1
|
Jackson KM, Teixeira MDM, Barker BM. From soil to clinic: current advances in understanding Coccidioides and coccidioidomycosis. Microbiol Mol Biol Rev 2024; 88:e0016123. [PMID: 39365073 DOI: 10.1128/mmbr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYCoccidioides immitis and Coccidioides posadasii are fungal pathogens that cause systemic mycoses and are prevalent in arid regions in the Americas. While C. immitis mainly occurs in California and Washington, C. posadasii is widely distributed across North and South America. Both species induce coccidioidomycosis (San Joaquin Valley fever or, more commonly, Valley fever), with reported cases surging in the United States, notably in California and Arizona. Moreover, cases in Argentina, Brazil, and Mexico are on the rise. Climate change and environmental alterations conducive to Coccidioides spp. proliferation have been recently explored. Diagnostic challenges contribute to delayed treatment initiation, compounded by limited therapeutic options. Although antifungal drugs are often effective treatments, some patients do not respond to current therapies, underscoring the urgent need for a vaccine, particularly for vulnerable populations over 60 years old relocating to endemic areas. Despite recent progress, gaps persist in the understanding of Coccidioides ecology, host immune responses, and vaccine development. This review synthesizes recent research advancements in Coccidioides ecology, genomics, and immune responses, emphasizing ongoing efforts to develop a human vaccine.
Collapse
Affiliation(s)
- Katrina M Jackson
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Marcus de Melo Teixeira
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Faculty of Medicine, University of Brasília, Brasília-DF, Brasília, Brazil
| | - Bridget M Barker
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
2
|
Davalos OA, Sebastian A, Leon NF, Rangel MV, Miranda N, Murugesh DK, Phillips AM, Hoyer KK, Hum NR, Loots GG, Weilhammer DR. Spatiotemporal analysis of lung immune dynamics in lethal Coccidioides posadasii infection. mBio 2024:e0256224. [PMID: 39611685 DOI: 10.1128/mbio.02562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Coccidioidomycosis, or Valley fever, is a lung disease caused by inhalation of Coccidioides fungi, prevalent in the Southwestern United States, Mexico, and parts of Central and South America. Annually, the United States reports 10,000-20,000 cases, although those numbers are expected to increase as climate change expands the fungal geographic range. While 60% of infections are asymptomatic, 40% symptomatic infections are often misdiagnosed due to similarities with bronchitis or pneumonia. A small subset of infection progress to severe illness, necessitating a better understanding of immune responses during lethal infection. Using single-cell RNA sequencing and spatial transcriptomics, we characterized lung responses during Coccidioides infection. We identified monocyte-derived Spp1-expressing macrophages as potential mediators of tissue remodeling and fibrosis, marked by high expression of profibrotic and proinflammatory transcripts. These macrophages showed elevated TGF-β and IL-6 signaling, pathways involved in fibrosis pathogenesis. Additionally, we observed significant neutrophil infiltration and defective lymphocyte responses, indicating severe adaptive immunity dysregulation in lethal, acute infection. These findings enhance our understanding of Coccidioides infection and suggest new therapeutic targets.IMPORTANCECoccidioidomycosis, commonly known as Valley fever, is a lung disease caused by the inhalation of Coccidioides fungi, which is prevalent in the Southwestern United States, Mexico, and parts of Central and South America. With climate change potentially expanding the geographic range of this fungus, understanding the immune responses during severe infections is crucial. Our study used advanced techniques to analyze lung responses during Coccidioides infection, identifying specific immune cells that may contribute to tissue damage and fibrosis. These findings provide new insights into the disease mechanisms and suggest potential targets for therapeutic intervention, which could improve outcomes for patients suffering from severe Valley fever.
Collapse
Affiliation(s)
- Oscar A Davalos
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Nicole F Leon
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Margarita V Rangel
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Nadia Miranda
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
- Department of Molecular and Cell Biology, School of Natural Sciences, Health Sciences Research Institute, University of California Merced, Merced, California, USA
| | - Deepa K Murugesh
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Ashlee M Phillips
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Katrina K Hoyer
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
- Department of Molecular and Cell Biology, School of Natural Sciences, Health Sciences Research Institute, University of California Merced, Merced, California, USA
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Gabriela G Loots
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, California, USA
| | - Dina R Weilhammer
- Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
3
|
Harding AT, Crossen AJ, Reedy JL, Basham KJ, Hepworth OW, Zhang Y, Shah VS, Harding HB, Surve MV, Simaku P, Kwaku GN, Jensen KN, Otto Y, Ward RA, Thompson GR, Klein BS, Rajagopal J, Sen P, Haber AL, Vyas JM. Single-cell analysis of human airway epithelium identifies cell type-specific responses to Aspergillus and Coccidioides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612147. [PMID: 39314271 PMCID: PMC11418999 DOI: 10.1101/2024.09.09.612147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Respiratory fungal infections pose a significant threat to human health. Animal models do not fully recapitulate human disease, necessitating advanced models to study human-fungal pathogen interactions. In this study, we utilized primary human airway epithelial cells (hAECs) to recapitulate the lung environment in vitro and investigate cellular responses to two diverse, clinically significant fungal pathogens, Aspergillus fumigatus and Coccidioides posadasii. To understand the mechanisms of early pathogenesis for both fungi, we performed single-cell RNA sequencing of infected hAECs. Analysis revealed that both fungi induced cellular stress and cytokine production. However, the cell subtypes affected and specific pathways differed between fungi, with A. fumigatus and C. posadasii triggering protein-folding-related stress in ciliated cells and hypoxia responses in secretory cells, respectively. This study represents one of the first reports of single-cell transcriptional analysis of hAECs infected with either A. fumigatus or C. posadasii, providing a vital dataset to dissect the mechanism of disease and potentially identify targetable pathways.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge MA
- Department of Microbiology, Harvard Medical School, Cambridge MA
| | - Arianne J. Crossen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kyle J. Basham
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia W. Hepworth
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yanting Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Viral S. Shah
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hannah Brown Harding
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manalee V. Surve
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patricia Simaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Geneva N. Kwaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kristine Nolling Jensen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yohana Otto
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - George R. Thompson
- Division of Infectious Diseases, and Departments of Internal Medicine and Medical Microbiology and Immunology, University of California-Davis, Sacramento, CA, USA
| | - Bruce S. Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jayaraj Rajagopal
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam L. Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
4
|
Wang Z, Shao J. Fungal vaccines and adjuvants: a tool to reveal the interaction between host and fungi. Arch Microbiol 2024; 206:293. [PMID: 38850421 DOI: 10.1007/s00203-024-04010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Fungal infections are incurring high risks in a range from superficial mucosal discomforts (such as oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated life-threatening diseases (such as invasive pulmonary aspergillosis and cryptococcal meningitis) and becoming a global health problem in especially immunodeficient population. The major obstacle to conquer fungal harassment lies in the presence of increasing resistance to conventional antifungal agents used in newly clinically isolated strains. Although recombinant cytokines and mono-/poly-clonal antibodies are added into antifungal armamentarium, more effective antimycotic drugs are exceedingly demanded. It is comforting that the development of fungal vaccines and adjuvants opens up a window to brighten the prospective way in the diagnosis, prevention and treatment of fungal assaults. In this review, we focus on the progression of several major fungal vaccines devised for the control of Candida spp., Aspergillus spp., Cryptococcus spp., Coccidioides spp., Paracoccidioides spp., Blastomyces spp., Histoplasma spp., Pneumocystis spp. as well as the adjuvants adopted. We then expound the interaction between fungal vaccines/adjuvants and host innate (macrophages, dendritic cells, neutrophils), humoral (IgG, IgM and IgA) and cellular (Th1, Th2, Th17 and Tc17) immune responses which generally experience immune recognition of pattern recognition receptors, activation of immune cells, and clearance of invaded fungi. Furthermore, we anticipate an in-depth understanding of immunomodulatory properties of univalent and multivalent vaccines against diverse opportunistic fungi, providing helpful information in the design of novel fungal vaccines and adjuvants.
Collapse
Affiliation(s)
- Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
5
|
Mendoza Barker M, Saeger S, Campuzano A, Yu JJ, Hung CY. Galleria mellonella Model of Coccidioidomycosis for Drug Susceptibility Tests and Virulence Factor Identification. J Fungi (Basel) 2024; 10:131. [PMID: 38392803 PMCID: PMC10890491 DOI: 10.3390/jof10020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Coccidioidomycosis (CM) can manifest as respiratory and disseminated diseases that are caused by dimorphic fungal pathogens, such as Coccidioides species. The inhaled arthroconidia generated during the saprobic growth phase convert into multinucleated spherules in the lungs to complete the parasitic lifecycle. Research on coccidioidal virulence and pathogenesis primarily employs murine models typically associated with low lethal doses (LD100 < 100 spores). However, the Galleria model has recently garnered attention due to its immune system bearing both structural and functional similarities to the innate system of mammals. Our findings indicate that Coccidioides posadasii can convert and complete the parasitic cycle within the hemocoel of the Galleria larva. In Galleria, the LD100 is between 0.5 and 1.0 × 106 viable spores for the clinical isolate Coccidioides posadasii C735. Furthermore, we demonstrated the suitability of this model for in vivo antifungal susceptibility tests to validate the bioreactivity of newly discovered antifungals against Coccidioides. Additionally, we utilized this larva model to screen a Coccidioides posadasii mutant library showing attenuated virulence. Similarly, the identified attenuated coccidioidal mutants displayed a loss of virulence in a commonly used murine model of coccidioidomycosis. In this study, we demonstrated that Galleria larvae can be applied as a model for studying Coccidioides infection.
Collapse
Affiliation(s)
| | | | | | | | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (M.M.B.); (S.S.); (A.C.); (J.-J.Y.)
| |
Collapse
|
6
|
Campuzano A, Pentakota KD, Liao YR, Zhang H, Wiederhold NP, Ostroff GR, Hung CY. A Recombinant Multivalent Vaccine (rCpa1) Induces Protection for C57BL/6 and HLA Transgenic Mice against Pulmonary Infection with Both Species of Coccidioides. Vaccines (Basel) 2024; 12:67. [PMID: 38250880 PMCID: PMC10819930 DOI: 10.3390/vaccines12010067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Coccidioidomycosis is caused by Coccidioides posadasii (Cp) and Coccidioides immitis (Ci), which have a 4-5% difference in their genomic sequences. There is an urgent need to develop a human vaccine against both species. A previously created recombinant antigen (rCpa1) that contains multiple peptides derived from Cp isolate C735 is protective against the autologous isolate. The focus of this study is to evaluate cross-protective efficacy and immune correlates by the rCpa1-based vaccine against both species of Coccidioides. DNA sequence analyses of the homologous genes for the rCpa1 antigen were conducted for 39 and 17 clinical isolates of Cp and Ci, respectively. Protective efficacy and vaccine-induced immunity were evaluated for both C57BL/6 and human HLA-DR4 transgenic mice against five highly virulent isolates of Cp and Ci. There are total of seven amino acid substitutions in the rCpa1 antigen between Cp and Ci. Both C57BL/6 and HLA-DR4 mice that were vaccinated with an rCpa1 vaccine had a significant reduction of fungal burden and increased numbers of IFN-γ- and IL-17-producing CD4+ T cells in the first 2 weeks post challenge. These data suggest that rCpa1 has cross-protection activity against Cp and Ci pulmonary infection through activation of early Th1 and Th17 responses.
Collapse
Affiliation(s)
- Althea Campuzano
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Komali Devi Pentakota
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Yu-Rou Liao
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| | - Nathan P. Wiederhold
- Department of Pathology, Graduate School of Biomedical Sciences, UT Health, San Antonio, TX 78229, USA;
| | - Gary R. Ostroff
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01655, USA;
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (A.C.); (H.Z.)
| |
Collapse
|
7
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
8
|
Kumar R, Srivastava V. Application of anti-fungal vaccines as a tool against emerging anti-fungal resistance. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1241539. [PMID: 37746132 PMCID: PMC10512234 DOI: 10.3389/ffunb.2023.1241539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023]
Abstract
After viruses and bacteria, fungal infections remain a serious threat to the survival and well-being of society. The continuous emergence of resistance against commonly used anti-fungal drugs is a serious concern. The eukaryotic nature of fungal cells makes the identification of novel anti-fungal agents slow and difficult. Increasing global temperature and a humid environment conducive to fungal growth may lead to a fungal endemic or a pandemic. The continuous increase in the population of immunocompromised individuals and falling immunity forced pharmaceutical companies to look for alternative strategies for better managing the global fungal burden. Prevention of infectious diseases by vaccines can be the right choice. Recent success and safe application of mRNA-based vaccines can play a crucial role in our quest to overcome anti-fungal resistance. Expressing fungal cell surface proteins in human subjects using mRNA technology may be sufficient to raise immune response to protect against future fungal infection. The success of mRNA-based anti-fungal vaccines will heavily depend on the identification of fungal surface proteins which are highly immunogenic and have no or least side effects in human subjects. The present review discusses why it is essential to look for anti-fungal vaccines and how vaccines, in general, and mRNA-based vaccines, in particular, can be the right choice in tackling the problem of rising anti-fungal resistance.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Pathology, Collage of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
9
|
Miranda N, Hoyer KK. Coccidioidomycosis Granulomas Informed by Other Diseases: Advancements, Gaps, and Challenges. J Fungi (Basel) 2023; 9:650. [PMID: 37367586 DOI: 10.3390/jof9060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Valley fever is a respiratory disease caused by a soil fungus, Coccidioides, that is inhaled upon soil disruption. One mechanism by which the host immune system attempts to control and eliminate Coccidioides is through granuloma formation. However, very little is known about granulomas during Coccidioides infection. Granulomas were first identified in tuberculosis (TB) lungs as early as 1679, and yet many gaps in our understanding of granuloma formation, maintenance, and regulation remain. Granulomas are best defined in TB, providing clues that may be leveraged to understand Coccidioides infections. Granulomas also form during several other infectious and spontaneous diseases including sarcoidosis, chronic granulomatous disease (CGD), and others. This review explores our current understanding of granulomas, as well as potential mechanisms, and applies this knowledge to unraveling coccidioidomycosis granulomas.
Collapse
Affiliation(s)
- Nadia Miranda
- Quantitative Systems Biology Graduate Program, University of California Merced, Merced, CA 95343, USA
| | - Katrina K Hoyer
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
10
|
Tejeda-Garibay S, Hoyer KK. Coccidioidomycosis and Host Microbiome Interactions: What We Know and What We Can Infer from Other Respiratory Infections. J Fungi (Basel) 2023; 9:586. [PMID: 37233297 PMCID: PMC10219296 DOI: 10.3390/jof9050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Between 70 and 80% of Valley fever patients receive one or more rounds of antibiotic treatment prior to accurate diagnosis with coccidioidomycosis. Antibiotic treatment and infection (bacterial, viral, fungal, parasitic) often have negative implications on host microbial dysbiosis, immunological responses, and disease outcome. These perturbations have focused on the impact of gut dysbiosis on pulmonary disease instead of the implications of direct lung dysbiosis. However, recent work highlights a need to establish the direct effects of the lung microbiota on infection outcome. Cystic fibrosis, chronic obstructive pulmonary disease, COVID-19, and M. tuberculosis studies suggest that surveying the lung microbiota composition can serve as a predictive factor of disease severity and could inform treatment options. In addition to traditional treatment options, probiotics can reverse perturbation-induced repercussions on disease outcomes. The purpose of this review is to speculate on the effects perturbations of the host microbiome can have on coccidioidomycosis progression. To do this, parallels are drawn to aa compilation of other host microbiome infection studies.
Collapse
Affiliation(s)
- Susana Tejeda-Garibay
- Quantitative and Systems Biology, Graduate Program, University of California Merced, Merced, CA 95343, USA
| | - Katrina K. Hoyer
- Department of Molecular and Cell Biology, University California Merced, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
11
|
Coyne V, Mead HL, Mongini PKA, Barker BM. B Cell Chronic Lymphocytic Leukemia Development in Mice with Chronic Lung Exposure to Coccidioides Fungal Arthroconidia. Immunohorizons 2023; 7:333-352. [PMID: 37195872 PMCID: PMC10579974 DOI: 10.4049/immunohorizons.2300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Links between repeated microbial infections and B cell chronic lymphocytic leukemia (B-CLL) have been proposed but not tested directly. This study examines how prolonged exposure to a human fungal pathogen impacts B-CLL development in Eµ-hTCL1-transgenic mice. Monthly lung exposure to inactivated Coccidioides arthroconidia, agents of Valley fever, altered leukemia development in a species-specific manner, with Coccidioides posadasii hastening B-CLL diagnosis/progression in a fraction of mice and Coccidioides immitis delaying aggressive B-CLL development, despite fostering more rapid monoclonal B cell lymphocytosis. Overall survival did not differ significantly between control and C. posadasii-treated cohorts but was significantly extended in C. immitis-exposed mice. In vivo doubling time analyses of pooled B-CLL showed no difference in growth rates of early and late leukemias. However, within C. immitis-treated mice, B-CLL manifests longer doubling times, as compared with B-CLL in control or C. posadasii-treated mice, and/or evidence of clonal contraction over time. Through linear regression, positive relationships were noted between circulating levels of CD5+/B220low B cells and hematopoietic cells previously linked to B-CLL growth, albeit in a cohort-specific manner. Neutrophils were positively linked to accelerated growth in mice exposed to either Coccidioides species, but not in control mice. Conversely, only C. posadasii-exposed and control cohorts displayed positive links between CD5+/B220low B cell frequency and abundance of M2 anti-inflammatory monocytes and T cells. The current study provides evidence that chronic lung exposure to fungal arthroconidia affects B-CLL development in a manner dependent on fungal genotype. Correlative studies suggest that fungal species differences in the modulation of nonleukemic hematopoietic cells are involved.
Collapse
Affiliation(s)
- Vanessa Coyne
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | - Heather L. Mead
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | | | - Bridget M. Barker
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
12
|
Gorris ME, Ardon-Dryer K, Campuzano A, Castañón-Olivares LR, Gill TE, Greene A, Hung CY, Kaufeld KA, Lacy M, Sánchez-Paredes E. Advocating for Coccidioidomycosis to Be a Reportable Disease Nationwide in the United States and Encouraging Disease Surveillance across North and South America. J Fungi (Basel) 2023; 9:83. [PMID: 36675904 PMCID: PMC9863933 DOI: 10.3390/jof9010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Coccidioidomycosis (Valley fever) has been a known health threat in the United States (US) since the 1930s, though not all states are currently required to report disease cases. Texas, one of the non-reporting states, is an example of where both historical and contemporary scientific evidence define the region as endemic, but we don't know disease incidence in the state. Mandating coccidioidomycosis as a reportable disease across more US states would increase disease awareness, improve clinical outcomes, and help antifungal drug and vaccine development. It would also increase our understanding of where the disease is endemic and the relationships between environmental conditions and disease cases. This is true for other nations in North and South America that are also likely endemic for coccidioidomycosis, especially Mexico. This commentary advocates for US state and territory epidemiologists to define coccidioidomycosis as a reportable disease and encourages disease surveillance in other endemic regions across North and South America in order to protect human health and reduce disease burden.
Collapse
Affiliation(s)
- Morgan E. Gorris
- Information Systems and Modeling, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karin Ardon-Dryer
- Department of Geosciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Althea Campuzano
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Laura R. Castañón-Olivares
- Unidad de Micología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Thomas E. Gill
- Environmental Science and Engineering Program, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Andrew Greene
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Kimberly A. Kaufeld
- Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Mark Lacy
- Infectious Disease, Pediatrics, Internal Medicine, University of New Mexico Health, Albuquerque, NM 87106, USA
| | - Edith Sánchez-Paredes
- Unidad de Micología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
13
|
Woodring T, Deepe GS, Levitz SM, Wuethrich M, Klein BS. They shall not grow mold: Soldiers of innate and adaptive immunity to fungi. Semin Immunol 2023; 65:101673. [PMID: 36459927 PMCID: PMC10311222 DOI: 10.1016/j.smim.2022.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Fungi are ubiquitous commensals, seasoned predators, and important agents of emerging infectious diseases [1 ]. The immune system assumes the essential responsibility for responding intelligently to the presence of known and novel fungi to maintain host health. In this Review, we describe the immune responses to pathogenic fungi and the varied array of fungal agents confronting the vertebrate host within the broader context of fungal and animal evolution. We provide an overview of the mechanistic details of innate and adaptive antifungal immune responses, as well as ways in which these basic mechanisms support the development of vaccines and immunotherapies.
Collapse
Affiliation(s)
- Therese Woodring
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - George S Deepe
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcel Wuethrich
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA.
| |
Collapse
|
14
|
GM-CSF+ Tc17 cells are required to bolster vaccine immunity against lethal fungal pneumonia without causing overt pathology. Cell Rep 2022; 41:111543. [PMID: 36288707 PMCID: PMC9641983 DOI: 10.1016/j.celrep.2022.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
GM-CSF co-expressing T17 cells instigate pathologic inflammation during autoimmune disorders, but their function in immunity to infections is unclear. Here, we demonstrate the role of GM-CSF+Tc17 cells for vaccine immunity against lethal fungal pneumonia and the cytokine requirements for their induction and memory homeostasis. Vaccine-induced GM-CSF+ Tc17 cells are necessary to bolster pulmonary fungal immunity without inflating pathology. Although GM-CSF expressing Tc17 cells preferentially elevate during the memory phase, their phenotypic attributes strongly suggest they are more like Tc17 cells than IFNγ-producing Tc1 cells. IL-1 and IL-23, but not GM-CSF, are necessary to elicit GM-CSF+Tc17 cells following vaccination. IL-23 is dispensable for memory Tc17 and GM-CSF+ Tc17 cell maintenance, but recall responses of effector or memory Tc17 cells in the lung require it. Our study reveals the beneficial, nonpathological role of GM-CSF+ Tc17 cells during fungal vaccine immunity. GM-CSF+ and IL-17A+ lineages of T cells are instrumental in controlling many fungal and bacterial infections and implicated in autoimmune pathology, host-microbial interactions at the mucosal surfaces, and neuro-immune nexus. Mudalagiriyappa et al. show that GM-CSF expressing Tc17 cells are necessary for mediating fungal vaccine immunity without augmenting pathology.
Collapse
|
15
|
Powell DA, Hsu AP, Butkiewicz CD, Trinh HT, Frelinger JA, Holland SM, Galgiani JN, Shubitz LF. Vaccine Protection of Mice With Primary Immunodeficiencies Against Disseminated Coccidioidomycosis. Front Cell Infect Microbiol 2022; 11:790488. [PMID: 35071044 PMCID: PMC8777018 DOI: 10.3389/fcimb.2021.790488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Disseminated coccidioidomycosis (DCM), often a severe and refractory disease leading to poor outcomes, is a risk for people with certain primary immunodeficiencies (PID). Several DCM-associated PID (STAT4, STAT3, IFNγ, and Dectin-1) are modeled in mice. To determine if vaccination could provide these mice protection, mice with mutations in Stat4, Stat3, Ifngr1, Clec7a (Dectin-1), and Rag-1 (T- and B-cell deficient) knockout (KO) mice were vaccinated with the live, avirulent, Δcps1 vaccine strain and subsequently challenged intranasally with pathogenic Coccidioides posadasii Silveira strain. Two weeks post-infection, vaccinated mice of all strains except Rag-1 KO had significantly reduced lung and spleen fungal burdens (p<0.05) compared to unvaccinated control mice. Splenic dissemination was prevented in most vaccinated immunodeficient mice while all unvaccinated B6 mice and the Rag-1 KO mice displayed disseminated disease. The mitigation of DCM by Δcps1 vaccination in these mice suggests that it could also benefit humans with immunogenetic risks of severe disease.
Collapse
Affiliation(s)
- Daniel A. Powell
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Amy P. Hsu
- Laboratory of Clinical and Infectious Diseases, National Institutes of Allergy and Infectious Disease, Bethesda, MD, United States
| | | | - Hien T. Trinh
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| | - Jeffrey A. Frelinger
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| | - Steven M. Holland
- Laboratory of Clinical and Infectious Diseases, National Institutes of Allergy and Infectious Disease, Bethesda, MD, United States
| | - John N. Galgiani
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Lisa F. Shubitz
- Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
16
|
Sous R, Levkiavska Y, Sharma R, Jariwal R, Amodio D, Johnson RH, Heidari A, Kuran R. Two Cases of Miliary and Disseminated Coccidioidomycosis Following Glucocorticoid Therapy and Literature Review. J Investig Med High Impact Case Rep 2022; 10:23247096211051928. [PMID: 35225034 PMCID: PMC8891939 DOI: 10.1177/23247096211051928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A 49-year-old man with no significant past medical history received dexamethasone as part of his treatment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Less than 3 weeks later, the patient developed acute respiratory distress syndrome. Radiological and serological testing led to a diagnosis of acute hypoxic miliary coccidioidomycosis. A 52-year-old man with a past medical history of chronic kidney disease (CKD) was treated with prednisone for focal segmental glomerulosclerosis (FSGS). Within 2 weeks, this patient developed bilateral lower extremity weakness. Radiology, serology, and lumbar puncture proved a diagnosis of reactivated coccidioidomycosis with miliary pattern and coccidioidomycosis meningoencephalitis with arachnoiditis. Whether treatment with glucocorticoids caused reactivation of coccidioidomycosis is discussed in this case series.
Collapse
Affiliation(s)
| | | | - Rupam Sharma
- Kern Medical, Bakersfield, CA, USA.,Valley Fever Institute at Kern Medical, Bakersfield, CA, USA
| | | | - Daniela Amodio
- Rio Bravo Family Medicine Residency Program, Bakersfield, CA, USA
| | - Royce H Johnson
- Kern Medical, Bakersfield, CA, USA.,Valley Fever Institute at Kern Medical, Bakersfield, CA, USA
| | - Arash Heidari
- Kern Medical, Bakersfield, CA, USA.,Valley Fever Institute at Kern Medical, Bakersfield, CA, USA
| | - Rasha Kuran
- Kern Medical, Bakersfield, CA, USA.,Valley Fever Institute at Kern Medical, Bakersfield, CA, USA
| |
Collapse
|
17
|
Coser LDO, Genaro LM, Justo-Junior AS, Trabasso P, Pereira RM, Ruas LP, Blotta MH. Evaluation of CD8 + T cell subpopulations in paracoccidioidomycosis. Future Microbiol 2021; 16:977-985. [PMID: 34402655 DOI: 10.2217/fmb-2020-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We aimed to verify the frequency of CD8+ T cell subsets in patients with acute form and chronic form of paracoccidioidomycosis. Material & Methods: Mononuclear cells from paracoccidioidomycosis patients and healthy donors were isolated and phenotyped by flow cytometry. Dendritic cells were pulsed with Paracoccidioides brasiliensis yeast and co-cultures with lymphocytes. Cytokine production was measured by ELISA. Results: Acute form patients present a higher frequency of Tc1 and Tc10 cells, while chronic form patients have more Tc1 and Tc21 cells, compared with healthy controls. In vitro assays showed that P. brasiliensis induced polarization to the Tc17/Tc22 subsets. Conclusion: Our results suggest that CD8+ T cells can respond in a similar way to P. brasiliensis infection, regardless of the clinical presentation of the disease.
Collapse
Affiliation(s)
- Lilian de O Coser
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lívia M Genaro
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Amauri S Justo-Junior
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Plínio Trabasso
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ricardo M Pereira
- Department of Pediatrics, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luciana P Ruas
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maria Hsl Blotta
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
18
|
Diep AL, Tejeda-Garibay S, Miranda N, Hoyer KK. Macrophage and Dendritic Cell Activation and Polarization in Response to Coccidioidesposadasii Infection. J Fungi (Basel) 2021; 7:jof7080630. [PMID: 34436169 PMCID: PMC8397226 DOI: 10.3390/jof7080630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Coccidioidomycosis is a fungal, respiratory disease caused by Coccidioides immitis and Coccidioides posadasii. The host immune responses that define disease outcome during infection are largely unknown, although T helper responses are required. Adaptive immunity is influenced by innate immunity as antigen-presenting cells activate and educate adaptive responses. Macrophage and dendritic cell (DC) recognition of pathogen surface molecules are critical for Coccidioides clearance. We characterize the broad innate immune responses to Coccidioides by analyzing macrophage and dendritic cell responses to Coccidioides arthroconidia using avirulent, vaccine Coccidioides strain NR-166 (Δcts2/Δard1/Δcts3), developed from parental virulent strain C735. We developed a novel flow cytometry-based method to analyze macrophage phagocytosis to complement traditional image-scoring methods. Our study found that macrophage polarization is blocked at M0 phase and activation reduced, while DCs polarize into proinflammatory DC1s, but not anti-inflammatory DC2, following interaction with Coccidioides. However, DCs exhibit a contact-dependent reduced activation to Coccidioides as defined by co-expression of MHC-II and CD86. In vivo, only modest DC1/DC2 recruitment and activation was observed with avirulent Coccidioides infection. In conclusion, the vaccine Coccidioides strain recruited a mixed DC population in vivo, while in vitro data suggest active innate immune cell inhibition by Coccidioides.
Collapse
Affiliation(s)
- Anh L. Diep
- Quantitative Systems Biology Graduate Programme, University of California Merced, Merced, CA 95343, USA; (A.L.D.); (S.T.-G.); (N.M.)
| | - Susana Tejeda-Garibay
- Quantitative Systems Biology Graduate Programme, University of California Merced, Merced, CA 95343, USA; (A.L.D.); (S.T.-G.); (N.M.)
| | - Nadia Miranda
- Quantitative Systems Biology Graduate Programme, University of California Merced, Merced, CA 95343, USA; (A.L.D.); (S.T.-G.); (N.M.)
| | - Katrina K. Hoyer
- Quantitative Systems Biology Graduate Programme, University of California Merced, Merced, CA 95343, USA; (A.L.D.); (S.T.-G.); (N.M.)
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA 95343, USA
- Correspondence: ; Tel.: +1-(209)-228-4229
| |
Collapse
|
19
|
Gorris ME, Caballero Van Dyke MC, Carey A, Hamm PS, Mead HL, Uehling JK. A Review of Coccidioides Research, Outstanding Questions in the Field, and Contributions by Women Scientists. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021; 8:114-128. [PMID: 34367880 PMCID: PMC8327307 DOI: 10.1007/s40588-021-00173-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 12/19/2022]
Abstract
Purpose of Review Coccidioidomycosis is an infectious disease that gained clinical significance in the early 20th century. Many of the foundational contributions to coccidioidomycosis research, including the discovery of the fungal disease agent, Coccidioides spp., were made by women. We review recent progress in Coccidioides research and big questions remaining in the field, while highlighting some of the contributions from women. Recent Findings New molecular-based techniques provide a promising method for detecting Coccidioides, which can help determine the dominate reservoir host and ideal environmental conditions for growth. Genetic and genomic analyses have allowed an understanding of population structure, species level diversity, and evolutionary histories. We present a current, comprehensive genome list, where women contributed many of these entries. Several efforts to develop a coccidioidomycosis vaccine are underway. Summary Women continue to pioneer research on Coccidioides, including the relationships between the fungi and the environment, genetics, and clinical observations. Significant questions remain in the field of Coccidioides, including the main host reservoir, the relationships between genotypic and phenotypic variation, and the underlying cause for chronic clinical coccidioidomycosis cases.
Collapse
Affiliation(s)
- Morgan E Gorris
- Los Alamos National Laboratory, Information Systems and Modeling & Center for Nonlinear Studies, Los Alamos, NM USA
| | | | - Adrienne Carey
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Paris S Hamm
- Department of Biology, University of New Mexico, Albuquerque, NM USA
| | - Heather L Mead
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ USA
| | - Jessie K Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR USA
| |
Collapse
|
20
|
The Role of IL-17-Producing Cells in Cutaneous Fungal Infections. Int J Mol Sci 2021; 22:ijms22115794. [PMID: 34071562 PMCID: PMC8198319 DOI: 10.3390/ijms22115794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The skin is the outermost layer of the body and is exposed to many environmental stimuli, which cause various inflammatory immune responses in the skin. Among them, fungi are common microorganisms that colonize the skin and cause cutaneous fungal diseases such as candidiasis and dermatophytosis. The skin exerts inflammatory responses to eliminate these fungi through the cooperation of skin-component immune cells. IL-17 producing cells are representative immune cells that play a vital role in anti-fungal action in the skin by producing antimicrobial peptides and facilitating neutrophil infiltration. However, the actual impact of IL-17-producing cells in cutaneous fungal infections remains unclear. In this review, we focused on the role of IL-17-producing cells in a series of cutaneous fungal infections, the characteristics of skin infectious fungi, and the recognition of cell components that drive cutaneous immune cells.
Collapse
|
21
|
Interleukin-8 Receptor 2 (IL-8R2)-Deficient Mice Are More Resistant to Pulmonary Coccidioidomycosis than Control Mice. Infect Immun 2020; 89:IAI.00883-19. [PMID: 33106296 DOI: 10.1128/iai.00883-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
The pathology of human coccidioidomycosis is granulomatous inflammation with many neutrophils surrounding ruptured spherules, but the chemotactic pathways that draw neutrophils into the infected tissues are not known. We previously showed that formalin-killed spherules (FKS) stimulate mouse macrophages to secret macrophage inflammatory protein 2 (MIP-2), which suggested that CXC ELR+ chemokines might be involved in neutrophil recruitment in vivo To test that hypothesis, we intranasally infected interleukin-8R2 (IL-8R2) (Cxcr2)-deficient mice on a BALB/c background with Coccidioides immitis RS. IL-8R2-deficient mice had fewer neutrophils in infected lungs than controls, but unexpectedly the IL-8R2-deficient mice had fewer organisms in their lungs than the control mice. Infected IL-8R2-deficient mouse lungs had higher expression of genes associated with lymphocyte activation, including the Th1 and Th17-related cytokines Ifnγ and Il17a and the transcription factors Stat1 and Rorc Additionally, bronchial alveolar lavage fluid from infected IL-8R2-deficient mice contained more IL-17A and interferon-γ (IFN-γ). We postulate that neutrophils in the lung directly or indirectly interfere with the development of a protective Th1/Th17 immune response to C. immitis at the site of infection.
Collapse
|
22
|
Puerta-Arias JD, Mejía SP, González Á. The Role of the Interleukin-17 Axis and Neutrophils in the Pathogenesis of Endemic and Systemic Mycoses. Front Cell Infect Microbiol 2020; 10:595301. [PMID: 33425780 PMCID: PMC7793882 DOI: 10.3389/fcimb.2020.595301] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023] Open
Abstract
Systemic and endemic mycoses are considered life-threatening respiratory diseases which are caused by a group of dimorphic fungal pathogens belonging to the genera Histoplasma, Coccidioides, Blastomyces, Paracoccidioides, Talaromyces, and the newly described pathogen Emergomyces. T-cell mediated immunity, mainly T helper (Th)1 and Th17 responses, are essential for protection against these dimorphic fungi; thus, IL-17 production is associated with neutrophil and macrophage recruitment at the site of infection accompanied by chemokines and proinflammatory cytokines production, a mechanism that is mediated by some pattern recognition receptors (PRRs), including Dectin-1, Dectine-2, TLRs, Mannose receptor (MR), Galectin-3 and NLPR3, and the adaptor molecules caspase adaptor recruitment domain family member 9 (Card9), and myeloid differentiation factor 88 (MyD88). However, these PRRs play distinctly different roles for each pathogen. Furthermore, neutrophils have been confirmed as a source of IL-17, and different neutrophil subsets and neutrophil extracellular traps (NETs) have also been described as participating in the inflammatory process in these fungal infections. However, both the Th17/IL-17 axis and neutrophils appear to play different roles, being beneficial mediating fungal controls or detrimental promoting disease pathologies depending on the fungal agent. This review will focus on highlighting the role of the IL-17 axis and neutrophils in the main endemic and systemic mycoses: histoplasmosis, coccidioidomycosis, blastomycosis, and paracoccidioidomycosis.
Collapse
Affiliation(s)
- Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellín, Colombia.,School of Health Sciences, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Susana P Mejía
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellín, Colombia.,Max Planck Tandem Group in Nanobioengineering, Universidad de Antioquia, Medellin, Colombia
| | - Ángel González
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
23
|
Diep AL, Hoyer KK. Host Response to Coccidioides Infection: Fungal Immunity. Front Cell Infect Microbiol 2020; 10:581101. [PMID: 33262956 PMCID: PMC7686801 DOI: 10.3389/fcimb.2020.581101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022] Open
Abstract
Coccidioidomycosis is a fungal, respiratory disease caused by Coccidioides immitis and Coccidioides posadasii. This emerging infectious disease ranges from asymptomatic to pulmonary disease and disseminated infection. Most infections are cleared with little to no medical intervention whereas chronic disease often requires life-long medication with severe impairment in quality of life. It is unclear what differentiates hosts immunity resulting in disease resolution versus chronic infection. Current understanding in mycology-immunology suggests that chronic infection could be due to maladaptive immune responses. Immunosuppressed patients develop more severe disease and mouse studies show adaptive Th1 and Th17 responses are required for clearance. This is supported by heightened immunosuppressive regulatory responses and lowered anti-fungal T helper responses in chronic Coccidioides patients. Diagnosis and prognosis is difficult as symptoms are broad and overlapping with community acquired pneumonia, often resulting in misdiagnosis and delayed treatment. Furthermore, we lack clear biomarkers of disease severity which could aid prognosis for more effective healthcare. As the endemic region grows and population increases in endemic areas, the need to understand Coccidioides infection is becoming urgent. There is a growing effort to identify fungal virulence factors and host immune components that influence fungal immunity and relate these to patient disease outcome and treatment. This review compiles the known immune responses to Coccidioides spp. infection and various related fungal pathogens to provide speculation on Coccidioides immunity.
Collapse
Affiliation(s)
- Anh L. Diep
- Quantitative and Systems Biology, Graduate Program, University of California Merced, Merced, CA, United States
| | - Katrina K. Hoyer
- Quantitative and Systems Biology, Graduate Program, University of California Merced, Merced, CA, United States
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California Merced, Merced, CA, United States
| |
Collapse
|
24
|
Mead HL, Van Dyke MCC, Barker BM. Proper Care and Feeding of Coccidioides: A Laboratorian's Guide to Cultivating the Dimorphic Stages of C. immitis and C. posadasii. CURRENT PROTOCOLS IN MICROBIOLOGY 2020; 58:e113. [PMID: 32894648 PMCID: PMC9976608 DOI: 10.1002/cpmc.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coccidioidomycosis ("Valley fever") is caused by Coccidioides immitis and C. posadasii. These fungi are thermally dimorphic, cycling between mycelia and arthroconidia in the environment and converting into spherules and endospores within a host. Coccidioides can cause a broad spectrum of disease that can be difficult to treat. There has been a steady increase in disease, with an estimated 350,000 new infections per year in the United States. With the increase in disease and difficulty in treatment, there is an unmet need to increase research in basic biology and identify new treatments, diagnostics, and vaccine candidates. Here, we describe protocols required in any Coccidioides laboratory, such as growing, harvesting, and storing the different stages of this dimorphic fungal pathogen. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Growth and harvest of liquid mycelia cultures for extractions Alternate Protocol 1: Large-volume growth and harvest of liquid mycelia cultures Basic Protocol 2: Mycelial growth on solid medium Alternate Protocol 2: Maintaining mycelial growth on solid medium Basic Protocol 3: Harvesting and quantification of arthroconidia Alternate Protocol 3: Long-term storage of arthroconidia Basic Protocol 4: Parasitic spherule growth and harvest Alternate Protocol 4: Obtaining endospores from spherules Basic Protocol 5: Intranasal infection of murine models.
Collapse
Affiliation(s)
- Heather L. Mead
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona
| | | | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona,Corresponding author:
| |
Collapse
|
25
|
Campuzano A, Zhang H, Ostroff GR, Dos Santos Dias L, Wüthrich M, Klein BS, Yu JJ, Lara HH, Lopez-Ribot JL, Hung CY. CARD9-Associated Dectin-1 and Dectin-2 Are Required for Protective Immunity of a Multivalent Vaccine against Coccidioides posadasii Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:3296-3306. [PMID: 32358020 PMCID: PMC7323849 DOI: 10.4049/jimmunol.1900793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Coccidioides species are fungal pathogens that can cause a widely varied clinical manifestation from mild pulmonary symptom to disseminated, life-threatening disease. We have previously created a subunit vaccine by encapsulating a recombinant coccidioidal Ag (rCpa1) in glucan-chitin particles (GCPs) as an adjuvant-delivery system. The GCP-rCpa1 vaccine has shown to elicit a mixed Th1 and Th17 response and confers protection against pulmonary coccidioidomycosis in mice. In this study, we further delineated the vaccine-induced protective mechanisms. Depletion of IL-17A in vaccinated C57BL/6 mice prior to challenge abrogated the protective efficacy of GCP-rCpa1 vaccine. Global transcriptome and Ingenuity Pathway Analysis of murine bone marrow-derived macrophages after exposure to this vaccine revealed the upregulation of proinflammatory cytokines (TNF-α, IL-6, and IL-1β) that are associated with activation of C-type lectin receptors (CLR) Dectin-1- and Dectin-2-mediated CARD9 signaling pathway. The GCP formulation of rCpa1 bound soluble Dectin-1 and Dectin-2 and triggered ITAM signaling of corresponding CLR reporter cells. Furthermore, macrophages that were isolated from Dectin-1 -/-, Dectin-2 -/-, and CARD9 -/- mice significantly reduced production of inflammatory cytokines in response to the GCP-rCpa1 vaccine compared with those of wild-type mice. The GCP-rCpa1 vaccine had significantly reduced protective efficacy in Dectin-1 -/-, Dectin-2 -/-, and CARD9 -/- mice that showed decreased acquisition of Th cells in Coccidioides-infected lungs compared with vaccinated wild-type mice, especially Th17 cells. Collectively, we conclude that the GCP-rCpa1 vaccine stimulates a robust Th17 immunity against Coccidioides infection through activation of the CARD9-associated Dectin-1 and Dectin-2 signal pathways.
Collapse
Affiliation(s)
- Althea Campuzano
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Hao Zhang
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Gary R Ostroff
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Lucas Dos Santos Dias
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Humberto H Lara
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Jose L Lopez-Ribot
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Chiung-Yu Hung
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249;
| |
Collapse
|
26
|
Hayden CA, Hung CY, Zhang H, Negron A, Esquerra R, Ostroff G, Abraham A, Lopez AG, Gonzales JE, Howard JA. Maize-Produced Ag2 as a Subunit Vaccine for Valley Fever. J Infect Dis 2020; 220:615-623. [PMID: 31184702 DOI: 10.1093/infdis/jiz196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/18/2019] [Indexed: 02/01/2023] Open
Abstract
Coccidioides is the causative agent of San Joaquin Valley fever, a fungal disease prevalent in the semiarid regions of the Americas. Efforts to develop a fungal vaccine over the last 2 decades were unsuccessful. A candidate antigen, Antigen 2 (Ag2), is notoriously difficult to express in Escherichia coli, and this study sought to accumulate the antigen at high levels in maize. Transformed maize lines accumulated recombinant Ag2 at levels >1 g/kg. Mice immunized with this antigen and challenged with live Coccidioides arthroconidia showed a reduction in the fungal load when Ag2 derived from either E. coli or maize was loaded into glucan chitin particles. A fusion of Ag2 to dendritic cell carrier peptide (DCpep) induced a T-helper type 17 response in the spleen when orally delivered, indicative of a protective immune response. The maize production platform and the glucan chitin particle adjuvant system show promise for development of a Coccidioides vaccine, but further testing is needed to fully assess the optimal method of administration.
Collapse
Affiliation(s)
- Celine A Hayden
- Applied Biotechnology Institute, San Luis Obispo, California
| | - Chiung-Yu Hung
- Department of Biology, University of Texas, San Antonio, Worcester
| | - Hao Zhang
- Department of Biology, University of Texas, San Antonio, Worcester
| | - Austin Negron
- Department of Biology, University of Texas, San Antonio, Worcester
| | - Raymond Esquerra
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California
| | - Gary Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester
| | - Ambily Abraham
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester
| | - Alejandro Gabriel Lopez
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California
| | | | - John A Howard
- Applied Biotechnology Institute, San Luis Obispo, California
| |
Collapse
|
27
|
Mead HL, Roe CC, Higgins Keppler EA, Van Dyke MCC, Laux KL, Funke AL, Miller KJ, Bean HD, Sahl JW, Barker BM. Defining Critical Genes During Spherule Remodeling and Endospore Development in the Fungal Pathogen, Coccidioides posadasii. Front Genet 2020; 11:483. [PMID: 32499817 PMCID: PMC7243461 DOI: 10.3389/fgene.2020.00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Coccidioides immitis and C. posadasii are soil dwelling dimorphic fungi found in North and South America. Inhalation of aerosolized asexual conidia can result in asymptomatic, acute, or chronic respiratory infection. In the United States there are approximately 350,000 new infections per year. The Coccidioides genus is the only known fungal pathogen to make specialized parasitic spherules, which contain endospores that are released into the host upon spherule rupture. The molecular determinants involved in this key step of infection remain largely elusive as 49% of genes are hypothetical with unknown function. An attenuated mutant strain C. posadasii Δcts2/Δard1/Δcts3 in which chitinase genes 2 and 3 were deleted was previously created for vaccine development. This strain does not complete endospore development, which prevents completion of the parasitic lifecycle. We sought to identify pathways active in the wild-type strain during spherule remodeling and endospore formation that have been affected by gene deletion in the mutant. We compared the transcriptome and volatile metabolome of the mutant Δcts2/Δard1/Δcts3 to the wild-type C735. First, the global transcriptome was compared for both isolates using RNA sequencing. The raw reads were aligned to the reference genome using TOPHAT2 and analyzed using the Cufflinks package. Genes of interest were screened in an in vivo model using NanoString technology. Using solid phase microextraction (SPME) and comprehensive two-dimensional gas chromatography - time-of-flight mass spectrometry (GC × GC-TOFMS) volatile organic compounds (VOCs) were collected and analyzed. Our RNA-Seq analyses reveal approximately 280 significantly differentially regulated transcripts that are either absent or show opposite expression patterns in the mutant compared to the parent strain. This suggests that these genes are tied to networks impacted by deletion and may be critical for endospore development and/or spherule rupture in the wild-type strain. Of these genes, 14 were specific to the Coccidioides genus. We also found that the wild-type and mutant strains differed significantly in their production versus consumption of metabolites, with the mutant displaying increased nutrient scavenging. Overall, our results provide the first targeted list of key genes that are active during endospore formation and demonstrate that this approach can define targets for functional assays in future studies.
Collapse
Affiliation(s)
- H L Mead
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff AZ, United States
| | - C C Roe
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff AZ, United States
| | - E A Higgins Keppler
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - M C Caballero Van Dyke
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff AZ, United States
| | - K L Laux
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff AZ, United States
| | - A L Funke
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff AZ, United States.,Imaging Histology Core Facility, Northern Arizona University, Flagstaff AZ, United States
| | - K J Miller
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff AZ, United States
| | - H D Bean
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - J W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff AZ, United States
| | - B M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff AZ, United States
| |
Collapse
|
28
|
Boniche C, Rossi SA, Kischkel B, Vieira Barbalho F, Nogueira D’Aurea Moura Á, Nosanchuk JD, Travassos LR, Pelleschi Taborda C. Immunotherapy against Systemic Fungal Infections Based on Monoclonal Antibodies. J Fungi (Basel) 2020; 6:jof6010031. [PMID: 32121415 PMCID: PMC7151209 DOI: 10.3390/jof6010031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing incidence in systemic fungal infections in humans has increased focus for the development of fungal vaccines and use of monoclonal antibodies. Invasive mycoses are generally difficult to treat, as most occur in vulnerable individuals, with compromised innate and adaptive immune responses. Mortality rates in the setting of our current antifungal drugs remain excessively high. Moreover, systemic mycoses require prolonged durations of antifungal treatment and side effects frequently occur, particularly drug-induced liver and/or kidney injury. The use of monoclonal antibodies with or without concomitant administration of antifungal drugs emerges as a potentially efficient treatment modality to improve outcomes and reduce chemotherapy toxicities. In this review, we focus on the use of monoclonal antibodies with experimental evidence on the reduction of fungal burden and prolongation of survival in in vivo disease models. Presently, there are no licensed monoclonal antibodies for use in the treatment of systemic mycoses, although the potential of such a vaccine is very high as indicated by the substantial promising results from several experimental models.
Collapse
Affiliation(s)
- Camila Boniche
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Suélen Andreia Rossi
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Brenda Kischkel
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Filipe Vieira Barbalho
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
| | - Ágata Nogueira D’Aurea Moura
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Luiz R. Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, Sao Paulo 04021-001, Brazil;
| | - Carlos Pelleschi Taborda
- Biomedical Sciences Institute, Department of Microbiology, University of São Paulo, Sao Paulo 05508-000, Brazil; (C.B.); (S.A.R.); (B.K.); (F.V.B.)
- Tropical Medicine Institute, Department of Dermatology, Faculty of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
- Correspondence:
| |
Collapse
|
29
|
Merkhofer RM, Klein BS. Advances in Understanding Human Genetic Variations That Influence Innate Immunity to Fungi. Front Cell Infect Microbiol 2020; 10:69. [PMID: 32185141 PMCID: PMC7058545 DOI: 10.3389/fcimb.2020.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022] Open
Abstract
Fungi are ubiquitous. Yet, despite our frequent exposure to commensal fungi of the normal mammalian microbiota and environmental fungi, serious, systemic fungal infections are rare in the general population. Few, if any, fungi are obligate pathogens that rely on infection of mammalian hosts to complete their lifecycle; however, many fungal species are able to cause disease under select conditions. The distinction between fungal saprophyte, commensal, and pathogen is artificial and heavily determined by the ability of an individual host's immune system to limit infection. Dramatic examples of commensal fungi acting as opportunistic pathogens are seen in hosts that are immune compromised due to congenital or acquired immune deficiency. Genetic variants that lead to immunological susceptibility to fungi have long been sought and recognized. Decreased myeloperoxidase activity in neutrophils was first reported as a mechanism for susceptibility to Candida infection in 1969. The ability to detect genetic variants and mutations that lead to rare or subtle susceptibilities has improved with techniques such as single nucleotide polymorphism (SNP) microarrays, whole exome sequencing (WES), and whole genome sequencing (WGS). Still, these approaches have been limited by logistical considerations and cost, and they have been applied primarily to Mendelian impairments in anti-fungal responses. For example, loss-of-function mutations in CARD9 were discovered by studying an extended family with a history of fungal infection. While discovery of such mutations furthers the understanding of human antifungal immunity, major Mendelian susceptibility loci are unlikely to explain genetic disparities in the rate or severity of fungal infection on the population level. Recent work using unbiased techniques has revealed, for example, polygenic mechanisms contributing to candidiasis. Understanding the genetic underpinnings of susceptibility to fungal infections will be a powerful tool in the age of personalized medicine. Future application of this knowledge may enable targeted health interventions for susceptible individuals, and guide clinical decision making based on a patient's individual susceptibility profile.
Collapse
Affiliation(s)
- Richard M Merkhofer
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Bruce S Klein
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
30
|
IL-17 receptor-based signaling and implications for disease. Nat Immunol 2019; 20:1594-1602. [PMID: 31745337 DOI: 10.1038/s41590-019-0514-y] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
IL-17 is a highly versatile pro-inflammatory cytokine crucial for a variety of processes, including host defense, tissue repair, the pathogenesis of inflammatory disease and the progression of cancer. In contrast to its profound impact in vivo, IL-17 exhibits surprisingly moderate activity in cell-culture models, which presents a major knowledge gap about the molecular mechanisms of IL-17 signaling. Emerging studies are revealing a new dimension of complexity in the IL-17 pathway that may help explain its potent and diverse in vivo functions. Discoveries of new mRNA stabilizers and receptor-directed mRNA metabolism have provided insights into the means by which IL-17 cooperates functionally with other stimuli in driving inflammation, whether beneficial or destructive. The integration of IL-17 with growth-receptor signaling in specific cell types offers new understanding of the mitogenic effect of IL-17 on tissue repair and cancer. This Review summarizes new developments in IL-17 signaling and their pathophysiological implications.
Collapse
|
31
|
Abstract
Since its description nearly 130 years ago, hundreds of studies have deepened our understanding of coccidioidomycosis, also known as valley fever (VF), and provided useful diagnostic tests and treatments for the disease caused by the dimorphic fungi Coccidioides spp. In general, most of the literature has addressed well-established infections and has described patients who have experienced major complications. In contrast, little attention has been given to the earliest consequences of the pathogen-host interaction and its implications for disease manifestation, progression, and resolution. The purpose of this review is to highlight published studies on early coccidioidomycosis, identify gaps in our knowledge, and suggest new or former research areas that might be or remain fertile ground for insight into the early stages of this invasive fungal disease.
Collapse
|
32
|
Van Dyke MCC, Thompson GR, Galgiani JN, Barker BM. The Rise of Coccidioides: Forces Against the Dust Devil Unleashed. Front Immunol 2019; 10:2188. [PMID: 31572393 PMCID: PMC6749157 DOI: 10.3389/fimmu.2019.02188] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Coccidioidomycosis (Valley fever) is a fungal disease caused by the inhalation of Coccidioides posadasii or C. immitis. This neglected disease occurs in the desert areas of the western United States, most notably in California and Arizona, where infections continue to rise. Clinically, coccidioidomycosis ranges from asymptomatic to severe pulmonary disease and can disseminate to the brain, skin, bones, and elsewhere. New estimates suggest as many as 350,000 new cases of coccidioidomycosis occur in the United States each year. Thus, there is an urgent need for the development of a vaccine and new therapeutic drugs against Coccidioides infection. In this review, we discuss the battle against Coccidioides including the development of potential vaccines, the quest for new therapeutic drugs, and our current understanding of the protective host immune response to Coccidioides infection.
Collapse
Affiliation(s)
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States.,Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States
| | - John N Galgiani
- Valley Fever Center for Excellence, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, United States
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
33
|
Vaccine Development to Systemic Mycoses by Thermally Dimorphic Fungi. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Hung CY, Hsu AP, Holland SM, Fierer J. A review of innate and adaptive immunity to coccidioidomycosis. Med Mycol 2019; 57:S85-S92. [PMID: 30690602 DOI: 10.1093/mmy/myy146] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Coccidioidomycosis is a human fungal disease cause by inhalation of aerosol spores produced by Coccidioides posadasii or Coccidioides immitis. This disease is a common cause of community-acquired pneumonia in the endemic areas of the Southwestern United States. It also can present as a life-threatening disease as the fungal cells disseminate to skin, bone, and central nervous system. The outcome of coccidioidomycosis is largely determined by the nature of host immune response to the infection. Escalation of symptomatic infections and increased cost of long-term antifungal treatment warrant a concerted effort to better understand the innate and adaptive immune responses and the genetics associated with coccidioidomycosis susceptibility. This knowledge can be harnessed for development of a human vaccine against Coccidioides and advance clinic management of this disease. This review discusses recently reported studies on innate and adaptive immunity to Coccidioides infection, Mendelian susceptibility to disseminated disease and progress toward a human vaccine against this formidable disease.
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua Fierer
- Infectious Diseases Section, VA Healthcare San Diego, California, USA.,Department of Medicine, Division of Infectious Diseases, University of California San Diego School of Medicine, San Diego, California, USA
| |
Collapse
|
35
|
Dendritic cell-based immunization induces Coccidioides Ag2/PRA-specific immune response. Vaccine 2019; 37:1685-1691. [PMID: 30795939 DOI: 10.1016/j.vaccine.2019.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/08/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Valley Fever, or coccidioidomycosis, is caused by a soil-borne, highly virulent fungal pathogen, Coccidioides spp. Infection with Coccidioides can be life-threatening. Since an effective treatment is not available and the T cell-mediated immune response is protective, vaccine development is of interest. In this study, a primary dendritic cell (DC)-vaccine was evaluated for its ability to stimulate Coccidioides antigen-specific immune response in an extremely susceptible BALB/c mouse model. The DC-vaccine (Ag2-DC) was prepared by non-virally transfecting the primary bone marrow-derived DCs with a plasmid DNA encoding Ag2/PRA (protective epitope of Coccidioides). Mice were intranasally immunized with Ag2-DC on days 2 and 10. Immunized mice were necropsied on days 8, 32, and 44. Major organs and blood samples were harvested. The most common indicators of injury (protein, lactate, and albumin), Ag/PRA-specific cytokine-secreting cells, and IgG and its isotypes were determined by biochemical and immunologic assays, respectively. No signs of sickness were noted. Similarly, no significant changes were observed in the levels of total lung protein, lactate, and albumin, in immunized mice compared with healthy control mice. Interferon (IFN-γ), and interleukin (IL)-4 and IL-17 cytokine-secreting cells were observed in lung and lymph nodes upon Ag2-DC immunization. Our results showed that the levels of serum IgG and its isotypes were increased in Ag2-DC-immunized mice. This report provides evidence of DC immunization-stimulated Ag2/PRA-specific immune responses.
Collapse
|
36
|
Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2018; 109:333-344. [PMID: 30399567 DOI: 10.1016/j.biopha.2018.10.075] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022] Open
Abstract
Fungal infections include a wide range of opportunistic and invasive diseases. Two of four major fatal diseases in patients with human immunodeficiency virus (HIV) infection are related to the fungal infections, cryptococcosis, and pneumocystosis. Disseminated candidiasis and different clinical forms of aspergillosis annually impose expensive medical costs to governments and hospitalized patients and ultimately lead to high mortality rates. Therefore, urgent implementations are necessary to prevent the expansion of these diseases. Designing an effective vaccine is one of the most important approaches in this field. So far, numerous efforts have been carried out in developing an effective vaccine against fungal infections. Some of these challenges engaged in different stages of clinical trials but none of them could be approved by the United States Food and Drug Administration (FDA). Here, in addition to have a comprehensive overview on the data from studied vaccine programs, we will discuss the immunology response against fungal infections. Moreover, it will be attempted to clarify the underlying immune mechanisms of vaccines targeting different fungal infections that are crucial for designing an effective vaccination strategy.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine/Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Vakili
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Khezripour
- Department of Pharmacotherapy, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Glucan-Chitin Particles Enhance Th17 Response and Improve Protective Efficacy of a Multivalent Antigen (rCpa1) against Pulmonary Coccidioides posadasii Infection. Infect Immun 2018; 86:IAI.00070-18. [PMID: 30104216 DOI: 10.1128/iai.00070-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Developing an effective and safe recombinant vaccine requires microbe-specific antigens combined with an adjuvant/delivery system to strengthen protective immunity. In this study, we designed and expressed a multivalent recombinant Coccidioides polypeptide antigen (rCpa1) that consists of three previously identified antigens (i.e., Ag2/Pra, Cs-Ag, and Pmp1) and five pathogen-derived peptides with high affinity for human major histocompatibility complex class II (MHC-II) molecules. The purified rCpa1 was encapsulated into four types of yeast cell wall particles containing β-glucan, mannan, and chitin in various proportions or was mixed with an oligonucleotide (ODN) containing two methylated dinucleotide CpG motifs. This multivalent antigen encapsulated into glucan-chitin particles (GCP-rCpa1) showed significantly greater reduction of fungal burden for human HLA-DR4 transgenic mice than the other adjuvant-rCpa1 formulations tested. Among the adjuvants tested, both GCPs and β-glucan particles (GPs) were capable of stimulating a mixed Th1 and Th17 response. Mice vaccinated with GCP-rCpa1 showed higher levels of interleukin 17 (IL-17) production in T-cell recall assays and earlier lung infiltration by activated Th1 and Th17 cells than GP-rCpa1-vaccinated mice. Both C57BL/6 and HLA-DR4 transgenic mice that were vaccinated with the GCP-rCpa1 vaccine showed higher survival rates than mice that received GCPs alone. Concurrently, the GCP-rCpa1 vaccine stimulated greater infiltration of the injection sites by macrophages, which engulf and process the vaccine for antigen presentation, than the GP-rCpa1 vaccine. This is the first attempt to systematically characterize the presentation of a multivalent coccidioidomycosis vaccine encapsulated with selected adjuvants that enhance the protective cellular immune response to infection.
Collapse
|
38
|
McDermott AJ, Klein BS. Helper T-cell responses and pulmonary fungal infections. Immunology 2018; 155:155-163. [PMID: 29781185 DOI: 10.1111/imm.12953] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
The mucosal surface of the respiratory tract encounters microbes, such as fungal particles, with every inhaled breath. When pathogenic fungi breach the physical barrier and innate immune system within the lung to establish an infection, adaptive immunity is engaged, often in the form of helper CD4 T-cell responses. Type 1 responses, characterized by interferon-γ production from CD4 cells, promote clearance of Histoplasma capsulatum and Cryptococcus neoformans infection. Likewise, interleukin-17A (IL-17A) production from Th17 cells promotes immunity to Blastomyces dermatitidis and Coccidioides species infection by recruiting neutrophils. In contrast the development of T helper type 2 responses, characterized by IL-5 production from T cells and eosinophil influx into the lungs, drives allergic bronchopulmonary aspergillosis and poor outcomes during C. neoformans infection. Experimental vaccines against several endemic mycoses, including Histoplasma capsulatum, Coccidioides, Cryptococcus and Blastomyces dermatitidis, induce protective T-cell responses and foreshadow the development of vaccines against pulmonary fungal infections for use in humans. Additionally, recent work using antifungal T cells as immunotherapy to protect immune-compromised patients from opportunist fungal infections also shows great promise. This review covers the role of T-cell responses in driving protection and pathology in response to pulmonary fungal infections, and highlights promising therapeutic applications of antifungal T cells.
Collapse
Affiliation(s)
- Andrew J McDermott
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
39
|
Inflammatory and Anti-inflammatory Responses Co-exist Inside Lung Granuloma of Fatal Cases of Coccidioidomycosis: A Pilot Report. Mycopathologia 2018; 183:709-716. [PMID: 29736739 DOI: 10.1007/s11046-018-0264-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
Abstract
Coccidioidomycosis is a fungal disease caused by Coccidioides immitis or Coccidioides posadasii. These fungi are endemic in the southern USA and northern Mexico. Immunocompromised patients are susceptible to develop severe forms of this fungal infection. Cytokines play an important role in controlling the fungal infection, but little is known about the predominant immunological environment in human lung tissue from fatal cases. Our aim was to analyze the pro-inflammatory and anti-inflammatory cytokines and monocyte/macrophages markers (CD14 and CD206) in the granulomas of six fatal cases of coccidioidomycosis. Cytokines and surface markers were higher in coccidioidomycosis cases when compared to control (P < 0.05). CD14 positive cells were increased inside the coccidioidal granuloma when compared to the outside (P < 0.05). No differences were found in the number of CD206+ cells inside the granuloma when compared to the outer population (P > 0.05). Interestingly, an analysis of stain intensity signals showed an increased signaling of CD14, CD206, IL-10 and TNFα inside the granuloma when compared to the outside (P < 0.05). iNOS and IL-12 gene expression were not detected in coccidioidomycosis cases, while IL-10, IL-6 and TGFβ gene expression were detected, but the differences when compared to healthy lungs were not significant (P > 0.05). TNFα gene expression was lower in coccidioidomycosis cases when compared to healthy lung (P = 0.05). In conclusion, pro- and anti-inflammatory responses co-exist inside of the granulomas of fatal cases of coccidioidomycosis and the absent of iNOS and IL-12 gene expression may be related with patient's outcome.
Collapse
|
40
|
Deepe GS, Buesing WR, Ostroff GR, Abraham A, Specht CA, Huang H, Levitz SM. Vaccination with an alkaline extract of Histoplasma capsulatum packaged in glucan particles confers protective immunity in mice. Vaccine 2018; 36:3359-3367. [PMID: 29729993 DOI: 10.1016/j.vaccine.2018.04.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Abstract
Infection with the dimorphic fungus, Histoplasma capsulatum, occurs world-wide, but North and South America are regions of high endemicity. Interventions to mitigate exposure and consequent disease are limited to remediating a habitat harboring the fungus. The development of a vaccine to prevent infection or lessen its severity is an important advance in disease prevention. Accordingly, we prepared an alkaline extract from the yeast phase of Histoplasma and encased it in glucan particles that act as an adjuvant and delivery vehicle. Immunization of C57BL/6 mice with this encapsulated extract decreased the number of CFUs in lungs and spleens at days 7 and 14 following intranasal infection. Moreover, this vaccine conferred protection against a lethal challenge with the fungus. Cytokine assessment in lungs at a time when the CFUs were similar between controls and vaccinated groups revealed increased quantities of interferon-γ and interleukin-17 in vaccine recipients. This finding was supported by increased generation of both Th1 and Th17 cells in lungs and draining lymph nodes of vaccinated mice compared to controls. Neutralization of interferon-γ or interleukin-17 blunted the effectiveness of vaccination. To identify the proteins comprising this extract, liquid chromatography tandem mass spectrometry was performed. Thus, an H. capsulatum alkaline extract packaged in glucan particles confers protection in an interferon-γ and interleukin-17-dependent manner. Discovery of a single protein or a few proteins in this admixture that mediate protective immunity would represent significant progress in efforts to prevent histoplasmosis.
Collapse
Affiliation(s)
- George S Deepe
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States; Veterans Affairs Hospital, Cincinnati, OH 45220, United States.
| | - William R Buesing
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States
| | - Gary R Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Ambily Abraham
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Charles A Specht
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Haibin Huang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, United States
| |
Collapse
|
41
|
Shubitz LF, Powell DA, Trinh HT, Lewis ML, Orbach MJ, Frelinger JA, Galgiani JN. Viable spores of Coccidioides posadasii Δcps1 are required for vaccination and provide long lasting immunity. Vaccine 2018; 36:3375-3380. [PMID: 29724507 DOI: 10.1016/j.vaccine.2018.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/12/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022]
Abstract
Coccidioidomycosis is a systemic fungal infection for which a vaccine has been sought for over fifty years. The avirulent Coccidioides posadasii strain, Δcps1, which is missing a 6 kb gene, showed significant protection in mice. These studies explore conditions of protection in mice and elucidate the immune response. Mice were vaccinated with different doses and viability states of Δcps1 spores, challenged with virulent C. posadasii, and sacrificed at various endpoints, dependent on experimental objectives. Tissues from vaccinated mice were harvested for in vitro elucidation of immune response. Vaccination with viable Δcps1 spores was required for protection from lethal challenge. Viable spore vaccination produced durable immunity, lasting at least 6 months, and prolonged survival (≥6 months). The C. posadasii vaccine strain also protected mice against C. immitis (survival ≥ 6 months). Cytokines from infected lungs of vaccinated mice in the first four days after Cp challenge showed significant increases of IFN-γ, as did stimulated CD4+ spleen cells from vaccinated mice. Transfer of CD4+ cells, but not CD8+ or B cells, reduced fungal burdens following challenge. IFN-γ from CD4+ cells in vaccinated mice indicates a Th1 response, which is critical for host control of coccidioidomycosis.
Collapse
Affiliation(s)
- Lisa F Shubitz
- Valley Fever Center for Excellence, The University of Arizona, 1656 E Mabel St, PO Box 245215, Tucson, AZ 85724, United States.
| | - Daniel A Powell
- Valley Fever Center for Excellence, The University of Arizona, 1656 E Mabel St, PO Box 245215, Tucson, AZ 85724, United States; Department of Immunobiology, The University of Arizona, 1656 E Mabel St, PO Box 245221, Tucson, AZ 85724, United States
| | - Hien T Trinh
- Valley Fever Center for Excellence, The University of Arizona, 1656 E Mabel St, PO Box 245215, Tucson, AZ 85724, United States
| | - M Lourdes Lewis
- Valley Fever Center for Excellence, The University of Arizona, 1656 E Mabel St, PO Box 245215, Tucson, AZ 85724, United States
| | - Marc J Orbach
- School of Plant Sciences, P.O. Box 210036, The University of Arizona, Tucson, AZ 85721, United States
| | - Jeffrey A Frelinger
- Department of Immunobiology, The University of Arizona, 1656 E Mabel St, PO Box 245221, Tucson, AZ 85724, United States
| | - John N Galgiani
- Valley Fever Center for Excellence, The University of Arizona, 1656 E Mabel St, PO Box 245215, Tucson, AZ 85724, United States; Division of Infectious Diseases, Department of Medicine, PO Box 245039, The University of Arizona, Tucson, AZ 85724, United States
| |
Collapse
|
42
|
Kumaresan PR, da Silva TA, Kontoyiannis DP. Methods of Controlling Invasive Fungal Infections Using CD8 + T Cells. Front Immunol 2018; 8:1939. [PMID: 29358941 PMCID: PMC5766637 DOI: 10.3389/fimmu.2017.01939] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections (IFIs) cause high rates of morbidity and mortality in immunocompromised patients. Pattern-recognition receptors present on the surfaces of innate immune cells recognize fungal pathogens and activate the first line of defense against fungal infection. The second line of defense is the adaptive immune system which involves mainly CD4+ T cells, while CD8+ T cells also play a role. CD8+ T cell-based vaccines designed to prevent IFIs are currently being investigated in clinical trials, their use could play an especially important role in acquired immune deficiency syndrome patients. So far, none of the vaccines used to treat IFI have been approved by the FDA. Here, we review current and future antifungal immunotherapy strategies involving CD8+ T cells. We highlight recent advances in the use of T cells engineered using a Sleeping Beauty vector to treat IFIs. Recent clinical trials using chimeric antigen receptor (CAR) T-cell therapy to treat patients with leukemia have shown very promising results. We hypothesized that CAR T cells could also be used to control IFI. Therefore, we designed a CAR that targets β-glucan, a sugar molecule found in most of the fungal cell walls, using the extracellular domain of Dectin-1, which binds to β-glucan. Mice treated with D-CAR+ T cells displayed reductions in hyphal growth of Aspergillus compared to the untreated group. Patients suffering from IFIs due to primary immunodeficiency, secondary immunodeficiency (e.g., HIV), or hematopoietic transplant patients may benefit from bioengineered CAR T cell therapy.
Collapse
Affiliation(s)
- Pappanaicken R. Kumaresan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thiago Aparecido da Silva
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
43
|
Kirkland TN, Fierer J. Coccidioides immitis and posadasii; A review of their biology, genomics, pathogenesis, and host immunity. Virulence 2018; 9:1426-1435. [PMID: 30179067 PMCID: PMC6141143 DOI: 10.1080/21505594.2018.1509667] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/31/2018] [Indexed: 11/24/2022] Open
Abstract
Coccidioides immitis and C. posadasii are two highly pathogenic dimorphic fungal species that are endemic in the arid areas of the new world, including the region from west Texas to southern and central California in the USA that cause coccidioidomycosis (also known as Valley Fever). In highly endemic regions such as southern Arizona, up to 50% of long term residents have been infected. New information about fungal population genetics, ecology, epidemiology, and host-pathogen interactions is becoming available. However, our understanding of some aspects of coccidioidomycosis is still incomplete, including the extent of genetic variability of the fungus, the genes involved in virulence, and how the changes in gene expression during the organism's dimorphic life cycle are related to the transformation from a free-living mold to a parasitic spherule. Unfortunately, efforts to develop an effective subunit vaccine have not yet been productive, although two potential live fungus vaccines have been developed.
Collapse
Affiliation(s)
- Theo N. Kirkland
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Joshua Fierer
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, San Diego, CA, USA
- VA Healthcare San Diego, San Diego, CA, USA
| |
Collapse
|
44
|
Abstract
Pathogenic fungi cause a wide range of syndromes in immune-competent and immune-compromised individuals, with life-threatening disease primarily seen in humans with HIV/AIDS and in patients receiving immunosuppressive therapies for cancer, autoimmunity, and end-organ failure. The discovery that specific primary immune deficiencies manifest with fungal infections and the development of animal models of mucosal and invasive mycoses have facilitated insight into fungus-specific recognition, signaling, effector pathways, and adaptive immune responses. Progress in deciphering the molecular and cellular basis of immunity against fungi is guiding preclinical studies into vaccine and immune reconstitution strategies for vulnerable patient groups. Furthermore, recent work has begun to address the role of endogenous fungal communities in human health and disease. In this review, we summarize a contemporary understanding of protective immunity against fungi.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Iliyan D Iliev
- Jill Roberts Institute for Research in IBD, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
45
|
Immune Response to Coccidioidomycosis and the Development of a Vaccine. Microorganisms 2017; 5:microorganisms5010013. [PMID: 28300772 PMCID: PMC5374390 DOI: 10.3390/microorganisms5010013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Coccidioidomycosis is a fungal infection caused by Coccidioides posadasii and Coccidioides immitis. It is estimated that 150,000 new infections occur in the United States each year. The incidence of this infection continues to rise in endemic regions. There is an urgent need for the development of better therapeutic drugs and a vaccine against coccidioidomycosis. This review discusses the features of host innate and adaptive immune responses to Coccidioides infection. The focus is on the recent advances in the immune response and host-pathogen interactions, including the recognition of spherules by the host and defining the signal pathways that guide the development of the adaptive T-cell response to Coccidioides infection. Also discussed is an update on progress in developing a vaccine against these fungal pathogens.
Collapse
|
46
|
Abstract
Coccidioidomycosis is a potentially life-threatening mycosis endemic to the Southwestern USA and some arid regions of Central and South America. A vaccine against Coccidioides infection would benefit over 30-million people who reside in or visit the endemic regions. Vaccine candidates against systemic fungal infections come in many forms. Live attenuated vaccines are derived from disease-causing pathogens and generally stimulate excellent protective immunity. Since attenuated vaccines contain living microbes, there is a degree of unpredictability raising concerns regarding safety and stability. Generation of a subunit vaccine has initiated efforts to design a safe reagent suitable for administration to humans at risk of coccidioidomycosis. Epitope-based vaccines allow for eliciting specific protective immune responses and removal of potentially detrimental sequences to improve safety. This chapter describes methods for the identification of T cell epitopes derived from Coccidioides antigens, design, and production of a recombinant vaccine containing multiple T cell epitopes, and evaluation of its protective efficacy and vaccine immunity against pulmonary Coccidioides infection using a strain of transgenic mice that express a human MHC II molecule.
Collapse
|
47
|
Hurtgen BJ, Castro-Lopez N, Jiménez-Alzate MDP, Cole GT, Hung CY. Preclinical identification of vaccine induced protective correlates in human leukocyte antigen expressing transgenic mice infected with Coccidioides posadasii. Vaccine 2016; 34:5336-5343. [PMID: 27622300 DOI: 10.1016/j.vaccine.2016.08.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/19/2016] [Accepted: 08/29/2016] [Indexed: 01/19/2023]
Abstract
There is an emerging interest to develop human vaccines against medically-important fungal pathogens and a need for a preclinical animal model to assess vaccine efficacies and protective correlates. HLA-DR4 (DRB1∗0401 allele) transgenic mice express a human major histocompatibility complex class II (MHC II) receptor in such a way that CD4+ T-cell response is solely restricted by this human molecule. In this study HLA-DR4 transgenic mice were immunized with a live-attenuated vaccine (ΔT) and challenged by the intranasal route with 50-70 Coccidioides posadasii spores, a potentially lethal dose. The same vaccination regimen offers 100% survival for C57BL/6 mice. Conversely, ΔT-vaccinated HLA-DR4 mice displayed 3 distinct manifestations of Coccidioides infection including 40% fatal acute (FAD), 30% disseminated (DD) and 30% pulmonary disease (PD). The latter 2 groups of mice had reduced loss of body weight and survived to at least 50days postchallenge (dpc). These results suggest that ΔT vaccinated HLA-DR4 mice activated heterogeneous immunity against pulmonary Coccidioides infection. Vaccinated HLA-DR4 mice displayed early expansion of Th1 and Th17 cells and recruitment of inflammatory innate cells into Coccidioides-infected lungs during the first 9dpc. While contraction rates of Th cells and the inflammatory response during 14-35dpc significantly differed among the 3 groups of vaccinated HLA-DR4 mice. The FAD group displayed a sharply reduced Th1 and Th17 response, while overwhelmingly recruiting neutrophils into lungs during 9-14days. The FAD group approached moribund by 14dpc. In contrast, vaccinated HLA-DR4 survivors gradually contracted Th cells and inflammatory response with the greatest rate in the PD group. While vaccinated HLA-DR4 mice are susceptible to Coccidioides infection, they are useful for evaluation of vaccine efficacy and identification of immunological correlates against this mycosis.
Collapse
Affiliation(s)
- Brady J Hurtgen
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Natalia Castro-Lopez
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA
| | - Maria Del Pilar Jiménez-Alzate
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Grupo de Micología Médica, Department of Microbiology and Parasitology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Garry T Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, TX, USA; Immune Defense Core, University of Texas, San Antonio, TX, USA.
| |
Collapse
|
48
|
Depletion of Neutrophils Exacerbates the Early Inflammatory Immune Response in Lungs of Mice Infected with Paracoccidioides brasiliensis. Mediators Inflamm 2016; 2016:3183285. [PMID: 27642235 PMCID: PMC5015031 DOI: 10.1155/2016/3183285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023] Open
Abstract
Neutrophils predominate during the acute phase of the Paracoccidioides brasiliensis infection. Herein, we determined the role of the neutrophil during the early stages of experimental pulmonary paracoccidioidomycosis using a monoclonal antibody (mAb) specific for neutrophils. Male BALB/c mice were inoculated intranasally with 1.5 × 106 or 2 × 106 P. brasiliensis yeast cells. The mAb was administered 24 h before infection, followed by doses every 48 h until mice were sacrificed. Survival time was evaluated and mice were sacrificed at 48 h and 96 h after inoculation to assess cellularity, fungal load, cytokine/chemokine levels, and histopathological analysis. Neutrophils from mAb-treated mice were efficiently depleted (99.04%). Eighty percent of the mice treated with the mAb and infected with 1.5 × 106 yeast cells died during the first two weeks after infection. When mice were treated and infected with 2 × 106 yeast cells, 100% of them succumbed by the first week after infection. During the acute inflammatory response significant increases in numbers of eosinophils, fungal load and levels of proinflammatory cytokines/chemokines were observed in the mAb-treated mice. We also confirmed that neutrophils are an important source of IFN-γ and IL-17. These results indicate that neutrophils are essential for protection as well as being important for regulating the early inflammatory immune response in experimental pulmonary paracoccidioidomycosis.
Collapse
|
49
|
Huai Y, Dong S, Zhu Y, Li X, Cao B, Gao X, Yang M, Wang L, Mao C. Genetically Engineered Virus Nanofibers as an Efficient Vaccine for Preventing Fungal Infection. Adv Healthc Mater 2016; 5:786-94. [PMID: 26890982 DOI: 10.1002/adhm.201500930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/24/2015] [Indexed: 12/19/2022]
Abstract
Candida albicans (CA) is a kind of fungus that can cause high morbidity and mortality in immunocompromised patients. However, preventing CA infection in these patients is still a daunting challenge. Herein, inspired from the fact that immunization with secreted aspartyl proteinases 2 (Sap2) can prevent the infection, it is proposed to use filamentous phage, a human-safe virus nanofiber specifically infecting bacteria (≈900 nm long and 7 nm wide), to display an epitope peptide of Sap2 (EPS, with a sequence of Val-Lys-Tyr-Thr-Ser) on its side wall and thus serve as a vaccine for preventing CA infection. The engineered virus nanofibers and recombinant Sap2 (rSap2) are then separately used to immunize mice. The humoral and cellular immune responses in the immunized mice are evaluated. Surprisingly, the virus nanofibers significantly induce mice to produce strong immune response as rSap2 and generate antibodies that can bind Sap2 and CA to inhibit the CA infection. Consequently, immunization with the virus nanofibers in mice dramatically increases the survival rate of CA-infected mice. All these results, along with the fact that the virus nanofibers can be mass-produced by infecting bacteria cost-effectively, suggest that virus nanofibers displaying EPS can be a vaccine candidate against fungal infection.
Collapse
Affiliation(s)
- Yanyan Huai
- Institute of Cytology and Genetics School of Life Sciences Northeast Normal University 5268 Renmin Street Changchun City Jilin Province 130024 China
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman OK 73019‐5300 USA
| | - Shuai Dong
- Institute of Cytology and Genetics School of Life Sciences Northeast Normal University 5268 Renmin Street Changchun City Jilin Province 130024 China
| | - Ye Zhu
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman OK 73019‐5300 USA
| | - Xin Li
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman OK 73019‐5300 USA
| | - Binrui Cao
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman OK 73019‐5300 USA
| | - Xiang Gao
- Institute of Cytology and Genetics School of Life Sciences Northeast Normal University 5268 Renmin Street Changchun City Jilin Province 130024 China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Yuhangtang Road 866 Hangzhou 310058 China
| | - Li Wang
- Institute of Cytology and Genetics School of Life Sciences Northeast Normal University 5268 Renmin Street Changchun City Jilin Province 130024 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman OK 73019‐5300 USA
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
50
|
Hung CY, Castro-Lopez N, Cole GT. Card9- and MyD88-Mediated Gamma Interferon and Nitric Oxide Production Is Essential for Resistance to Subcutaneous Coccidioides posadasii Infection. Infect Immun 2016; 84:1166-75. [PMID: 26857574 PMCID: PMC4807486 DOI: 10.1128/iai.01066-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/02/2016] [Indexed: 02/06/2023] Open
Abstract
Coccidioidomycosis is a potentially life-threatening respiratory disease which is endemic to the southwestern United States and arid regions of Central and South America. It is responsible for approximately 150,000 infections annually in the United States alone. Almost every human organ has been reported to harbor parasitic cells of Coccidioides spp. in collective cases of the disseminated form of this mycosis. Current understanding of the mechanisms of protective immunity against lung infection has been largely derived from murine models of pulmonary coccidioidomycosis. However, little is known about the nature of the host response to Coccidioides in extrapulmonary tissue. Primary subcutaneous coccidioidal infection is rare but has been reported to result in disseminated disease. Here, we show that activation of MyD88 and Card9 signal pathways are required for resistance to Coccidioides infection following subcutaneous challenge of C57BL/6 mice, which correlates with earlier findings of the protective response to pulmonary infection. MyD88(-/-) andCard9(-/-) mice recruited reduced numbers of T cells, B cells, and neutrophils to the Coccidioides-infected hypodermis com pared to wild-type mice; however, neutrophils were dispensable for resistance to skin infection. Further studies have shown that gamma interferon (IFN-γ) production and activation of Th1 cells characterize resistance to subcutaneous infection. Furthermore, activation of a phagosomal enzyme, inducible nitric oxide synthase, which is necessary for NO production, is a requisite for fungal clearance in the hypodermis. Collectively, our data demonstrate that MyD88- and Card9-mediated IFN-γ and nitric oxide production is essential for protection against subcutaneous Coccidioides infection.
Collapse
Affiliation(s)
- Chiung-Yu Hung
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| | - Natalia Castro-Lopez
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| | - Garry T Cole
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio, Texas, USA
| |
Collapse
|