1
|
Rafei R, Osman M, Kassem II, Dabboussi F, Weill FX, Hamze M. Spotlight on the epidemiology and antimicrobial susceptibility profiles of Vibrio species in the MENA region, 2000-2023. Future Microbiol 2024; 19:1333-1353. [PMID: 39229784 PMCID: PMC11486259 DOI: 10.1080/17460913.2024.2392460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Recent cholera outbreaks in many countries in the Middle East and North Africa (MENA) region have raised public health concerns and focused attention on the genus Vibrio. However, the epidemiology of Vibrio species in humans, water, and seafood is often anecdotal in this region. In this review, we screened the literature and provided a comprehensive assessment of the distribution and antibiotic resistance properties of Vibrio species in different clinical and environmental samples in the region. This review will contribute to understanding closely the real burden of Vibrio species and the spread of antibiotic-resistant strains in the MENA region. The overall objective is to engage epidemiologists, sanitarians and public health stakeholders to address this problem under the One-health ethos.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, 1300, Lebanon
| | - Marwan Osman
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT06510, USA
| | - Issmat I Kassem
- Center for Food Safety, Department of Food Science & Technology, University of Georgia, 1109 Experiment Street, Griffin, GA30223-1797, USA
| | - Fouad Dabboussi
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, 1300, Lebanon
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des vibrions et du choléra, Paris, F-75015, France
| | - Monzer Hamze
- Laboratoire Microbiologie, Santé et Environnement (LMSE), Doctoral School of Sciences & Technology, Faculty of Public Health, Lebanese University, Tripoli, 1300, Lebanon
| |
Collapse
|
2
|
Ko D, Sung D, Kim TY, Choi G, Bang YJ, Choi SH. CarRS Two-Component System Essential for Polymyxin B Resistance of Vibrio vulnificus Responds to Multiple Host Environmental Signals. Microbiol Spectr 2023; 11:e0030523. [PMID: 37289068 PMCID: PMC10433830 DOI: 10.1128/spectrum.00305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Enteropathogenic bacteria express two-component systems (TCSs) to sense and respond to host environments, developing resistance to host innate immune systems like cationic antimicrobial peptides (CAMPs). Although an opportunistic human pathogen Vibrio vulnificus shows intrinsic resistance to the CAMP-like polymyxin B (PMB), its TCSs responsible for resistance have barely been investigated. Here, a mutant exhibiting a reduced growth rate in the presence of PMB was screened from a random transposon mutant library of V. vulnificus, and response regulator CarR of the CarRS TCS was identified as essential for its PMB resistance. Transcriptome analysis revealed that CarR strongly activates the expression of the eptA, tolCV2, and carRS operons. In particular, the eptA operon plays a major role in developing the CarR-mediated PMB resistance. Phosphorylation of CarR by the sensor kinase CarS is required for the regulation of its downstream genes, leading to the PMB resistance. Nevertheless, CarR directly binds to specific sequences in the upstream regions of the eptA and carRS operons, regardless of its phosphorylation. Notably, the CarRS TCS alters its own activation state by responding to several environmental stresses, including PMB, divalent cations, bile salts, and pH change. Furthermore, CarR modulates the resistance of V. vulnificus to bile salts and acidic pH among the stresses, as well as PMB. Altogether, this study suggests that the CarRS TCS, in responding to multiple host environmental signals, could provide V. vulnificus with the benefit of surviving within the host by enhancing its optimal fitness during infection. IMPORTANCE Enteropathogenic bacteria have evolved multiple TCSs to recognize and appropriately respond to host environments. CAMP is one of the inherent host barriers that the pathogens encounter during the course of infection. In this study, the CarRS TCS of V. vulnificus was found to develop resistance to PMB, a CAMP-like antimicrobial peptide, by directly activating the expression of the eptA operon. Although CarR binds to the upstream regions of the eptA and carRS operons regardless of phosphorylation, phosphorylation of CarR is required for the regulation of the operons, resulting in the PMB resistance. Furthermore, the CarRS TCS determines the resistance of V. vulnificus to bile salts and acidic pH by differentially regulating its own activation state in response to these environmental stresses. Altogether, the CarRS TCS responds to multiple host-related signals, and thus could enhance the survival of V. vulnificus within the host, leading to successful infection.
Collapse
Affiliation(s)
- Duhyun Ko
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Dayoung Sung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Tae Young Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Bina XR, Bina JE. Vibrio cholerae RND efflux systems: mediators of stress responses, colonization and pathogenesis. Front Cell Infect Microbiol 2023; 13:1203487. [PMID: 37256112 PMCID: PMC10225521 DOI: 10.3389/fcimb.2023.1203487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Resistance Nodulation Division (RND) efflux systems are ubiquitous transporters in gram-negative bacteria that provide protection against antimicrobial agents and thereby enhance survival in virtually all environments these prokaryotes inhabit. Vibrio cholerae is a dual lifestyle enteric pathogen that spends much of its existence in aquatic environments. An unwitting encounter with a human host can lead to V. cholerae intestinal colonization by strains that encode cholera toxin and toxin co-regulated pilus virulence factors leading to potentially fatal cholera diarrhea and dissemination in the environment. Adaptive response mechanisms to host factors encountered by these pathogens are therefore critical both to engage survival mechanisms such as RND-mediated transporters and to induce timely expression of virulence factors. Sensing of cues encountered in the host may therefore activate more than protective responses such as efflux systems, but also be coordinated to initiate expression of virulence factors. This review summarizes recent advances that contribute towards the understanding of RND efflux physiological functions and how the transport systems interface with the regulation of virulence factor production in V. cholerae.
Collapse
Affiliation(s)
| | - James E. Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Kitts G, Rogers A, Teschler JK, Park JH, Trebino MA, Chaudry I, Erill I, Yildiz FH. The Rvv two-component regulatory system regulates biofilm formation and colonization in Vibrio cholerae. PLoS Pathog 2023; 19:e1011415. [PMID: 37216386 PMCID: PMC10237652 DOI: 10.1371/journal.ppat.1011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/02/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
The facultative human pathogen, Vibrio cholerae, employs two-component signal transduction systems (TCS) to sense and respond to environmental signals encountered during its infection cycle. TCSs consist of a sensor histidine kinase (HK) and a response regulator (RR); the V. cholerae genome encodes 43 HKs and 49 RRs, of which 25 are predicted to be cognate pairs. Using deletion mutants of each HK gene, we analyzed the transcription of vpsL, a biofilm gene required for Vibrio polysaccharide and biofilm formation. We found that a V. cholerae TCS that had not been studied before, now termed Rvv, controls biofilm gene transcription. The Rvv TCS is part of a three-gene operon that is present in 30% of Vibrionales species. The rvv operon encodes RvvA, the HK; RvvB, the cognate RR; and RvvC, a protein of unknown function. Deletion of rvvA increased transcription of biofilm genes and altered biofilm formation, while deletion of rvvB or rvvC lead to no changes in biofilm gene transcription. The phenotypes observed in ΔrvvA depend on RvvB. Mutating RvvB to mimic constitutively active and inactive versions of the RR only impacted phenotypes in the ΔrvvA genetic background. Mutating the conserved residue required for kinase activity in RvvA did not affect phenotypes, whereas mutation of the conserved residue required for phosphatase activity mimicked the phenotype of the rvvA mutant. Furthermore, ΔrvvA displayed a significant colonization defect which was dependent on RvvB and RvvB phosphorylation state, but not on VPS production. We found that RvvA's phosphatase activity regulates biofilm gene transcription, biofilm formation, and colonization phenotypes. This is the first systematic analysis of the role of V. cholerae HKs in biofilm gene transcription and resulted in the identification of a new regulator of biofilm formation and virulence, advancing our understanding of the role TCSs play in regulating these critical cellular processes in V. cholerae.
Collapse
Affiliation(s)
- Giordan Kitts
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Andrew Rogers
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Jennifer K. Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Jin Hwan Park
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Michael A. Trebino
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Issac Chaudry
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
5
|
Stress Responses in Pathogenic Vibrios and Their Role in Host and Environmental Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:213-232. [PMID: 36792878 DOI: 10.1007/978-3-031-22997-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio is a genus of bacteria commonly found in estuarine, marine, and freshwater environments. Vibrio species have evolved to occupy diverse niches in the aquatic ecosystem, with some having complex lifestyles. About a dozen of the described Vibrio species have been reported to cause human disease, while many other species cause disease in other organisms. Vibrio cholerae causes epidemic cholera, a severe dehydrating diarrheal disease associated with the consumption of contaminated food or water. The human pathogenic non-cholera Vibrio species, Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Infections caused by V. parahaemolyticus and V. vulnificus are normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. The human pathogenic Vibrios are exposed to numerous different stress-inducing agents and conditions in the aquatic environment and when colonizing a human host. Therefore, they have evolved a variety of mechanisms to survive in the presence of these stressors. Here we discuss what is known about important stress responses in pathogenic Vibrio species and their role in bacterial survival.
Collapse
|
6
|
Liu Y, Xu T, Wang Q, Huang J, Zhu Y, Liu X, Liu R, Yang B, Zhou K. Vibrio cholerae senses human enteric α-defensin 5 through a CarSR two-component system to promote bacterial pathogenicity. Commun Biol 2022; 5:559. [PMID: 35676416 PMCID: PMC9178039 DOI: 10.1038/s42003-022-03525-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio cholerae (V. cholerae) is an aquatic bacterium responsible for acute and fatal cholera outbreaks worldwide. When V. cholerae is ingested, the bacteria colonize the epithelium of the small intestine and stimulate the Paneth cells to produce large amounts of cationic antimicrobial peptides (CAMPs). Human defensin 5 (HD-5) is the most abundant CAMPs in the small intestine. However, the role of the V. cholerae response to HD-5 remains unclear. Here we show that HD-5 significantly upregulates virulence gene expression. Moreover, a two-component system, CarSR (or RstAB), is essential for V. cholerae virulence gene expression in the presence of HD-5. Finally, phosphorylated CarR can directly bind to the promoter region of TcpP, activating transcription of tcpP, which in turn activates downstream virulence genes to promote V. cholerae colonization. In conclusion, this study reveals a virulence-regulating pathway, in which the CarSR two-component regulatory system senses HD-5 to activate virulence genes expression in V. cholerae.
Collapse
Affiliation(s)
- Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Tingting Xu
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, Guangdong, PR China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Junxi Huang
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, Guangdong, PR China
| | - Yangfei Zhu
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Laboratory Department, Shenzhen People's Hospital, Shenzhen, Guangdong, PR China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, TEDA, Nankai University, Tianjin, PR China.
| | - Kai Zhou
- The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, Guangdong, PR China.
| |
Collapse
|
7
|
Hsieh ML, Kiel N, Jenkins L, Ng WL, Knipling L, Waters C, Hinton D. The Vibrio cholerae master regulator for the activation of biofilm biogenesis genes, VpsR, senses both cyclic di-GMP and phosphate. Nucleic Acids Res 2022; 50:4484-4499. [PMID: 35438787 PMCID: PMC9071405 DOI: 10.1093/nar/gkac253] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023] Open
Abstract
Vibrio cholerae biofilm formation/maintenance is controlled by myriad factors; chief among these are the regulator VpsR and cyclic di-guanosine monophosphate (c-di-GMP). VpsR has strong sequence similarity to enhancer binding proteins (EBPs) that activate RNA polymerase containing sigma factor σ54. However, we have previously shown that transcription from promoters within the biofilm biogenesis/maintenance pathways uses VpsR, c-di-GMP and RNA polymerase containing the primary sigma factor (σ70). Previous work suggested that phosphorylation of VpsR at a highly conserved aspartate, which is phosphorylated in other EBPs, might also contribute to activation. Using the biofilm biogenesis promoter PvpsL, we show that in the presence of c-di-GMP, either wild type or the phospho-mimic VpsR D59E activates PvpsL transcription, while the phospho-defective D59A variant does not. Furthermore, when c-di-GMP levels are low, acetyl phosphate (Ac∼P) is required for significant VpsR activity in vivo and in vitro. Although these findings argue that VpsR phosphorylation is needed for activation, we show that VpsR is not phosphorylated or acetylated by Ac∼P and either sodium phosphate or potassium phosphate, which are not phosphate donors, fully substitutes for Ac∼P. We conclude that VpsR is an unusual regulator that senses phosphate directly, rather than through phosphorylation, to aid in the decision to form/maintain biofilm.
Collapse
Affiliation(s)
- Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Niklas Kiel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Lisa M Miller Jenkins
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher M Waters
- Correspondence may also be addressed to Christopher M. Waters. Tel: +1 517 884 5360; Fax: +1 517 355 6463;
| | - Deborah M Hinton
- To whom correspondence should be addressed. Tel: +1 301 496 9885; Fax: +1 301 402 0053;
| |
Collapse
|
8
|
O'Leary MK, Sundaram V, LiPuma JJ, Dörr T, Westblade LF, Alabi CA. Mechanism of Action and Resistance Evasion of an Antimicrobial Oligomer against Multidrug-Resistant Gram-Negative Bacteria. ACS APPLIED BIO MATERIALS 2022; 5:1159-1168. [PMID: 35167257 DOI: 10.1021/acsabm.1c01217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The last resort for treating multidrug-resistant (MDR) Pseudomonas aeruginosa and other MDR Gram-negative bacteria is a class of antibiotics called the polymyxins; however, polymyxin-resistant isolates have emerged. In response, antimicrobial peptides (AMPs) and their synthetic mimetics have been investigated as alternative therapeutic options. Oligothioetheramides (oligoTEAs) are a class of synthetic, sequence-defined oligomers composed of N-allylacrylamide monomers and an abiotic dithiol backbone that is resistant to serum degradation. Characteristic of other AMP mimetics, the precise balance between charge and hydrophobicity has afforded cationic oligoTEAs potent antimicrobial activity, particularly for the compound BDT-4G, which consists of a 1,4-butanedithiol backbone and guanidine pendant groups, the latter of which provides a cationic charge at physiological pH. However, the activity and mechanism of cationic oligoTEAs against MDR Gram-negative isolates have yet to be fully investigated. Herein, we demonstrated the potent antimicrobial activity of BDT-4G against clinical isolates of P. aeruginosa with a range of susceptibility profiles, assessed the kinetics of bactericidal activity, and further elucidated its mechanism of action. Activity was also evaluated against a panel of polymyxin-resistant isolates, including intrinsically-resistant species. We demonstrate that BDT-4G can evade some of the mechanisms conferring resistance to polymyxin B and thus may have therapeutic potential.
Collapse
Affiliation(s)
- Meghan K O'Leary
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Vishal Sundaram
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, New York 14853, United States
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York 14853, United States
| | - Lars F Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065, United States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York 10065, United States
| | - Christopher A Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci 2021. [PMID: 34475315 PMCID: PMC8387214 DOI: 10.1007/s12038-021-00209-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections caused by multi-drug resistant (MDR) bacterial pathogens are a leading cause of mortality and morbidity across the world. Indiscriminate use of broad-spectrum antibiotics has seriously affected this situation. With the diminishing discovery of novel antibiotics, new treatment methods are urgently required to combat MDR pathogens. Polymyxins, the cationic lipopeptide antibiotics, discovered more than half a century ago, are considered to be the last-line of antibiotics available at the moment. This antibiotic shows a great bactericidal effect against Gram-negative bacteria. Polymyxins primarily target the bacterial membrane and disrupt them, causing lethality. Because of their membrane interacting mode of action, polymyxins cause nephrotoxicity and neurotoxicity in humans, limiting their usability. However, recent modifications in their chemical structure have been able to reduce the toxic effects. The development of better dosing regimens has also helped in getting better clinical outcomes in the infections caused by MDR pathogens. Since the mid-1990s the use of polymyxins has increased manifold in clinical settings, resulting in the emergence of polymyxin-resistant strains. The risk posed by the polymyxin-resistant nosocomial pathogens such as the Enterobacteriaceae group, Pseudomonas aeruginosa, and Acinetobacter baumannii, etc. is very serious considering these pathogens are resistant to almost all available antibacterial drugs. In this review article, the mode of action of the polymyxins and the genetic regulatory mechanism responsible for the emergence of resistance are discussed. Specifically, this review aims to update our current understanding in the field and suggest possible solutions that can be pursued for future antibiotic development. As polymyxins primarily target the bacterial membranes, resistance to polymyxins arises primarily by the modification of the lipopolysaccharides (LPS) in the outer membrane (OM). The LPS modification pathways are largely regulated by the bacterial two-component signal transduction (TCS) systems. Therefore, targeting or modulating the TCS signalling mechanisms can be pursued as an alternative to treat the infections caused by polymyxin-resistant MDR pathogens. In this review article, this aspect is also highlighted.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Indira Padhy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| |
Collapse
|
10
|
Matanza XM, López-Suárez L, do Vale A, Osorio CR. The two-component system RstAB regulates production of a polysaccharide capsule with a role in virulence in the marine pathogen Photobacterium damselae subsp. damselae. Environ Microbiol 2021; 23:4859-4880. [PMID: 34423883 DOI: 10.1111/1462-2920.15731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
The marine bacterium Photobacterium damselae subsp. damselae (Pdd) causes disease in marine animals and humans. Previous studies demonstrated that mutation of the two-component system RstAB strongly impacts virulence of this pathogen, but the RstAB regulon has not been thoroughly elucidated. We here compared the transcriptomes of Pdd RM-71 and ΔrstA and ΔrstB derivatives using RNA-seq. In accordance with previous studies, RstAB positively regulated cytotoxins Dly, PhlyP and PhlyC. This analysis also demonstrated a positive regulation of outer membrane proteins, resistance against antimicrobials and potential virulence factors by this system. Remarkably, RstAB positively regulated two hitherto uncharacterised gene clusters involved in the synthesis of a polysaccharide capsule. Presence of a capsular layer in wild-type cells was confirmed by transmission electron microscopy, whereas rstA and rstB mutants were non-capsulated. Mutants for capsule synthesis genes, wza and wzc exhibited acapsular phenotypes, were impaired in resistance against the bactericidal action of fish serum and mucus, and were strongly impaired in virulence for fish, indicating a major role of capsule in virulence. Collectively, this study demonstrates that RstAB is a major positive regulator of key virulence factors including a polysaccharide capsule essential for full virulence in a pathogenic Photobacterium.
Collapse
Affiliation(s)
- Xosé M Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura López-Suárez
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci 2021; 46:85. [PMID: 34475315 PMCID: PMC8387214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/03/2021] [Indexed: 04/04/2024]
Abstract
Infections caused by multi-drug resistant (MDR) bacterial pathogens are a leading cause of mortality and morbidity across the world. Indiscriminate use of broad-spectrum antibiotics has seriously affected this situation. With the diminishing discovery of novel antibiotics, new treatment methods are urgently required to combat MDR pathogens. Polymyxins, the cationic lipopeptide antibiotics, discovered more than half a century ago, are considered to be the last-line of antibiotics available at the moment. This antibiotic shows a great bactericidal effect against Gram-negative bacteria. Polymyxins primarily target the bacterial membrane and disrupt them, causing lethality. Because of their membrane interacting mode of action, polymyxins cause nephrotoxicity and neurotoxicity in humans, limiting their usability. However, recent modifications in their chemical structure have been able to reduce the toxic effects. The development of better dosing regimens has also helped in getting better clinical outcomes in the infections caused by MDR pathogens. Since the mid1990s the use of polymyxins has increased manifold in clinical settings, resulting in the emergence of polymyxin-resistant strains. The risk posed by the polymyxin-resistant nosocomial pathogens such as the Enterobacteriaceae group, Pseudomonas aeruginosa, and Acinetobacter baumannii, etc. is very serious considering these pathogens are resistant to almost all available antibacterial drugs. In this review article, the mode of action of the polymyxins and the genetic regulatory mechanism responsible for the emergence of resistance are discussed. Specifically, this review aims to update our current understanding in the field and suggest possible solutions that can be pursued for future antibiotic development. As polymyxins primarily target the bacterial membranes, resistance to polymyxins arises primarily by the modification of the lipopolysaccharides (LPS) in the outer membrane (OM). The LPS modification pathways are largely regulated by the bacterial two-component signal transduction (TCS) systems. Therefore, targeting or modulating the TCS signalling mechanisms can be pursued as an alternative to treat the infections caused by polymyxin-resistant MDR pathogens. In this review article, this aspect is also highlighted.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Indira Padhy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| |
Collapse
|
12
|
Pal BB, Behera DR, Nayak SR, Nayak AK, Biswal B, Pati S. Dissemination of Polymyxin B Sensitivity in El Tor Vibrio cholerae O1 Strains in Odisha, India. Jpn J Infect Dis 2020; 74:169-171. [PMID: 32999185 DOI: 10.7883/yoken.jjid.2020.592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Vibrio species undergo cryptic changes in their genetic material for better adaptability, which accounts for antibiotic resistance. In the present study, we investigated the emergence and spread of sensitivity to polymyxin B (PB) by El Tor V. cholerae O1 strains from 1995 to 2019 in Odisha, India. The results showed that out of 1200 V. cholerae O1 strains, 89.4% were resistant and the remaining 10.6% strains were sensitive to PB. The sensitivity to PB of V. cholerae O1 strains emerged from 2005 to 2019, except in 2015, clearly signifying the presence of classical biotype characteristics in the El Tor variant of V. cholerae O1 strains. The Etest assay revealed some interesting traits of PB susceptibility in the ctxB1 and ctxB7 genotypes of V. cholerae O1 strains. The minimum inhibitory concentration (MIC) of ctxB7 genotypes showed reduced MIC values of ≤ 4 µg/mL, whereas ctxB1 genotypes exhibited higher MIC values of 24 and 32 µg/mL.
Collapse
Affiliation(s)
| | | | | | | | | | - Sanghamitra Pati
- Microbiology Division, ICMR-Regional Medical Research Centre, India
| |
Collapse
|
13
|
A Point Mutation in carR Is Involved in the Emergence of Polymyxin B-Sensitive Vibrio cholerae O1 El Tor Biotype by Influencing Gene Transcription. Infect Immun 2020; 88:IAI.00080-20. [PMID: 32094260 DOI: 10.1128/iai.00080-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial peptides play an important role in host defense against Vibrio cholerae Generally, the V. cholerae O1 classical biotype is polymyxin B (PB) sensitive and El Tor is relatively resistant. Detection of classical biotype traits like the production of classical cholera toxin and PB sensitivity in El Tor strains has been reported in recent years, including in the devastating Yemen cholera outbreak during 2016-2018. To investigate the factor(s) responsible for the shift in the trend of sensitivity to PB, we studied the two-component system encoded by carRS, regulating the lipid A modification of El Tor vibrios, and found that only carR contains a single nucleotide polymorphism (SNP) in recently emerged PB-sensitive strains. We designated the two alleles present in PB-resistant and -sensitive strains carR r and carR s alleles, respectively, and replaced the carR s allele of a sensitive strain with the carR r allele, using an allelic-exchange approach. The sensitive strain then became resistant. The PB-resistant strain N16961 was made susceptible to PB in a similar fashion. Our in silico CarR protein models suggested that the D89N substitution in the more stable CarRs protein brings the two structural domains of CarR closer, constricting the DNA binding cleft. This probably reduces the expression of the carR-regulated almEFG operon, inducing PB susceptibility. Expression of almEFG in PB-sensitive strains was found to be downregulated under natural culturing conditions. In addition, the expression of carR and almEG decreased in all strains with increased concentrations of extracellular Ca2+ but increased with a rise in pH. The downregulation of almEFG in CarRs strains confirmed that the G265A mutation is responsible for the emergence of PB-sensitive El Tor strains.
Collapse
|
14
|
Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol 2020; 17:403-416. [PMID: 31142822 DOI: 10.1038/s41579-019-0201-x] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The defining feature of the Gram-negative cell envelope is the presence of two cellular membranes, with the specialized glycolipid lipopolysaccharide (LPS) exclusively found on the surface of the outer membrane. The surface layer of LPS contributes to the stringent permeability properties of the outer membrane, which is particularly resistant to permeation of many toxic compounds, including antibiotics. As a common surface antigen, LPS is recognized by host immune cells, which mount defences to clear pathogenic bacteria. To alter properties of the outer membrane or evade the host immune response, Gram-negative bacteria chemically modify LPS in a wide variety of ways. Here, we review key features and physiological consequences of LPS biogenesis and modifications.
Collapse
Affiliation(s)
- Brent W Simpson
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA. .,Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
15
|
Vibrio cholerae OmpR Represses the ToxR Regulon in Response to Membrane Intercalating Agents That Are Prevalent in the Human Gastrointestinal Tract. Infect Immun 2020; 88:IAI.00912-19. [PMID: 31871096 DOI: 10.1128/iai.00912-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Multidrug efflux systems belonging to the resistance-nodulation-division (RND) superfamily are ubiquitous in Gram-negative bacteria. RND efflux systems are often associated with multiple antimicrobial resistance and also contribute to the expression of diverse bacterial phenotypes including virulence, as documented in the intestinal pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera. Transcriptomic studies with RND efflux-negative V. cholerae suggested that RND-mediated efflux was required for homeostasis, as loss of RND efflux resulted in the activation of transcriptional regulators, including multiple environmental sensing systems. In this report, we investigated six RND efflux-responsive regulatory genes for contributions to V. cholerae virulence factor production. Our data showed that the V. cholerae gene VC2714, encoding a homolog of Escherichia coli OmpR, was a virulence repressor. The expression of ompR was elevated in an RND-null mutant, and ompR deletion partially restored virulence factor production in the RND-negative background. Virulence inhibitory activity in the RND-negative background resulted from OmpR repression of the key ToxR regulon virulence activator aphB, and ompR overexpression in wild-type cells also repressed virulence through aphB We further show that ompR expression was not altered by changes in osmolarity but instead was induced by membrane-intercalating agents that are prevalent in the host gastrointestinal tract and which are substrates of the V. cholerae RND efflux systems. Our collective results indicate that V. cholerae ompR is an aphB repressor and regulates the expression of the ToxR virulence regulon in response to novel environmental cues.
Collapse
|
16
|
Espinoza-Vergara G, Hoque MM, McDougald D, Noorian P. The Impact of Protozoan Predation on the Pathogenicity of Vibrio cholerae. Front Microbiol 2020; 11:17. [PMID: 32038597 PMCID: PMC6985070 DOI: 10.3389/fmicb.2020.00017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
In the aquatic environment, Vibrio spp. interact with many living organisms that can serve as a replication niche, including heterotrophic protists, or protozoa. Protozoa engulf bacteria and package them into phagosomes where the cells are exposed to low pH, antimicrobial peptides, reactive oxygen/nitrogen species, proteolytic enzymes, and low concentrations of essential metal ions such as iron. However, some bacteria can resist these digestive processes. For example, Vibrio cholerae and Vibrio harveyi can resist intracellular digestion. In order to survive intracellularly, bacteria have acquired and/or developed specific factors that help them to resist the unfavorable conditions encountered inside of the phagosomes. Many of these intra-phagosomal factors used to kill and digest bacteria are highly conserved between eukaryotic cells and thus are also expressed by the innate immune system in the gastrointestinal tract as the first line of defense against bacterial pathogens. Since pathogenic bacteria have been shown to be hypervirulent after they have passed through protozoa, the resistance to digestion by protist hosts in their natural environment plays a key role in enhancing the infectious potential of pathogenic Vibrio spp. This review will investigate the current knowledge in interactions of bacteria with protozoa and human host to better understand the mechanisms used by both protozoa and human hosts to kill bacteria and the bacterial response to them.
Collapse
Affiliation(s)
- Gustavo Espinoza-Vergara
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - M Mozammel Hoque
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Diane McDougald
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Faculty of Science, Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Parisa Noorian
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Xi D, Li Y, Yan J, Li Y, Wang X, Cao B. Small RNA coaR contributes to intestinal colonization in Vibrio cholerae via the two-component system EnvZ/OmpR. Environ Microbiol 2020; 22:4231-4243. [PMID: 31868254 DOI: 10.1111/1462-2920.14906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022]
Abstract
Vibrio cholerae is a waterborne bacterium responsible for worldwide outbreaks of acute and fatal cholera. Recently, small regulatory RNAs (sRNAs) have become increasingly recognized as important regulators of virulence gene expression in response to environmental signals. In this study, we determined that two-component system EnvZ/OmpR was required for intestinal colonization in V. cholerae O1 EI Tor strain E12382. Analysis of the characteristics of OmpR revealed a potential binding site in the intergenic region between vc1470 and vc1471, and qRT-PCR showed that expression of the intergenic region increased 5.3-fold in the small intestine compared to LB medium. Race and northern blot assays were performed and demonstrated a new sRNA, coaR (cholerae osmolarity and acidity related regulatory RNA). A ΔcoaR mutant showed a deficient colonization ability in small intestine with CI of 0.15. We identified a target of coaR, tcpI, a negative regulator of the major pilin subunit of TcpA. The ΔtcpI mutant has an increased colonization with CI of 3.16. The expression of coaR increased 2.8-fold and 3.3-fold under relative acidic and hypertonic condition. In summary, coaR was induced under the condition of high osmolarity and acid stress via EnvZ/OmpR and explained that tcpI relieves pH-mediated repression of toxin co-regulated pilus synthesis.
Collapse
Affiliation(s)
- Daoyi Xi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yujia Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xiaochen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| |
Collapse
|
18
|
King MM, Kayastha BB, Franklin MJ, Patrauchan MA. Calcium Regulation of Bacterial Virulence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:827-855. [PMID: 31646536 DOI: 10.1007/978-3-030-12457-1_33] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) is a universal signaling ion, whose major informational role shaped the evolution of signaling pathways, enabling cellular communications and responsiveness to both the intracellular and extracellular environments. Elaborate Ca2+ regulatory networks have been well characterized in eukaryotic cells, where Ca2+ regulates a number of essential cellular processes, ranging from cell division, transport and motility, to apoptosis and pathogenesis. However, in bacteria, the knowledge on Ca2+ signaling is still fragmentary. This is complicated by the large variability of environments that bacteria inhabit with diverse levels of Ca2+. Yet another complication arises when bacterial pathogens invade a host and become exposed to different levels of Ca2+ that (1) are tightly regulated by the host, (2) control host defenses including immune responses to bacterial infections, and (3) become impaired during diseases. The invading pathogens evolved to recognize and respond to the host Ca2+, triggering the molecular mechanisms of adhesion, biofilm formation, host cellular damage, and host-defense resistance, processes enabling the development of persistent infections. In this review, we discuss: (1) Ca2+ as a determinant of a host environment for invading bacterial pathogens, (2) the role of Ca2+ in regulating main events of host colonization and bacterial virulence, and (3) the molecular mechanisms of Ca2+ signaling in bacterial pathogens.
Collapse
Affiliation(s)
- Michelle M King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Michael J Franklin
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
19
|
Zingl FG, Kohl P, Cakar F, Leitner DR, Mitterer F, Bonnington KE, Rechberger GN, Kuehn MJ, Guan Z, Reidl J, Schild S. Outer Membrane Vesiculation Facilitates Surface Exchange and In Vivo Adaptation of Vibrio cholerae. Cell Host Microbe 2019; 27:225-237.e8. [PMID: 31901519 DOI: 10.1016/j.chom.2019.12.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Gram-negative bacteria release outer membrane vesicles into the external milieu to deliver effector molecules that alter the host and facilitate virulence. Vesicle formation is driven by phospholipid accumulation in the outer membrane and regulated by the phospholipid transporter VacJ/Yrb. We use the facultative human pathogen Vibrio cholerae to show that VacJ/Yrb is silenced early during mammalian infection, which stimulates vesiculation that expedites bacterial surface exchange and adaptation to the host environment. Hypervesiculating strains rapidly alter their bacterial membrane composition and exhibit enhanced intestinal colonization fitness. This adaptation is exemplified by faster accumulation of glycine-modified lipopolysaccharide (LPS) and depletion of outer membrane porin OmpT, which confers resistance to host-derived antimicrobial peptides and bile, respectively. The competitive advantage of hypervesiculation is lost upon pre-adaptation to bile and antimicrobial peptides, indicating the importance of these adaptive processes. Thus, bacteria use outer membrane vesiculation to exchange cell surface components, thereby increasing survival during mammalian infection.
Collapse
Affiliation(s)
- Franz G Zingl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Paul Kohl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Fatih Cakar
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Deborah R Leitner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Gerald N Rechberger
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; Center for Explorative Lipidomics, BioTechMed Graz, 8010 Graz, Austria
| | - Meta J Kuehn
- Duke University Medical Center, Durham, NC 27710, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria.
| |
Collapse
|
20
|
Schwartzman JA, Lynch JB, Ramos SF, Zhou L, Apicella MA, Yew JY, Ruby EG. Acidic pH promotes lipopolysaccharide modification and alters colonization in a bacteria-animal mutualism. Mol Microbiol 2019; 112:1326-1338. [PMID: 31400167 PMCID: PMC6823639 DOI: 10.1111/mmi.14365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Environmental pH can be an important cue for symbiotic bacteria as they colonize their eukaryotic hosts. Using the model mutualism between the marine bacterium Vibrio fischeri and the Hawaiian bobtail squid, we characterized the bacterial transcriptional response to acidic pH experienced during the shift from planktonic to host-associated lifestyles. We found several genes involved in outer membrane structure were differentially expressed based on pH, indicating alterations in membrane physiology as V. fischeri initiates its symbiotic program. Exposure to host-like pH increased the resistance of V. fischeri to the cationic antimicrobial peptide polymixin B, which resembles antibacterial molecules that are produced by the squid to select V. fischeri from the ocean microbiota. Using a forward genetic screen, we identified a homolog of eptA, a predicted phosphoethanolamine transferase, as critical for antimicrobial defense. We used MALDI-MS to verify eptA as an ethanolamine transferase for the lipid-A portion of V. fischeri lipopolysaccharide. We then used a DNA pulldown approach to discover that eptA transcription is activated by the global regulator H-NS. Finally, we revealed that eptA promotes successful squid colonization by V. fischeri, supporting its potential role in initiation of this highly specific symbiosis.
Collapse
Affiliation(s)
- Julia A. Schwartzman
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
| | - Jonathan B. Lynch
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| | | | - Lawrence Zhou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
| | - Michael A. Apicella
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City IA, USA
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| | - Edward G. Ruby
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison WI, USA
- Pacific Biosciences Research Center, University of Hawaii-Manoa, Honolulu HI, USA
| |
Collapse
|
21
|
Zhang H, Srinivas S, Xu Y, Wei W, Feng Y. Genetic and Biochemical Mechanisms for Bacterial Lipid A Modifiers Associated with Polymyxin Resistance. Trends Biochem Sci 2019; 44:973-988. [PMID: 31279652 DOI: 10.1016/j.tibs.2019.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023]
Abstract
Polymyxins are a group of detergent-like antimicrobial peptides that are the ultimate line of defense against carbapenem-resistant pathogens in clinical settings. Polymyxin resistance primarily originates from structural remodeling of lipid A anchored on bacterial surfaces. We integrate genetic, structural, and biochemical aspects of three major types of lipid A modifiers that have been shown to confer intrinsic colistin resistance. Namely, we highlight ArnT, a glycosyltransferase, EptA, a phosphoethanolamine transferase, and the AlmEFG tripartite system, which is restricted to EI Tor biotype of Vibrio cholerae O1. We also discuss the growing family of mobile colistin resistance (MCR) enzymes, each of which is analogous to EptA, and which pose great challenges to global public health.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Swaminath Srinivas
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yongchang Xu
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenhui Wei
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Youjun Feng
- Department of Pathogen Biology and Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; College of Animal Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
22
|
Han X, Liu Y, Ma Y, Zhang M, He Z, Siriwardena TN, Xu H, Bai Y, Zhang X, Reymond JL, Qiao M. Peptide dendrimers G3KL and TNS18 inhibit Pseudomonas aeruginosa biofilms. Appl Microbiol Biotechnol 2019; 103:5821-5830. [PMID: 31101943 DOI: 10.1007/s00253-019-09801-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
Herein we report that peptide dendrimers G3KL and TNS18, which were recently reported to control multidrug-resistant bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, strongly inhibit biofilm formation by P. aeruginosa PA14 below their minimum inhibitory concentration (MIC) value, under which conditions they also strongly affect swarming motility. Eradication of preformed biofilms, however, required concentrations above the MIC values. Scanning electron microscopy observation and confocal laser scanning micrographs showed that peptide dendrimers can destroy the biofilm morphological structure and thickness in a dose-dependent manner, even make the biofilm dispersed completely. Membrane potential analysis indicated that planktonic cells treated with peptide dendrimers presented an increase in fluorescence intensity, suggesting that cytoplasmic membrane could be the target of G3KL and TNS18 similarly to polymyxin B. RNA-seq analysis showed that the expressions of genes in the arnBCADTEF operon-regulating lipid A modification resulting in resistance to AMPs are differentially affected between these three compounds, suggesting that each compound targets the cell membrane but in different manner. Potent activity on planktonic cells and biofilms of P. aeruginosa suggests that peptide dendrimers G3KL and TNS18 are promising candidates of clinical development for treating infections.
Collapse
Affiliation(s)
- Xiao Han
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yujie Liu
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yibing Ma
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Mengqing Zhang
- Electricity Information and Automation College, Civil Aviation University of China, Tianjin, 300300, China
| | - Zhengjin He
- Key Laboratory of Systems Biology, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Thissa N Siriwardena
- Department of Chemistry and Biochemistry, University of Bern, 3012, Bern, Switzerland
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yanling Bai
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiuming Zhang
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, 3012, Bern, Switzerland.
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
23
|
Terceti MS, Vences A, Matanza XM, Barca AV, Noia M, Lisboa J, dos Santos NMS, do Vale A, Osorio CR. The RstAB System Impacts Virulence, Motility, Cell Morphology, Penicillin Tolerance and Production of Type II Secretion System-Dependent Factors in the Fish and Human Pathogen Photobacterium damselae subsp. damselae. Front Microbiol 2019; 10:897. [PMID: 31105680 PMCID: PMC6491958 DOI: 10.3389/fmicb.2019.00897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/08/2019] [Indexed: 01/04/2023] Open
Abstract
The RstB histidine kinase of the two component system RstAB positively regulates the expression of damselysin (Dly), phobalysin P (PhlyP) and phobalysin C (PhlyC) cytotoxins in the fish and human pathogen Photobacterium damselae subsp. damselae, a marine bacterium of the family Vibrionaceae. However, the function of the predicted cognate response regulator RstA has not been studied so far, and the role of the RstAB system in other cell functions and phenotypes remain uninvestigated. Here, we analyzed the effect of rstA and rstB mutations in cell fitness and in diverse virulence-related features. Both rstA and rstB mutants were severely impaired in virulence for sea bream and sea bass fish. Mutants in rstA and rstB genes were impaired in hemolysis and in Dly-dependent phospholipase activity but had intact PlpV-dependent phospholipase and ColP-dependent gelatinase activities. rstA and rstB mutants grown at 0.5% NaCl exhibited impaired swimming motility, enlarged cell size and impaired ability to separate after cell division, whereas at 1% NaCl the mutants exhibited normal phenotypes. Mutation of any of the two genes also impacted tolerance to benzylpenicillin. Notably, rstA and rstB mutants showed impaired secretion of a number of type II secretion system (T2SS)-dependent proteins, which included the three major cytotoxins Dly, PhlyP and PhlyC, as well as a putative delta-endotoxin and three additional uncharacterized proteins which might constitute novel virulence factors of this pathogenic bacterium. The analysis of the T2SS-dependent secretome of P. damselae subsp. damselae also led to the identification of RstAB-independent potential virulence factors as lipoproteins, sialidases and proteases. The RstAB regulon included plasmid, chromosome I and chromosome II-encoded genes that showed a differential distribution among isolates of this subspecies. This study establishes RstAB as a major regulator of virulence and diverse cellular functions in P. damselae subsp. damselae.
Collapse
Affiliation(s)
- Mateus S. Terceti
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| | - Ana Vences
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| | - Xosé M. Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| | - Alba V. Barca
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| | - Manuel Noia
- Departamento de Bioloxía Funcional, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| | - Johnny Lisboa
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nuno M. S. dos Santos
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carlos R. Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela – USC, Santiago de Compostela, Spain
| |
Collapse
|
24
|
Saul-McBeth J, Matson JS. A Periplasmic Antimicrobial Peptide-Binding Protein Is Required for Stress Survival in Vibrio cholerae. Front Microbiol 2019; 10:161. [PMID: 30804918 PMCID: PMC6370654 DOI: 10.3389/fmicb.2019.00161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae must sense and respond appropriately to stresses encountered in the aquatic environment and the human host. One stress encountered in both environments is exposure to antimicrobial peptides (AMPs), produced as a part of the innate immune response by all multicellular organisms. Previous transcriptomic analysis demonstrated that expression of Stress-inducible protein A (SipA) (VCA0732), a hypothetical protein, was highly induced by AMP exposure and was dependent on a specific uncharacterized two-component system. In order to better understand role of this protein in stress relief, we examined whether it shared any of the phenotypes reported for its homologs. SipA is required for survival in the presence of two other stressors, cadmium chloride and hydrogen peroxide, and it localizes to the bacterial periplasm, similar to its homologs. We also found that SipA physically interacts with OmpA. Importantly, we found that SipA binds AMPs in the bacterial periplasm. This suggests a model where SipA may act as a molecular chaperone, binding AMPs that enter the periplasm and delivering them to OmpA for removal from the cell. While El Tor V. cholerae strains lacking SipA do not show a survival defect in the presence of AMPs, we found that Classical sipA mutants are less able to survive in the presence of AMPs. This phenotype is likely masked in the El Tor background due to a functional lipid A modification system that increases AMP resistance in these strains. In summary, we have identified a protein that contributes to a novel mechanism of stress relief in V. cholerae.
Collapse
Affiliation(s)
- Jessica Saul-McBeth
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, United States
| | - Jyl S Matson
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
25
|
Levade I, Terrat Y, Leducq JB, Weil AA, Mayo-Smith LM, Chowdhury F, Khan AI, Boncy J, Buteau J, Ivers LC, Ryan ET, Charles RC, Calderwood SB, Qadri F, Harris JB, LaRocque RC, Shapiro BJ. Vibrio cholerae genomic diversity within and between patients. Microb Genom 2019; 3. [PMID: 29306353 PMCID: PMC5761273 DOI: 10.1099/mgen.0.000142] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cholera is a severe, water-borne diarrhoeal disease caused by toxin-producing strains of the bacterium Vibrio cholerae. Comparative genomics has revealed 'waves' of cholera transmission and evolution, in which clones are successively replaced over decades and centuries. However, the extent of V. cholerae genetic diversity within an epidemic or even within an individual patient is poorly understood. Here, we characterized V. cholerae genomic diversity at a micro-epidemiological level within and between individual patients from Bangladesh and Haiti. To capture within-patient diversity, we isolated multiple (8 to 20) V. cholerae colonies from each of eight patients, sequenced their genomes and identified point mutations and gene gain/loss events. We found limited but detectable diversity at the level of point mutations within hosts (zero to three single nucleotide variants within each patient), and comparatively higher gene content variation within hosts (at least one gain/loss event per patient, and up to 103 events in one patient). Much of the gene content variation appeared to be due to gain and loss of phage and plasmids within the V. cholerae population, with occasional exchanges between V. cholerae and other members of the gut microbiota. We also show that certain intra-host variants have phenotypic consequences. For example, the acquisition of a Bacteroides plasmid and non-synonymous mutations in a sensor histidine kinase gene both reduced biofilm formation, an important trait for environmental survival. Together, our results show that V. cholerae is measurably evolving within patients, with possible implications for disease outcomes and transmission dynamics.
Collapse
Affiliation(s)
- Inès Levade
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Yves Terrat
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Baptiste Leducq
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Ana A Weil
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Leslie M Mayo-Smith
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Fahima Chowdhury
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ashraful I Khan
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jacques Boncy
- 5National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Josiane Buteau
- 5National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Louise C Ivers
- 3Department of Medicine, Harvard Medical School, Boston, MA, USA.,6Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA.,7Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA.,8Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Richelle C Charles
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen B Calderwood
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA.,9Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Firdausi Qadri
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jason B Harris
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,10Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - B Jesse Shapiro
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Zhang H, Hou M, Xu Y, Srinivas S, Huang M, Liu L, Feng Y. Action and mechanism of the colistin resistance enzyme MCR-4. Commun Biol 2019; 2:36. [PMID: 30701201 PMCID: PMC6347640 DOI: 10.1038/s42003-018-0278-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
Colistin is the last-resort antibiotic against lethal infections with multidrug-resistant bacterial pathogens. A rainbow coalition of mobile colistin resistance (mcr) genes raises global health concerns. Here, we describe the action and mechanism of colistin resistance imparted by MCR-4, a recently-identified member from the broader MCR family. We found that MCR-4 originates from the silenced variant of Shewanella frigidimarina via progressive evolution and forms a phylogenetically-distinct group from the well-studied MCR-1/2 family. Domain-swapping experiments further confirmed that MCR-1 and MCR-4 transmembrane and catalytic domains are not functionally-interchangeable. However, structural and functional analyses demonstrated that MCR-4 possesses a similar PE lipid substrate-recognizable cavity and exploits an almost-identical ping-pong catalysis mechanism. MCR-4 also can alleviate colistin-triggered accumulation of reactive oxygen species (ROS). Taken together, this finding constitutes a functional proof that MCR-4 proceeds in a distinct evolutionary path to fulfill a consistent molecular mechanism, resulting in phenotypic colistin resistance.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Mengyun Hou
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Yongchang Xu
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Swaminath Srinivas
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Man Huang
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Lizhang Liu
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 China
| |
Collapse
|
27
|
Xu T, Cao H, Zhu W, Wang M, Du Y, Yin Z, Chen M, Liu Y, Yang B, Liu B. RNA-seq-based monitoring of gene expression changes of viable but non-culturable state of Vibrio cholerae induced by cold seawater. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:594-604. [PMID: 30058121 DOI: 10.1111/1758-2229.12685] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the acute diarrheal disease cholera. Entry into a viable but non-culturable (VBNC) state is a survival strategy by which V. cholerae withstands natural stresses and is important for the transition between the aquatic and host environments during the V. cholerae life cycle. In this study, the formation of VBNC V. cholerae induced by cold seawater exposure was investigated using RNA sequencing (RNA-seq). The analysis revealed that the expression of 1420 genes was changed on VBNC state formation. In the VBNC cells, genes related to biofilm formation, chitin utilization and stress responses were upregulated, whereas those related to cell division, morphology and ribosomal activity were mainly downregulated. The concurrent acquisition of a carbon source and the arrest of cell division in cells with low metabolic activity help bacteria increase their resistance to unfavourable environments. Moreover, two transcriptional regulators, SlmA and MetJ, were found to play roles in both VBNC formation and intestinal colonization, suggesting that some genes may function in both processes. This acquired knowledge will improve our understanding of the molecular mechanisms of stress tolerance and may help control future cholera infections and outbreaks.
Collapse
Affiliation(s)
- Tingting Xu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Wei Zhu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Yuhui Du
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Zhiqiu Yin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Min Chen
- Lab of Microbiology, Shanghai Municipal Center for Disease Control & Prevention, Shanghai, People's Republic of China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| |
Collapse
|
28
|
Xu Y, Zhong LL, Srinivas S, Sun J, Huang M, Paterson DL, Lei S, Lin J, Li X, Tang Z, Feng S, Shen C, Tian GB, Feng Y. Spread of MCR-3 Colistin Resistance in China: An Epidemiological, Genomic and Mechanistic Study. EBioMedicine 2018; 34:139-157. [PMID: 30061009 PMCID: PMC6116419 DOI: 10.1016/j.ebiom.2018.07.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mobilized resistance to colistin is evolving rapidly and its global dissemination poses a severe threat to human health and safety. Transferable colistin resistance gene, mcr-3, first identified in Shandong, China, has already been found in several countries in multidrug-resistant human infections. Here we track the spread of mcr-3 within 13 provinces in China and provide a complete characterization of its evolution, structure and function. METHODS A total of 6497 non-duplicate samples were collected from thirteen provinces in China, from 2016 to 2017 and then screened for the presence of mcr-3 gene by PCR amplification. mcr-3-positive isolates were analyzed for antibiotic resistance and by southern blot hybridization, transfer analysis and plasmid typing. We then examined the molecular evolution of MCR-3 through phylogenetic analysis. Furthermore, we also characterized the structure and function of MCR-3 through circular dichroism analyses, inductively coupled plasma mass spectrometry (ICP-MS), liquid chromatography mass spectrometry (LC/MS), confocal microscopy and chemical rescue tests. FINDINGS 49 samples (49/6497 = 0.75%) were mcr-3 positive, comprising 40 samples (40/4144 = 0.97%) from 2017 and 9 samples (9/2353 = 0.38%) from 2016. Overall, mcr-3-positive isolates were distributed in animals and humans in 8 of the 13 provinces. Three mcr-3-positive IncP-type and one mcr-1-bearing IncHI2-like plasmids were identified and characterized. MCR-3 clusters with PEA transferases from Aeromonas and other bacteria and forms a phylogenetic entity that is distinct from the MCR-1/2/P(M) family, the largest group of transferable colistin resistance determinants. Despite that the two domains of MCR-3 not being exchangeable with their counterparts in MCR-1/2, structure-guided functional mapping of MCR-3 defines a conserved PE-lipid recognizing cavity prerequisite for its enzymatic catalysis and its resultant phenotypic resistance to colistin. We therefore propose that MCR-3 uses a possible "ping-pong" mechanism to transfer the moiety of PEA from its donor PE to the 1(or 4')-phosphate of lipid A via an adduct of MCR-3-bound PEA. Additionally, the expression of MCR-3 in E. coli prevents the colistin-triggered formation of reactive oxygen species (ROS) and interferes bacterial growth and viability. INTERPRETATION Our results provide an evolutionary, structural and functional definition of MCR-3 and its epidemiology in China, paving the way for smarter policies, better surveillance and effective treatments.
Collapse
Affiliation(s)
- Yongchang Xu
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Lan-Lan Zhong
- Zhongshan School of Medicine, Key Laboratory of Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Swaminath Srinivas
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Man Huang
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - David L Paterson
- Centre for Clinical Research, Royal Brisbane and Women's Hospital, University of Queensland, Building 71/918, Brisbane QLD 4029, Australia
| | - Sheng Lei
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jingxia Lin
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Zichen Tang
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Siyuan Feng
- Zhongshan School of Medicine, Key Laboratory of Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Cong Shen
- Zhongshan School of Medicine, Key Laboratory of Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guo-Bao Tian
- Zhongshan School of Medicine, Key Laboratory of Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Youjun Feng
- Department of Medical Microbiology & Parasitology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
29
|
NtrC Adds a New Node to the Complex Regulatory Network of Biofilm Formation and vps Expression in Vibrio cholerae. J Bacteriol 2018; 200:JB.00025-18. [PMID: 29735756 DOI: 10.1128/jb.00025-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/30/2018] [Indexed: 01/27/2023] Open
Abstract
The biofilm growth mode is important in both the intestinal and environmental phases of the Vibrio cholerae life cycle. Regulation of biofilm formation involves several transcriptional regulators and alternative sigma factors. One such factor is the alternative sigma factor RpoN, which positively regulates biofilm formation. RpoN requires bacterial enhancer-binding proteins (bEBPs) to initiate transcription. The V. cholerae genome encodes seven bEBPs (LuxO, VC1522, VC1926 [DctD-1], FlrC, NtrC, VCA0142 [DctD-2], and PgtA) that belong to the NtrC family of response regulators (RRs) of two-component regulatory systems. The contribution of these regulators to biofilm formation is not well understood. In this study, we analyzed biofilm formation and the regulation of vpsL expression by RpoN activators. Mutants lacking NtrC had increased biofilm formation and vpsL expression. NtrC negatively regulates the expression of core regulators of biofilm formation (vpsR, vpsT, and hapR). NtrC from V. cholerae supported growth and activated glnA expression when nitrogen availability was limited. However, the repressive activity of NtrC toward vpsL expression was not affected by the nitrogen sources present. This study unveils the role of NtrC as a regulator of vps expression and biofilm formation in V. choleraeIMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, contributing to both environmental survival and transmission to a human host. Identifying key regulators of V. cholerae biofilm formation is necessary to fully understand how this important growth mode is modulated in response to various signals encountered in the environment and the host. In this study, we characterized the role of RRs that function as coactivators of RpoN in regulating biofilm formation and identified new components in the V. cholerae biofilm regulatory circuitry.
Collapse
|
30
|
Samanta P, Saha RN, Chowdhury G, Naha A, Sarkar S, Dutta S, Nandy RK, Okamoto K, Mukhopadhyay AK. Dissemination of newly emerged polymyxin B sensitive Vibrio cholerae O1 containing Haitian-like genetic traits in different parts of India. J Med Microbiol 2018; 67:1326-1333. [PMID: 29927375 DOI: 10.1099/jmm.0.000783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Two natural epidemic biotypes of Vibrio cholerae O1, classical and El Tor, exhibit different patterns of sensitivity against the antimicrobial peptide polymyxin B. This difference in sensitivity has been one of the major markers in biotype classification system for several decades. A recent report regarding the emergence of polymyxin B-sensitive El Tor V. cholerae O1 in Kolkata has motivated us to track the spread of the strains containing this important trait, along with Haitian-like genetic content, in different parts of India. METHODOLOGY We have collected 260 clinical V. cholerae O1 strains from 12 states in India and screened them for polymyxin B susceptibility. Genetic characterization was also performed to study the tcpA, ctxB and rtxA genotypes by allele-specific polymerase chain reaction (PCR) and nucleotide sequencing. RESULTS Interestingly, 88.85 % of the isolates were found to be sensitive to polymyxin B. All of the states, with the exception of Assam, had polymyxin B-sensitive V. cholerae strains and complete replacement with this strain was found in eight of the states. However, from 2016 onwards, all the strains tested showed sensitivity to polymyxin B. Allele-specific PCR and sequencing confirmed that all strains possessed Haitian-like genetic traits. CONCLUSION Polymyxin B-sensitive strains have begun to spread throughout India and may lead to the revision of the biotype classification. The dissemination of these new variant strains needs to be carefully monitored in different endemic populations through active holistic surveillance to understand their clinical and epidemiological consequences.
Collapse
Affiliation(s)
- Prosenjit Samanta
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Rudra Narayan Saha
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Goutam Chowdhury
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Arindam Naha
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Sounak Sarkar
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Shanta Dutta
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Ranjan Kumar Nandy
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Keinosuke Okamoto
- 2Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata 700010, India
| | - Asish Kumar Mukhopadhyay
- 1Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| |
Collapse
|
31
|
Russell R, Wang H, Benitez JA, Silva AJ. Deletion of gene encoding the nucleoid-associated protein H-NS unmasks hidden regulatory connections in El Tor biotype Vibrio cholerae. MICROBIOLOGY-SGM 2018; 164:998-1003. [PMID: 29813015 DOI: 10.1099/mic.0.000672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypervirulent atypical El Tor biotype Vibrio cholerae O1 isolates harbour mutations in the DNA-binding domain of the nucleoid-associated protein H-NS and the receiver domain of the response regulator VieA. Here, we provide two examples in which inactivation of H-NS in El Tor biotype vibrios unmasks hidden regulatory connections. First, deletion of the helix-turn-helix domain of VieA in an hns mutant background diminished biofilm formation and exopolysaccharide gene expression, a function that phenotypically opposes its phosphodiesterase activity. Second, deletion of vieA in an hns mutant diminished the expression of σE, a virulence determinant that mediates the envelope stress response. hns mutants were highly sensitive to envelope stressors compared to wild-type. However, deletion of vieA in the hns mutant restored or exceeded wild-type resistance. These findings suggest an evolutionary path for the emergence of hypervirulent strains starting from nucleotide sequence diversification affecting the interaction of H-NS with DNA.
Collapse
Affiliation(s)
- Raedeen Russell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hongxia Wang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA.,Present address: Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jorge A Benitez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Anisia J Silva
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
32
|
Osorio CR, Vences A, Matanza XM, Terceti MS. Photobacterium damselae subsp. damselae, a generalist pathogen with unique virulence factors and high genetic diversity. J Bacteriol 2018; 200:e00002-18. [PMID: 29440249 PMCID: PMC6040198 DOI: 10.1128/jb.00002-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Photobacterium damselae subsp. damselae causes vibriosis in a variety of marine animals, including fish species of importance in aquaculture. It also may cause wound infections in humans that can progress into a fatal outcome. Two major virulence factors are encoded within the large conjugative plasmid pPHDD1: the phospholipase-D damselysin (Dly) and the pore-forming toxin Phobalysin P (PhlyP). The two toxins exert hemolytic and cytolytic activity in a synergistic manner. Albeit PhlyP has close homologues in many Vibrio species, it has unique features that differentiate it from related toxins. Dly phospholipase constitutes a singular trait of P. damselae subsp. damselae among the Vibrionaceae, although related toxins are found in members of the Aeromonadaceae Fish farm outbreaks can also be caused by plasmidless strains. Such observation led to the characterization of two ubiquitous, chromosome-encoded toxins with lesser cytolytic activity: the pore forming-toxin Phobalysin C (PhlyC) and the phospholipase-hemolysin PlpV. Special attention deserves the high genetic diversity of this pathogen, with a number of strain-specific features including the cell envelope polysaccharide synthesis clusters. Fish outbreaks are likely caused by multiclonal populations which contain both plasmidless and pPHDD1-harbouring isolates, and not by well-adapted clonal complexes. Still, among such a genetic heterogeneity, it is feasible to identify conserved weak points in the biology of this bacterium: the two-component regulatory system RstAB (CarSR) was found to be necessary for maximal production of virulence factors and its inactivation severely impaired virulence.
Collapse
Affiliation(s)
- Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Ana Vences
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Xosé Manuel Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Mateus S Terceti
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
33
|
Bina XR, Howard MF, Taylor-Mulneix DL, Ante VM, Kunkle DE, Bina JE. The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins. PLoS Pathog 2018; 14:e1006804. [PMID: 29304169 PMCID: PMC5773229 DOI: 10.1371/journal.ppat.1006804] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/18/2018] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
Resistance-nodulation-division (RND) efflux systems are ubiquitous transporters in Gram-negative bacteria that are essential for antibiotic resistance. The RND efflux systems also contribute to diverse phenotypes independent of antimicrobial resistance, but the mechanism by which they affect most of these phenotypes is unclear. This is the case in Vibrio cholerae where the RND systems function in antimicrobial resistance and virulence factor production. Herein, we investigated the linkage between RND efflux and V. cholerae virulence. RNA sequencing revealed that the loss of RND efflux affected the activation state of periplasmic sensing systems including the virulence regulator ToxR. Activation of ToxR in an RND null mutant resulted in ToxR-dependent transcription of the LysR-family regulator leuO. Increased leuO transcription resulted in the repression of the ToxR virulence regulon and attenuated virulence factor production. Consistent with this, leuO deletion restored virulence factor production in an RND-null mutant, but not its ability to colonize infant mice; suggesting that RND efflux was epistatic to virulence factor production for colonization. The periplasmic sensing domain of ToxR was required for the induction of leuO transcription in the RND null mutant, suggesting that ToxR responded to metabolites that accumulated in the periplasm. Our results suggest that ToxR represses virulence factor production in response to metabolites that are normally effluxed from the cell by the RND transporters. We propose that impaired RND efflux results in periplasmic metabolite accumulation, which then activates periplasmic sensors including ToxR and two-component regulatory systems to initiate the expression of adaptive responses.
Collapse
Affiliation(s)
- X. Renee Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Mondraya F. Howard
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Dawn L. Taylor-Mulneix
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Vanessa M. Ante
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Dillon E. Kunkle
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - James E. Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
34
|
Townsley L, Shank EA. Natural-Product Antibiotics: Cues for Modulating Bacterial Biofilm Formation. Trends Microbiol 2017; 25:1016-1026. [PMID: 28688575 PMCID: PMC5701842 DOI: 10.1016/j.tim.2017.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/01/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
Cell-cell communication enables bacteria to coordinate their behavior through the production, recognition, and response to chemical signals produced by their microbial neighbors. An important example of coordinated behavior in bacteria is biofilm formation, where individual cells organize into highly complex, matrix-encased communities that differentiate into distinct cell types and divide labor among individual cells. Bacteria rely on environmental cues to influence biofilm development, including chemical cues produced by other microbes. A multitude of recent studies have demonstrated that natural-product antibiotics at subinhibitory concentrations can impact biofilm formation in neighboring microbes, supporting the hypothesis that these compounds may have evolved as signaling molecules that mediate cell-cell interactions. In this review we discuss the role of antibiotics in modulating biofilm formation and interspecies communication in bacteria.
Collapse
Affiliation(s)
- Loni Townsley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth A Shank
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Henderson JC, Herrera CM, Trent MS. AlmG, responsible for polymyxin resistance in pandemic Vibrio cholerae, is a glycyltransferase distantly related to lipid A late acyltransferases. J Biol Chem 2017; 292:21205-21215. [PMID: 29101229 DOI: 10.1074/jbc.ra117.000131] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs), such as polymyxins, are used as a last-line defense in treatment of many bacterial infections. However, some bacteria have developed resistance mechanisms to survive these compounds. Current pandemic O1 Vibrio cholerae biotype El Tor is resistant to polymyxins, whereas a previous pandemic strain of the biotype Classical is polymyxin-sensitive. The almEFG operon found in El Tor V. cholerae confers >100-fold resistance to antimicrobial peptides through aminoacylation of lipopolysaccharide (LPS), expected to decrease the negatively charged surface of the V. cholerae outer membrane. This Gram-negative system bears striking resemblance to a related Gram-positive cell-wall remodeling strategy that also promotes CAMP resistance. Mutants defective in AlmEF-dependent LPS modification exhibit reduced fitness in vivo Here, we present investigation of AlmG, the hitherto uncharacterized member of the AlmEFG pathway. Evidence for AlmG glycyl to lipid substrate transferase activity is demonstrated in vivo by heterologous expression of V. cholerae pathway enzymes in a specially engineered Escherichia coli strain. Development of a minimal keto-deoxyoctulosonate (Kdo)-lipid A domain in E. coli was necessary to facilitate chemical structure analysis and to produce a mimetic Kdo-lipid A domain AlmG substrate to that synthesized by V. cholerae. Our biochemical studies support a uniquely nuanced pathway of Gram-negative CAMPs resistance and provide a more detailed description of an enzyme of the pharmacologically relevant lysophosphospholipid acyltransferase (LPLAT) superfamily.
Collapse
Affiliation(s)
- Jeremy C Henderson
- From the Department of Infectious Diseases, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
| | - Carmen M Herrera
- From the Department of Infectious Diseases, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
| | - M Stephen Trent
- From the Department of Infectious Diseases, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
36
|
Matson JS, Livny J, DiRita VJ. A putative Vibrio cholerae two-component system controls a conserved periplasmic protein in response to the antimicrobial peptide polymyxin B. PLoS One 2017; 12:e0186199. [PMID: 29020117 PMCID: PMC5636140 DOI: 10.1371/journal.pone.0186199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/27/2017] [Indexed: 12/23/2022] Open
Abstract
The epidemic pathogen Vibrio cholerae senses and responds to different external stresses it encounters in the aquatic environment and in the human host. One stress that V. cholerae encounters in the host is exposure to antimicrobial peptides on mucosal surfaces. We used massively parallel cDNA sequencing (RNA-Seq) to quantitatively identify the transcriptome of V. cholerae grown in the presence and absence of sub-lethal concentrations of the antimicrobial peptide polymyxin B. We evaluated the transcriptome of both wild type V. cholerae and a mutant carrying a deletion of vc1639, a putative sensor kinase of an uncharacterized two-component system, under these conditions. In addition to many previously uncharacterized pathways responding with elevated transcript levels to polymyxin B exposure, we confirmed the predicted elevated transcript levels of a previously described LPS modification system in response to polymyxin B exposure. Additionally, we identified the V. cholerae homologue of visP (ygiW) as a regulatory target of VC1639. VisP is a conserved periplasmic protein implicated in lipid A modification in Salmonellae. This study provides the first systematic analysis of the transcriptional response of Vibrio cholerae to polymyxin B, raising important questions for further study regarding mechanisms used by V. cholerae to sense and respond to envelope stress.
Collapse
Affiliation(s)
- Jyl S. Matson
- Department of Medical Microbiology and Immunology, University of Toledo Medical School, Toledo, Ohio, United States of America
- * E-mail:
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Victor J. DiRita
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
37
|
Herrera CM, Henderson JC, Crofts AA, Trent MS. Novel coordination of lipopolysaccharide modifications in Vibrio cholerae promotes CAMP resistance. Mol Microbiol 2017; 106:582-596. [PMID: 28906060 DOI: 10.1111/mmi.13835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 01/02/2023]
Abstract
In the environment and during infection, the human intestinal pathogen Vibrio cholerae must overcome noxious compounds that damage the bacterial outer membrane. The El Tor and classical biotypes of O1 V. cholerae show striking differences in their resistance to membrane disrupting cationic antimicrobial peptides (CAMPs), such as polymyxins. The classical biotype is susceptible to CAMPs, but current pandemic El Tor biotype isolates gain CAMP resistance by altering the net charge of their cell surface through glycine modification of lipid A. Here we report a second lipid A modification mechanism that only functions in the V. cholerae El Tor biotype. We identify a functional EptA ortholog responsible for the transfer of the amino-residue phosphoethanolamine (pEtN) to the lipid A of V. cholerae El Tor that is not functional in the classical biotype. We previously reported that mildly acidic growth conditions (pH 5.8) downregulate expression of genes encoding the glycine modification machinery. In this report, growth at pH 5.8 increases expression of eptA with concomitant pEtN modification suggesting coordinated regulation of these LPS modification systems. Similarly, efficient pEtN lipid A substitution is seen in the absence of lipid A glycinylation. We further demonstrate EptA orthologs from non-cholerae Vibrio species are functional.
Collapse
Affiliation(s)
- Carmen M Herrera
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jeremy C Henderson
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Alexander A Crofts
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - M Stephen Trent
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
38
|
The Two-Component Signal Transduction System VxrAB Positively Regulates Vibrio cholerae Biofilm Formation. J Bacteriol 2017; 199:JB.00139-17. [PMID: 28607158 DOI: 10.1128/jb.00139-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022] Open
Abstract
Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. choleraevxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying ΔvxrA and ΔvxrB mutations are deficient in biofilm formation, while the ΔvxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels.IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers our understanding of the role that TCSs play in the regulation of V. cholerae biofilm formation.
Collapse
|
39
|
Abstract
Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases, and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide. Increasingly, the crucial role of nonhost environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, because these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen Vibrio cholerae to describe recent advances in our understanding of how pathogens survive between hosts and to highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of V. cholerae to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry into and exit from human hosts.
Collapse
|
40
|
Terceti MS, Rivas AJ, Alvarez L, Noia M, Cava F, Osorio CR. rstB Regulates Expression of the Photobacterium damselae subsp. damselae Major Virulence Factors Damselysin, Phobalysin P and Phobalysin C. Front Microbiol 2017; 8:582. [PMID: 28443076 PMCID: PMC5385354 DOI: 10.3389/fmicb.2017.00582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/21/2017] [Indexed: 01/24/2023] Open
Abstract
The marine pathogenic bacterium Photobacterium damselae subsp. damselae causes septicemia in marine animals and in humans. The pPHDD1 plasmid-encoded hemolysins damselysin (Dly) and phobalysin P (PhlyP), and the chromosome-encoded hemolysin phobalysin C (PhlyC) constitute its main virulence factors. However, the mechanisms by which expression of these three hemolysins is regulated remain unknown. Here we report the isolation of a mini-Tn10 transposon mutant which showed a strong impairment in its hemolytic activity. The transposon disrupted a putative sensor histidine kinase gene vda_000600 (rstB), which together with vda_000601 (rstA) is predicted to encode a putative two-component regulatory system. This system showed to be homologous to the Vibrio cholerae CarSR/VprAB and Escherichia coli RstAB systems. Reconstruction of the mutant by allelic exchange of rstB showed equal impairment in hemolysis, and complementation with a plasmid expressing rstAB restored hemolysis to wild-type levels. Remarkably, we demonstrated by promoter expression analyses that the reduced hemolysis in the rstB mutant was accompanied by a strong decrease in transcription activities of the three hemolysin genes dly (damselysin), hlyApl (phobalysin P) and hlyAch (phobalysin C). Thus, RstB, encoded in the small chromosome, regulates plasmid and chromosomal virulence genes. We also found that reduced expression of the three virulence genes correlated with a strong decrease in virulence in a sea bass model, demonstrating that RstB constitutes a master regulator of the three P. damselae subsp. damselae hemolysins and plays critical roles in the pathogenicity of this bacterium. This study represents the first evidence of a direct role of a RstAB-like system in the regulation of bacterial toxins.
Collapse
Affiliation(s)
- Mateus S Terceti
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Amable J Rivas
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Manuel Noia
- Departamento de Bioloxía Funcional, Facultade de Bioloxía - CIBUS, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de CompostelaSantiago de Compostela, Spain
| |
Collapse
|
41
|
Bina XR, Howard MF, Ante VM, Bina JE. Vibrio cholerae LeuO Links the ToxR Regulon to Expression of Lipid A Remodeling Genes. Infect Immun 2016; 84:3161-3171. [PMID: 27550934 PMCID: PMC5067749 DOI: 10.1128/iai.00445-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/14/2016] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is an intestinal pathogen that causes the diarrheal disease cholera. Colonization of the intestine depends upon the expression of genes that allow V. cholerae to overcome host barriers, including low pH, bile acids, and the innate immune system. ToxR is a major contributor to this process. ToxR is a membrane-spanning transcription factor that coordinates gene expression in response to environmental cues. In previous work we showed that ToxR upregulated leuO expression in response to bile salts. LeuO is a LysR family transcription factor that contributes to acid tolerance, bile resistance, and biofilm formation in V. cholerae Here, we investigated the function of ToxR and LeuO in cationic antimicrobial peptide (CAMP) resistance. We report that ToxR and LeuO contribute to CAMP resistance by regulating carRS transcription. CarRS is a two-component regulatory system that positively regulates almEFG expression. AlmEFG confers CAMP resistance by glycinylation of lipid A. We found that the expression of carRS and almEFG and the polymyxin B MIC increased in mutants lacking toxRS or leuO Conversely, leuO overexpression decreased the polymyxin B MIC. Furthermore, we found that LeuO directly bound to the carRS promoter and that ToxR-dependent activation of leuO transcription regulated carRS transcription in response to bile salts. Our results suggest that LeuO functions downstream of ToxR to modulate carRS expression in response to environmental cues. This study extends the functional role of ToxR and LeuO in environmental adaptation to include cell surface remodeling and CAMP resistance.
Collapse
Affiliation(s)
- X Renee Bina
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, USA
| | - Mondraya F Howard
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, USA
| | - Vanessa M Ante
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, USA
| | - James E Bina
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
42
|
Trimble MJ, Mlynárčik P, Kolář M, Hancock REW. Polymyxin: Alternative Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025288. [PMID: 27503996 DOI: 10.1101/cshperspect.a025288] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antibiotic resistance among pathogenic bacteria is an ever-increasing issue worldwide. Unfortunately, very little has been achieved in the pharmaceutical industry to combat this problem. This has led researchers and the medical field to revisit past drugs that were deemed too toxic for clinical use. In particular, the cyclic cationic peptides polymyxin B and colistin, which are specific for Gram-negative bacteria, have been used as "last resort" antimicrobials. Before the 1980s, these drugs were known for their renal and neural toxicities; however, new clinical practices and possibly improved manufacturing have made them safer to use. Previously suggested to primarily attack the membranes of Gram-negative bacteria and to not easily select for resistant mutants, recent research exploring resistance and mechanisms of action has provided new perspectives. This review focuses primarily on the proposed alternative mechanisms of action, known resistance mechanisms, and how these support the alternative mechanisms of action.
Collapse
Affiliation(s)
- Michael J Trimble
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Patrik Mlynárčik
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University, 771 47 Olomouc, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University, 771 47 Olomouc, Czech Republic
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
43
|
Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents 2016; 48:583-591. [PMID: 27524102 DOI: 10.1016/j.ijantimicag.2016.06.023] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
Colistin, also referred to as polymyxin E, is an effective antibiotic against most multidrug-resistant Gram-negative bacteria and is currently used as a last-line drug for treating severe bacterial infections. Colistin resistance has increased gradually for the last few years, and knowledge of its multifaceted mechanisms is expanding. This includes the newly discovered plasmid-mediated colistin resistance gene mcr-1, which has been detected in over 20 countries within 3 months of its first report. We previously reported all of the known mechanisms of polymyxin resistance in our first review in 2014, but an update seems necessary in 2016, considering the significant recent discoveries that have been made in this domain. This review provides an update about what is already known, what is new, and some unresolved questions with respect to colistin resistance.
Collapse
Affiliation(s)
- Sophie Baron
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Linda Hadjadj
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| | - Abiola Olumuyiwa Olaitan
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
44
|
Samanta P, Ghosh P, Chowdhury G, Ramamurthy T, Mukhopadhyay AK. Sensitivity to Polymyxin B in El Tor Vibrio cholerae O1 Strain, Kolkata, India. Emerg Infect Dis 2016; 21:2100-2. [PMID: 26488385 PMCID: PMC4622255 DOI: 10.3201/eid2111.150762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
Abstract
Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i) the evidence for biofilm formation during infection, (ii) the coordinate regulation of biofilm and virulence gene expression, and (iii) the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv) we discuss a model for the role of V. cholerae biofilms in pathogenicity.
Collapse
|
46
|
The LonA Protease Regulates Biofilm Formation, Motility, Virulence, and the Type VI Secretion System in Vibrio cholerae. J Bacteriol 2016; 198:973-85. [PMID: 26755629 DOI: 10.1128/jb.00741-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/05/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The presence of the Lon protease in all three domains of life hints at its biological importance. The prokaryotic Lon protease is responsible not only for degrading abnormal proteins but also for carrying out the proteolytic regulation of specific protein targets. Posttranslational regulation by Lon is known to affect a variety of physiological traits in many bacteria, including biofilm formation, motility, and virulence. Here, we identify the regulatory roles of LonA in the human pathogen Vibrio cholerae. We determined that the absence of LonA adversely affects biofilm formation, increases swimming motility, and influences intracellular levels of cyclic diguanylate. Whole-genome expression analysis revealed that the message abundance of genes involved in biofilm formation was decreased but that the message abundances of those involved in virulence and the type VI secretion system were increased in a lonA mutant compared to the wild type. We further demonstrated that a lonA mutant displays an increase in type VI secretion system activity and is markedly defective in colonization of the infant mouse. These findings suggest that LonA plays a critical role in the environmental survival and virulence of V. cholerae. IMPORTANCE Bacteria utilize intracellular proteases to degrade damaged proteins and adapt to changing environments. The Lon protease has been shown to be important for environmental adaptation and plays a crucial role in regulating the motility, biofilm formation, and virulence of numerous plant and animal pathogens. We find that LonA of the human pathogen V. cholerae is in line with this trend, as the deletion of LonA leads to hypermotility and defects in both biofilm formation and colonization of the infant mouse. In addition, we show that LonA regulates levels of cyclic diguanylate and the type VI secretion system. Our observations add to the known regulatory repertoire of the Lon protease and the current understanding of V. cholerae physiology.
Collapse
|
47
|
Vibrio cholerae Response Regulator VxrB Controls Colonization and Regulates the Type VI Secretion System. PLoS Pathog 2015; 11:e1004933. [PMID: 26000450 PMCID: PMC4441509 DOI: 10.1371/journal.ppat.1004933] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
Abstract
Two-component signal transduction systems (TCS) are used by bacteria to sense and respond to their environment. TCS are typically composed of a sensor histidine kinase (HK) and a response regulator (RR). The Vibrio cholerae genome encodes 52 RR, but the role of these RRs in V. cholerae pathogenesis is largely unknown. To identify RRs that control V. cholerae colonization, in-frame deletions of each RR were generated and the resulting mutants analyzed using an infant mouse intestine colonization assay. We found that 12 of the 52 RR were involved in intestinal colonization. Mutants lacking one previously uncharacterized RR, VCA0566 (renamed VxrB), displayed a significant colonization defect. Further experiments showed that VxrB phosphorylation state on the predicted conserved aspartate contributes to intestine colonization. The VxrB regulon was determined using whole genome expression analysis. It consists of several genes, including those genes that create the type VI secretion system (T6SS). We determined that VxrB is required for T6SS expression using several in vitro assays and bacterial killing assays, and furthermore that the T6SS is required for intestinal colonization. vxrB is encoded in a four gene operon and the other vxr operon members also modulate intestinal colonization. Lastly, though ΔvxrB exhibited a defect in single-strain intestinal colonization, the ΔvxrB strain did not show any in vitro growth defect. Overall, our work revealed that a small set of RRs is required for intestinal colonization and one of these regulators, VxrB affects colonization at least in part through its regulation of T6SS genes. Pathogenic bacteria experience varying conditions during infection of human hosts and often use two-component signal transduction systems (TCSs) to monitor their environment. TCS consists of a histidine kinase (HK), which senses environmental signals, and a corresponding response regulator (RR), which mediates a cellular response. The genome of the human pathogen V. cholerae contains a multitude of genes encoding HKs and RRs proteins. In the present study, we systematically analyzed the role of each V. cholerae RR for its role in pathogenesis. We identified a previously uncharacterized RR, VxrB, as a new virulence factor. We demonstrated that VxrB controls expression of the type VI secretion system (T6SS), a virulence nanomachine that directly translocates effectors into bacterial or host cells, thereby facilitating colonization by competing with sister cells and intestinal microbiota. This study represents the first systematic analysis of the role of all RRs in V. cholerae pathogenesis and provides a foundation for understanding the signal transduction pathways controlling V. cholerae pathogenesis.
Collapse
|