings indicate that streptococcal DNA can be amplified directly from bite marks, and have potential application in bite mark analysis.
Collapse
|
37
|
Hu B, Xie G, Lo CC, Starkenburg SR, Chain PSG. Pathogen comparative genomics in the next-generation sequencing era: genome alignments, pangenomics and metagenomics. Brief Funct Genomics 2011; 10:322-33. [DOI: 10.1093/bfgp/elr042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
38
|
Mitchell J. Streptococcus mitis: walking the line between commensalism and pathogenesis. Mol Oral Microbiol 2011; 26:89-98. [PMID: 21375700 DOI: 10.1111/j.2041-1014.2010.00601.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Streptococcus mitis is a viridans streptococcus and a normal commensal of the human oropharynx. However, S. mitis can escape from this niche and cause a variety of infectious complications including infective endocarditis, bacteraemia and septicaemia. It uses a variety of strategies to effectively colonize the human oropharynx. These include expression of adhesins, immunoglobulin A proteases and toxins, and modulation of the host immune system. These various colonization factors allow S. mitis to compete for space and nutrients in the face of its more pathogenic oropharyngeal microbial neighbours. However, it is likely that in vulnerable immune-compromised patients S. mitis will use the same colonization and immune modulation factors as virulence factors promoting its opportunistic pathogenesis. The recent publication of a complete genome sequence for S. mitis strain B6 will allow researchers to thoroughly investigate which genes are involved in S. mitis host colonization and pathogenesis. Moreover, it will help to give insight into where S. mitis fits in the complicated oral microbiome. This review will discuss the current knowledge of S. mitis factors involved in host colonization, their potential role in virulence and what needs to be done to fully understand how a an oral commensal successfully transitions to a virulent pathogen.
Collapse
Affiliation(s)
- J Mitchell
- University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
39
|
Hiller NL, Ahmed A, Powell E, Martin DP, Eutsey R, Earl J, Janto B, Boissy RJ, Hogg J, Barbadora K, Sampath R, Lonergan S, Post JC, Hu FZ, Ehrlich GD. Generation of genic diversity among Streptococcus pneumoniae strains via horizontal gene transfer during a chronic polyclonal pediatric infection. PLoS Pathog 2010; 6:e1001108. [PMID: 20862314 PMCID: PMC2940740 DOI: 10.1371/journal.ppat.1001108] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/16/2010] [Indexed: 01/22/2023] Open
Abstract
Although there is tremendous interest in understanding the evolutionary roles of horizontal gene transfer (HGT) processes that occur during chronic polyclonal infections, to date there have been few studies that directly address this topic. We have characterized multiple HGT events that most likely occurred during polyclonal infection among nasopharyngeal strains of Streptococcus pneumoniae recovered from a child suffering from chronic upper respiratory and middle-ear infections. Whole genome sequencing and comparative genomics were performed on six isolates collected during symptomatic episodes over a period of seven months. From these comparisons we determined that five of the isolates were genetically highly similar and likely represented a dominant lineage. We analyzed all genic and allelic differences among all six isolates and found that all differences tended to occur within contiguous genomic blocks, suggestive of strain evolution by homologous recombination. From these analyses we identified three strains (two of which were recovered on two different occasions) that appear to have been derived sequentially, one from the next, each by multiple recombination events. We also identified a fourth strain that contains many of the genomic segments that differentiate the three highly related strains from one another, and have hypothesized that this fourth strain may have served as a donor multiple times in the evolution of the dominant strain line. The variations among the parent, daughter, and grand-daughter recombinant strains collectively cover greater than seven percent of the genome and are grouped into 23 chromosomal clusters. While capturing in vivo HGT, these data support the distributed genome hypothesis and suggest that a single competence event in pneumococci can result in the replacement of DNA at multiple non-adjacent loci. Bacterial infections have long been studied using Koch's postulates wherein the paradigm is that a single clone leads to a given infection. Over the past decade, it has become clear that chronic bacterial infections often do not fit this paradigm. Instead these are associated with the presence of multiple strains or species (polyclonal) of bacteria that are organized into highly structured communities, termed biofilms, which can persist in the body and are recalcitrant to antibiotic treatment. In addition, there is extensive evidence that bacteria can incorporate genes from neighboring bacteria into their own genomes. This process can produce new strains and is known as horizontal gene transfer. In this study, we investigated for the first time, the tempo and relevance of gene transfer among bacterial strains of Streptococcus pneumoniae during a naturally occurring chronic childhood infection. We identified extensive gene transfer among multiple infecting strains, by sequencing of isolates recovered sequentially over a seven-month period. This gene transfer may serve as a counterpoint to the host's adaptive immune response and help explain the phenomenon of bacterial persistence, since, as occurs with some chronic viral and parasitic infections, the immune system may become overwhelmed by a set of related strains.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
| | - Azad Ahmed
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
| | - Evan Powell
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rory Eutsey
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
| | - Josh Earl
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
| | - Benjamin Janto
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
| | - Robert J. Boissy
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Justin Hogg
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
| | - Karen Barbadora
- Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rangarajan Sampath
- Abbott Molecular IbisBiosciences Division, Carlsbad, California, United States of America
| | - Shaun Lonergan
- Abbott Molecular IbisBiosciences Division, Carlsbad, California, United States of America
| | - J. Christopher Post
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
- Department of Otolaryngology Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
| | - Fen Z. Hu
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
- Department of Otolaryngology Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (GDE) (FH); (FZH) (GE)
| | - Garth D. Ehrlich
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
- Department of Otolaryngology Head and Neck Surgery, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (GDE) (FH); (FZH) (GE)
| |
Collapse
|
40
|
Seo HS, Xiong YQ, Mitchell J, Seepersaud R, Bayer AS, Sullam PM. Bacteriophage lysin mediates the binding of streptococcus mitis to human platelets through interaction with fibrinogen. PLoS Pathog 2010; 6:e1001047. [PMID: 20714354 PMCID: PMC2920869 DOI: 10.1371/journal.ppat.1001047] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/15/2010] [Indexed: 12/02/2022] Open
Abstract
The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with fibrinogen. Far Western blotting of platelets revealed that fibrinogen was the major membrane-associated protein bound by lysin. Analysis of lysin binding with purified fibrinogen in vitro confirmed that these proteins could bind directly, and that this interaction was both saturable and inhibitable. Lysin bound both the Aα and Bβ chains of fibrinogen, but not the γ subunit. Binding of lysin to the Bβ chain was further localized to a region within the fibrinogen D fragment. Disruption of the SF100 lysin gene resulted in an 83±3.1% reduction (mean ± SD) in binding to immobilized fibrinogen by this mutant strain (PS1006). Preincubation of this isogenic mutant with purified lysin restored fibrinogen binding to wild type levels. When tested in a co-infection model of endocarditis, loss of lysin expression resulted in a significant reduction in virulence, as measured by achievable bacterial densities (CFU/g) within vegetations, kidneys, and spleens. These results indicate that bacteriophage-encoded lysin is a multifunctional protein, representing a new class of fibrinogen-binding proteins. Lysin appears to be cell wall-associated through its interaction with choline. Once on the bacterial surface, lysin can bind fibrinogen directly, which appears to be an important interaction for the pathogenesis of endocarditis. The binding of bacteria to human platelets is thought to be a central event in the development of endocarditis (a life-threatening cardiovascular infection). We have previously found that platelet binding by Streptococcus mitis is mediated by surface components encoded by a bacteriophage contained within the host bacterium. We now show that lysin (an enzyme of bacteriophage origin) contributes to platelet binding via its direct interaction with fibrinogen on the platelet surface. Lysin bound to purified fibrinogen in vitro, and this interaction specifically involved the Aα and Bβ chains of fibrinogen. Binding of lysin to the Bβ chain was further localized to a region within the fibrinogen D fragment. Disruption of the gene encoding lysin gene resulted in a significant reduction in binding to fibrinogen by S. mitis, as well as a major reduction in virulence, as measured by a rat model of endocarditis. These results indicate that lysin is a multifunctional protein, representing a new class of fibrinogen-binding molecules. Lysin is localized to the bacterial surface via its interaction with cell wall choline, where it then can bind fibrinogen directly. Cell surface lysin apparently also contributes to the development of endovascular infections via its previously unrecognized fibrinogen binding activity.
Collapse
Affiliation(s)
- Ho Seong Seo
- Division of Infectious Diseases, Veterans Affairs Medical Center and the University of California, San Francisco, California, United States of America
| | - Yan Q. Xiong
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | | | - Ravin Seepersaud
- Division of Infectious Diseases, Veterans Affairs Medical Center and the University of California, San Francisco, California, United States of America
| | - Arnold S. Bayer
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Paul M. Sullam
- Division of Infectious Diseases, Veterans Affairs Medical Center and the University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Guglielmetti S, Taverniti V, Minuzzo M, Arioli S, Stuknyte M, Karp M, Mora D. Oral bacteria as potential probiotics for the pharyngeal mucosa. Appl Environ Microbiol 2010; 76:3948-58. [PMID: 20418429 PMCID: PMC2893495 DOI: 10.1128/aem.00109-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/10/2010] [Indexed: 01/05/2023] Open
Abstract
The research described here was aimed at the selection of oral bacteria that displayed properties compatible with their potential use as probiotics for the pharyngeal mucosa. We included in the study 56 bacteria newly isolated from the pharynges of healthy donors, which were identified at the intraspecies level and characterized in vitro for their probiotic potential. The experiments led us to select two potential probiotic bacterial strains (Streptococcus salivarius RS1 and ST3) and to compare them with the prototype oral probiotic S. salivarius strain K12. All three strains efficiently bound to FaDu human epithelial pharyngeal cells and thereby antagonized Streptococcus pyogenes adhesion and growth. All were sensitive to a variety of antibiotics routinely used for the control of upper respiratory tract infections. Immunological in vitro testing on a FaDu layer revealed different responses to RS1, ST3, and K12. RS1 and ST3 modulated NF-kappaB activation and biased proinflammatory cytokines at baseline and after interleukin-1beta (IL-1beta) induction. In conclusion, we suggest that the selected commensal streptococci represent potential pharyngeal probiotic candidates. They could display a good degree of adaptation to the host and possess potential immunomodulatory and anti-inflammatory properties.
Collapse
Affiliation(s)
- Simone Guglielmetti
- Dipartimento di Scienze e Tecnologie Alimentari, Universita degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Natural transformation is found in most groups of oral streptococci, including the mitis, the anginosus, and the mutans groups. This ability has been applied as a powerful tool to explore streptococcal gene functions and regulatory pathways, particularly in Streptococcus mutans and Streptococcus gordonii. The range of strains and species amenable to transformation has expanded in recent years with the identification of several competence-stimulating peptide signals (CSPs). In this chapter we present protocols for natural transformation in strains found in the three groups of transformable oral streptococci, with focus on methods using synthetic CSPs. We also include suggestions on how to optimize competence conditions for individual species or strains.
Collapse
|
43
|
Haubek D, Ennibi OK, Væth M, Poulsen S, Poulsen K. Stability of the JP2 Clone of Aggregatibacter actinomycetemcomitans. J Dent Res 2009; 88:856-60. [DOI: 10.1177/0022034509342190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The JP2 clone of Aggregatibacter actinomycetemcomitans is strongly associated with aggressive periodontitis. To obtain information about colonization dynamics of the JP2 clone, we used PCR to examine its presence in 365 Moroccan juveniles from whom periodontal plaque samples were collected at baseline and after one and two years. Periodontal attachment loss was measured at baseline and at the two-year follow-up. At baseline, 43 (12%) carriers of the JP2 clone were found. Nearly half (44 %) of these were persistently colonized with the clone. The relative risk for the development of aggressive periodontitis, adjusted for the concomitant presence of other genotypes of A. actinomycetemcomitans, was highest for individuals continuously infected by the JP2 clone (RR = 13.9; 95% CI, 9.0 to 21.4), indicating a relationship between infectious dose and disease, which further substantiates the evidence for the JP2 clone as a causal factor in aggressive periodontitis.
Collapse
Affiliation(s)
- D. Haubek
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - O.-K. Ennibi
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - M. Væth
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - S. Poulsen
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| | - K. Poulsen
- Department of Pediatric Dentistry, School of Dentistry, Vennelyst Boulevard 9, DK-8000 Aarhus C,
- Department of Medical Microbiology and Immunology, Wilhelm Meyers Allé, DK-8000 Aarhus C, and
- Department of Biostatistics, Vennelyst Boulevard 6, DK-8000 Aarhus C, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark; and
- Department of Periodontology, Dental Faculty, University of Rabat, BP 6212 Les Institutes Rabat, Morocco
| |
Collapse
|
44
|
Konishi I, Hoshino T, Kondo Y, Saito K, Nishiguchi M, Sato K, Fujiwara T. Phylogenetic analyses and detection of viridans streptococci based on sequences and denaturing gradient gel electrophoresis of the rod shape-determining protein gene. J Oral Microbiol 2009; 1. [PMID: 21523207 PMCID: PMC3077002 DOI: 10.3402/jom.v1i0.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/29/2009] [Accepted: 07/31/2009] [Indexed: 11/20/2022] Open
Abstract
Background Population analysis of viridans streptococci is important because these species are associated with dental caries, bacteremia, and subacute endocarditis, in addition to being important members of the human oral commensal microbiota. Design In this study, we phylogenetically analyzed the rod shape-determining protein gene (rodA), which is associated with cellular morphology, cell division, and sensitivity for antibiotics, and demonstrated that the diversity of the rodA gene is sufficient to identify viridans streptococci at the species level. Moreover, we developed a more convenient denaturing gradient gel electrophoresis (DGGE) method based on the diversity of the rodA gene (rodA-DGGE) for detecting nine dominant streptococcal species in human saliva, namely, Streptococcus sanguinis, Streptococcus oralis, Streptococcus mitis, Streptococcus parasanguinis, Streptococcus gordonii, Streptococcus vestibularis, Streptococcus salivarius, Streptococcus mutans, and Streptococcus sobrinus. Results This rodA-DGGE method proved useful in detecting viridans streptococci without cultivation, isolation, and phenotypic characterization. Conclusion Analysis of the oral microbiota by rodA-DGGE offers a higher resolution than the conventional DGGE using 16S rDNA and may be an alternative in the microbial diagnosis of streptococcal infection.
Collapse
Affiliation(s)
- Ikuri Konishi
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Do T, Jolley KA, Maiden MCJ, Gilbert SC, Clark D, Wade WG, Beighton D. Population structure of Streptococcus oralis. MICROBIOLOGY-SGM 2009; 155:2593-2602. [PMID: 19423627 PMCID: PMC2885674 DOI: 10.1099/mic.0.027284-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Streptococcus oralis is a member of the normal human oral microbiota, capable of opportunistic pathogenicity; like related oral streptococci, it exhibits appreciable phenotypic and genetic variation. A multilocus sequence typing (MLST) scheme for S. oralis was developed and the resultant data analysed to examine the population structure of the species. Analysis of 113 isolates, confirmed as belonging to the S. oralis/mitis group by 16S rRNA gene sequencing, characterized the population as highly diverse and undergoing inter- and intra-species recombination with a probable clonal complex structure. ClonalFrame analysis of these S. oralis isolates along with examples of Streptococcus pneumoniae, Streptococcus mitis and Streptococcus pseudopneumoniae grouped the named species into distinct, coherent populations and did not support the clustering of S. pseudopneumoniae with S. mitis as reported previously using distance-based methods. Analysis of the individual loci suggested that this discrepancy was due to the possible hybrid nature of S. pseudopneumoniae. The data are available on the public MLST website (http://pubmlst.org/soralis/).
Collapse
Affiliation(s)
- Thuy Do
- King's College London Dental Institute at Guy's, King's College and St Thomas' Hospitals, Infection Research Group, Guy's Campus, London SE1 9RT, UK
- Biomedical Research Centre, Guy's and St Thomas' Hospital NHS Foundation Trust, London SE1 9RT, UK
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | | | - Steven C. Gilbert
- King's College London Dental Institute at Guy's, King's College and St Thomas' Hospitals, Infection Research Group, Guy's Campus, London SE1 9RT, UK
- Biomedical Research Centre, Guy's and St Thomas' Hospital NHS Foundation Trust, London SE1 9RT, UK
| | - Douglas Clark
- King's College London Dental Institute at Guy's, King's College and St Thomas' Hospitals, Infection Research Group, Guy's Campus, London SE1 9RT, UK
| | - William G. Wade
- King's College London Dental Institute at Guy's, King's College and St Thomas' Hospitals, Infection Research Group, Guy's Campus, London SE1 9RT, UK
| | - David Beighton
- King's College London Dental Institute at Guy's, King's College and St Thomas' Hospitals, Infection Research Group, Guy's Campus, London SE1 9RT, UK
- Biomedical Research Centre, Guy's and St Thomas' Hospital NHS Foundation Trust, London SE1 9RT, UK
| |
Collapse
|
46
|
Identification of clinically relevant nonhemolytic Streptococci on the basis of sequence analysis of 16S-23S intergenic spacer region and partial gdh gene. J Clin Microbiol 2009; 47:932-9. [PMID: 19193846 DOI: 10.1128/jcm.01449-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonhemolytic streptococci (NHS) cause serious infections, such as endocarditis and septicemia. Many conventional phenotypic methods are insufficient for the identification of bacteria in this group to the species level. Genetic analysis has revealed that single-gene analysis is insufficient for the identification of all species in this group of bacteria. The aim of the present study was to establish a method based on sequence analysis of the 16S-23S intergenic spacer (ITS) region and the partial gdh gene to identify clinical relevant NHS to the species level. Sequence analysis of the ITS region was performed with 57 NHS reference or clinical strains. Satisfactory identification to the species level was achieved for 14/19 NHS species included in this study on the basis of sequence analysis of the ITS region. Streptococcus salivarius and Streptococcus vestibularis obtained the expected taxon as the best taxon match, but there was a short maximum score distance to the next best match (distance, <10). Streptococcus mitis, Streptococcus oralis, and Streptococcus pneumoniae could not be unambiguously discriminated by sequence analysis of the ITS region, as was also proven by phylogenetic analysis. These five species could be identified to the group level only by ITS sequence analysis. Partial gdh sequence analysis was applied to the 11 S. oralis strains, the 11 S. mitis strains, and the 17 S. pneumoniae strains. All except one strain achieved a satisfactory identification to the species level. A phylogenetic algorithm based on the analysis of partial gdh gene sequences revealed three distinct clusters. We suggest that sequence analysis of the combination of the ITS region and the partial gdh gene can be used in the reference laboratory for the species-level identification of NHS.
Collapse
|