1
|
Kanwal M, Basheer A, Bilal M, Faheem M, Aziz T, Alamri AS, Alsanie WF, Alhomrani M, Jamal SB. In silico vaccine design for Yersinia enterocolitica: A comprehensive approach to enhanced immunogenicity, efficacy and protection. Int Immunopharmacol 2024; 143:113241. [PMID: 39369465 DOI: 10.1016/j.intimp.2024.113241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Yersinia enterocolitica, a foodborne pathogen, has emerged as a significant public health concern due to its increased prevalence and multidrug resistance. This study employed reverse vaccinology to identify novel vaccine candidates against Y. enterocolitica through comprehensive in silico analyses. The core genome's conserved protein translocase subunit SecY was selected as the target, and potential B-cell, MHC class I, and MHC class II epitopes were mapped. 3B-cell epitopes, 3 MHCI and 11 MHCII epitopes were acquired. A multi-epitope vaccine construct was designed by incorporating the identified epitopes, TLR4 Agonist was used as adjuvants to enhance the immunogenic response. EAAAK, CPGPG and AYY linkers were used to form a vaccine construct, followed by extensive computational evaluations. The vaccine exhibited desirable physicochemical properties, stable secondary and tertiary structures as evaluated by PDBSum and trRosetta. Moreover, favorable interactions with the human Toll-like receptor 4 (TLR4) was observed by ClusPro. Population coverage analysis estimated the vaccine's applicability across 99.74 % in diverse populations. In addition, molecular dynamics simulations and normal mode analysis confirmed the vaccine's structural stability and dynamics in a simulated biological environment. Furthermore, codon optimization and in silico cloning facilitated the evaluation of the vaccine's expression potential in E. coli and pET-28a was used a recombinant plasmid. This study provides a promising foundation for the development of an efficacious vaccine against Y. enterocolitica infections.
Collapse
Affiliation(s)
- Munazza Kanwal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Amina Basheer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Muhammad Bilal
- Department of Biological Sciences, Oakland University, MI, USA.
| | - Muhammad Faheem
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA.
| | - Tariq Aziz
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece.
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| |
Collapse
|
2
|
Keener RM, Shi S, Dalapati T, Wang L, Reinoso-Vizcaino NM, Luftig MA, Miller SI, Wilson TJ, Ko DC. Human genetic variation reveals FCRL3 is a lymphocyte receptor for Yersinia pestis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626452. [PMID: 39677730 PMCID: PMC11643160 DOI: 10.1101/2024.12.05.626452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Yersinia pestis is the gram-negative bacterium responsible for plague, one of the deadliest and most feared diseases in human history. This bacterium is known to infect phagocytic cells, such as dendritic cells and macrophages, but interactions with non-phagocytic cells of the adaptive immune system are frequently overlooked despite the importance they likely hold for human infection. To discover human genetic determinants of Y. pestis infection, we utilized nearly a thousand genetically diverse lymphoblastoid cell lines in a cellular genome-wide association study method called Hi-HOST (High-throughput Human in-vitrO Susceptibility Testing). We identified a nonsynonymous SNP, rs2282284, in Fc receptor like 3 (FCRL3) associated with bacterial invasion of host cells (p=9×10-8). FCRL3 belongs to the immunoglobulin superfamily and is primarily expressed in lymphocytes. rs2282284 is within a tyrosine-based signaling motif, causing an asparagine-to-serine mutation (N721S) in the most common FCRL3 isoform. Overexpression of FCRL3 facilitated attachment and invasion of non-opsonized Y. pestis. Additionally, FCRL3 colocalized with Y. pestis at sites of cellular attachment, suggesting FCRL3 is a receptor for Y. pestis. These properties were variably conserved across the FCRL family, revealing molecular requirements of attachment and invasion, including an Ig-like C2 domain and a SYK interaction motif. Direct binding was confirmed with purified FCRL5 extracellular domain. Following attachment, invasion of Y. pestis was dependent on SYK and decreased with the N721S mutation. Unexpectedly, this same variant is associated with risk of chronic hepatitis C virus infection in BioBank Japan. Thus, Y. pestis hijacks FCRL proteins, possibly taking advantage of an immune receptor to create a lymphocyte niche during infection.
Collapse
Affiliation(s)
- Rachel M. Keener
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Sam Shi
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Trisha Dalapati
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | | | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Samuel I. Miller
- Departments of Genome Sciences, Medicine, and Microbiology, U of Washington, Seattle, WA, USA
| | | | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
- Lead Contact
| |
Collapse
|
3
|
Khlebnikova A, Kirshina A, Zakharova N, Ivanov R, Reshetnikov V. Current Progress in the Development of mRNA Vaccines Against Bacterial Infections. Int J Mol Sci 2024; 25:13139. [PMID: 39684849 DOI: 10.3390/ijms252313139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Bacterial infections have accompanied humanity for centuries. The discovery of the first antibiotics and the subsequent golden era of their discovery temporarily shifted the balance in this confrontation to the side of humans. Nevertheless, the excessive and improper use of antibacterial drugs and the evolution of bacteria has gotten the better of humans again. Therefore, today, the search for new antibacterial drugs or the development of alternative approaches to the prevention and treatment of bacterial infections is relevant and topical again. Vaccination is one of the most effective strategies for the prevention of bacterial infections. The success of new-generation vaccines, such as mRNA vaccines, in the fight against viral infections has prompted many researchers to design mRNA vaccines against bacterial infections. Nevertheless, the biology of bacteria and their interactions with the host's immunity are much more complex compared to viruses. In this review, we discuss structural features and key mechanisms of evasion of an immune response for nine species of bacterial pathogens against which mRNA vaccines have been developed and tested in animals. We focus on the results of experiments involving the application of mRNA vaccines against various bacterial pathogens in animal models and discuss possible options for improving the vaccines' effectiveness. This is one of the first comprehensive reviews of the use of mRNA vaccines against bacterial infections in vivo to improve our knowledge.
Collapse
Affiliation(s)
- Alina Khlebnikova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Anna Kirshina
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Natalia Zakharova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
4
|
Fulton DA, Dura G, Peters DT. The polymer and materials science of the bacterial fimbriae Caf1. Biomater Sci 2023; 11:7229-7246. [PMID: 37791425 PMCID: PMC10628683 DOI: 10.1039/d3bm01075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Fimbriae are long filamentous polymeric protein structures located upon the surface of bacteria. Often implicated in pathogenicity, the biosynthesis and function of fimbriae has been a productive topic of study for many decades. Evolutionary pressures have ensured that fimbriae possess unique structural and mechanical properties which are advantageous to bacteria. These properties are also difficult to engineer with well-known synthetic and natural fibres, and this has raised an intriguing question: can we exploit the unique properties of bacterial fimbriae in useful ways? Initial work has set out to explore this question by using Capsular antigen fragment 1 (Caf1), a fimbriae expressed naturally by Yersina pestis. These fibres have evolved to 'shield' the bacterium from the immune system of an infected host, and thus are rather bioinert in nature. Caf1 is, however, very amenable to structural mutagenesis which allows the incorporation of useful bioactive functions and the modulation of the fibre's mechanical properties. Its high-yielding recombinant synthesis also ensures plentiful quantities of polymer are available to drive development. These advantageous features make Caf1 an archetype for the development of new polymers and materials based upon bacterial fimbriae. Here, we cover recent advances in this new field, and look to future possibilities of this promising biopolymer.
Collapse
Affiliation(s)
- David A Fulton
- Chemistry-School of Natural Science and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| | - Gema Dura
- Chemistry-School of Natural Science and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
- Departamento de Química Inorgánica Orgánica y Bioquímica Universidad de Castilla-La Mancha Facultad de Ciencias y Tecnologías Químicas-IRICAAvda, C. J. Cela, 10, Ciudad Real 13071, Spain
| | - Daniel T Peters
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
5
|
Peters DT, Reifs A, Alonso-Caballero A, Madkour A, Waller H, Kenny B, Perez-Jimenez R, Lakey JH. Unraveling the molecular determinants of the anti-phagocytic protein cloak of plague bacteria. PLoS Pathog 2022; 18:e1010447. [PMID: 35358289 PMCID: PMC9004762 DOI: 10.1371/journal.ppat.1010447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/12/2022] [Accepted: 03/16/2022] [Indexed: 12/03/2022] Open
Abstract
The pathogenic bacterium Yersina pestis is protected from macrophage engulfment by a capsule like antigen, F1, formed of long polymers of the monomer protein, Caf1. However, despite the importance of this pathogen, the mechanism of protection was not understood. Here we demonstrate how F1 protects the bacteria from phagocytosis. First, we show that Escherichia coli expressing F1 showed greatly reduced adherence to macrophages. Furthermore, the few cells that did adhere remained on the macrophage surface and were not engulfed. We then inserted, by mutation, an “RGDS” integrin binding motif into Caf1. This did not change the number of cells adhering to macrophages but increased the fraction of adherent cells that were engulfed. Therefore, F1 protects in two separate ways, reducing cell adhesion, possibly by acting as a polymer brush, and hiding innate receptor binding sites needed for engulfment. F1 is very robust and we show that E. coli expressing weakened mutant polymers are engulfed like the RGDS mutant. This suggests that innate attachment sites on the native cell surface are exposed if F1 is weakened. Single-molecule force spectroscopy (SMFS) experiments revealed that wild-type F1 displays a very high mechanical stability of 400 pN. However, the mechanical resistance of the destabilised mutants, that were fully engulfed, was only 20% weaker. By only marginally exceeding the mechanical force applied to the Caf1 polymer during phagocytosis it may be that the exceptional tensile strength evolved to resist the forces applied at this stage of engulfment. Macrophages, a type of white blood cell, form an important element of our immune defence. They interrogate other cells’ surfaces for molecular clues and ingest those presenting a threat in a process known as phagocytosis. Not surprisingly, pathogenic bacteria have developed ways to evade this fate. The plague bacterium, Yersinia pestis, produces the long polymeric F1 coat protein which enables it to avoid ingestion, but the mechanism was unclear. We show that equipping Escherichia coli cells with an F1 coat protected them from phagocytosis by two separate mechanisms, reducing contact with the macrophage surface and hiding the signals that tell the macrophages they are targets. F1 is also a very stable protein polymer and using single molecule force spectroscopy we showed it also has a very high resistance to pulling forces. Surprisingly, mutations which reduced this by only 20% caused adherent bacteria to be fully ingested, indicating that cells are subject to significant forces prior to recognition and ingestion. Thus, F1 has evolved three notable properties (i) physical; creation of a hydrated polymer brush to inhibit surface interactions, (ii) chemical; absence of molecular recognition clues needed for engulfment and (iii) mechanical; strength that maintains the camouflage layer during surface stretching.
Collapse
Affiliation(s)
- Daniel T. Peters
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Azzeldin Madkour
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen Waller
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Brendan Kenny
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raul Perez-Jimenez
- CIC nanoGUNE BRTA, San Sebastian, Spain
- Ikerbasque Foundation for Science, Bilbao, Spain
| | - Jeremy H. Lakey
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Haq AU, Khan A, Khan J, Irum S, Waheed Y, Ahmad S, Nizam-Uddin N, Albutti A, Zaman N, Hussain Z, Ali SS, Waseem M, Kanwal F, Wei DQ, Wang Q. Annotation of Potential Vaccine Targets and Design of a Multi-Epitope Subunit Vaccine against Yersinia pestis through Reverse Vaccinology and Validation through an Agent-Based Modeling Approach. Vaccines (Basel) 2021; 9:vaccines9111327. [PMID: 34835260 PMCID: PMC8625334 DOI: 10.3390/vaccines9111327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
Yersinia pestis is responsible for plague and major pandemics in Asia and Europe. This bacterium has shown resistance to an array of drugs commonly used for the treatment of plague. Therefore, effective therapeutics measurements, such as designing a vaccine that can effectively and safely prevent Y. pestis infection, are of high interest. To fast-track vaccine development against Yersinia pestis, herein, proteome-wide vaccine target annotation was performed, and structural vaccinology-assisted epitopes were predicted. Among the total 3909 proteins, only 5 (rstB, YPO2385, hmuR, flaA1a, and psaB) were shortlisted as essential vaccine targets. These targets were then subjected to multi-epitope vaccine design using different linkers. EAAK, AAY, and GPGPG as linkers were used to link CTL, HTL, and B-cell epitopes, and an adjuvant (beta defensin) was also added at the N-terminal of the MEVC. Physiochemical characterization, such as determination of the instability index, theoretical pI, half-life, aliphatic index, stability profiling, antigenicity, allergenicity, and hydropathy of the ensemble, showed that the vaccine is highly stable, antigenic, and non-allergenic and produces multiple interactions with immune receptors upon docking. In addition, molecular dynamics simulation confirmed the stable binding and good dynamic properties of the vaccine-TLR complex. Furthermore, in silico and immune simulation of the developed MEVC for Y. pestis showed that the vaccine triggered strong immune response after several doses at different intervals. Neutralization of the antigen was observed at the third day of injection. Conclusively, the vaccine designed here for Y. pestis produces an immune response; however, further immunological testing is needed to unveil its real efficacy.
Collapse
Affiliation(s)
- Azaz Ul Haq
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Jafar Khan
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Shamaila Irum
- Department of Zoology, University of Gujrat, Punjab 50700, Pakistan;
| | - Yasir Waheed
- Multidisciplinary Department, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - N. Nizam-Uddin
- Biomedical Engineering Department, HITEC University, Taxila 47080, Pakistan;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Nasib Zaman
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, Kanju Campus, University of Swat, Swat 19200, Pakistan; (A.U.H.); (J.K.); (N.Z.); (Z.H.); (S.S.A.)
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad 46000, Pakistan;
| | - Fariha Kanwal
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (D.-Q.W.); (Q.W.)
| | - Qian Wang
- Department of Medicine, Nanjing Medical University, No. 140, Hanzhong Road, Nanjing 210029, China
- Correspondence: (D.-Q.W.); (Q.W.)
| |
Collapse
|
7
|
Experience of Using a Complex Antigenic Preparation of the Plague Microbe to Assess the Severity of a Specific Anti-Plague Response. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. Improving the methodology of immunological monitoring in natural foci of plague in the Russian Federation and adjacent territories to increase the effectiveness of epidemiological surveillance of plague is an urgent line of research. The lack of correlation between the production of specific antibodies to the capsular antigen (F1) ofthe plague microbe with other indicators of the state of cellular defense reactivity indicates the need to search for new informative and accessible markers for assessing anti-plague immunity.Objective: to evaluate possibility of using the complex preparation (F1 and cell membranes) evaluate the possibilities of using an artificial antigenic complex based on F1 and cell membranes (CM) of the plague microbe in antigen-specific tests in vitro in people vaccinated against plague.resu. The study involved 153 volunteers living in the territory enzootic for plague (the village of Khandagayty ofthe Ovyur kozhuun of the Tyva Republic and the village of Kosh-Agach of the Kosh-Agach district of the Altai Republic). The study included the determination of spontaneous and mitogen-induced production of cytokines (IFN-γ, IL-4, TNF-α) by blood cells, titers of specific IgG antibodies to the capsular antigen F1 of the plague microbe and concentrations ofthe main classes of immunoglobulins (IgM, IgG, IgA and IgE) in blood serum, as well as immunophenotyping of blood lymphocytes (CD3, CD4, CD8, CD16, CD19).Results. Comparative assessment of the level of cytokines (TNF-α, IFN-γ and IL-4) in spontaneous/induced F1+CM Y. pestis tests revealed a statistically significant increase in the production of cytokines TNF-α and IFN-γ in the antigeninduced tests compared with spontaneous (p < 0.01).Conclusion. Thus, the effectiveness of the use of artificial antigenic complex based on F1 and cell membranes ofthe plague microbe has been shown to assess the production of cytokines in antigen-specific cell tests in vitro, which justifies the need for further research.
Collapse
|
8
|
Pratt A, Bennett E, Gillard J, Leach S, Hall I. Dose-Response Modeling: Extrapolating From Experimental Data to Real-World Populations. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:67-78. [PMID: 32966638 DOI: 10.1111/risa.13597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dose-response modeling of biological agents has traditionally focused on describing laboratory-derived experimental data. Limited consideration has been given to understanding those factors that are controlled in a laboratory, but are likely to occur in real-world scenarios. In this study, a probabilistic framework is developed that extends Brookmeyer's competing-risks dose-response model to allow for variation in factors such as dose-dispersion, dose-deposition, and other within-host parameters. With data sets drawn from dose-response experiments of inhalational anthrax, plague, and tularemia, we illustrate how for certain cases, there is the potential for overestimation of infection numbers arising from models that consider only the experimental data in isolation.
Collapse
Affiliation(s)
- Adrian Pratt
- Emergency Response Department, Public Health England, Porton Down, UK
| | - Emma Bennett
- Emergency Response Department, Public Health England, Porton Down, UK
| | - Joseph Gillard
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Steve Leach
- Emergency Response Department, Public Health England, Porton Down, UK
| | - Ian Hall
- Emergency Response Department, Public Health England, Porton Down, UK
- Department of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
9
|
Byvalov AA, Konyshev IV, Uversky VN, Dentovskaya SV, Anisimov AP. Yersinia Outer Membrane Vesicles as Potential Vaccine Candidates in Protecting against Plague. Biomolecules 2020; 10:E1694. [PMID: 33353123 PMCID: PMC7766529 DOI: 10.3390/biom10121694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Despite the relatively low incidence of plague, its etiological agent, Yersinia pestis, is an exceptional epidemic danger due to the high infectivity and mortality of this infectious disease. Reports on the isolation of drug-resistant Y. pestis strains indicate the advisability of using asymmetric responses, such as phage therapy and vaccine prophylaxis in the fight against this problem. The current relatively effective live plague vaccine is not approved for use in most countries because of its ability to cause heavy local and system reactions and even a generalized infectious process in people with a repressed immune status or metabolic disorders, as well as lethal infection in some species of nonhuman primates. Therefore, developing alternative vaccines is of high priority and importance. However, until now, work on the development of plague vaccines has mainly focused on screening for the potential immunogens. Several investigators have identified the protective potency of bacterial outer membrane vesicles (OMVs) as a promising basis for bacterial vaccine candidates. This review is aimed at presenting these candidates of plague vaccine and the results of their analysis in animal models.
Collapse
Affiliation(s)
- Andrey A. Byvalov
- Komi Research Center, Laboratory of Microbial Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia;
- Department of Biotechnology, Vyatka State University, 610000 Kirov, Russia
| | - Ilya V. Konyshev
- Komi Research Center, Laboratory of Microbial Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia;
- Department of Biotechnology, Vyatka State University, 610000 Kirov, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Svetlana V. Dentovskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia;
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia;
| |
Collapse
|
10
|
Barbieri R, Signoli M, Chevé D, Costedoat C, Tzortzis S, Aboudharam G, Raoult D, Drancourt M. Yersinia pestis: the Natural History of Plague. Clin Microbiol Rev 2020; 34:e00044-19. [PMID: 33298527 PMCID: PMC7920731 DOI: 10.1128/cmr.00044-19] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Gram-negative bacterium Yersinia pestis is responsible for deadly plague, a zoonotic disease established in stable foci in the Americas, Africa, and Eurasia. Its persistence in the environment relies on the subtle balance between Y. pestis-contaminated soils, burrowing and nonburrowing mammals exhibiting variable degrees of plague susceptibility, and their associated fleas. Transmission from one host to another relies mainly on infected flea bites, inducing typical painful, enlarged lymph nodes referred to as buboes, followed by septicemic dissemination of the pathogen. In contrast, droplet inhalation after close contact with infected mammals induces primary pneumonic plague. Finally, the rarely reported consumption of contaminated raw meat causes pharyngeal and gastrointestinal plague. Point-of-care diagnosis, early antibiotic treatment, and confinement measures contribute to outbreak control despite residual mortality. Mandatory primary prevention relies on the active surveillance of established plague foci and ectoparasite control. Plague is acknowledged to have infected human populations for at least 5,000 years in Eurasia. Y. pestis genomes recovered from affected archaeological sites have suggested clonal evolution from a common ancestor shared with the closely related enteric pathogen Yersinia pseudotuberculosis and have indicated that ymt gene acquisition during the Bronze Age conferred Y. pestis with ectoparasite transmissibility while maintaining its enteric transmissibility. Three historic pandemics, starting in 541 AD and continuing until today, have been described. At present, the third pandemic has become largely quiescent, with hundreds of human cases being reported mainly in a few impoverished African countries, where zoonotic plague is mostly transmitted to people by rodent-associated flea bites.
Collapse
Affiliation(s)
- R Barbieri
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Signoli
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - D Chevé
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - C Costedoat
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| | - S Tzortzis
- Ministère de la Culture, Direction Régionale des Affaires Culturelles de Provence-Alpes-Côte d'Azur, Service Régional de l'Archéologie, Aix-en-Provence, France
| | - G Aboudharam
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, Faculty of Odontology, Marseille, France
| | - D Raoult
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| | - M Drancourt
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Fondation Méditerranée Infection, Marseille, France
| |
Collapse
|
11
|
Antibody Opsonization Enhances Early Interactions between Yersinia pestis and Neutrophils in the Skin and Draining Lymph Node in a Mouse Model of Bubonic Plague. Infect Immun 2020; 89:IAI.00061-20. [PMID: 33077628 DOI: 10.1128/iai.00061-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Bubonic plague results when Yersinia pestis is deposited in the skin via the bite of an infected flea. Bacteria then traffic to the draining lymph node (dLN) where they replicate to large numbers. Without treatment, this infection can result in highly fatal septicemia. Several plague vaccine candidates are currently at various stages of development, but no licensed vaccine is available in the United States. Though polyclonal and monoclonal antibodies (Ab) can provide complete protection against bubonic plague in animal models, the mechanisms responsible for this antibody-mediated immunity (AMI) to Y. pestis remain poorly understood. Here, we examine the effects of Ab opsonization on Y. pestis interactions with phagocytes in vitro and in vivo Opsonization of Y. pestis with polyclonal antiserum modestly increased phagocytosis/killing by an oxidative burst of murine neutrophils in vitro Intravital microscopy (IVM) showed increased association of Ab-opsonized Y. pestis with neutrophils in the dermis in a mouse model of bubonic plague. IVM of popliteal LNs after intradermal (i.d.) injection of bacteria in the footpad revealed increased Y. pestis-neutrophil interactions and increased neutrophil crawling and extravasation in response to Ab-opsonized bacteria. Thus, despite only having a modest effect in in vitro assays, opsonizing Ab had a dramatic effect in vivo on Y. pestis-neutrophil interactions in the dermis and dLN very early after infection. These data shed new light on the importance of neutrophils in AMI to Y. pestis and may provide a new correlate of protection for evaluation of plague vaccine candidates.
Collapse
|
12
|
Early evolutionary loss of the lipid A modifying enzyme PagP resulting in innate immune evasion in Yersinia pestis. Proc Natl Acad Sci U S A 2020; 117:22984-22991. [PMID: 32868431 DOI: 10.1073/pnas.1917504117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immune evasion through membrane remodeling is a hallmark of Yersinia pestis pathogenesis. Yersinia remodels its membrane during its life cycle as it alternates between mammalian hosts (37 °C) and ambient (21 °C to 26 °C) temperatures of the arthropod transmission vector or external environment. This shift in growth temperature induces changes in number and length of acyl groups on the lipid A portion of lipopolysaccharide (LPS) for the enteric pathogens Yersinia pseudotuberculosis (Ypt) and Yersinia enterocolitica (Ye), as well as the causative agent of plague, Yersinia pestis (Yp). Addition of a C16 fatty acid (palmitate) to lipid A by the outer membrane acyltransferase enzyme PagP occurs in immunostimulatory Ypt and Ye strains, but not in immune-evasive Yp Analysis of Yp pagP gene sequences identified a single-nucleotide polymorphism that results in a premature stop in translation, yielding a truncated, nonfunctional enzyme. Upon repair of this polymorphism to the sequence present in Ypt and Ye, lipid A isolated from a Yp pagP+ strain synthesized two structures with the C16 fatty acids located in acyloxyacyl linkage at the 2' and 3' positions of the diglucosamine backbone. Structural modifications were confirmed by mass spectrometry and gas chromatography. With the genotypic restoration of PagP enzymatic activity in Yp, a significant increase in lipid A endotoxicity mediated through the MyD88 and TRIF/TRAM arms of the TLR4-signaling pathway was observed. Discovery and repair of an evolutionarily lost lipid A modifying enzyme provides evidence of lipid A as a crucial determinant in Yp infectivity, pathogenesis, and host innate immune evasion.
Collapse
|
13
|
Abstract
Plague is a zoonotic disease caused by the bacterium Yersinia pestis and is transmitted through the bites of infected rodent fleas. Plague is well known for causing 3 major human pandemics that have killed millions of people since 541 A.D. The aim of this Review is to provide an overview of the epidemiology and ecology of plague in Zimbabwe with special emphasis on its introduction, its potential reservoirs and vectors, and possible causes of its persistence and cyclic outbreaks. To achieve this, we carried out a search and document reported plague outbreaks in Zimbabwe. In the country, human plague cases have been reported in Hwange, Nkayi, and Lupane since 1974. The highest number of cases occurred in 1994 in the Nkayi district of Matabeleland North Province with a total of 329 confirmed human cases and 28 deaths. Plague is encountered in 2 different foci in the country, sylvatic and rural. Risk factors for contracting plague in the country include man-to-rodent contact, cultivation, hunting, cattle herding, handling of infected materials, camping in forests, and anthropic invasion of new areas. Plague is now enzootic in Zimbabwe, and the most recent case was reported in 2012, hence its effective control requires up-to-date information on the epidemiology and ecology of the disease. This can be achieved through continuous monitoring and awareness programs in plague-prone areas.
Collapse
Affiliation(s)
- Amon Munyenyiwa
- Department of Biological Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
- University of Zimbabwe Lake Kariba Research Station, Kariba, Zimbabwe
| | - Moses Zimba
- Department of Biological Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Tamuka Nhiwatiwa
- Department of Biological Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| |
Collapse
|
14
|
Tidhar A, Levy Y, Zauberman A, Vagima Y, Gur D, Aftalion M, Israeli O, Chitlaru T, Ariel N, Flashner Y, Zvi A, Mamroud E. Disruption of the NlpD lipoprotein of the plague pathogen Yersinia pestis affects iron acquisition and the activity of the twin-arginine translocation system. PLoS Negl Trop Dis 2019; 13:e0007449. [PMID: 31170147 PMCID: PMC6553720 DOI: 10.1371/journal.pntd.0007449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/08/2019] [Indexed: 11/29/2022] Open
Abstract
We have previously shown that the cell morphogenesis NlpD lipoprotein is essential for virulence of the plague bacteria, Yersinia pestis. To elucidate the role of NlpD in Y. pestis pathogenicity, we conducted a whole-genome comparative transcriptome analysis of the wild-type Y. pestis strain and an nlpD mutant under conditions mimicking early stages of infection. The analysis suggested that NlpD is involved in three phenomena: (i) Envelope stability/integrity evidenced by compensatory up-regulation of the Cpx and Psp membrane stress-response systems in the mutant; (ii) iron acquisition, supported by modulation of iron metabolism genes and by limited growth in iron-deprived medium; (iii) activity of the twin-arginine (Tat) system, which translocates folded proteins across the cytoplasmic membrane. Virulence studies of Y. pestis strains mutated in individual Tat components clearly indicated that the Tat system is central in Y. pestis pathogenicity and substantiated the assumption that NlpD essentiality in iron utilization involves the activity of the Tat system. This study reveals a new role for NlpD in Tat system activity and iron assimilation suggesting a modality by which this lipoprotein is involved in Y. pestis pathogenesis. We have previously shown that the NlpD lipoprotein, which is involved in the regulation of cell morphogenesis, is essential for virulence of the plague bacteria, Yersinia pestis. To uncover the role of NlpD in Y. pestis pathogenicity, we conducted a whole-genome comparative transcriptome analysis as well as phenotypic and virulence evaluation analyses of the nlpD and related mutants. The study reveals a new role for the Y. pestis NlpD lipoprotein in iron assimilation and Tat system activity.
Collapse
Affiliation(s)
- Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail: (AT); (EM)
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Naomi Ariel
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yehuda Flashner
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail: (AT); (EM)
| |
Collapse
|
15
|
The biodiversity Composition of Microbiome in Ovarian Carcinoma Patients. Sci Rep 2019. [PMID: 30737418 DOI: 10.1038/s41598-018-38031-2]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ovarian carcinoma is caused by multiple factors, but its etiology associated with microbes and infection is unknown. Using 16S rRNA high-throughput sequencing methods, the diversity and composition of the microbiota from ovarian cancer tissues (25 samples) and normal distal fallopian tube tissues (25 samples) were analyzed. High-throughput sequencing showed that the diversity and richness indexes were significantly decreased in ovarian cancer tissues compared to tissues from normal distal fallopian tubes. The ratio of the two phyla for Proteobacteria/Firmicutes was notably increased in ovarian cancer, which revealed that microbial composition change might be associated with the process of ovarian cancer development. In addition, transcriptome-sequencing (RNA-seq) analyses suggested that the transcriptional profiles were statistically different between ovarian carcinoma and normal distal fallopian tubes. Moreover, a set of genes including 84 different inflammation-associated or immune-associated genes, which had been named as the human antibacterial-response genes were also modulated expression. Therefore, we hypothesize that the microbial composition change, as a novel risk factor, may be involving the initiation and progression of ovarian cancer via influencing and regulating the local immune microenvironment of fallopian tubes except for regular pathways.
Collapse
|
16
|
Abstract
Ovarian carcinoma is caused by multiple factors, but its etiology associated with microbes and infection is unknown. Using 16S rRNA high-throughput sequencing methods, the diversity and composition of the microbiota from ovarian cancer tissues (25 samples) and normal distal fallopian tube tissues (25 samples) were analyzed. High-throughput sequencing showed that the diversity and richness indexes were significantly decreased in ovarian cancer tissues compared to tissues from normal distal fallopian tubes. The ratio of the two phyla for Proteobacteria/Firmicutes was notably increased in ovarian cancer, which revealed that microbial composition change might be associated with the process of ovarian cancer development. In addition, transcriptome-sequencing (RNA-seq) analyses suggested that the transcriptional profiles were statistically different between ovarian carcinoma and normal distal fallopian tubes. Moreover, a set of genes including 84 different inflammation-associated or immune-associated genes, which had been named as the human antibacterial-response genes were also modulated expression. Therefore, we hypothesize that the microbial composition change, as a novel risk factor, may be involving the initiation and progression of ovarian cancer via influencing and regulating the local immune microenvironment of fallopian tubes except for regular pathways.
Collapse
|
17
|
Zhou B, Sun C, Huang J, Xia M, Guo E, Li N, Lu H, Shan W, Wu Y, Li Y, Xu X, Weng D, Meng L, Hu J, Gao Q, Ma D, Chen G. The biodiversity Composition of Microbiome in Ovarian Carcinoma Patients. Sci Rep 2019; 9:1691. [PMID: 30737418 PMCID: PMC6368644 DOI: 10.1038/s41598-018-38031-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/03/2018] [Indexed: 12/22/2022] Open
Abstract
Ovarian carcinoma is caused by multiple factors, but its etiology associated with microbes and infection is unknown. Using 16S rRNA high-throughput sequencing methods, the diversity and composition of the microbiota from ovarian cancer tissues (25 samples) and normal distal fallopian tube tissues (25 samples) were analyzed. High-throughput sequencing showed that the diversity and richness indexes were significantly decreased in ovarian cancer tissues compared to tissues from normal distal fallopian tubes. The ratio of the two phyla for Proteobacteria/Firmicutes was notably increased in ovarian cancer, which revealed that microbial composition change might be associated with the process of ovarian cancer development. In addition, transcriptome-sequencing (RNA-seq) analyses suggested that the transcriptional profiles were statistically different between ovarian carcinoma and normal distal fallopian tubes. Moreover, a set of genes including 84 different inflammation-associated or immune-associated genes, which had been named as the human antibacterial-response genes were also modulated expression. Therefore, we hypothesize that the microbial composition change, as a novel risk factor, may be involving the initiation and progression of ovarian cancer via influencing and regulating the local immune microenvironment of fallopian tubes except for regular pathways.
Collapse
Affiliation(s)
- Bo Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chaoyang Sun
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jia Huang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Meng Xia
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ensong Guo
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Na Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hao Lu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wanying Shan
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yifan Wu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuan Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaoyan Xu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Danhui Weng
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Li Meng
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Junbo Hu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qinglei Gao
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Gang Chen
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
18
|
Andrianaivoarimanana V, Rajerison M, Jambou R. Exposure to Yersinia pestis increases resistance to plague in black rats and modulates transmission in Madagascar. BMC Res Notes 2018; 11:898. [PMID: 30551741 PMCID: PMC6295079 DOI: 10.1186/s13104-018-3984-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES In Madagascar, plague (Yersinia pestis infection) is endemic in the central highlands, maintained by the couple Rattus rattus/flea. The rat is assumed to die shortly after infection inducing migration of the fleas. However we previously reported that black rats from endemic areas can survive the infection whereas those from non-endemic areas remained susceptible. We investigate the hypothesis that lineages of rats can acquire resistance to plague and that previous contacts with the bacteria will affect their survival, allowing maintenance of infected fleas. For this purpose, laboratory-born rats were obtained from wild black rats originating either from plague-endemic or plague-free zones, and were challenged with Y. pestis. Survival rate and antibody immune responses were analyzed. RESULTS Inoculation of low doses of Y. pestis greatly increase survival of rats to subsequent challenge with a lethal dose. During challenge, cytokine profiles support activation of specific immune response associated with the bacteria control. In addition, F1 rats from endemic areas exhibited higher survival rates than those from non-endemic ones, suggesting a selection of a resistant lineage. In Madagascar, these results support the role of black rat as long term reservoir of infected fleas supporting maintenance of plague transmission.
Collapse
Affiliation(s)
- Voahangy Andrianaivoarimanana
- Unité Peste, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
- Unité d’Immunologie, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
| | - Minoarisoa Rajerison
- Unité Peste, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
| | - Ronan Jambou
- Unité d’Immunologie, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
- Department of Parasites and Insect Vectors, Pasteur Institute, 28 rue Dr Roux, 75015 Paris, France
| |
Collapse
|
19
|
|
20
|
Kang E, Crouse A, Chevallier L, Pontier SM, Alzahrani A, Silué N, Campbell-Valois FX, Montagutelli X, Gruenheid S, Malo D. Enterobacteria and host resistance to infection. Mamm Genome 2018; 29:558-576. [PMID: 29785663 DOI: 10.1007/s00335-018-9749-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Enterobacteriaceae are a large family of Gram-negative, non-spore-forming bacteria. Although many species exist as part of the natural flora of animals including humans, some members are associated with both intestinal and extraintestinal diseases. In this review, we focus on members of this family that have important roles in human disease: Salmonella, Escherichia, Shigella, and Yersinia, providing a brief overview of the disease caused by these bacteria, highlighting the contribution of animal models to our understanding of their pathogenesis and of host genetic determinants involved in susceptibility or resistance to infection.
Collapse
Affiliation(s)
- Eugene Kang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Alanna Crouse
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Lucie Chevallier
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Stéphanie M Pontier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ashwag Alzahrani
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Xavier Montagutelli
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Danielle Malo
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
21
|
Andersson JA, Sha J, Erova TE, Fitts EC, Ponnusamy D, Kozlova EV, Kirtley ML, Chopra AK. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis. Front Cell Infect Microbiol 2017; 7:448. [PMID: 29090192 PMCID: PMC5650977 DOI: 10.3389/fcimb.2017.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE), and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884-encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55-100% protected upon subsequent re-challenge with wild-type CO92 in a pneumonic model. Further, evaluation of the attenuated T6SS mutant strains in vitro revealed significant alterations in phagocytosis, intracellular survival in murine macrophages, and their ability to induce cytotoxic effects on macrophages. The results reported here provide further evidence of the utility of the STM screening approach for the identification of novel virulence factors and to possibly target such genes for the development of novel live-attenuated vaccine candidates for plague.
Collapse
Affiliation(s)
- Jourdan A Andersson
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Tatiana E Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Elena V Kozlova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ashok K Chopra
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States.,WHO Collaborating Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
22
|
Yang H, Wang T, Tian G, Zhang Q, Wu X, Xin Y, Yan Y, Tan Y, Cao S, Liu W, Cui Y, Yang R, Du Z. Host transcriptomic responses to pneumonic plague reveal that Yersinia pestis inhibits both the initial adaptive and innate immune responses in mice. Int J Med Microbiol 2017; 307:64-74. [DOI: 10.1016/j.ijmm.2016.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 01/12/2023] Open
|
23
|
Uncovering an Important Role for YopJ in the Inhibition of Caspase-1 in Activated Macrophages and Promoting Yersinia pseudotuberculosis Virulence. Infect Immun 2016; 84:1062-1072. [PMID: 26810037 DOI: 10.1128/iai.00843-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
Pathogenic Yersinia species utilize a type III secretion system to translocate Yop effectors into infected host cells. Yop effectors inhibit innate immune responses in infected macrophages to promote Yersinia pathogenesis. In turn,Yersinia-infected macrophages respond to translocation of Yops by activating caspase-1, but different mechanisms of caspase-1 activation occur, depending on the bacterial genotype and the state of phagocyte activation. In macrophages activated with lipopolysaccharide (LPS) prior to Yersinia pseudotuberculosis infection, caspase-1 is activated by a rapid inflammasome-dependent mechanism that is inhibited by translocated YopM. The possibility that other effectors cooperate with YopM to inhibit caspase-1 activation in LPS-activated macrophages has not been investigated. Toward this aim, epistasis analysis was carried out in which the phenotype of aY. pseudotuberculosis yopM mutant was compared to that of a yopJ yopM, yopE yopM, yopH yopM, yopT yopM, or ypkA yopM mutant. Activation of caspase-1 was measured by cleavage of the enzyme, release of interleukin-1β (IL-1β), and pyroptosis in LPS-activated macrophages infected with wild-type or mutant Y. pseudotuberculosis strains. Results show enhanced activation of caspase-1 after infection with the yopJ yopM mutant relative to infection by any other single or double mutant. Similar results were obtained with the yopJ, yopM, and yopJ yopM mutants ofY ersinia pestis Following intravenous infection of mice, theY. pseudotuberculosis yopJ mutant was as virulent as the wild type, while the yopJ yopM mutant was significantly more attenuated than the yopM mutant. In summary, through epistasis analysis this work uncovered an important role for YopJ in inhibiting caspase-1 in activated macrophages and in promoting Yersinia virulence.
Collapse
|
24
|
Sun W, Sanapala S, Rahav H, Curtiss R. Oral administration of a recombinant attenuated Yersinia pseudotuberculosis strain elicits protective immunity against plague. Vaccine 2015; 33:6727-35. [PMID: 26514425 DOI: 10.1016/j.vaccine.2015.10.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/16/2015] [Accepted: 10/14/2015] [Indexed: 01/14/2023]
Abstract
A Yersinia pseudotuberculosis PB1+ (Yptb PB1+) mutant strain combined with chromosome insertion of the caf1R-caf1A-caf1M-caf1 operon and deletions of yopJ and yopK, χ10068 [pYV-ω2 (ΔyopJ315 ΔyopK108) ΔlacZ044::caf1R-caf1M-caf1A-caf1] was constructed. Results indicated that gene insertion and deletion did not affect the growth rate of χ10068 compared to wild-type Yptb cultured at 26 °C. In addition, the F1 antigen in χ10068 was synthesized and secreted on the surface of bacteria at 37 °C (mammalian body temperature), not at ambient culture temperature (26 °C). Immunization with χ10068 primed antibody responses and specific T-cell responses to F1 and YpL (Y. pestis whole cell lysate). Oral immunization with a single dose of χ10068 provided 70% protection against a subcutaneous (s.c.) challenge with ∼ 2.6 × 10(5) LD50 of Y. pestis KIM6+ (pCD1Ap) (KIM6+Ap) and 90% protection against an intranasal (i.n.) challenge with ∼ 500 LD50 of KIM6+Ap in mice. Our results suggest that χ10068 can be used as an effective precursor to make a safe vaccine to prevent plague in humans and to eliminate plague circulation among humans and animals.
Collapse
Affiliation(s)
- Wei Sun
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Shilpa Sanapala
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hannah Rahav
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Roy Curtiss
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
25
|
Rai R, Das B, Choudhary N, Talukdar A, Rao DN. MAP of F1 and V antigens from Yersinia pestis astride innate and adaptive immune response. Microb Pathog 2015; 87:13-20. [PMID: 26188288 DOI: 10.1016/j.micpath.2015.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 01/31/2023]
Abstract
Yersinia pestis, a causative agent of plague, has a plethora of armors to fight against major components of innate immunity and survive within host cells. Dendritic cells and macrophages are important antigen presenting cells for effective immune response. This report is focused on the changes in DC activation and TLR2 and TLR4 expression on macrophages induced by MAP of F1 and V antigens of Y. pestis. F1 and V MAPs bear potential synthetic T and B cell epitopes from F1 and V protein respectively. We evaluated these parameters in DC's isolated from spleen and lamina propria and macrophages isolated from peritoneal lavage of mice after intranasal immunization. F1 MAP and V MAP significantly increased the expression of CD80 and CD86 on CD11c(+) dendritic cells isolated from spleen and lamina propria as well as intracellular IL-12 levels. Similarly, in macrophages derived from peritoneal cavity, the above formulation enhanced TLR2 and TLR4 expression. Again after in vitro stimulation with F1 and V MAP these macrophages produced significantly high IL12 and TNFα. The study clearly indicates involvement of DC and macrophages for efficient antigen presentation to immune cells. From this study we conclude that F1MAP and VMAP ameliorate innate immune mechanism. These two synthetic constructs exert their effect via TLR2 and TLR4, leading to the production of proinflammatory cytokines by macrophages and are able to increase DC activation, that could be helpful in generation of adaptive immunity as well as is important strong immune response.
Collapse
Affiliation(s)
- Reeta Rai
- Dept of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Baijnath Das
- Dept of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Nageshwar Choudhary
- Dept of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Ayantika Talukdar
- Dept of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | | |
Collapse
|
26
|
High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun 2015; 83:2065-81. [PMID: 25754198 DOI: 10.1128/iai.02913-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/26/2015] [Indexed: 12/18/2022] Open
Abstract
The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s).
Collapse
|
27
|
Caulfield AJ, Walker ME, Gielda LM, Lathem WW. The Pla protease of Yersinia pestis degrades fas ligand to manipulate host cell death and inflammation. Cell Host Microbe 2015; 15:424-34. [PMID: 24721571 DOI: 10.1016/j.chom.2014.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/16/2014] [Accepted: 02/28/2014] [Indexed: 01/27/2023]
Abstract
Pneumonic plague is a deadly respiratory disease caused by Yersinia pestis. The bacterial protease Pla contributes to disease progression and manipulation of host immunity, but the mechanisms by which this occurs are largely unknown. Here we show that Pla degrades the apoptotic signaling molecule Fas ligand (FasL) to prevent host cell apoptosis and inflammation. Wild-type Y. pestis, but not a Pla mutant (Δpla), degrades FasL, which results in decreased downstream caspase-3/7 activation and reduced apoptosis. Similarly, lungs of mice challenged with wild-type Y. pestis show reduced levels of FasL and activated caspase-3/7 compared to Δpla infection. Consistent with a role for FasL in regulating immune responses, Δpla infection results in aberrant proinflammatory cytokine levels. The loss of FasL or inhibition of caspase activity alters host inflammatory responses and enables enhanced Y. pestis outgrowth in the lungs. Thus, by degrading FasL, Y. pestis manipulates host cell death pathways to facilitate infection.
Collapse
Affiliation(s)
- Adam J Caulfield
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Margaret E Walker
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lindsay M Gielda
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wyndham W Lathem
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Batra L, Verma SK, Nagar DP, Saxena N, Pathak P, Pant SC, Tuteja U. HSP70 domain II of Mycobacterium tuberculosis modulates immune response and protective potential of F1 and LcrV antigens of Yersinia pestis in a mouse model. PLoS Negl Trop Dis 2014; 8:e3322. [PMID: 25474358 PMCID: PMC4256173 DOI: 10.1371/journal.pntd.0003322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/07/2014] [Indexed: 02/04/2023] Open
Abstract
No ideal vaccine exists to control plague, a deadly dangerous disease caused by Yersinia pestis. In this context, we cloned, expressed and purified recombinant F1, LcrV antigens of Y. pestis and heat shock protein70 (HSP70) domain II of M. tuberculosis in E. coli. To evaluate the protective potential of each purified protein alone or in combination, Balb/C mice were immunized. Humoral and cell mediated immune responses were evaluated. Immunized animals were challenged with 100 LD50 of Y. pestis via intra-peritoneal route. Vaccine candidates i.e., F1 and LcrV generated highly significant titres of anti-F1 and anti-LcrV IgG antibodies. A significant difference was noticed in the expression level of IL-2, IFN-γ and TNF-α in splenocytes of immunized animals. Significantly increased percentages of CD4+ and CD8+ T cells producing IFN-γ in spleen of vaccinated animals were observed in comparison to control group by flow cytometric analysis. We investigated whether the F1, LcrV and HSP70(II) antigens alone or in combination can effectively protect immunized animals from any histopathological changes. Signs of histopathological lesions noticed in lung, liver, kidney and spleen of immunized animals on 3rd day post challenge whereas no lesions in animals that survived to day 20 post-infection were observed. Immunohistochemistry showed bacteria in lung, liver, spleen and kidney on 3rd day post-infection whereas no bacteria was observed on day 20 post-infection in surviving animals in LcrV, LcrV+HSP70(II), F1+LcrV, and F1+LcrV+HSP70(II) vaccinated groups. A significant difference was observed in the expression of IL-2, IFN-γ, TNF-α, and CD4+/CD8+ T cells secreting IFN-γ in the F1+LcrV+HSP70(II) vaccinated group in comparison to the F1+LcrV vaccinated group. Three combinations that included LcrV+HSP70(II), F1+LcrV or F1+LcrV+HSP70(II) provided 100% protection, whereas LcrV alone provided only 75% protection. These findings suggest that HSP70(II) of M. tuberculosis can be a potent immunomodulator for F1 and LcrV containing vaccine candidates against plague.
Collapse
Affiliation(s)
- Lalit Batra
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | - Shailendra K. Verma
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | - Durgesh P. Nagar
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India
| | - Nandita Saxena
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India
| | - Prachi Pathak
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | - Satish C. Pant
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| |
Collapse
|
29
|
Jayamani E, Mylonakis E. Effector triggered manipulation of host immune response elicited by different pathotypes of Escherichia coli. Virulence 2014; 5:733-9. [PMID: 25513774 PMCID: PMC4189879 DOI: 10.4161/viru.29948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
Effectors are virulence factors that are secreted by bacteria during an infection in order to subvert cellular processes or induce the surveillance system of the host. Pathogenic microorganisms encode effectors, toxins and components of secretion systems that inject the effectors to the host. Escherichia coli is part of the innocuous commensal microbial flora of the gastrointestinal tract. However, pathogenic E. coli can cause diarrheal and extraintestinal diseases. Pathogenic E. coli uses secretion systems to inject an array of effector proteins directly into the host cells. Herein, we discuss the effectors secreted by different pathotypes of E. coli and provide an overview of strategies employed by effectors to target the host cellular and subcellular processes as well as their role in triggering host immune response.
Collapse
Affiliation(s)
- Elamparithi Jayamani
- Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence, RI USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence, RI USA
| |
Collapse
|
30
|
Thomas RJ. Particle size and pathogenicity in the respiratory tract. Virulence 2013; 4:847-58. [PMID: 24225380 PMCID: PMC3925716 DOI: 10.4161/viru.27172] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/13/2022] Open
Abstract
Particle size dictates where aerosolized pathogens deposit in the respiratory tract, thereafter the pathogens potential to cause disease is influenced by tissue tropism, clearance kinetics and the host immunological response. This interplay brings pathogens into contact with a range of tissues spanning the respiratory tract and associated anatomical structures. In animal models, differential deposition within the respiratory tract influences infection kinetics for numerous select agents. Greater numbers of pathogens are required to infect the upper (URT) compared with the lower respiratory tract (LRT), and in comparison the URT infections are protracted with reduced mortality. Pathogenesis in the URT is characterized by infection of the URT lymphoid tissues, cervical lymphadenopathy and septicemia, closely resembling reported human infections of the URT. The olfactory, gastrointestinal, and ophthalmic systems are also infected in a pathogen-dependent manner. The relevant literature is reviewed with respect to particle size and infection of the URT in animal models and humans.
Collapse
|
31
|
Ali R, Kumar S, Naqvi RA, Rao D. B and T cell epitope mapping and study the humoral and cell mediated immune response to B–T constructs of YscF antigen of Yersinia pestis. Comp Immunol Microbiol Infect Dis 2013; 36:365-78. [DOI: 10.1016/j.cimid.2013.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 02/05/2023]
|
32
|
Ali R, Naqvi RA, Kumar S, Bhat AA, Rao DN. Multiple antigen peptide containing B and T cell epitopes of F1 antigen of Yersinia pestis showed enhanced Th1 immune response in murine model. Scand J Immunol 2013; 77:361-71. [PMID: 23480362 DOI: 10.1111/sji.12042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/19/2013] [Indexed: 12/11/2022]
Abstract
Yersinia pestis is a facultative bacterium that can survive and proliferate inside host macrophages and cause bubonic, pneumonic and systemic infection. Apart from humoral response, cell-mediated protection plays a major role in combating the disease. Fraction 1 capsular antigen (F1-Ag) of Y. pestis has long been exploited as a vaccine candidate. In this study, F1-multiple antigenic peptide (F1-MAP or MAP)-specific cell-mediated and cytokine responses were studied in murine model. MAP consisting of three B and one T cell epitopes of F1-antigen with one palmitoyl residue was synthesized using Fmoc chemistry. Mice were immunized with different formulations of MAP in poly DL-lactide-co-glycolide (PLGA) microspheres. F1-MAP with CpG oligodeoxynucleotide (CpG-ODN) as an adjuvant showed enhanced in vitro T cell proliferation and Th1 (IL-2, IFN-γ and TNF-α) and Th17 (IL-17A) cytokine secretion. Similar formulation also showed significantly higher numbers of cytokine (IL-2, IFN-γ)-secreting cells. Moreover, F1-MAP with CpG formulation showed significantly high (P < 0.001) percentage of CD4(+) IFN-γ(+) cells as compared to CD8(+) IFN-γ(+) cells, and also more (CD4- IFN-γ)(+) cells secrete perforin and granzyme as compared to (CD8- IFN-γ)(+) showing Th1 response. Thus, the study highlights the importance of Th1 cytokine and existence of CD4(+) and CD8(+) immune response. This study proposes a new perspective for the development of vaccination strategies for Y. pestis that trigger T cell immune response.
Collapse
Affiliation(s)
- R Ali
- Department of Biochemistry, All India Institute of Medical Sciences AIIMS, New Delhi-110029, India
| | | | | | | | | |
Collapse
|
33
|
Barh D, Gupta K, Jain N, Khatri G, León-Sicairos N, Canizalez-Roman A, Tiwari S, Verma A, Rahangdale S, Shah Hassan S, Rodrigues dos Santos A, Ali A, Carlos Guimarães L, Thiago Jucá Ramos R, Devarapalli P, Barve N, Bakhtiar M, Kumavath R, Ghosh P, Miyoshi A, Silva A, Kumar A, Narayan Misra A, Blum K, Baumbach J, Azevedo V. Conserved host–pathogen PPIs Globally conserved inter-species bacterial PPIs based conserved host-pathogen interactome derived novel target inC. pseudotuberculosis,C. diphtheriae,M. tuberculosis,C. ulcerans,Y. pestis, andE. colitargeted byPiper betelcompounds. Integr Biol (Camb) 2013; 5:495-509. [DOI: 10.1039/c2ib20206a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal-721172, India. Fax: +91-944 955 0032; Tel: +91-944 955 0032
- Department of Biosciences and Biotechnology, School of Biotechnology, Fakir Mohan University, Jnan Bigyan Vihar, Balasore, Orissa, India
| | - Krishnakant Gupta
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal-721172, India. Fax: +91-944 955 0032; Tel: +91-944 955 0032
- School of Biotechnology, Devi Ahilya University, Khandwa Road Campus, Indore, MP, India
| | - Neha Jain
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal-721172, India. Fax: +91-944 955 0032; Tel: +91-944 955 0032
| | - Gourav Khatri
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal-721172, India. Fax: +91-944 955 0032; Tel: +91-944 955 0032
- School of Biotechnology, Devi Ahilya University, Khandwa Road Campus, Indore, MP, India
| | - Nidia León-Sicairos
- Unidad de investigacion, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fraccionamiento Fresnos, Culiacán Sinaloa 80246, México
| | - Adrian Canizalez-Roman
- Unidad de investigacion, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fraccionamiento Fresnos, Culiacán Sinaloa 80246, México
| | - Sandeep Tiwari
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal-721172, India. Fax: +91-944 955 0032; Tel: +91-944 955 0032
| | - Ankit Verma
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal-721172, India. Fax: +91-944 955 0032; Tel: +91-944 955 0032
- School of Biotechnology, Devi Ahilya University, Khandwa Road Campus, Indore, MP, India
| | - Sachin Rahangdale
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal-721172, India. Fax: +91-944 955 0032; Tel: +91-944 955 0032
- School of Biotechnology, Devi Ahilya University, Khandwa Road Campus, Indore, MP, India
| | - Syed Shah Hassan
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Amjad Ali
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luis Carlos Guimarães
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Pratap Devarapalli
- Department of Genomic Science, School of Biological Sciences, Riverside Transit Campus, Central University of Kerala, Kasaragod, India
| | - Neha Barve
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal-721172, India. Fax: +91-944 955 0032; Tel: +91-944 955 0032
- School of Biotechnology, Devi Ahilya University, Khandwa Road Campus, Indore, MP, India
| | - Marriam Bakhtiar
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Riverside Transit Campus, Central University of Kerala, Kasaragod, India
| | - Preetam Ghosh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal-721172, India. Fax: +91-944 955 0032; Tel: +91-944 955 0032
- Department of Computer Science and Center for the Study of Biological Complexity, Virginia Commonwealth University, 401 West Main Street, Room E4234, P.O. Box 843019, Richmond, Virginia 23284-3019, USA
| | - Anderson Miyoshi
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Anil Kumar
- School of Biotechnology, Devi Ahilya University, Khandwa Road Campus, Indore, MP, India
| | - Amarendra Narayan Misra
- Department of Biosciences and Biotechnology, School of Biotechnology, Fakir Mohan University, Jnan Bigyan Vihar, Balasore, Orissa, India
- Center for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand State, India
| | - Kenneth Blum
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal-721172, India. Fax: +91-944 955 0032; Tel: +91-944 955 0032
- University of Florida, College of Medicine, Gainesville, Florida, USA
- Global Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA
- Dominion Diagnostics LLC, North Kingstown, Rhode Island, USA
| | - Jan Baumbach
- Computational Biology Group Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
34
|
Deletion of the Braun lipoprotein-encoding gene and altering the function of lipopolysaccharide attenuate the plague bacterium. Infect Immun 2012; 81:815-28. [PMID: 23275092 DOI: 10.1128/iai.01067-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Braun (murein) lipoprotein (Lpp) and lipopolysaccharide (LPS) are major components of the outer membranes of Enterobacteriaceae family members that are capable of triggering inflammatory immune responses by activating Toll-like receptors 2 and 4, respectively. Expanding on earlier studies that demonstrated a role played by Lpp in Yersinia pestis virulence in mouse models of bubonic and pneumonic plague, we characterized an msbB in-frame deletion mutant incapable of producing an acyltransferase that is responsible for the addition of lauric acid to the lipid A moiety of LPS, as well as a Δlpp ΔmsbB double mutant of the highly virulent Y. pestis CO92 strain. Although the ΔmsbB single mutant was minimally attenuated, the Δlpp single mutant and the Δlpp ΔmsbB double mutant were significantly more attenuated than the isogenic wild-type (WT) bacterium in bubonic and pneumonic animal models (mouse and rat) of plague. These data correlated with greatly reduced survivability of the aforementioned mutants in murine macrophages. Furthermore, the Δlpp ΔmsbB double mutant was grossly compromised in its ability to disseminate to distal organs in mice and in evoking cytokines/chemokines in infected animal tissues. Importantly, mice that survived challenge with the Δlpp ΔmsbB double mutant, but not the Δlpp or ΔmsbB single mutant, in a pneumonic plague model were significantly protected against a subsequent lethal WT CO92 rechallenge. These data were substantiated by the fact that the Δlpp ΔmsbB double mutant maintained an immunogenicity comparable to that of the WT strain and induced long-lasting T-cell responses against heat-killed WT CO92 antigens. Taken together, the data indicate that deletion of the msbB gene augmented the attenuation of the Δlpp mutant by crippling the spread of the double mutant to the peripheral organs of animals and by inducing cytokine/chemokine responses. Thus, the Δlpp ΔmsbB double mutant could provide a new live-attenuated background vaccine candidate strain, and this should be explored in the future.
Collapse
|
35
|
Andrianaivoarimanana V, Telfer S, Rajerison M, Ranjalahy MA, Andriamiarimanana F, Rahaingosoamamitiana C, Rahalison L, Jambou R. Immune responses to plague infection in wild Rattus rattus, in Madagascar: a role in foci persistence? PLoS One 2012; 7:e38630. [PMID: 22719908 PMCID: PMC3377696 DOI: 10.1371/journal.pone.0038630] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 05/08/2012] [Indexed: 11/22/2022] Open
Abstract
Background Plague is endemic within the central highlands of Madagascar, where its main reservoir is the black rat, Rattus rattus. Typically this species is considered susceptible to plague, rapidly dying after infection inducing the spread of infected fleas and, therefore, dissemination of the disease to humans. However, persistence of transmission foci in the same area from year to year, supposes mechanisms of maintenance among which rat immune responses could play a major role. Immunity against plague and subsequent rat survival could play an important role in the stabilization of the foci. In this study, we aimed to investigate serological responses to plague in wild black rats from endemic areas of Madagascar. In addition, we evaluate the use of a recently developed rapid serological diagnostic test to investigate the immune response of potential reservoir hosts in plague foci. Methodology/Principal Findings We experimentally infected wild rats with Yersinia pestis to investigate short and long-term antibody responses. Anti-F1 IgM and IgG were detected to evaluate this antibody response. High levels of anti-F1 IgM and IgG were found in rats one and three weeks respectively after challenge, with responses greatly differing between villages. Plateau in anti-F1 IgM and IgG responses were reached for as few as 500 and 1500 colony forming units (cfu) inoculated respectively. More than 10% of rats were able to maintain anti-F1 responses for more than one year. This anti-F1 response was conveniently followed using dipsticks. Conclusion/Significance Inoculation of very few bacteria is sufficient to induce high immune response in wild rats, allowing their survival after infection. A great heterogeneity of rat immune responses was found within and between villages which could heavily impact on plague epidemiology. In addition, results indicate that, in the field, anti-F1 dipsticks are efficient to investigate plague outbreaks several months after transmission.
Collapse
Affiliation(s)
| | - Sandra Telfer
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | | - Lila Rahalison
- Unité Peste, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Ronan Jambou
- Unité d’Immunologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- * E-mail:
| |
Collapse
|
36
|
Gupta G, Ali R, Khan AA, Rao D. Evaluation of CD4+/CD8+ T-cell expression and IFN-γ, perforin secretion for B–T constructs of F1 and V antigens of Yersinia pestis. Int Immunopharmacol 2012; 12:64-73. [DOI: 10.1016/j.intimp.2011.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/04/2011] [Accepted: 10/18/2011] [Indexed: 12/23/2022]
|
37
|
Humoral and cellular immune responses to Yersinia pestis infection in long-term recovered plague patients. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:228-34. [PMID: 22190397 DOI: 10.1128/cvi.05559-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plague is one of the most dangerous diseases and is caused by Yersinia pestis. Effective vaccine development requires understanding of immune protective mechanisms against the bacterium in humans. In this study, the humoral and memory cellular immune responses in plague patients (n = 65) recovered from Y. pestis infection during the past 16 years were investigated using a protein microarray and an enzyme-linked immunosorbent spot assay (ELISpot). The seroprevalence to the F1 antigen in all recovered patients is 78.5%. In patients infected more than a decade ago, the antibody-positive rate still remains 69.5%. There is no difference in the antibody presence between gender, age, and infected years, but it seems to be associated with the F1 antibody titers during infection (r = 0.821; P < 0.05). Except F1 antibody, the antibodies against LcrV and YopD were detected in most of the patients, suggesting they could be the potential diagnostic markers for detecting the infection of F1-negative strains. Regarding cellular immunity, the cell number producing gamma interferon (IFN-γ), stimulated by F1 and LcrV, respectively, in vitro to the peripheral blood mononuclear cells of 7 plague patients and 4 negative controls, showed no significant difference, indicating F1 and LcrV are not dominant T cell antigens against plague for a longer time in humans. Our findings have direct implications for the future design and development of effective vaccines against Y. pestis infection and the development of new target-based diagnostics.
Collapse
|
38
|
Byvalov AA, Ovodov IS. [Immunobiological properties of Yersinia pestis antigens]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:452-63. [PMID: 22096987 DOI: 10.1134/s1068162011040042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present review contains information concerning immunobiological properties of plague microbe antigens. All of the identified antigens are evaluated in relation to pathogenicity of Yersinia pestis namely a resistance to phagocytosis, toxicity, adhesiveness etc. as well as persistence ability and adaptation to variable environment. In addition, the role of antigens in immunogenicity of living plague microbe for experimental animals is considered. The data concerning mechanisms of antigenic contribution to the development of adaptive immunity are presented.
Collapse
|
39
|
Role of the Yersinia pestis Ail protein in preventing a protective polymorphonuclear leukocyte response during bubonic plague. Infect Immun 2011; 79:4984-9. [PMID: 21969002 DOI: 10.1128/iai.05307-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Yersinia pestis to forestall the mammalian innate immune response is a fundamental aspect of plague pathogenesis. In this study, we examined the effect of Ail, a 17-kDa outer membrane protein that protects Y. pestis against complement-mediated lysis, on bubonic plague pathogenesis in mice and rats. The Y. pestis ail mutant was attenuated for virulence in both rodent models. The attenuation was greater in rats than in mice, which correlates with the ability of normal rat serum, but not mouse serum, to kill ail-negative Y. pestis in vitro. Intradermal infection with the ail mutant resulted in an atypical, subacute form of bubonic plague associated with extensive recruitment of polymorphonuclear leukocytes (PMN or neutrophils) to the site of infection in the draining lymph node and the formation of large purulent abscesses that contained the bacteria. Systemic spread and mortality were greatly attenuated, however, and a productive adaptive immune response was generated after high-dose challenge, as evidenced by high serum antibody levels against Y. pestis F1 antigen. The Y. pestis Ail protein is an important bubonic plague virulence factor that inhibits the innate immune response, in particular the recruitment of a protective PMN response to the infected lymph node.
Collapse
|
40
|
Kaman WE, Hawkey S, van der Kleij D, Broekhuijsen MP, Silman NJ, Bikker FJ. A comprehensive study on the role of the Yersinia pestis virulence markers in an animal model of pneumonic plague. Folia Microbiol (Praha) 2011; 56:95-102. [PMID: 21468758 PMCID: PMC3109262 DOI: 10.1007/s12223-011-0027-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/04/2011] [Indexed: 01/15/2023]
Abstract
We determined the role of Yersinia pestis virulence markers in an animal model of pneumonic plague. Eleven strains of Y. pestis were characterized using PCR assays to detect the presence of known virulence genes both encoded by the three plasmids as well as chromosomal markers. The virulence of all Y. pestis strains was compared in a mouse model for pneumonic plague. The presence of all known virulence genes correlated completely with virulence in the Balb/c mouse model. Strains which lacked HmsF initially exhibited visible signs of disease whereas all other strains (except wild-type strains) did not exhibit any disease signs. Forty-eight hours post-infection, mice which had received HmsF– strains regained body mass and were able to control infection; those infected with strains possessing a full complement of virulence genes suffered from fatal disease. The bacterial loads observed in the lung and other tissues reflected the observed clinical signs as did the cytokine changes measured in these animals. We can conclude that all known virulence genes are required for the establishment of pneumonic plague in mammalian animal models, the role of HmsF being of particular importance in disease progression.
Collapse
Affiliation(s)
- W E Kaman
- TNO Defence, Security and Safety, 2280 AA, Rijswijk, the Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Lawrenz MB. Model systems to study plague pathogenesis and develop new therapeutics. Front Microbiol 2010; 1:119. [PMID: 21687720 PMCID: PMC3109633 DOI: 10.3389/fmicb.2010.00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/11/2010] [Indexed: 11/30/2022] Open
Abstract
The Gram negative bacterium Yersinia pestis can infect humans by multiple routes to cause plague. Three plague pandemics have occurred and Y. pestis has been linked to biowarfare in the past. The continued risk of plague as a bioweapon has prompted increased research to understand Y. pestis pathogenesis and develop new plague therapeutics. Several in vivo models have been developed for this research and are reviewed here.
Collapse
Affiliation(s)
- Matthew B Lawrenz
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Department of Microbiology and Immunology, University of Louisville School of Medicine Louisville, KY, USA
| |
Collapse
|
42
|
Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague. Infect Immun 2010; 78:5086-98. [PMID: 20876291 DOI: 10.1128/iai.00256-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A delayed inflammatory response is a prominent feature of infection with Yersinia pestis, the agent of bubonic and pneumonic plague. Using a rat model of bubonic plague, we examined lymph node histopathology, transcriptome, and extracellular cytokine levels to broadly characterize the kinetics and extent of the host response to Y. pestis and how it is influenced by the Yersinia virulence plasmid (pYV). Remarkably, dissemination and multiplication of wild-type Y. pestis during the bubonic stage of disease did not induce any detectable gene expression or cytokine response by host lymph node cells in the developing bubo. Only after systemic spread had led to terminal septicemic plague was a transcriptomic response detected, which included upregulation of several cytokine, chemokine, and other immune response genes. Although an initial intracellular phase of Y. pestis infection has been postulated, a Th1-type cytokine response associated with classical activation of macrophages was not observed during the bubonic stage of disease. However, elevated levels of interleukin-17 (IL-17) were present in infected lymph nodes. In the absence of pYV, sustained recruitment to the lymph node of polymorphonuclear leukocytes (PMN, or neutrophils), the major IL-17 effector cells, correlated with clearance of infection. Thus, the ability to counteract a PMN response in the lymph node appears to be a major in vivo function of the Y. pestis virulence plasmid.
Collapse
|
43
|
Repertoire of HLA-DR1-restricted CD4 T-cell responses to capsular Caf1 antigen of Yersinia pestis in human leukocyte antigen transgenic mice. Infect Immun 2010; 78:4356-62. [PMID: 20660611 DOI: 10.1128/iai.00195-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T-cell responses for Caf1. We characterized CD4 T-cell epitopes of Caf1 in "humanized" HLA-DR1 transgenic mice lacking endogenous major histocompatibility complex class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T-cell immunity was measured with respect to proliferative and gamma interferon T-cell responses and recognition by a panel of T-cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased toward a single immunodominant epitope near the C terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.
Collapse
|
44
|
Abstract
Toxin-antitoxin (TA) loci consist of two genes in an operon, encoding a stable toxin and an unstable antitoxin. The expression of toxin leads to cell growth arrest and sometimes bacterial death, while the antitoxin prevents the cytotoxic activity of the toxin. In this study, we show that the chromosome of Yersinia pestis, the causative agent of plague, carries 10 putative TA modules and two solitary antitoxins that belong to five different TA families (HigBA, HicAB, RelEB, Phd/Doc, and MqsRA). Two of these toxin genes (higB2 and hicA1) could not be cloned in Escherichia coli unless they were coexpressed with their cognate antitoxin gene, indicating that they are highly toxic for this species. One of these toxin genes (higB2) could, however, be cloned directly and expressed in Y. pestis, where it was highly toxic, while the other one (hicA1) could not, probably because of its extreme toxicity. All eight other toxin genes were successfully cloned into the expression vector pBAD-TOPO. For five of them (higB1, higB3, higB5, hicA2, and tox), no toxic activity was detected in either E. coli or Y. pestis despite their overexpression. The three remaining toxin genes (relE1, higB4, and doc) were toxic for E. coli, and this toxic activity was abolished when the cognate antitoxin was coexpressed, showing that these three TA modules are functional in E. coli. Curiously, only one of these three toxins (RelE1) was active in Y. pestis. Cross-interaction between modules of the same family was observed but occurred only when the antitoxins were almost identical. Therefore, our study demonstrates that of the 10 predicted TA modules encoded by the Y. pestis chromosome, at least 5 are functional in E. coli and/or in Y. pestis. This is the first demonstration of active addiction toxins produced by the plague agent.
Collapse
|
45
|
Gupta G, Khan AA, Rao DN. Cell-Mediated Immune Response and Th1/Th2Cytokine Profile of B-T Constructs of F1 and V Antigen ofYersinia pestis. Scand J Immunol 2010; 71:186-98. [DOI: 10.1111/j.1365-3083.2009.02365.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Zav'yalov V, Zavialov A, Zav'yalova G, Korpela T. Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol Rev 2009; 34:317-78. [PMID: 20070375 DOI: 10.1111/j.1574-6976.2009.00201.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review summarizes current knowledge on the structure, function, assembly and biomedical applications of the superfamily of adhesive fimbrial organelles exposed on the surface of Gram-negative pathogens with the classical chaperone/usher machinery. High-resolution three-dimensional (3D) structure studies of the minifibers assembling with the FGL (having a long F1-G1 loop) and FGS (having a short F1-G1 loop) chaperones show that they exploit the same principle of donor-strand complementation for polymerization of subunits. The 3D structure of adhesive subunits bound to host-cell receptors and the final architecture of adhesive fimbrial organelles reveal two functional families of the organelles, respectively, possessing polyadhesive and monoadhesive binding. The FGL and FGS chaperone-assembled polyadhesins are encoded exclusively by the gene clusters of the γ3- and κ-monophyletic groups, respectively, while gene clusters belonging to the γ1-, γ2-, γ4-, and π-fimbrial clades exclusively encode FGS chaperone-assembled monoadhesins. Novel approaches are suggested for a rational design of antimicrobials inhibiting the organelle assembly or inhibiting their binding to host-cell receptors. Vaccines are currently under development based on the recombinant subunits of adhesins.
Collapse
|