1
|
Ramadan AMAA, Zidan SAH, Shehata RM, El-Sheikh HH, Ameen F, Stephenson SL, Al-Bedak OAHM. Antioxidant, antibacterial, and molecular docking of methyl ferulate and oleic acid produced by Aspergillus pseudodeflectus AUMC 15761 utilizing wheat bran. Sci Rep 2024; 14:3183. [PMID: 38326360 PMCID: PMC10850474 DOI: 10.1038/s41598-024-52045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Secondary metabolites (SMs) are the primary source of therapeutics and lead chemicals in medicine. They have been especially important in the creation of effective cures for conditions such as cancer, malaria, bacterial and fungal infections, neurological and cardiovascular problems, and autoimmune illnesses. In the present study, Aspergillus pseudodeflectus AUMC 15761 was demonstrated to use wheat bran in solid state fermentation (SSF) at optimum conditions (pH 7.0 at 30 °C after 10 days of incubation and using sodium nitrate as a nitrogen source) to produce methyl ferulate and oleic acid with significant antioxidant and antibacterial properties. Gas chromatography-mass spectrometry (GC-MS) analysis of the crude methanol extract revealed eleven peaks that indicated the most common chemical components. Purification of methyl ferulate and oleic acid was carried out by column chromatography, and both compounds were identified by in-depth spectroscopic analysis, including 1D and 2D NMR and HR-ESI-MS. DPPH activity increased as the sample concentration increased. IC50 values of both compounds obtained were 73.213 ± 11.20 and 104.178 ± 9.53 µM, respectively. Also, the MIC value for methyl ferulate against Bacillus subtilis and Staphylococcus aureus was 0.31 mg/mL, while the corresponding MIC values for oleic acid were 1.25 mg/mL and 0.62 mg/mL for both bacterial strains, respectively. Molecular modeling calculations were carried out to reveal the binding mode of methyl ferulate and oleic acid within the binding site of the crucial proteins of Staphylococcus aureus. The docking results were found to be well correlated with the experimental data.
Collapse
Affiliation(s)
| | - Sabry Ahmed Hussein Zidan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Reda Mohamed Shehata
- Department of Botany & Microbiology, Faculty of Science, Al Azhar University, Cairo, Egypt
- The Regional Center for Mycology and Biotechnology (RCMB), Al Azhar University, Cairo, Egypt
| | - Hussein Hosny El-Sheikh
- Department of Botany & Microbiology, Faculty of Science, Al Azhar University, Cairo, Egypt
- The Regional Center for Mycology and Biotechnology (RCMB), Al Azhar University, Cairo, Egypt
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Steven L Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | | |
Collapse
|
2
|
Patel A, Sahu KP, Mehta S, Javed M, Balamurugan A, Ashajyothi M, Sheoran N, Ganesan P, Kundu A, Gopalakrishnan S, Gogoi R, Kumar A. New Insights on Endophytic Microbacterium-Assisted Blast Disease Suppression and Growth Promotion in Rice: Revelation by Polyphasic Functional Characterization and Transcriptomics. Microorganisms 2023; 11:microorganisms11020362. [PMID: 36838327 PMCID: PMC9963279 DOI: 10.3390/microorganisms11020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 02/05/2023] Open
Abstract
Plant growth-promoting endophytic microbes have drawn the attention of researchers owing to their ability to confer fitness benefits in many plant species. Here, we report agriculturally beneficial traits of rice-leaf-adapted endophytic Microbacterium testaceum. Our polyphasic taxonomic investigations revealed its identity as M. testaceum. The bacterium displayed typical endophytism in rice leaves, indicated by the green fluorescence of GFP-tagged M. testaceum in confocal laser scanning microscopy. Furthermore, the bacterium showed mineral solubilization and production of IAA, ammonia, and hydrolytic enzymes. Tobacco leaf infiltration assay confirmed its non-pathogenic nature on plants. The bacterium showed antifungal activity on Magnaporthe oryzae, as exemplified by secreted and volatile organic metabolome-mediated mycelial growth inhibition. GC-MS analysis of the volatilome of M. testaceum indicated the abundance of antimicrobial compounds. Bacterization of rice seedlings showed phenotypic traits of MAMP-triggered immunity (MTI), over-expression of OsNPR1 and OsCERK, and the consequent blast suppressive activity. Strikingly, M. testaceum induced the transcriptional tradeoff between physiological growth and host defense pathways as indicated by up- and downregulated DEGs. Coupled with its plant probiotic features and the defense elicitation activity, the present study paves the way for developing Microbacterium testaceum-mediated bioformulation for sustainably managing rice blast disease.
Collapse
|
3
|
Patel A, Sahu KP, Mehta S, Balamurugan A, Kumar M, Sheoran N, Kumar S, Krishnappa C, Ashajyothi M, Kundu A, Goyal T, Narayanasamy P, Kumar A. Rice leaf endophytic Microbacterium testaceum: Antifungal actinobacterium confers immunocompetence against rice blast disease. Front Microbiol 2022; 13:1035602. [PMID: 36619990 PMCID: PMC9810758 DOI: 10.3389/fmicb.2022.1035602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic and functional characteristics of rice leaf endophytic actinobacterial member, Microbacterium are described. Morphotyping, multilocus sequence analysis and transmission electron microscopy indicated the species identity of the endophytic bacterium, OsEnb-ALM-D18, as Microbacterium testaceum. The endophytic Microbacterium showed probiotic solubilization of plant nutrients/minerals, produced hydrolytic enzyme/phytohormones, and showed endophytism in rice seedlings. Further, the endophytic colonization by M. testaceum OsEnb-ALM-D18 was confirmed using reporter gene coding for green fluorescence protein. Microbacterium OsEnb-ALM-D18 showed volatilome-mediated antibiosis (95.5% mycelial inhibition) on Magnaporthe oryzae. Chemical profiling of M. testaceum OsEnb-ALM-D18 volatilome revealed the abundance of 9-Octadecenoic acid, Hexadecanoic acid, 4-Methyl-2-pentanol, and 2,5-Dihydro-thiophene. Upon endobacterization of rice seedlings, M. testaceum altered shoot and root phenotype suggestive of activated defense. Over 80.0% blast disease severity reduction was observed on the susceptible rice cultivar Pusa Basmati-1 upon foliar spray with M. testaceum. qPCR-based gene expression analysis showed induction of OsCERK1, OsPAD4, OsNPR1.3, and OsFMO1 suggestive of endophytic immunocompetence against blast disease. Moreover, M. testaceum OsEnb-ALM-D18 conferred immunocompetence, and antifungal antibiosis can be the future integrated blast management strategy.
Collapse
Affiliation(s)
- Asharani Patel
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sahil Mehta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Mukesh Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shanu Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Aditi Kundu
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tushar Goyal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India,*Correspondence: Aundy Kumar, ; ; orcid.org/0000-0002-7401-9885
| |
Collapse
|
4
|
Biodiversity and application prospects of fungal endophytes in the agarwood-producing genera, Aquilaria and Gyrinops (Thymelaeaceae): A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Benchikha N, Chelalba I, Debbeche H, Messaoudi M, Begaa S, Larkem I, Amara DG, Rebiai A, Simal-Gandara J, Sawicka B, Atanassova M, Youssef FS. Lobularia libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123744. [PMID: 35744880 PMCID: PMC9231123 DOI: 10.3390/molecules27123744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
Lobularia libyca (L. libyca) is a traditional plant that is popular for its richness in phenolic compounds and flavonoids. The aim of this study was to comprehensively investigate the phytochemical profile by liquid chromatography, electrospray ionization and tandem mass spectrometry (LC-ESI-MS), the mineral contents and the biological properties of L. libyca methanol extract. L. libyca contains significant amounts of phenolic compounds and flavonoids. Thirteen compounds classified as flavonoids were identified. L. libyca is rich in nutrients such as Na, Fe and Ca. Moreover, the methanol extract of L. libyca showed significant antioxidant activity without cytotoxic activity on HCT116 cells (human colon cancer cell line) and HepG2 cells (human hepatoma), showing an inhibition zone of 13 mm in diameter. In silico studies showed that decanoic acid ethyl ester exhibited the best fit in β-lactamase and DNA gyrase active sites; meanwhile, oleic acid showed the best fit in reductase binding sites. Thus, it can be concluded that L. libyca can serve as a beneficial nutraceutical agent, owing to its significant antioxidant and antibacterial potential and due to its richness in iron, calcium and potassium, which are essential for maintaining a healthy lifestyle.
Collapse
Affiliation(s)
- Naima Benchikha
- Chemistry Department, University of Hamma Lakhdar El-Oued, P.O. Box 789, El-Oued 39000, Algeria; (N.B.); (I.C.); (H.D.); (M.M.); (D.G.A.)
| | - Imane Chelalba
- Chemistry Department, University of Hamma Lakhdar El-Oued, P.O. Box 789, El-Oued 39000, Algeria; (N.B.); (I.C.); (H.D.); (M.M.); (D.G.A.)
| | - Hanane Debbeche
- Chemistry Department, University of Hamma Lakhdar El-Oued, P.O. Box 789, El-Oued 39000, Algeria; (N.B.); (I.C.); (H.D.); (M.M.); (D.G.A.)
| | - Mohammed Messaoudi
- Chemistry Department, University of Hamma Lakhdar El-Oued, P.O. Box 789, El-Oued 39000, Algeria; (N.B.); (I.C.); (H.D.); (M.M.); (D.G.A.)
- Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera 17200, Algeria;
| | - Samir Begaa
- Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera 17200, Algeria;
| | - Imane Larkem
- Agronomy Department, University of Mohamed Khider Biskra, P.O. Box 700, Biskra 07000, Algeria;
| | - Djilani Ghamem Amara
- Chemistry Department, University of Hamma Lakhdar El-Oued, P.O. Box 789, El-Oued 39000, Algeria; (N.B.); (I.C.); (H.D.); (M.M.); (D.G.A.)
| | - Abdelkrim Rebiai
- Chemistry Department, University of Hamma Lakhdar El-Oued, P.O. Box 789, El-Oued 39000, Algeria; (N.B.); (I.C.); (H.D.); (M.M.); (D.G.A.)
- Correspondence: (A.R.); (M.A.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, 32004 Ourense, Spain;
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Science in Lublin, Akademicka 15 Str., 20-950 Lublin, Poland;
| | - Maria Atanassova
- Nutritional Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria
- Correspondence: (A.R.); (M.A.)
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
6
|
Mudgil P. Antimicrobial Tear Lipids in the Ocular Surface Defense. Front Cell Infect Microbiol 2022; 12:866900. [PMID: 35433501 PMCID: PMC9008483 DOI: 10.3389/fcimb.2022.866900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
The concept of antimicrobial lipids as effectors of innate host defense is an emerging field. There is limited knowledge on the antimicrobial role of lipids in the ocular environment. Tears act as first line of defense to protect the ocular surface from infections. Antimicrobial effects of tear lipids have been demonstrated using meibomian lipids that are the source of majority of lipids in tears. This article describes the knowledge available on the antimicrobial role of tear lipids at the ocular surface and the antimicrobial potential of various lipid classes present in tears that can contribute to antimicrobial protection of the eye. Like other mucosal secretions, tears contain many proteins and lipids with known antimicrobial effects. The antimicrobial defense of tears is far stronger than can be demonstrated by the effects of individual compounds many of which are present in low concentrations but synergistic and additive interactions between them provide substantial antimicrobial protection to the ocular surface. It is inferred that antimicrobial lipids play important role in innate defense of tears, and cooperative interactions between various antimicrobial lipids and proteins in tears provide a potent host defense mechanism that is effective against a broad spectrum of pathogens and renders self-sterilizing properties to tears for keeping the microbial load low at the ocular surface.
Collapse
|
7
|
Psaltis AJ, Mackenzie BW, Cope EK, Ramakrishnan VR. Unravelling the role of the microbiome in chronic rhinosinusitis. J Allergy Clin Immunol 2022; 149:1513-1521. [PMID: 35300985 DOI: 10.1016/j.jaci.2022.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
Chronic rhinosinusitis (CRS) is a complex, heterogenous condition with likely infectious and inflammatory causative factors. Renewed interest in the role that microbes play in this condition has stemmed from advancements in microbe identification and parallel research that has implicated the role of the microbiome in other chronic inflammatory conditions. This clinical commentary provides a review of the current literature relevant to chronic rhinosinusitis. Particular focus is paid to factors specific to the investigation of the sinonasal microbiome, evidence for the role of dysbiosis in the disease state and influences that may impact the microbiome. Possible mechanisms of disease and therapeutic implications through microbial manipulation are also reviewed, as are deficiencies and limitations of the current body of research.
Collapse
Affiliation(s)
- Alkis J Psaltis
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, Australia.
| | | | - Emily K Cope
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Ariz
| | - Vijay R Ramakrishnan
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Ind
| |
Collapse
|
8
|
In-vitro examination and isolation of antidiarrheal compounds using five bacterial strains from invasive species Bidens bipinnata L. Saudi J Biol Sci 2022; 29:472-479. [PMID: 35002443 PMCID: PMC8716870 DOI: 10.1016/j.sjbs.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022] Open
Abstract
Bidens bipinnata is widely utilized medicinal plant for treatment of diseases like malaria, sore throat, acute nephritis and dysentery. However, despite its traditional uses Bidens bipinnata is not widely explored for its antimicrobial effect. Thus, the current study is aimed to form antimicrobial activity report of Bidens bipinnata extracts, along with isolation and evaluation of antibacterial activity of the isolated compounds through bioassay-guided purification. Hexane extract of its leaves has appeared to be most active thus it is exposed to automated column chromatography. Further purification using High-performance liquid chromatography has led to isolation of active peaks, identified by Gas Chromatography-mass spectrometry, as 16-Pregnenolone and 9-Octadecenoic acid (Z)-, methyl ester. Their antimicrobial activity was confirmed via broth dilution procedure on Staphylococcus aureus, 16-Pregnenolone revealed a strong antimicrobial activity with MIC50 of 72 μg/mL whereas 9-Octadecenoic acid (Z)-, methyl ester display an MIC50 of >250 μg/mL. Present study is the first report on isolation of these compounds from Bidens bipinnata.
Collapse
|
9
|
Essential Fatty Acids and Their Metabolites in the Pathobiology of Inflammation and Its Resolution. Biomolecules 2021; 11:biom11121873. [PMID: 34944517 PMCID: PMC8699107 DOI: 10.3390/biom11121873] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Arachidonic acid (AA) metabolism is critical in the initiation and resolution of inflammation. Prostaglandin E2 (PGE2) and leukotriene B4/D4/E4 (LTB4/LD4/LTE4), derived from AA, are involved in the initiation of inflammation and regulation of immune response, hematopoiesis, and M1 (pro-inflammatory) macrophage facilitation. Paradoxically, PGE2 suppresses interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production and triggers the production of lipoxin A4 (LXA4) from AA to initiate inflammation resolution process and augment regeneration of tissues. LXA4 suppresses PGE2 and LTs' synthesis and action and facilitates M2 macrophage generation to resolve inflammation. AA inactivates enveloped viruses including SARS-CoV-2. Macrophages, NK cells, T cells, and other immunocytes release AA and other bioactive lipids to produce their anti-microbial actions. AA, PGE2, and LXA4 have cytoprotective actions, regulate nitric oxide generation, and are critical to maintain cell shape and control cell motility and phagocytosis, and inflammation, immunity, and anti-microbial actions. Hence, it is proposed that AA plays a crucial role in the pathobiology of ischemia/reperfusion injury, sepsis, COVID-19, and other critical illnesses, implying that its (AA) administration may be of significant benefit in the prevention and amelioration of these diseases.
Collapse
|
10
|
Kim JH, Didi-Cohen S, Khozin-Goldberg I, Zilberg D. Translating the diatom-grazer defense mechanism to antiparasitic treatment for monogenean infection in guppies. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Kukushkina EA, Hossain SI, Sportelli MC, Ditaranto N, Picca RA, Cioffi N. Ag-Based Synergistic Antimicrobial Composites. A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1687. [PMID: 34199123 PMCID: PMC8306300 DOI: 10.3390/nano11071687] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
The emerging problem of the antibiotic resistance development and the consequences that the health, food and other sectors face stimulate researchers to find safe and effective alternative methods to fight antimicrobial resistance (AMR) and biofilm formation. One of the most promising and efficient groups of materials known for robust antimicrobial performance is noble metal nanoparticles. Notably, silver nanoparticles (AgNPs) have been already widely investigated and applied as antimicrobial agents. However, it has been proposed to create synergistic composites, because pathogens can find their way to develop resistance against metal nanophases; therefore, it could be important to strengthen and secure their antipathogen potency. These complex materials are comprised of individual components with intrinsic antimicrobial action against a wide range of pathogens. One part consists of inorganic AgNPs, and the other, of active organic molecules with pronounced germicidal effects: both phases complement each other, and the effect might just be the sum of the individual effects, or it can be reinforced by the simultaneous application. Many organic molecules have been proposed as potential candidates and successfully united with inorganic counterparts: polysaccharides, with chitosan being the most used component; phenols and organic acids; and peptides and other agents of animal and synthetic origin. In this review, we overview the available literature and critically discuss the findings, including the mechanisms of action, efficacy and application of the silver-based synergistic antimicrobial composites. Hence, we provide a structured summary of the current state of the research direction and give an opinion on perspectives on the development of hybrid Ag-based nanoantimicrobials (NAMs).
Collapse
Affiliation(s)
- Ekaterina A. Kukushkina
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Syed Imdadul Hossain
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
12
|
Das UN. Bioactive lipid-based therapeutic approach to COVID-19 and other similar infections. Arch Med Sci 2021; 19:1327-1359. [PMID: 37732033 PMCID: PMC10507771 DOI: 10.5114/aoms/135703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/11/2021] [Indexed: 09/22/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection. Epithelial and T, NK, and other immunocytes release bioactive lipids especially arachidonic acid (AA) in response to microbial infections to inactivate them and upregulate the immune system. COVID-19 (coronavirus) and other enveloped viruses including severe acute respiratory syndrome (SARS-CoV-1 of 2002-2003) and Middle East respiratory syndrome (MERS; 2012-ongoing) and hepatitis B and C (HBV and HCV) can be inactivated by AA, γ-linolenic acid (GLA, dihomo-GLA (DGLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), which are precursors to several eicosanoids. Prostaglandin E1, lipoxin A4, resolvins, protectins and maresins enhance phagocytosis of macrophages and leukocytes to clear debris from the site(s) of infection and injury, enhance microbial clearance and wound healing to restore homeostasis. Bioactive lipids modulate the generation of M1 and M2 macrophages and the activity of other immunocytes. Mesenchymal and adipose tissue-derived stem cells secrete LXA4 and other bioactive lipids to bring about their beneficial actions in COVID-19. Bioactive lipids regulate vasomotor tone, inflammation, thrombosis, immune response, inactivate enveloped viruses, regulate T cell proliferation and secretion of cytokines, stem cell survival, proliferation and differentiation, and leukocyte and macrophage functions, JAK kinase activity and neutrophil extracellular traps and thus, have a critical role in COVID-19.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, Battle Ground, WA, USA
- Department of Medicine, Omega Hospitals, Gachibowli, Hyderabad, India
- International Research Centre, Biotechnologies of the third Millennium, ITMO University, Saint-Petersburg, Russia
- Department of Biotechnology, Indian Institute of Technology-Hyderabad, Telangana, India
| |
Collapse
|
13
|
Peters S, Kaiser L, Fink J, Schumacher F, Perschin V, Schlegel J, Sauer M, Stigloher C, Kleuser B, Seibel J, Schubert-Unkmeir A. Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria. Sci Rep 2021; 11:4300. [PMID: 33619350 PMCID: PMC7900124 DOI: 10.1038/s41598-021-83813-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 11/21/2022] Open
Abstract
Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce ‘click-AT-CLEM’, a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Lena Kaiser
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Julian Fink
- Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Toxicology, University of Potsdam, Nuthetal, Germany.,Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Jürgen Seibel
- Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
14
|
Menberu MA, Liu S, Cooksley C, Hayes AJ, Psaltis AJ, Wormald PJ, Vreugde S. Corynebacterium accolens Has Antimicrobial Activity against Staphylococcus aureus and Methicillin-Resistant S. aureus Pathogens Isolated from the Sinonasal Niche of Chronic Rhinosinusitis Patients. Pathogens 2021; 10:pathogens10020207. [PMID: 33672855 PMCID: PMC7918835 DOI: 10.3390/pathogens10020207] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Corynebacterium accolens is the predominant species of the healthy human nasal microbiota, and its relative abundance is decreased in the context of chronic rhinosinusitis (CRS). This study aimed to evaluate the antimicrobial potential of C. accolens isolated from a healthy human nasal cavity against planktonic and biofilm growth of Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) clinical isolates (CIs) from CRS patients. Nasal swabs from twenty non-CRS control subjects were screened for the presence of C. accolens using microbiological and molecular techniques. C. accolens CIs and their culture supernatants were tested for their antimicrobial activity against eight S. aureus and eight MRSA 4CIs and S. aureus ATCC25923. The anti-biofilm potential of C. accolens cell-free culture supernatants (CFCSs) on S. aureus biofilms was also assessed. Of the 20 nasal swabs, 10 C. accolens CIs were identified and confirmed with rpoB gene sequencing. All isolates showed variable antimicrobial activity against eight out of 8 S. aureus and seven out of eight MRSA CIs. Culture supernatants from all C. accolens CIs exhibited a significant dose-dependent antibacterial activity (p < 0.05) against five out of five representative S. aureus and MRSA CIs. This inhibition was abolished after proteinase K treatment. C. accolens supernatants induced a significant reduction in metabolic activity and biofilm biomass of S. aureus and MRSA CIs compared to untreated growth control (p < 0.05). C. accolens exhibited antimicrobial activity against S. aureus and MRSA CIs in both planktonic and biofilm forms and holds promise for the development of innovative probiotic therapies to promote sinus health.
Collapse
Affiliation(s)
- Martha Alemayehu Menberu
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar 196, Ethiopia
| | - Sha Liu
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
| | - Clare Cooksley
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
| | - Andrew James Hayes
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne and The Royal Melbourne Hospital, Melbourne 3000, Australia;
| | - Alkis James Psaltis
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville 5011, Australia; (M.A.M.); (S.L.); (C.C.); (A.J.P.); (P.-J.W.)
- Correspondence: ; Tel.: +61-(0)8-8222-6928
| |
Collapse
|
15
|
Aryan H, Saxena A, Tiwari A. Correlation between bioactive lipids and novel coronavirus: constructive role of biolipids in curbing infectivity by enveloped viruses, centralizing on EPA and DHA. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 1:186-192. [PMID: 38624677 PMCID: PMC7856852 DOI: 10.1007/s43393-020-00019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the family coronaviridae. It is spherical and possesses proteins called spikes, which can clamp onto the human cells. Once in close interaction with the human cells, these viruses undergo structural change and can fuse with the cell membrane. The virus enters the host and starts the process of translation and transcription in the cells and uncoated genome, respectively. Due to the rapid transmittable nature of the virus, extant actions should be taken. The fatty acids administrated orally, or intravenously, could help us gear things up in providing resistance and preventing infection. Hence, the multiplication of the virus could be hindered by arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). In that context, the current review highlights the role of these unsaturated fatty acids and their derivatives such as lipoxins and resolvins in the inactivation of the enveloped coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Himani Aryan
- Diatoms Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301 India
| | - Abhishek Saxena
- Diatoms Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301 India
| | - Archana Tiwari
- Diatoms Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301 India
| |
Collapse
|
16
|
Abstract
The nares of one in three humans are colonized by Staphylococcus aureus. In these environments, and arguably on all mucosal surfaces, bacteria encounter fatty acids with antimicrobial properties. Our study uncovers that S. aureus releases membrane vesicles (MVs) that act as decoys to protect the bacterium against antimicrobial fatty acids (AFAs). The AFA-neutralizing effects of MVs were neither strain specific nor restricted to one particular AFA. Hence, MVs may represent “public goods” playing an overlooked role in shaping bacterial communities in AFA-rich environments such as the skin and nose. Intriguingly, in addition to MV biogenesis, S. aureus modulates MV composition in response to exposure to AFAs, including an increased release of lipoproteins. These MVs strongly stimulate the innate immunity via Toll-like receptor 2 (TLR2). TLR2-mediated inflammation, which helps to fight infections, may exacerbate inflammatory disorders like atopic dermatitis. Our study highlights intricate immune responses preventing infections from colonizing bacteria. Staphylococcus aureus is a major pathogen, which colonizes one in three otherwise healthy humans. This significant spread of S. aureus is largely due to its ability to circumvent innate immune responses, including antimicrobial fatty acids (AFAs) on the skin and in nasal secretions. In response to AFAs, S. aureus swiftly induces resistance mechanisms, which have yet to be completely elucidated. Here, we identify membrane vesicle (MV) release as a resistance strategy used by S. aureus to sequester host-specific AFAs. MVs protect S. aureus against a wide array of AFAs. Strikingly, beside MV production, S. aureus modulates MV composition upon exposure to AFAs. MVs purified from bacteria grown in the presence of linoleic acid display a distinct protein content and are enriched in lipoproteins, which strongly activate Toll-like receptor 2 (TLR2). Cumulatively, our findings reveal the protective capacities of MVs against AFAs, which are counteracted by an increased TLR2-mediated innate immune response. IMPORTANCE The nares of one in three humans are colonized by Staphylococcus aureus. In these environments, and arguably on all mucosal surfaces, bacteria encounter fatty acids with antimicrobial properties. Our study uncovers that S. aureus releases membrane vesicles (MVs) that act as decoys to protect the bacterium against antimicrobial fatty acids (AFAs). The AFA-neutralizing effects of MVs were neither strain specific nor restricted to one particular AFA. Hence, MVs may represent “public goods” playing an overlooked role in shaping bacterial communities in AFA-rich environments such as the skin and nose. Intriguingly, in addition to MV biogenesis, S. aureus modulates MV composition in response to exposure to AFAs, including an increased release of lipoproteins. These MVs strongly stimulate the innate immunity via Toll-like receptor 2 (TLR2). TLR2-mediated inflammation, which helps to fight infections, may exacerbate inflammatory disorders like atopic dermatitis. Our study highlights intricate immune responses preventing infections from colonizing bacteria.
Collapse
|
17
|
Pedersen JN, Frislev HKS, Pedersen JS, Otzen D. Structures and mechanisms of formation of liprotides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140505. [PMID: 32721568 DOI: 10.1016/j.bbapap.2020.140505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Many proteins form complexes called liprotides with oleic acid and other cis-fatty acids under conditions where the protein is partially unfolded. The complexes vary in structure depending on the ratio of protein and lipid, but the most common structural organization is the core-shell structure, in which a layer of dynamic, partially unfolded and extended proteins surrounds a micelle-like fatty acid core. This structure, first reported for α-lactalbumin together with OA, resembles complexes formed between proteins and anionic surfactants like SDS. Liprotides first rose to fame through their anti-carcinogenic properties which still remains promising for topical applications though not yet implemented in the clinic. In addition, liprotides show potential in drug delivery thanks to the ability of the micelle core to solubilize and stabilize hydrophobic compounds, though applications are challenged by their sensitivity to acidic pH and dynamic exchange of lipids which makes them easy prey for serum "hoovers" such as albumin. However, liprotides are also of fundamental interest as a generic "protein complex structure", demonstrating the many and varied structural consequences of protein-lipid interactions. Here we provide an overview of the different types of liprotide complexes, ranging from quasi-native complexes via core-shell structures to multi-layer structures, and discuss the many conditions under which they form. Given the many variable types of complexes that can form, rigorous biophysical analysis (stoichiometry, shape and structure of the complexes) remains crucial for a complete understanding of the mechanisms of action of this fascinating group of protein-lipid complexes both in vitro and in vivo.
Collapse
Affiliation(s)
- Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Henriette Kristina Søster Frislev
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Novo Nordisk, Hallas Alle 1, DK-4400 Kalundborg, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| |
Collapse
|
18
|
Abstract
SARS-CoV-2, SARS and MERS are all enveloped viruses that can cause acute respiratory syndrome. Arachidonic acid (AA) and other unsaturated fatty acids (especially eicosapentaenoic acd, EPA and docosahexaenoic acid DHA) are known to inactivate enveloped viruses and inhibit proliferation of various microbial organisms. The pro-inflammatory metabolites of AA and EPA such as prostaglandins, leukotrienes and thromboxanes induce inflammation whereas lipoxins, resolvins, protectins and maresins derived from AA, EPA and DHA not only suppress inflammation but also enhance would healing and augment phagocytosis of macrophages and other immunocytes and decrease microbial load. In view of these actions, it is suggested that AA and other unsaturated fatty acids and their metabolites may serve as endogenous anti-viral compounds and their deficiency may render humans susceptible to SARS-CoV-2, SARS and MERS and other similar viruses' infections. Hence, oral or intravenous administration of AA and other unsaturated fatty acids may aid in enhancing resistance and recovery from SARS-CoV-2, SARS and MERS infections.
Collapse
|
19
|
Roche-Hakansson H, Vansarla G, Marks LR, Hakansson AP. The human milk protein-lipid complex HAMLET disrupts glycolysis and induces death in Streptococcus pneumoniae. J Biol Chem 2019; 294:19511-19522. [PMID: 31694917 DOI: 10.1074/jbc.ra119.009930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
HAMLET is a complex of human α-lactalbumin (ALA) and oleic acid and kills several Gram-positive bacteria by a mechanism that bears resemblance to apoptosis in eukaryotic cells. To identify HAMLET's bacterial targets, here we used Streptococcus pneumoniae as a model organism and employed a proteomic approach that identified several potential candidates. Two of these targets were the glycolytic enzymes fructose bisphosphate aldolase (FBPA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Treatment of pneumococci with HAMLET immediately inhibited their ATP and lactate production, suggesting that HAMLET inhibits glycolysis. This observation was supported by experiments with recombinant bacterial enzymes, along with biochemical and bacterial viability assays, indicating that HAMLET's activity is partially inhibited by high glucose-mediated stimulation of glycolysis but enhanced in the presence of the glycolysis inhibitor 2-deoxyglucose. Both HAMLET and ALA bound directly to each glycolytic enzyme in solution and solid-phase assays and effectively inhibited their enzymatic activities. In contrast, oleic acid alone had little to no inhibitory activity. However, ALA alone also exhibited no bactericidal activity and did not block glycolysis in whole cells, suggesting a role for the lipid moiety in the internalization of HAMLET into the bacterial cells to reach its target(s). This was verified by inhibition of enzyme activity in whole cells after HAMLET but not ALA exposure. The results of this study suggest that part of HAMLET's antibacterial activity relates to its ability to target and inhibit glycolytic enzymes, providing an example of a natural antimicrobial agent that specifically targets glycolysis.
Collapse
Affiliation(s)
- Hazeline Roche-Hakansson
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14203
| | - Goutham Vansarla
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, SE-21428 Malmö, Sweden
| | - Laura R Marks
- Department of Medicine, Barnes-Jewish Hospital, Washington University, St. Louis, Missouri 63110
| | - Anders P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, SE-21428 Malmö, Sweden
| |
Collapse
|
20
|
Exploration of the Tolerance Ability of a Cell-Free Biosynthesis System to Toxic Substances. Appl Biochem Biotechnol 2019; 189:1096-1107. [DOI: 10.1007/s12010-019-03039-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/10/2019] [Indexed: 11/26/2022]
|
21
|
Sai K, Parsons C, House JS, Kathariou S, Ninomiya-Tsuji J. Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing. J Cell Biol 2019; 218:1994-2005. [PMID: 30975711 PMCID: PMC6548127 DOI: 10.1083/jcb.201810014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/27/2019] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
RIPK3, a key mediator of necroptosis, has been implicated in the host defense against viral infection primary in immune cells. However, gene expression analysis revealed that RIPK3 is abundantly expressed not only in immune organs but also in the gastrointestinal tract, particularly in the small intestine. We found that orally inoculated Listeria monocytogenes, a bacterial foodborne pathogen, efficiently spread and caused systemic infection in Ripk3-deficient mice while almost no dissemination was observed in wild-type mice. Listeria infection activated the RIPK3-MLKL pathway in cultured cells, which resulted in suppression of intracellular replication of Listeria Surprisingly, Listeria infection-induced phosphorylation of MLKL did not result in host cell killing. We found that MLKL directly binds to Listeria and inhibits their replication in the cytosol. Our findings have revealed a novel functional role of the RIPK3-MLKL pathway in nonimmune cell-derived host defense against Listeria invasion, which is mediated through cell death-independent mechanisms.
Collapse
Affiliation(s)
- Kazuhito Sai
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Cameron Parsons
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| | - Sophia Kathariou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC
| | - Jun Ninomiya-Tsuji
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| |
Collapse
|
22
|
Characterization of Antibacterial Cell-Free Supernatant from Oral Care Probiotic Weissella cibaria, CMU. Molecules 2018; 23:molecules23081984. [PMID: 30096901 PMCID: PMC6222630 DOI: 10.3390/molecules23081984] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 12/19/2022] Open
Abstract
Recently, studies have explored the use of probiotics like the Weissella cibaria strain, CMU (oraCMU), for use as preventive dental medicine instead of chemical oral care methods. The present study was conducted to investigate the antibacterial properties of the cell-free supernatant (CFS) from this bacterium. Cell morphology using the scanning electron microscope, and the antibacterial effect of CFS under various growth conditions were evaluated. The production of hydrogen peroxide, organic acids, fatty acids, and secretory proteins was also studied. Most of the antibacterial effects of oraCMU against periodontal pathogens were found to be acid- and hydrogen peroxide-dose-dependent effects. Lactic acid, acetic acid, and citric acid were the most common organic acids. Among the 37 fatty acids, only 0.02% of oleic acid (C18:1n-9, cis) was detected. Proteomic analysis of the oraCMU secretome identified a total of 19 secreted proteins, including N-acetylmuramidase. This protein may be a potential anti-microbial agent effective against Porphyromonas gingivalis.
Collapse
|
23
|
Modulation of Haemophilus influenzae interaction with hydrophobic molecules by the VacJ/MlaA lipoprotein impacts strongly on its interplay with the airways. Sci Rep 2018; 8:6872. [PMID: 29720703 PMCID: PMC5932069 DOI: 10.1038/s41598-018-25232-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/13/2018] [Indexed: 01/02/2023] Open
Abstract
Airway infection by nontypeable Haemophilus influenzae (NTHi) associates to chronic obstructive pulmonary disease (COPD) exacerbation and asthma neutrophilic airway inflammation. Lipids are key inflammatory mediators in these disease conditions and consequently, NTHi may encounter free fatty acids during airway persistence. However, molecular information on the interplay NTHi-free fatty acids is limited, and we lack evidence on the importance of such interaction to infection. Maintenance of the outer membrane lipid asymmetry may play an essential role in NTHi barrier function and interaction with hydrophobic molecules. VacJ/MlaA-MlaBCDEF prevents phospholipid accumulation at the bacterial surface, being the only system involved in maintaining membrane asymmetry identified in NTHi. We assessed the relationship among the NTHi VacJ/MlaA outer membrane lipoprotein, bacterial and exogenous fatty acids, and respiratory infection. The vacJ/mlaA gene inactivation increased NTHi fatty acid and phospholipid global content and fatty acyl specific species, which in turn increased bacterial susceptibility to hydrophobic antimicrobials, decreased NTHi epithelial infection, and increased clearance during pulmonary infection in mice with both normal lung function and emphysema, maybe related to their shared lung fatty acid profiles. Altogether, we provide evidence for VacJ/MlaA as a key bacterial factor modulating NTHi survival at the human airway upon exposure to hydrophobic molecules.
Collapse
|
24
|
Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int J Mol Sci 2018. [PMID: 29642500 DOI: 10.3390/ijms19041114.pmid:29642500;pmcid:pmc5979495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Elba R Valle-González
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
25
|
Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int J Mol Sci 2018; 19:E1114. [PMID: 29642500 PMCID: PMC5979495 DOI: 10.3390/ijms19041114] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Elba R Valle-González
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
26
|
Das UN. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review. J Adv Res 2018; 11:57-66. [PMID: 30034876 PMCID: PMC6052656 DOI: 10.1016/j.jare.2018.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/01/2018] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
Our body is endowed with several endogenous anti-microbial compounds such as interferon, cytokines, free radicals, etc. However, little attention has been paid to the possibility that lipids could function as antimicrobial compounds. In this short review, the antimicrobial actions of various polyunsaturated fatty acids (PUFAs, mainly free acids) and their putative mechanisms of action are described. In general, PUFAs kill microbes by their direct action on microbial cell membranes, enhancing generation of free radicals, augmenting the formation of lipid peroxides that are cytotoxic, and by increasing the formation of their bioactive metabolites, such as prostaglandins, lipoxins, resolvins, protectins and maresins that enhance the phagocytic action of leukocytes and macrophages. Higher intakes of α-linolenic and cis-linoleic acids (ALA and LA respectively) and fish (a rich source of eicosapentaenoic acid and docosahexaenoic acid) might reduce the risk pneumonia. Previously, it was suggested that polyunsaturated fatty acids (PUFAs): linoleic, α-linolenic, γ-linolenic (GLA), dihomo-GLA (DGLA), arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) function as endogenous anti-bacterial, anti-fungal, anti-viral, anti-parasitic, and immunomodulating agents. A variety of bacteria are sensitive to the growth inhibitory actions of LA and ALA in vitro. Hydrolyzed linseed oil can kill methicillin-resistant Staphylococcus aureus. Both LA and AA have the ability to inactivate herpes, influenza, Sendai, and Sindbis virus within minutes of contact. AA, EPA, and DHA induce death of Plasmodium falciparum both in vitro and in vivo. Prostaglandin E1 (PGE1) and prostaglandin A (PGA), derived from DGLA, AA, and EPA inhibit viral replication and show anti-viral activity. Oral mucosa, epidermal cells, lymphocytes and macrophages contain and release significant amounts of PUFAs on stimulation. PUFAs stimulate NADPH-dependent superoxide production by macrophages, neutrophils and lymphocytes to kill the invading microorganisms. Cytokines induce the release of PUFAs from cell membrane lipid pool, a potential mechanism for their antimicrobial action. AA, EPA, and DHA give rise to lipoxins (LXs), resolvins, protectins, and maresins that limit and resolve inflammation and have antimicrobial actions. Thus, PUFAs and their metabolites have broad antimicrobial actions.
Collapse
|
27
|
Orrù G, Demontis C, Mameli A, Tuveri E, Coni P, Pichiri G, Coghe F, Rosa A, Rossi P, D'hallewin G. The Selective Interaction of Pistacia lentiscus Oil vs. Human Streptococci, an Old Functional Food Revisited with New Tools. Front Microbiol 2017; 8:2067. [PMID: 29114245 PMCID: PMC5660700 DOI: 10.3389/fmicb.2017.02067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/09/2017] [Indexed: 11/13/2022] Open
Abstract
Pistacia lentiscus berry oil (LBO) represents a typical vegetal product of the Mediterranean basin that has been formally used in traditional cuisine for 100s of years. In addition to its interesting alimentary properties, this product could represent an interesting candidate in the field of research on the study of new anti-infective agents. In fact, in Mediterranean countries, lentisk oil still continues to be widely used in folk medicine for oral and skin affections, in particular, acute gingivitis, pediatric skin infections such as impetigo and foot plaques, and biofilm related infections often associated with Streptococcus spp. Following these observations, we have hypothesized a “lentisk oil-bacteria” interaction, placing particular emphasis on the different Streptococcal species involved in these oral and skin diseases. In accordance with this hypothesis, the use of standard antimicrobial-antibiofilm methods (MIC, MBC, MBIC) allowed the interesting behavior of these bacteria to be observed and, in this context, the response to lentisk oil appears to be correlated with the pathogenic profile of the considered microorganism. Two probiotic strains of S. salivarius K12/M18 appeared to be non-sensitive to this product, while a set of five different pathogenic strains (S. agalactiae, S. intermedius, S. mitis, S. mutans, S. pyogenes) showed a response that was correlated to the fatty acid metabolic pathway of the considered species. In fact, at different times of bacteria development, selective High Performance Liquid Chromatography analysis of the growth medium containing LBO detected a significant increase in free unsaturated fatty acids (UFAs) in particular oleic, palmitic and linoleic acids, which are already known for their antibacterial activity. In this context, we have hypothesized that LBO could be able to modulate the pathogen/probiotic rate in a Streptococcal population using the fatty acid metabolic pathway to help the probiotic strain. This hypothesis was strengthened by performing antibacterial testing with oleic acid and an in silico evaluation of the Streptococcal MCRA protein, an enzyme involved in the production of saturated fatty acids from UFA. These results show that LBO may have been used in ancient times as a “natural microbial modulating extract” in the prevention of biofilm- associated diseases.
Collapse
Affiliation(s)
- Germano Orrù
- Molecular Biology Service, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Cristina Demontis
- Molecular Biology Service, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Antonello Mameli
- Molecular Biology Service, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Enrica Tuveri
- Molecular Biology Service, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Pierpaolo Coni
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppina Pichiri
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Ferdinando Coghe
- University Hospital Laboratory Services, Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Antonella Rosa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | |
Collapse
|
28
|
Krzyczkowska J, Kozłowska M. Effect of Oils Extracted from Plant Seeds on the Growth and Lipolytic Activity of Yarrowia lipolytica Yeast. J AM OIL CHEM SOC 2017; 94:661-671. [PMID: 28479605 PMCID: PMC5397656 DOI: 10.1007/s11746-017-2975-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/30/2022]
Abstract
This study was aimed at evaluating the capability of Yarrowia lipolytica W29 for the synthesis of lipolytic enzymes in a medium containing plant oils from non-conventional sources with some components displaying bioactivity. Oils from almond, hazelnut, and coriander seeds were obtained by using n-hexane (Soxhlet method) and a chloroform/methanol mixture of solvents (Folch method), and their effect on the growth and lipolytic activity of Y. lipolytica was compared. A comparison of these two extraction methods showed that the extraction with n-hexane was less effective regarding the oil extraction yields than the extraction conducted according to Folch's procedure. The lipolytic activity of the studied yeast was higher in the culture media containing oils extracted with the Soxhlet method than the Folch method but it was lower compared to olive oil medium. Among all oils tested, almond oil extracted with n-hexane was the best inducer of extracellular lipases synthesized by Y. lipolytica. Its lipolytic activity achieved the maximum value of 2.33 U/mL after 48 h of culture. After 24 h of culture, it was close to the value obtained for the medium containing olive oil. Almond oil was a source of oleic and linoleic acids, which may determine differences in the lipolytic activity. The linoleic acid content in almond oil was higher than that found in other oils. When n-hexane was used for extraction, the resultant oils were characterized by lower contents of polyphenols and poorer antioxidative activity.
Collapse
Affiliation(s)
- Jolanta Krzyczkowska
- Department of Chemistry, Faculty of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Mariola Kozłowska
- Department of Chemistry, Faculty of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| |
Collapse
|
29
|
Abstract
Microbial communities span many orders of magnitude, ranging in scale from hundreds of cells on a single particle of soil to billions of cells within the lumen of the gastrointestinal tract. Bacterial cells in all habitats are members of densely populated local environments that facilitate competition between neighboring cells. Accordingly, bacteria require dynamic systems to respond to the competitive challenges and the fluctuations in environmental circumstances that tax their fitness. The assemblage of bacteria into communities provides an environment where competitive mechanisms are developed into new strategies for survival. In this minireview, we highlight a number of mechanisms used by bacteria to compete between species. We focus on recent discoveries that illustrate the dynamic and multifaceted functions used in bacterial competition and discuss how specific mechanisms provide a foundation for understanding bacterial community development and function.
Collapse
|
30
|
Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols. mBio 2016; 7:e01725-15. [PMID: 26733066 PMCID: PMC4725001 DOI: 10.1128/mbio.01725-15] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. IMPORTANCE Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization.
Collapse
|
31
|
Atashbeyk DG, Khameneh B, Tafaghodi M, Fazly Bazzaz BS. Eradication of methicillin-resistant Staphylococcus aureus infection by nanoliposomes loaded with gentamicin and oleic acid. PHARMACEUTICAL BIOLOGY 2014; 52:1423-1428. [PMID: 25026343 DOI: 10.3109/13880209.2014.895018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Methicillin-resistant Staphylococcus aureus (MRSA) infection with its high incidence is responsible for nosocomial infections. MRSA strains resistant to multiple antibiotics have emerged increasingly. Recently, combination therapy and efficient drug delivery systems are developed to treat infections. OBJECTIVE The aim of the present study was to evaluate antibacterial activities of combination of oleic acid and gentamicin against MRSA, in both free and liposomal forms, and in comparison with vancomycin. MATERIALS AND METHODS The antibacterial activities against MRSA ATCC 43300 were assessed by the determination of minimum inhibitory concentration (MIC), MBC, and Fractional Inhibitory Concentration Index (FICI). The time-kill assays were performed to evaluate the potency of antibacterial agents. Nanoliposomal formulations of gentamicin, oleic acid, and combination of gentamicin with oleic acid were prepared by the dehydration-rehydration (DRV) method and characterized for size, zeta potential, and encapsulation efficiency. RESULTS MIC values of gentamicin and oleic acid were 19.5 and >250 µg/ml, respectively. Synergetic effects were observed by the gentamicin and oleic acid combination; FICI was 0.5. Following incorporation of gentamicin into liposomal gentamicin and liposomal combination, the MIC values were reduced 15- and 27-fold, respectively. In comparison with vancomycin, liposomal combination was more effective in bacterial inhibition and killing. Liposomal combination was the most effective formula in time-kill study. DISCUSSION AND CONCLUSION Liposomal formulation showed a higher antibacterial activity in comparison with the free forms and vancomycin. These carriers can improve antimicrobial activity as well as reducing the effective concentration required and inducing rapid bacterial clearance.
Collapse
|
32
|
Role of lipase from community-associated methicillin-resistant Staphylococcus aureus strain USA300 in hydrolyzing triglycerides into growth-inhibitory free fatty acids. J Bacteriol 2014; 196:4044-56. [PMID: 25225262 DOI: 10.1128/jb.02044-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Part of the human host innate immune response involves the secretion of bactericidal lipids on the skin and delivery of triglycerides into abscesses to control invading pathogens. Two Staphylococcus aureus lipases, named SAL1 and SAL2, were identified in the community-associated methicillin-resistant S. aureus strain USA300, which, presumably, are produced and function to degrade triglycerides to release free fatty acids. We show that the SAL2 lipase is one of the most abundant proteins secreted by USA300 and is proteolytically processed from the 72-kDa proSAL2 to the 44-kDa mature SAL2 by the metalloprotease aureolysin. We show that spent culture supernatants had lipase activity on both short- and long-chain fatty acid substrates and that deletion of gehB, encoding SAL2, resulted in the complete loss of these activities. With the use of gas chromatography-mass spectrometry, we show that SAL2 hydrolyzed trilinolein to linoleic acid, a fatty acid with known antistaphylococcal properties. When added to cultures of USA300, trilinolein and, to a lesser extent, triolein inhibited growth in a SAL2-dependent manner. This effect was shown to be due to the enzymatic activity of SAL2 on these triglycerides, since the catalytically inactive SAL2 Ser412Ala mutant was incapable of hydrolyzing the triglycerides or yielding delayed growth in their presence. Overall, these results reveal that SAL2 hydrolyzes triglycerides of both short- and long-chain fatty acids and that the released free fatty acids have the potential to cause significant delays in growth, depending on the chemical nature of the free fatty acid.
Collapse
|
33
|
Clementi EA, Wilhelm KR, Schleucher J, Morozova-Roche LA, Hakansson AP. A complex of equine lysozyme and oleic acid with bactericidal activity against Streptococcus pneumoniae. PLoS One 2013; 8:e80649. [PMID: 24260444 PMCID: PMC3832479 DOI: 10.1371/journal.pone.0080649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/06/2013] [Indexed: 12/31/2022] Open
Abstract
HAMLET and ELOA are complexes consisting of oleic acid and two homologous, yet functionally different, proteins with cytotoxic activities against mammalian cells, with HAMLET showing higher tumor cells specificity, possibly due to the difference in propensity for oleic acid binding, as HAMLET binds 5-8 oleic acid molecules per protein molecule and ELOA binds 11-48 oleic acids. HAMLET has been shown to possess bactericidal activity against a number of bacterial species, particularly those with a respiratory tropism, with Streptococcus pneumoniae displaying the greatest degree of sensitivity. We show here that ELOA also displays bactericidal activity against pneumococci, which at lower concentrations shows mechanistic similarities to HAMLET’s bactericidal activity. ELOA binds to S. pneumoniae and causes perturbations of the plasma membrane, including depolarization and subsequent rupture, and activates an influx of calcium into the cells. Selective inhibition of calcium channels and sodium/calcium exchange activity significantly diminished ELOA’s bactericidal activity, similar to what we have observed with HAMLET. Finally, ELOA-induced death was also accompanied by DNA fragmentation into high molecular weight fragments – an apoptosis-like morphological phenotype that is seen during HAMLET-induced death. Thus, in contrast to different mechanisms of eukaryote cell death induced by ELOA and HAMLET, these complexes are characterized by rather similar activities towards bacteria. Although the majority of these events could be mimicked using oleic acid alone, the concentrations of oleic acid required were significantly higher than those present in the ELOA complex, and for some assays, the results were not identical between oleic acid alone and the ELOA complex. This indicates that the lipid, as a common denominator in both complexes, is an important component for the complexes’ bactericidal activities, while the proteins are required both to solubilize and/or present the lipid at the bacterial membrane and likely to confer other and separate functions during the bacterial death.
Collapse
Affiliation(s)
- Emily A. Clementi
- Department of Microbiology and Immunology, University at Buffalo (SUNY), Buffalo, New York, United States of America
| | - Kristina R. Wilhelm
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jürgen Schleucher
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | | | - Anders P. Hakansson
- Department of Microbiology and Immunology, University at Buffalo (SUNY), Buffalo, New York, United States of America
- The Witebsky Center for Microbial Pathogenesis and Immunology, Buffalo, New York, United States of America
- The New York Center of Excellence for Bioinformatics and Life Sciences, University at Buffalo (SUNY), Buffalo, New York, United States of America
- * E-mail: (AH); (LMR)
| |
Collapse
|
34
|
Nemashkalova EL, Kazakov AS, Khasanova LM, Permyakov EA, Permyakov SE. Structural characterization of more potent alternatives to HAMLET, a tumoricidal complex of α-lactalbumin and oleic acid. Biochemistry 2013; 52:6286-99. [PMID: 23947814 DOI: 10.1021/bi400643s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HAMLET is a complex of human α-lactalbumin (hLA) with oleic acid (OA) that kills various tumor cells and strains of Streptococcus pneumoniae. More potent protein-OA complexes were previously reported for bovine α-lactalbumin (bLA) and β-lactoglobulin (bLG), and pike parvalbumin (pPA), and here we explore their structural features. The concentration dependencies of the tryptophan fluorescence of hLA, bLA, and bLG complexes with OA reveal their disintegration at protein concentrations below the micromolar level. Chemical cross-linking experiments provide evidence that association with OA shifts the distribution of oligomeric forms of hLA, bLA, bLG, and pPA toward higher-order oligomers. This effect is confirmed for bLA and bLG using the dynamic light scattering method, while pPA is shown to associate with OA vesicles. Like hLA binding, OA binding increases the affinity of bLG for small unilamellar dipalmitoylphosphatidylcholine vesicles, while pPA efficiently binds to the vesicles irrespective of OA binding. The association of OA with bLG and pPA increases their α-helix and cross-β-sheet content and resistance to enzymatic proteolysis, which is indicative of OA-induced protein structuring. The lack of excess heat sorption during melting of bLG and pPA in complex with OA and the presence of a cooperative thermal transition at the level of their secondary structure suggest that the OA-bound forms of bLG and pPA lack a fixed tertiary structure but exhibit a continuous thermal transition. Overall, despite marked differences, the HAMLET-like complexes that were studied exhibit a common feature: a tendency toward protein oligomerization. Because OA-induced oligomerization has been reported for other proteins, this phenomenon is inherent to many proteins.
Collapse
Affiliation(s)
- Ekaterina L Nemashkalova
- Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region 142290, Russia
| | | | | | | | | |
Collapse
|
35
|
The biological activities of protein/oleic acid complexes reside in the fatty acid. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1125-43. [DOI: 10.1016/j.bbapap.2013.02.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022]
|
36
|
Bowen AC, Tong SYC, Chatfield MD, Andrews RM, Carapetis JR. Comparison of three methods for the recovery of skin pathogens from impetigo swabs collected in a remote community of Northern Territory, Australia. Trans R Soc Trop Med Hyg 2013; 107:384-9. [PMID: 23612469 DOI: 10.1093/trstmh/trt032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Impetigo is a common infection in children living in remote areas. Immediate plating of impetigo swabs is the gold standard for bacterial recovery but is rarely feasible in remote regions. Bacterial culture increases our understanding of antibiotic resistance and strain diversity, which guides treatment protocols and epidemiological monitoring. METHODS We investigated three practical alternatives for recovering Streptococcus pyogenes and Staphylococcus aureus from transported swabs: dry swabs transported at 4°C with desiccant and plated within 48 h; swabs inoculated into skim milk tryptone glucose glycerol broth (STGGB), transported at 4°C, stored at -70°C and plated within 61 days; and ESwabs inoculated into Amies broth, transported at 4°C and plated within 48 h. Detection of Strep. pyogenes and Staph. aureus from simultaneously collected swabs was compared for the dry vs STGGB (36 sores) and the STGGB vs Amies (39 sores) methods. Swabs were collected from 43 children (75 sores sampled) in a remote community of Northern Territory, Australia in November 2011. The children had impetigo and were participating in the Skin Sore Trial [Australian Clinical Trials Registry ACTRN12609000858291]. RESULTS Recovery of Strep. pyogenes for dry vs STGGB was 72% (26/36) and 92% (33/36) and for STGGB vs Amies was 92% (36/39) for both methods. Staphylococcus aureus recovery for dry vs STGGB was 69% (25/36) and 72% 26/36) and for STGGB vs Amies was 74% (29/39) and 85% (33/39). CONCLUSION STGGB and Amies media provided higher recovery of Strep. pyogenes than dry swabs. These results and the opportunity to batch and store specimens for molecular studies support the use of STGGB transport media for future impetigo research.
Collapse
Affiliation(s)
- Asha C Bowen
- Menzies School of Health Research, Charles Darwin University, Casuarina, NT 0811, Australia
| | | | | | | | | |
Collapse
|
37
|
Brinkmann CR, Thiel S, Otzen DE. Protein-fatty acid complexes: biochemistry, biophysics and function. FEBS J 2013; 280:1733-49. [DOI: 10.1111/febs.12204] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/29/2012] [Accepted: 02/12/2013] [Indexed: 02/01/2023]
Affiliation(s)
| | - Steffen Thiel
- Department of Biomedicine, Faculty of Health Sciences; Aarhus University; Denmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Centre for Insoluble Protein Structures (inSPIN), Department of Molecular Biology and Genetics; Aarhus University; Denmark
| |
Collapse
|
38
|
Urbanek A, Szadziewski R, Stepnowski P, Boros-Majewska J, Gabriel I, Dawgul M, Kamysz W, Sosnowska D, Gołębiowski M. Composition and antimicrobial activity of fatty acids detected in the hygroscopic secretion collected from the secretory setae of larvae of the biting midge Forcipomyia nigra (Diptera: Ceratopogonidae). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1265-1276. [PMID: 22781366 DOI: 10.1016/j.jinsphys.2012.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 06/01/2023]
Abstract
The hygroscopic secretion produced by the secretory setae of terrestrial larvae of the biting midge Forcipomyia nigra (Winnertz) was analysed using gas chromatography coupled with mass spectrometry (GC-MS). The viscous secretion is stored at the top of each seta and absorbs water from moist air. GC-MS analyses (four independent tests) showed that the secretion contained 12 free fatty acids, the most abundant of which were oleic (18:1), palmitic (16:0), palmitoleic (16:1) and linoleic (18:2). Other acids identified were valeric (5:0), enanthic (7:0), caprylic (8:0), pelargonic (9:0), capric (10:0), lauric (12:0), myristic (14:0) and stearic (18:0). Two other compounds, glycerol and pyroglutamic acid, were also found. The antibacterial activity of the fatty acids and pyroglutamic acid was tested using the agar disc diffusion method and targeted Gram positive (Bacillus cereus, Bacillus subtilis, Enterococcus faecalis) and Gram negative bacterial strains (Citrobacter freundii, Pseudomonas aeruginosa, Pseudomonas fluorescens). The antifungal activity was tested by determining minimal inhibitory concentration (MIC) of examined compounds. Fatty acids were tested against enthomopathogenic fungi (Paecilomyces lilacinus, Paecilomyces fumosoroseus, Lecanicillium lecanii, Metarhizium anisopliae, Beauveria bassiana (Tve-N39), Beauveria bassiana (Dv-1/07)). The most effective acids against bacterial and fungal growth were C(9:0), C(10:0) and C(16:1), whereas C(14:0), C(16:0,) C(18:0) and C(18:1) demonstrated rather poor antifungal activity and did not inhibit the growth of bacteria. The antimicrobial assay investigated mixtures of fatty and pyroglutamic acids (corresponding to the results of each GC-MS test): they were found to be active against almost all the bacteria except P. fluorescens and also demonstrated certain fungistatic activity against enthomopathogenic fungi. The hygroscopic secretion facilitates cuticular respiration and plays an important role in the antimicrobial protection of F. nigra larvae living in moist terrestrial habitats.
Collapse
Affiliation(s)
- Aleksandra Urbanek
- Department of Invertebrate Zoology, University of Gdańsk, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Otman SAM, Pshenichnikova AB, Shvets VI. Effect of exogenous fatty acids on the growth and production of exopolysaccharides of obligately methylotrophic bacterium Methylophilus quaylei. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812020093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 2009; 85:1629-42. [PMID: 19956944 DOI: 10.1007/s00253-009-2355-3] [Citation(s) in RCA: 776] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/11/2009] [Accepted: 11/11/2009] [Indexed: 12/30/2022]
Abstract
Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.
Collapse
Affiliation(s)
- Andrew P Desbois
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, Fife KY16 9ST, UK
| | | |
Collapse
|
41
|
Kenny JG, Ward D, Josefsson E, Jonsson IM, Hinds J, Rees HH, Lindsay JA, Tarkowski A, Horsburgh MJ. The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One 2009; 4:e4344. [PMID: 19183815 PMCID: PMC2629846 DOI: 10.1371/journal.pone.0004344] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 12/18/2008] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is an important human commensal and opportunistic pathogen responsible for a wide range of infections. Long chain unsaturated free fatty acids represent a barrier to colonisation and infection by S. aureus and act as an antimicrobial component of the innate immune system where they are found on epithelial surfaces and in abscesses. Despite many contradictory reports, the precise anti-staphylococcal mode of action of free fatty acids remains undetermined. In this study, transcriptional (microarrays and qRT-PCR) and translational (proteomics) analyses were applied to ascertain the response of S. aureus to a range of free fatty acids. An increase in expression of the σB and CtsR stress response regulons was observed. This included increased expression of genes associated with staphyloxanthin synthesis, which has been linked to membrane stabilisation. Similarly, up-regulation of genes involved in capsule formation was recorded as were significant changes in the expression of genes associated with peptidoglycan synthesis and regulation. Overall, alterations were recorded predominantly in pathways involved in cellular energetics. In addition, sensitivity to linoleic acid of a range of defined (sigB, arcA, sasF, sarA, agr, crtM) and transposon-derived mutants (vraE, SAR2632) was determined. Taken together, these data indicate a common mode of action for long chain unsaturated fatty acids that involves disruption of the cell membrane, leading to interference with energy production within the bacterial cell. Contrary to data reported for other strains, the clinically important EMRSA-16 strain MRSA252 used in this study showed an increase in expression of the important virulence regulator RNAIII following all of the treatment conditions tested. An adaptive response by S. aureus of reducing cell surface hydrophobicity was also observed. Two fatty acid sensitive mutants created during this study were also shown to diplay altered pathogenesis as assessed by a murine arthritis model. Differences in the prevalence and clinical importance of S. aureus strains might partly be explained by their responses to antimicrobial fatty acids.
Collapse
Affiliation(s)
- John G. Kenny
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Deborah Ward
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Elisabet Josefsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Göteborg, Sweden
| | - Ing-Marie Jonsson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Göteborg, Sweden
| | - Jason Hinds
- Division of Cellular & Molecular Medicine, St George's, University of London, London, United Kingdom
| | - Huw H. Rees
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jodi A. Lindsay
- Division of Cellular & Molecular Medicine, St George's, University of London, London, United Kingdom
| | - Andrej Tarkowski
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Göteborg, Sweden
| | - Malcolm J. Horsburgh
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
|
43
|
Stenz L, François P, Fischer A, Huyghe A, Tangomo M, Hernandez D, Cassat J, Linder P, Schrenzel J. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production inStaphylococcus aureus. FEMS Microbiol Lett 2008; 287:149-55. [DOI: 10.1111/j.1574-6968.2008.01316.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
44
|
Scaramuzzino DA, McNiff JM, Bessen DE. Humanized in vivo model for streptococcal impetigo. Infect Immun 2000; 68:2880-7. [PMID: 10768985 PMCID: PMC97500 DOI: 10.1128/iai.68.5.2880-2887.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/1999] [Accepted: 02/01/2000] [Indexed: 11/20/2022] Open
Abstract
An in vivo model for group A streptococcal (GAS) impetigo was developed, whereby human neonatal foreskin engrafted onto SCID mice was superficially damaged and bacteria were topically applied. Severe infection, indicated by a purulent exudate, could be induced with as few as 1,000 CFU of a virulent strain. Early findings (48 h) showed a loss of stratum corneum and adherence of short chains of gram-positive cocci to the external surface of granular keratinocytes. This was followed by an increasing infiltration of polymorphonuclear leukocytes (neutrophils) of mouse origin, until a thick layer of pus covered an intact epidermis, with massive clumps of cocci accumulated at the outer rim of the pus layer. By 7 days postinoculation, the epidermis was heavily eroded; in some instances, the dermis contained pockets (ulcers) filled with cocci, similar to that observed for ecthyma. Importantly, virulent GAS underwent reproduction, resulting in a net increase in CFU of 20- to 14,000-fold. The majority of emm pattern D strains had a higher gross pathology score than emm pattern A, B, or C (A-C) strains, consistent with epidemiological findings that pattern D strains have a strong tendency to cause impetigo, whereas pattern A-C strains are more likely to cause pharyngitis.
Collapse
Affiliation(s)
- D A Scaramuzzino
- Departments of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut
| | | | | |
Collapse
|
45
|
Abstract
Humans exist in an environment replete with microorganisms, but only a few become resident on the skin surface. The skin possesses protective mechanisms to limit colonization, and the survival of organisms on the surface lies in part in the ability of the organisms to resist these mechanisms. Microbial colonization on the skin adds to the skin's defense against potentially pathogenic organisms. Although microbes normally live in synergy with their hosts, occasionally colonization can result in clinical infection. Common infections consist of superficial infections of the stratum corneum or appendageal structures that can respond dramatically to therapy but commonly relapse. In rare circumstances, these infections can be quite severe, particularly in immunocompromised patients or in hospitalized patients with indwelling foreign devices. These infections are often resistant to conventional antibiotics and can result in infection with other opportunistic pathogens.
Collapse
Affiliation(s)
- R R Roth
- Department of Surgery, Elmendorf AFB, Alaska
| | | |
Collapse
|