1
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Sass G, Miller Conrad LC, Nguyen TTH, Stevens DA. The Pseudomonas aeruginosa product pyochelin interferes with Trypanosoma cruzi infection and multiplication in vitro. Trans R Soc Trop Med Hyg 2021; 114:492-498. [PMID: 32193540 DOI: 10.1093/trstmh/trz136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/09/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bacteria are sources of numerous molecules used in treatment of infectious diseases. We investigated effects of molecules produced by 26 Pseudomonas aeruginosa strains against infection of mammalian cell cultures with Trypanosoma cruzi, the aetiological agent of Chagas disease. METHODS Vero cells were infected with T. cruzi in the presence of wild-type P. aeruginosa supernatants or supernatants of mutants with defects in the production of various virulence, quorum sensing and iron acquisition factors. Quantification of T. cruzi infection (percentage of infected cells) and multiplication (number of amastigotes per infected cell) was performed and cell viability was determined. RESULTS Wild-type P. aeruginosa products negatively affected T. cruzi infection and multiplication in a dose-dependent manner, without evident toxicity for mammalian cells. PvdD/pchE mutation (loss of the P. aeruginosa siderophores pyoverdine and pyochelin) had the greatest impact on anti-T. cruzi activity. Negative effects on T. cruzi infection by pure pyochelin, but not pyoverdine, or other P. aeruginosa exoproducts studied, were quantitatively similar to the effects of benznidazole, the current standard therapy against T. cruzi. CONCLUSIONS The P. aeruginosa product pyochelin showed promising activity against T. cruzi and might become a new lead molecule for therapy development.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | | | | | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Jung H, Han S, Lee Y. Transcriptome analysis of alternative splicing in the pathogen life cycle in human foreskin fibroblasts infected with Trypanosoma cruzi. Sci Rep 2020; 10:17481. [PMID: 33060827 PMCID: PMC7566602 DOI: 10.1038/s41598-020-74540-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi is an intracellular protozoan parasite that causes Chagas disease as a zoonotic pathogen. The parasite has been shown to remodel expression in the host transcriptome under different conditions. Although alternative splicing (AS) is involved in virtually every biological function in eukaryotes, including cellular differentiation and responses to immune reactions, host AS events that occur as a result of T. cruzi infection have yet to be explored. In this study, we bioinformatically investigated the transcriptome AS dynamics of T. cruzi (Y strain) infected human foreskin fibroblasts using RNA-Seq data captured over four timepoints (4, 24, 48, and 72 h post infection (hpi)). We identified 1768, 399, 250, and 299 differentially expressed exons (AS exons) at 4, 24, 48, and 72 hpi, respectively, showing that host AS mechanism may have a significant role in the intracellular life cycle of the parasite. We present an exon skipping event in HDAC7, which is a candidate gene that is important in the parasite’s cell cycle. To sum up, this bioinformatics analysis of transcriptome may provide new potential insight into AS regulation in human foreskin fibroblast (HFF) cells infected by T. cruzi and into its implication to the parasite life cycle. Moreover, identified AS genes may provide new potential molecular candidates for improving treatment.
Collapse
Affiliation(s)
- Hyeim Jung
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
4
|
Oliveira MC, Coutinho LB, Almeida MPO, Briceño MP, Araujo ECB, Silva NM. The Availability of Iron Is Involved in the Murine Experimental Toxoplasma gondii Infection Outcome. Microorganisms 2020; 8:microorganisms8040560. [PMID: 32295126 PMCID: PMC7232304 DOI: 10.3390/microorganisms8040560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
Iron is an important constituent of our environment, being necessary for both mammalian and pathogenic protozoa survival. Iron-containing proteins exert a wide range of biological processes such as biodegradation and biosynthesis, as well as immune function, fetal development, and physical and mental well-being. This work aimed to investigate the effect of iron deprivation in Toxoplasma gondii infection outcome. C57BL/6 mice were orally infected with T. gondii and treated with an iron chelator, deferoxamine, or supplemented with iron (ferrous sulfate), and the parasitism as well as immunological and histological parameters were analyzed. It was observed that the infection increased iron accumulation in the organs, as well as systemically, and deferoxamine treatment diminished the iron content in serum samples and intestine. The deferoxamine treatment decreased the parasitism and inflammatory alterations in the small intestine and lung. Additionally, they partially preserved the Paneth cells and decreased the intestinal dysbiosis. The ferrous sulfate supplementation, despite not significantly increasing the parasite load in the organs, increased the inflammatory alterations in the liver. Together, our results suggest that iron chelation, which is commonly used to treat iron overload, could be a promising medicine to control T. gondii proliferation, mainly in the small intestine, and consequently inflammation caused by infection.
Collapse
|
5
|
Arruda Gimenes Nantes W, Teixeira Gomes Barreto W, Martins Santos F, Carvalho de Macedo G, Castro Rucco A, de Oliveira Assis W, Edith de Oliveira Porfírio G, Braziliano de Andrade G, Maria Jansen A, Miraglia Herrera H. The influence of parasitism by Trypanosoma cruzi in the hematological parameters of the white ear opossum ( Didelphis albiventris) from Campo Grande, Mato Grosso do Sul, Brazil. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 9:16-20. [PMID: 30976512 PMCID: PMC6441743 DOI: 10.1016/j.ijppaw.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/25/2022]
Abstract
Considered ecologically generalist, Didelphis albiventris is reported as reservoir for different species of parasites, especially Trypanosoma cruzi. However, the knowledge about the influence of T. cruzi on hematological parameters of free-living opossum remains scarce. The present study aimed to evaluate the influence of T. cruzi on hematological parameters of white-ear opossums (D. albiventris) from Campo Grande, Mato Grosso do Sul, Brazil. The blood samples and biometric data were collected from 40 opossums captured by Tomahawk and Sherman traps in six urban forest fragments located in the city. The health of these animals was inferred, mainly, by means of blood parameters (PCV, RBC, WBC, MCV and WBC differential). Molecular detection of T. cruzi infection was performed by nested polymerase chain reaction (nPCR), using 18S and 24Sα rDNA region as target. Paired-t-test and simple linear regression were used for statistical analysis. No significant difference was observed between the averages of hematological variables in relation to gender and body condition. The molecular diagnosis showed that 32.5% (13/40) of the opossums were infected by T. cruzi, which presented lymphocytosis (3.4 ± 1.5) and eosinophilia (0.09 ± 0.13). Path analysis showed that T. cruzi infection resulted in increased numbers of lymphocytes and indirectly decreased the body condition of opossums. Moreover T. cruzi infection resulted in a direct effect on decrease of MCV. Overall, our results suggest that T. cruzi infection may represent a risk to health of opossums since the lymphocytosis may cause a secondary damage on body condition of infected animals.
Collapse
Affiliation(s)
- Wesley Arruda Gimenes Nantes
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Wanessa Teixeira Gomes Barreto
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Costa e Silva Avenue, Cep 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Filipe Martins Santos
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Gabriel Carvalho de Macedo
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Andreza Castro Rucco
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - William de Oliveira Assis
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Grasiela Edith de Oliveira Porfírio
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Gisele Braziliano de Andrade
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Ana Maria Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil Avenue, 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor Miraglia Herrera
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Tamandaré Avenue, 6000. Jardim Seminário, Cep 79117-900, Campo Grande, Mato Grosso do Sul, Brazil.,Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Costa e Silva Avenue, Cep 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
6
|
Martins Santos F, Carvalho de Macedo G, Teixeira Gomes Barreto W, Rodrigues Oliveira-Santos LG, Martins Garcia C, de Miranda Mourão G, Edith de Oliveira Porfírio G, Domenis Marino E, Rogério André M, Perles L, Elisei de Oliveira C, Braziliano de Andrade G, Jansen AM, Miraglia Herrera H. Outcomes of Trypanosoma cruzi and Trypanosoma evansi infections on health of Southern coati (Nasua nasua), crab-eating fox (Cerdocyon thous), and ocelot (Leopardus pardalis) in the Brazilian Pantanal. PLoS One 2018; 13:e0201357. [PMID: 30110344 PMCID: PMC6093643 DOI: 10.1371/journal.pone.0201357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
Abstract
The occurrence of Trypanosoma spp. in wild carnivore populations has been intensively investigated during the last decades. However, the impact of these parasites on the health of free-living infected animals has been largely neglected. The Pantanal biome is the world’s largest seasonal wetland, harboring a great diversity of species and habitats. This includes 174 species of mammals, of which 20 belong to the order Carnivora. The present study aimed to investigate the effect of Trypanosoma evansi and Trypanosoma cruzi infections and coinfections on the health of the most abundant carnivores in the Pantanal: coati (Nasua nasua), crab-eating fox (Cerdocyon thous), and ocelot (Leopardus pardalis). We captured 39 coatis, 48 crab-eating foxes, and 19 ocelots. Diagnostic tests showed T. cruzi infection in 7 crab-eating foxes and 5 coatis. Additionally, 7 crab-eating foxes, 10 coatis, and 12 ocelots were positive for T. evansi. We observed coinfections in 9 crab-eating foxes, 8 coatis, and 2 ocelots. This is the first report of T. evansi and T. cruzi infection on the health of free-living ocelots and crab-eating foxes. We showed that single T. evansi or T. cruzi infection, as well as coinfection, caused some degree of anemia in all animals, as well as an indirect negative effect on body condition in coatis and crab-eating foxes via anemia indicators and immune investment, respectively. Furthermore, the vigorous immune investment observed in sampled coatis, crab-eating foxes and ocelots infected by T. evansi, T. cruzi and coinfected can be highly harmful to their health. Overall, our results indicate that single and combined infection with T. evansi and T. cruzi represent a severe risk to the health of wild carnivores in the Pantanal region.
Collapse
Affiliation(s)
- Filipe Martins Santos
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- * E-mail:
| | - Gabriel Carvalho de Macedo
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Wanessa Teixeira Gomes Barreto
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Carolina Martins Garcia
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Guilherme de Miranda Mourão
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
- Laboratório de Vida Selvagem, Centro de Pesquisa Agropecuária do Pantanal, Empresa Brasileira de Pesquisa Agropecuária, Corumbá, Mato Grosso do Sul, Brazil
| | - Grasiela Edith de Oliveira Porfírio
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Elizangela Domenis Marino
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Marcos Rogério André
- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Lívia Perles
- Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Carina Elisei de Oliveira
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Gisele Braziliano de Andrade
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Ana Maria Jansen
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor Miraglia Herrera
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
7
|
Abstract
SUMMARYIron is an essential element for the survival of trichomonads during host–parasite interaction. The availability of this metal modulates several metabolic pathways of the parasites and regulates the expression of virulence factors such as adhesins and proteolytic enzymes. In this study, we investigated the effect of iron depletion on the morphology and life cycle ofTritrichomonas foetus. Scanning and transmission electron microscopy analyses revealed that depletion of iron from the culture medium (named TYM-DIP inducer medium) induces morphological transformation of typical pear-shaped trophozoites into spherical and non-motile pseudocysts. Remarkably, inoculation of pseudocysts into an iron-rich medium (standard TYM medium), or addition of FeSO4to a TYM-DIP inducer medium reverted the morphological transformation process and typical trophozoites were recovered. These results show that pseudocysts are viable forms of the parasite and highlight the role of iron as a modulator of the parasite phenotype. Although iron is required for the survival ofT. foetus, iron depletion does not cause a cellular collapse of pseudocysts, but instead induces phenotypic alterations, probably in order to allow the parasite to survive conditions of nutritional stress. Together, these findings support previous studies that suggest pseudocysts are a resistance form in the life cycle ofT. foetusand enable new approaches to understanding the multifactorial role of iron in the cell biology of this protozoan parasite.
Collapse
|
8
|
Batista CM, Kessler RL, Eger I, Soares MJ. Trypanosoma cruzi Intracellular Amastigotes Isolated by Nitrogen Decompression Are Capable of Endocytosis and Cargo Storage in Reservosomes. PLoS One 2015; 10:e0130165. [PMID: 26057131 PMCID: PMC4461355 DOI: 10.1371/journal.pone.0130165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022] Open
Abstract
Epimastigote forms of Trypanosoma cruzi (the etiologic agent of Chagas disease) internalize and store extracellular macromolecules in lysosome-related organelles (LROs) called reservosomes, which are positive for the cysteine protease cruzipain. Despite the importance of endocytosis for cell proliferation, macromolecule internalization remains poorly understood in the most clinically relevant proliferative form, the intracellular amastigotes found in mammalian hosts. The main obstacle was the lack of a simple method to isolate viable intracellular amastigotes from host cells. In this work we describe the fast and efficient isolation of viable intracellular amastigotes by nitrogen decompression (cavitation), which allowed the analysis of amastigote endocytosis, with direct visualization of internalized cargo inside the cells. The method routinely yielded 5x107 amastigotes—with typical shape and positive for the amastigote marker Ssp4—from 5x106 infected Vero cells (48h post-infection). We could visualize the endocytosis of fluorescently-labeled transferrin and albumin by isolated intracellular amastigotes using immunofluorescence microscopy; however, only transferrin endocytosis was detected by flow cytometry (and was also analyzed by western blotting), suggesting that amastigotes internalized relatively low levels of albumin. Transferrin binding to the surface of amastigotes (at 4°C) and its uptake (at 37°C) were confirmed by binding dissociation assays using acetic acid. Importantly, both transferrin and albumin co-localized with cruzipain in amastigote LROs. Our data show that isolated T. cruzi intracellular amastigotes actively ingest macromolecules from the environment and store them in cruzipain-positive LROs functionally related to epimastigote reservosomes.
Collapse
Affiliation(s)
- Cassiano Martin Batista
- Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
- * E-mail:
| | - Rafael Luis Kessler
- Laboratório de Genômica Funcional, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Iriane Eger
- Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Maurilio José Soares
- Laboratório de Biologia Celular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| |
Collapse
|
9
|
Strategies of Intracellular Pathogens for Obtaining Iron from the Environment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:476534. [PMID: 26120582 PMCID: PMC4450229 DOI: 10.1155/2015/476534] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Most microorganisms are destroyed by the host tissues through processes that usually involve phagocytosis and lysosomal disruption. However, some organisms, called intracellular pathogens, are capable of avoiding destruction by growing inside macrophages or other cells. During infection with intracellular pathogenic microorganisms, the element iron is required by both the host cell and the pathogen that inhabits the host cell. This minireview focuses on how intracellular pathogens use multiple strategies to obtain nutritional iron from the intracellular environment in order to use this element for replication. Additionally, the implications of these mechanisms for iron acquisition in the pathogen-host relationship are discussed.
Collapse
|
10
|
The role of haptoglobin genotypes in Chagas disease. DISEASE MARKERS 2014; 2014:793646. [PMID: 25147423 PMCID: PMC4134794 DOI: 10.1155/2014/793646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/11/2014] [Indexed: 11/17/2022]
Abstract
Although the number of people infected with T. cruzi is on the rise, host genetic and immune components that are crucial in the development of the Chagas disease have been discovered. We investigated the frequency of polymorphisms in the gene encoding haptoglobin of patients with chronic Chagas disease. The results suggest that while the HP1-1 genotype may confer protection against infection and the development of chronic Chagas disease due to the rapid metabolism of the Hp1-1-Hb complex and its anti-inflammatory activity, the presence of HP2-2 genotype may increase susceptibility towards a chronic condition of the disease due to a slow metabolism of the Hp2-2-Hb complex, lower antioxidant activity, and increased inflammatory reactivity, which lead to cell damage and a deterioration of the cardiac function. Finally, correlations between HP genotypes in different age groups and cardiac manifestations suggest that HP polymorphism could influence the prognosis of this infectious disease. This study shows some of the relevant aspects of the haptoglobin gene polymorphism and its implications in the T. cruzi infection.
Collapse
|
11
|
Cellular growth and mitochondrial ultrastructure of leishmania (Viannia) braziliensis promastigotes are affected by the iron chelator 2,2-dipyridyl. PLoS Negl Trop Dis 2013; 7:e2481. [PMID: 24147167 PMCID: PMC3798463 DOI: 10.1371/journal.pntd.0002481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/26/2013] [Indexed: 12/02/2022] Open
Abstract
Background Iron is an essential element for the survival of microorganisms in vitro and in vivo, acting as a cofactor of several enzymes and playing a critical role in host-parasite relationships. Leishmania (Viannia) braziliensis is a parasite that is widespread in the new world and considered the major etiological agent of American tegumentary leishmaniasis. Although iron depletion leads to promastigote and amastigote growth inhibition, little is known about the role of iron in the biology of Leishmania. Furthermore, there are no reports regarding the importance of iron for L. (V.) braziliensis. Methodology/Principal Findings In this study, the effect of iron on the growth, ultrastructure and protein expression of L. (V.) braziliensis was analyzed by the use of the chelator 2,2-dipyridyl. Treatment with 2,2-dipyridyl affected parasites' growth in a dose- and time-dependent manner. Multiplication of the parasites was recovered after reinoculation in fresh culture medium. Ultrastructural analysis of treated promastigotes revealed marked mitochondrial swelling with loss of cristae and matrix and the presence of concentric membranar structures inside the organelle. Iron depletion also induced Golgi disruption and intense cytoplasmic vacuolization. Fluorescence-activated cell sorting analysis of tetramethylrhodamine ester-stained parasites showed that 2,2-dipyridyl collapsed the mitochondrial membrane potential. The incubation of parasites with propidium iodide demonstrated that disruption of mitochondrial membrane potential was not associated with plasma membrane permeabilization. TUNEL assays indicated no DNA fragmentation in chelator-treated promastigotes. In addition, two-dimensional electrophoresis showed that treatment with the iron chelator induced up- or down-regulation of proteins involved in metabolism of nucleic acids and coordination of post-translational modifications, without altering their mRNA levels. Conclusions Iron chelation leads to a multifactorial response that results in cellular collapse, starting with the interruption of cell proliferation and culminating in marked mitochondrial impairment in some parasites and their subsequent cell death, whereas others may survive and resume proliferating. American tegumentary leishmaniasis (ATL) is a neglected disease that is widely distributed in the Americas. The protozoan parasite Leishmania (Viannia) braziliensis is one of the main causative agents of ATL, being responsible for the development of different clinical manifestations of the disease, which ranges from self-healing cutaneous lesions to disseminated and mucocutaneous forms. Because iron is essential for the survival and growth of Leishmania, as it is required for colonization of macrophages and development of lesions in mice, several chelating compounds have been tested for their effects on the growth of these parasites. In the present work, treatment of L. (V.) braziliensis with the iron chelator 2,2-dipyridyl inhibited the growth of promastigote forms in a dose- and time-dependent manner. However, multiplication of the parasites was recovered after reinoculation in fresh culture medium. The iron chelator also induced mitochondrial dysfunction and altered expression of proteins involved in metabolism of nucleic acids and coordination of post-translational modifications. The events described above ultimately caused the death of some parasites, most likely due to mitochondrial dysfunction, whereas others adapted and survived, suggesting a plasticity or resilience of the mitochondrion in this parasite.
Collapse
|
12
|
Paiva CN, Feijó DF, Dutra FF, Carneiro VC, Freitas GB, Alves LS, Mesquita J, Fortes GB, Figueiredo RT, Souza HSP, Fantappié MR, Lannes-Vieira J, Bozza MT. Oxidative stress fuels Trypanosoma cruzi infection in mice. J Clin Invest 2012; 122:2531-42. [PMID: 22728935 DOI: 10.1172/jci58525] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/18/2012] [Indexed: 12/13/2022] Open
Abstract
Oxidative damage contributes to microbe elimination during macrophage respiratory burst. Nuclear factor, erythroid-derived 2, like 2 (NRF2) orchestrates antioxidant defenses, including the expression of heme-oxygenase-1 (HO-1). Unexpectedly, the activation of NRF2 and HO-1 reduces infection by a number of pathogens, although the mechanism responsible for this effect is largely unknown. We studied Trypanosoma cruzi infection in mice in which NRF2/HO-1 was induced with cobalt protoporphyrin (CoPP). CoPP reduced parasitemia and tissue parasitism, while an inhibitor of HO-1 activity increased T. cruzi parasitemia in blood. CoPP-induced effects did not depend on the adaptive immunity, nor were parasites directly targeted. We also found that CoPP reduced macrophage parasitism, which depended on NRF2 expression but not on classical mechanisms such as apoptosis of infected cells, induction of type I IFN, or NO. We found that exogenous expression of NRF2 or HO-1 also reduced macrophage parasitism. Several antioxidants, including NRF2 activators, reduced macrophage parasite burden, while pro-oxidants promoted it. Reducing the intracellular labile iron pool decreased parasitism, and antioxidants increased the expression of ferritin and ferroportin in infected macrophages. Ferrous sulfate reversed the CoPP-induced decrease in macrophage parasite burden and, given in vivo, reversed their protective effects. Our results indicate that oxidative stress contributes to parasite persistence in host tissues and open a new avenue for the development of anti-T. cruzi drugs.
Collapse
Affiliation(s)
- Claudia N Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes (IMPPG), Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Estevam M, Appoloni CR, Malvezi AD, Tatakihara VLH, Panis C, Cecchini R, Rizzo LV, Pinge-Filho P. Trypanosoma cruzi: in vivoevaluation of iron in skin employing X-ray fluorescence (XRF) in mouse strains that differ in their susceptibility to infection. ACTA ACUST UNITED AC 2012; 64:334-42. [DOI: 10.1111/j.1574-695x.2011.00917.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/10/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022]
|
14
|
Iron metabolism and the innate immune response to infection. Microbes Infect 2011; 14:207-16. [PMID: 22033148 DOI: 10.1016/j.micinf.2011.10.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/29/2011] [Accepted: 10/10/2011] [Indexed: 12/15/2022]
Abstract
Host antimicrobial mechanisms reduce iron availability to pathogens. Iron proteins influencing the innate immune response include hepcidin, lactoferrin, siderocalin, haptoglobin, hemopexin, Nramp1, ferroportin and the transferrin receptor. Numerous global health threats are influenced by iron status and provide examples of our growing understanding of the connections between infection and iron metabolism.
Collapse
|
15
|
Arantes JM, Francisco AF, de Abreu Vieira PM, Silva M, Araújo MSS, de Carvalho AT, Pedrosa ML, Carneiro CM, Tafuri WL, Martins-Filho OA, Elói-Santos SM. Trypanosoma cruzi: desferrioxamine decreases mortality and parasitemia in infected mice through a trypanostatic effect. Exp Parasitol 2011; 128:401-8. [PMID: 21620835 DOI: 10.1016/j.exppara.2011.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/07/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Desferrioxamine (DFO) is a potent iron chelator that is also known to modulate inflammation and act as an efficient antioxidant under normal conditions and under oxidative stress. Many in vitro and in vivo studies have shown the efficacy of DFO in the treatment of viral, bacterial and protozoan infections. DFO is known to reduce the intensity of Trypanosoma cruzi infections in mice even during a course of therapy that is not effective in maintaining anaemia or low iron levels. To further clarify these findings, we investigated the action of DFO on mouse T. cruzi infection outcomes and the direct impact of DFO on parasites. Infected animals treated with DFO (5 mg/animal/day) for 35 days, beginning 14 days prior to infection, presented lower parasitemia and lower cumulative mortality rate. No significant effect was observed on iron metabolism markers, erythrograms, leukograms or lymphocyte subsets. In the rapid method for testing in vivo T. cruzi susceptibility, DFO also induced lower parasitemia. In regard to its direct impact on parasites, DFO slightly inhibited the growth of amastigotes and trypomastigotes in fibroblast culture. Trypan blue staining showed no effects of DFO on parasite viability, and only minor apoptosis in trypomastigotes was observed. Nevertheless, a clear decrease in parasite mobility was detected. In conclusion, the beneficial actions of DFO on mice T. cruzi infection seem to be independent of host iron metabolism and free of significant haematological side effects. Through direct action on the parasite, DFO has more effective trypanostatic than trypanocidal properties.
Collapse
Affiliation(s)
- Jerusa Marilda Arantes
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Osvaldo Cruz, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Francisco AF, de Abreu Vieira PM, Arantes JM, Silva M, Pedrosa ML, Elói-Santos SM, Martins-Filho OA, Teixeira-Carvalho A, Araújo MSS, Tafuri WL, Carneiro CM. Increase of reactive oxygen species by desferrioxamine during experimental Chagas' disease. Redox Rep 2010; 15:185-90. [PMID: 20663295 PMCID: PMC2955510 DOI: 10.1179/174329210x12650506623528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Oxidative stress is common in inflammatory processes associated with many diseases including Chagas' disease. The aim of the present study was to evaluate, in a murine model, biomarkers of oxidative stress together with components of the antioxidant system in order to provide an overview of the mechanism of action of the iron chelator desferrioxamine (DFO). The study population comprised 48 male Swiss mice, half of which were treated daily by intraperitoneal injection of DFO over a 35-day period, while half were administered sterile water in a similar manner. On the 14th day of the experiment, 12 DFO-treated mice and an equal number of untreated mice were experimentally infected with Trypanosoma cruzi. Serum concentrations of nitric oxide and superoxide dismutase and hepatic levels of total glutathione, thiobarbituric acid reactive species and protein carbonyl, were determined on days 0, 7, 14 and 21 post-infection. The results obtained revealed that DFO enhances antioxidant activity in the host but also increases oxidative stress, indicating that the mode of action of the drug involves a positive contribution to the host together with an effect that is not beneficial to the parasite.
Collapse
Affiliation(s)
- Amanda Fortes Francisco
- Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Trypanosoma cruzi: effect of benznidazole therapy combined with the iron chelator desferrioxamine in infected mice. Exp Parasitol 2008; 120:314-9. [PMID: 18789321 DOI: 10.1016/j.exppara.2008.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 04/15/2008] [Accepted: 08/18/2008] [Indexed: 11/22/2022]
Abstract
Iron chelators have been employed in various studies aimed at evaluating the relationship between the iron status of the host and the development of infection. In the present study, the effects of benznidazole (BZ) therapy in combination with the iron chelator desferrioxamine (DFO) on the development of infection in mice inoculated with Trypanosoma cruzi Y strain have been investigated. Infected mice treated with DFO presented lower levels of parasitemia compared with infected untreated animals. Therapy with BZ for 21 days, with or without DFO, led to decreased parasitemia and reduced mortality, but BZ in combination with DFO treatment for 35 days (BZ/DFO-35) gave 0% mortality. All infected groups presented lower levels of iron in the liver, but serum iron concentrations were greater in DFO-35 and BZ/DFO-35, whereas hemoglobin levels were higher in BZ/DFO-35 and lower in DFO-35 compared with other treated groups. The percentage cure, determined from negative hemoculture and PCR results in animals that had survived for 60 days post-infection, was 18% for BZ and BZ/DFO-35, 42% for BZ combined with DFO for 21 days, and 67% for DFO-35. The results demonstrate that modification in iron stores increases BZ efficacy.
Collapse
|
18
|
Arantes JM, Pedrosa ML, Martins HR, Veloso VM, de Lana M, Bahia MT, Tafuri WL, Carneiro CM. Trypanosoma cruzi: treatment with the iron chelator desferrioxamine reduces parasitemia and mortality in experimentally infected mice. Exp Parasitol 2007; 117:43-50. [PMID: 17521632 DOI: 10.1016/j.exppara.2007.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/18/2007] [Accepted: 03/12/2007] [Indexed: 11/19/2022]
Abstract
The effects of prolonged treatment with iron chelator (desferrioxamine) on the development of infection in mice inoculated with Y Trypanosoma cruzi were determined. Infected/treated mice presented lower levels of parasitemia and reduced mortality rate compared with infected/non-treated animals. The five out of twenty infected/treated mice that survived the acute phase of infection showed negative hemoculture and positive ELISA in the acute and chronic phases and positive PCR in the acute phase: in the chronic phase, three of the animals presented negative PCR. The single surviving infected/non-treated animal exhibited positive hemoculture, PCR and ELISA in both phases of infection. Infected groups presented lower levels of iron in the liver compared with treated/non-infected or non-treated/non-infected animals. The serum iron levels of the infected/non-treated group were higher on the 21st day post-infection in comparison with control and infected/treated groups. These results suggest that decrease of iron in the host leads to T. cruzi infection attenuation.
Collapse
Affiliation(s)
- Jerusa Marilda Arantes
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Rua Costa Sena 171, 35 400-000 Ouro Preto, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gonzalez A, Restrepo A, Cano LE. Role of iron in the nitric oxide-mediated fungicidal mechanism of IFN-gamma-activated murine macrophages against Paracoccidioides brasiliensis conidia. Rev Inst Med Trop Sao Paulo 2007; 49:11-6. [PMID: 17384814 DOI: 10.1590/s0036-46652007000100003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 08/01/2006] [Indexed: 11/21/2022] Open
Abstract
Iron is an essential growth element of virtually all microorganisms and its restriction is one of the mechanisms used by macrophages to control microbial multiplication. Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis, an important systemic mycosis in Latin America, is inhibited in its conidia-to-yeast conversion in the absence of iron. We studied the participation of iron in the nitric oxide (NO)-mediated fungicidal mechanism against conidia. Peritoneal murine macrophages activated with 50U/mL of IFN-gamma or treated with 35 µM Deferoxamine (DEX) and infected with P. brasiliensis conidia, were co-cultured and incubated for 96 h in the presence of different concentrations of holotransferrin (HOLO) and FeS0(4). The supernatants were withdrawn in order to assess NO2 production by the Griess method. The monolayers were fixed, stained and observed microscopically. The percentage of the conidia-to-yeast transition was estimated by counting 200 intracellular propagules. IFN-gamma-activated or DEX-treated Mthetas presented marked inhibition of the conidia-to-yeast conversion (19 and 56%, respectively) in comparison with non-activated or untreated Mthetas (80%). IFN-gamma-activated macrophages produced high NO levels in comparison with the controls. Additionally, when the activated or treated-macrophages were supplemented with iron donors (HOLO or FeSO4), the inhibitory action was reversed, although NO production remained intact. These results suggest that the NO-mediated fungicidal mechanism exerted by IFN-gamma-activated macrophages against P. brasiliensis conidia, is dependent of an iron interaction.
Collapse
Affiliation(s)
- Angel Gonzalez
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Medellín, Colombia.
| | | | | |
Collapse
|
20
|
Dias-Melicio LA, Moreira AP, Calvi SA, Soares AMVDC. Chloroquine inhibits Paracoccidioides brasiliensis survival within human monocytes by limiting the availability of intracellular iron. Microbiol Immunol 2006; 50:307-14. [PMID: 16625052 DOI: 10.1111/j.1348-0421.2006.tb03798.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanisms used by Paracoccidioides brasiliensis(Pb 18) to survive into monocytes are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens, including P. brasiliensis, whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Chloroquine, by virtue of its basic properties, has been shown to prevent release of iron from holotransferrin by raising endocytic and lysosomal pH, and thereby interfering with normal iron metabolism. Then, in view of this, we have studied the effects of CHLOR on P. brasiliensis multiplication in human monocytes and its effect on the murine paracoccidioidomycosis. CHLOR induced human monocytes to kill P. brasiliensis. The effect of CHLOR was reversed by FeNTA, an iron compound that is soluble at neutral to alkaline pH, but not by holotransferrin, which releases iron only in an acidic environment. CHLOR treatment of Pb 18-infected BALB/c mice significantly reduced the viable fungi recovery from lungs, during three different periods of evaluation, in a dose-dependent manner. This study demonstrates that iron is of critical importance to the survival of P. brasiliensis yeasts within human monocytes and the CHLOR treatment in vitro induces Pb 18 yeast-killing by monocytes by restricting the availability of intracellular iron. Besides, the CHLOR treatment in vivo significantly reduces the number of organisms in the lungs of Pb-infected mice protecting them from several infections. Thus, CHLOR was effective in the treatment of murine paracoccidioidomycosis, suggesting the potential use of this drug in patients' treatment.
Collapse
Affiliation(s)
- Luciane Alarcão Dias-Melicio
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University, Botucatu, S.P, Brazil
| | | | | | | |
Collapse
|
21
|
León-Sicairos N, Reyes-López M, Canizalez-Román A, Bermúdez-Cruz RM, Serrano-Luna J, Arroyo R, de la Garza M. Human hololactoferrin: endocytosis and use as an iron source by the parasite Entamoeba histolytica. MICROBIOLOGY-SGM 2006; 151:3859-3871. [PMID: 16339932 DOI: 10.1099/mic.0.28121-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Entamoeba histolytica is an enteric protozoan that exclusively infects human beings. This parasite requires iron for its metabolic functions. Lactoferrin is a mammalian glycoprotein that chelates extracellular iron on mucosal surfaces, including the surface of the large intestine, where E. histolytica initiates infection. This work examined the interaction in vitro of E. histolytica trophozoites with human hololactoferrin (iron-saturated lactoferrin). A minimum concentration of 50 microM Fe from hololactoferrin supported growth of the amoeba. Amoebic binding sites for hololactoferrin were different from those for human apolactoferrin, holotransferrin and haemoglobin. One amoebic hololactoferrrin-binding polypeptide of 90 kDa was found, which was not observed after treatment of trophozoites with trypsin. Hololactoferrin-binding-protein levels increased in amoebas starved of iron, or grown in hololactoferrin. Internalization of hololactoferrin was inhibited by filipin. Endocytosed hololactoferrin colocalized with an anti-chick embryo caveolin mAb in amoebic vesicles, and lactoferrin was further detected in acidic vesicles; amoebic caveolin of 22 kDa was detected by Western blotting using this antibody. Cysteine proteases from amoebic extracts were able to cleave hololactoferrin. Together, these data indicate that E. histolytica trophozoites bind to hololactoferrin through specific membrane lactoferrin-binding proteins. This ferric protein might be internalized via caveolae-like microdomains, then used as an iron source, and degraded.
Collapse
Affiliation(s)
- Nidia León-Sicairos
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. 14-740, México, D F 07000, Mexico
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. 14-740, México, D F 07000, Mexico
| | - Adrián Canizalez-Román
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. 14-740, México, D F 07000, Mexico
| | - Rosa María Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. 14-740, México, D F 07000, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. 14-740, México, D F 07000, Mexico
| | - Rossana Arroyo
- Departamento de Patología Experimental, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. 14-740, México, D F 07000, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. 14-740, México, D F 07000, Mexico
| |
Collapse
|
22
|
Dias-Melicio LA, Calvi SA, Peraçoli MTS, Soares AMVDC. Inhibitory effect of deferoxamine on Paracoccidioides brasiliensis survival in human monocytes: reversal by holotransferrin not by apotransferrin. Rev Inst Med Trop Sao Paulo 2005; 47:263-6. [PMID: 16302109 DOI: 10.1590/s0036-46652005000500005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms used by Paracoccidioides brasiliensis to survive into phagocytic cells are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Thus, the objective of this paper was to investigate the role of intracellular iron in regulating the capacity of P. brasiliensis yeast cells to survive within human monocytes. Treatment of monocytes with deferoxamine, an iron chelator, suppressed the survival of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by nonsaturated transferrin (apotransferrin). These results strongly suggest that P. brasiliensis survival in human monocytes is iron dependent.
Collapse
Affiliation(s)
- Luciane Alarcão Dias-Melicio
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University, Botucatu, SP, Brazil.
| | | | | | | |
Collapse
|
23
|
Melo-Braga MB, da Rocha-Azevedo B, Silva-Filho FC. Tritrichomonas foetus: the role played by iron during parasite interaction with epithelial cells. Exp Parasitol 2004; 105:111-20. [PMID: 14969688 DOI: 10.1016/j.exppara.2003.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/11/2003] [Accepted: 08/27/2003] [Indexed: 11/28/2022]
Abstract
The aim of this work was to investigate the role played by iron during interaction of Tritrichomonas foetus with cultured epithelial cells. We have observed that the growth rate of T. foetus is influenced by the amount of iron available into culture medium. When organisms maintained for 24h in iron-depleted medium were transferred to an iron-rich one, many protozoan cells exhibited a cytokinesis blockage. Parasites maintained in iron-depleted medium exhibited a significant increase in cytoadhesion when compared with both controls and parasites that had been cultured in medium in which iron was replaced. T. foetus collected from iron-depleted medium also exhibited a reduction in its ability to destroy epithelial cell monolayers and a reduction in the activity of several cysteine proteases. Taken together, the results presented here demonstrate that iron may be an extracellular signal, which seems to modulate the ability of T. foetus to interact with host epithelial cells.
Collapse
Affiliation(s)
- Mariane B Melo-Braga
- UFRJ-Instituto de Biofísica Carlos Chagas Filho, CCS-Bloco G, G-0-44, 21949-900 Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
24
|
Foster SL, Richardson SH, Failla ML. Elevated iron status increases bacterial invasion and survival and alters cytokine/chemokine mRNA expression in Caco-2 human intestinal cells. J Nutr 2001; 131:1452-8. [PMID: 11340099 DOI: 10.1093/jn/131.5.1452] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Iron status affects both microbial growth and immune function. Mammalian iron homeostasis is maintained primarily by regulating the absorption of the micronutrient in the proximal small intestine. The iron concentration of the enterocyte can fluctuate widely in response to both dietary and whole body iron status, as well as in response to infections. The possibility that an enterocyte with an elevated iron concentration is more susceptible to invasion by enteric pathogens is not known. Therefore, we examined the impact of enterocyte iron status on the invasion and survival of an enteric pathogen, as well as on the levels of several cytokine and chemokine mRNAs by the host cell. The enterocyte-like Caco-2 human intestinal cell line and Salmonella enteritidis served as the models to examine the effect of iron on the host-parasite interaction. Iron status of Caco-2 cells was altered by incubation in serum-free medium supplemented with varying levels of iron. Elevated iron status of Caco-2 cells increased the efficiency of the invasion and the number of bacteria surviving in the intracellular environment. Caco-2 cells constitutively expressed transforming growth factor-beta1, interleukin-8, monocyte chemotactic protein-1, tumor necrosis factor-alpha and interleukin-1beta, and infection with S. enteritidis increased the relative quantities of all cytokine/chemokine mRNAs except interleukin-1beta. Elevated iron status of Caco-2 cells decreased the levels of cytokine/chemokine mRNAs by 25-45% in uninfected cells. In contrast, bacterial infection was associated with a 21-95% increase in cytokine/chemokine mRNAs levels in Caco-2 cells with higher iron concentration compared with infected cells with lower iron concentration. These data support the hypothesis that elevated enterocyte iron status increases susceptibility to infection and exacerbates the mucosal inflammatory response initiated by microbial invasion by increasing cytokine/chemokine expression.
Collapse
Affiliation(s)
- S L Foster
- Department of Nutrition and Foodservice Systems, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | | | | |
Collapse
|
25
|
Deharo E, Loyevsky M, John C, Balanza E, Ruiz G, Muñoz V, Gordeuk VR. Aminothiol multidentate chelators against Chagas disease. Exp Parasitol 2000; 94:198-200. [PMID: 10831386 DOI: 10.1006/expr.1999.4483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three compounds of an aminothiol family of iron chelators were examined for activity against trypomastigote (human) and epimastigote (vector) forms of Trypanosoma cruzi: tetraethyl and tetramethyl derivatives of ethane-1,2-bis (N-1-amino-3-ethyl butyl-3-thiol) (BAT-TE and BAT-TM) and N',N',N'-tris-(2-methyl-2-mercaptopriopyl)- 1,4,7-triazacyclonane (TAT). BAT-TE at 270 microM completely arrested the growth of trypomastigote forms in mouse blood stored at 4 degrees C for 24 h (IC(50) 67.7+/-7 microM), while BAT-TM arrested growth at 630 microM (IC(50) 158+/-17 microM) and TAT at concentrations >800 microM (IC(50) 415+/-55 microM). In T. cruzi-infected mice, BAT-TE and BAT-TM had no anti-trypanosomal activity in doses up to 200 mg/kg, whether the route of administration was intraperitoneal or oral, and TAT was not tested due to insufficient quantity. TAT had an IC(50) of 52+/-7 microM against the epimastigote forms while BAT-TM and BAT-TE were inhibitory only at concentrations >250 microM. The trypanocidal activity of BAT derivatives in blood stored at 4 degrees C makes these compounds potential candidates for the purpose of clearing donated blood of trypomastigotes.
Collapse
Affiliation(s)
- E Deharo
- Institut de Recherche pour le Développement (IRD), La Paz, CP 9214, Bolivia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Inoculation with viable, but not inactivated, Coxiella burnetii resulted in the increased expression of transferrin receptors (TfR) in the murine macrophage-like cell line J774A.1. This upregulation was evident in immunoblots as early as 6 h postinfection, with TfR levels continuing to increase through the first 24 h of infection. Fluorescent labeling revealed that TfR upregulation occurred throughout infected monolayers, eliminating the possibility that it reflected a response by a minor subset of host cells. In addition, TfR trafficking did not appear to be affected by C. burnetii infection. Consistent with the increase in TfRs, inoculation with viable C. burnetii resulted in a 2.5-fold increase in total cellular iron by 12 h postinoculation. Our further findings that the chelation of intracellular iron arrests C. burnetii replication and that C. burnetii metabolic activities in vitro are affected by iron concentration suggest that TfR upregulation is a salient factor in C. burnetii infection, and we speculate that it may represent a significant virulence mechanism.
Collapse
Affiliation(s)
- D Howe
- Department of Microbiology, Washington State University, Pullman, Washington 99164-4233, USA.
| | | |
Collapse
|
27
|
Abstract
To survive and replicate in vertebrate hosts, protozoan and fungal invaders must be capable of securing host iron. Successful pathogens obtain the metal from either extraction of heme, binding of siderophilins, binding of siderophores, and/or iron pools within host cells. The actual strategy can vary with the availability of iron in the particular host milieu. As a corollary, hosts have developed an elaborate iron withholding defense system. Conditions that can compromise the system as well as procedures that can strengthen it are reviewed.
Collapse
Affiliation(s)
- E D Weinberg
- Department of Biology, Indiana University, Bloomington 47405, USA.
| |
Collapse
|
28
|
Abstract
The efficient uptake of iron by microorganisms is essential for their survival. Mammalian hosts possess elaborate means of sequestering their iron stores to protect themselves against invading pathogens. In this review, Mary Wilson and Bradley Britigan summarize mechanisms by which bacteria and protozoa effectively scavenge iron from their hosts during infection, as well as the potential and proven effects of these mechanisms on microbial virulence.
Collapse
Affiliation(s)
- M E Wilson
- Department of Internal Medicine and Microbiology, University of Iowa, and the Veterans' Affairs Medical Center, Iowa City, IA, USA
| | | |
Collapse
|
29
|
Dimier IH, Bout DT. Interferon-gamma-activated primary enterocytes inhibit Toxoplasma gondii replication: a role for intracellular iron. Immunology 1998; 94:488-95. [PMID: 9767436 PMCID: PMC1364226 DOI: 10.1046/j.1365-2567.1998.00553.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that infects a wide variety of nucleated cells in its numerous intermediate hosts including man. The oral route is the natural portal of entry of T. gondii. Ingested organisms are released from cysts or oocysts within the gastrointestinal tract and initially invade the intestinal epithelium. We show that T. gondii invades and proliferates in cultured primary rat enterocytes, obtained with an original procedure. Activation of the enterocytes with rat recombinant interferon-gamma (IFN-gamma) inhibits T. gondii replication, the inhibition being dose dependent. Neither nitrogen and oxygen derivatives nor tryptophan starvation appear to be involved in the inhibition of parasite replication by IFN-gamma. Experiments using Fe2+ salt, carrier and chelator indicate that intracellular T. gondii replication is iron dependent, suggesting that IFN-gamma-treated enterocytes inhibit T. gondii replication by limiting the availability of intracellular iron to the parasite. Our data show that enterocytes probably play a major role on mucosal surfaces as a first line of defence against this coccidia, and possibly other pathogens, through an immune mechanism. The results suggest that limiting the availability of iron could represent a broad antimicrobial mechanism through which the activated enterocytes exert control over intracellular pathogens.
Collapse
Affiliation(s)
- I H Dimier
- CJF INSERM 93-09 'Immunologie des Maladies Infectieuses', Equipe associée INRA 'Immunologie Parasitaire', UFR des Sciences Pharmaceutiques, Tours, France
| | | |
Collapse
|
30
|
Rodrigues RR, Lane JE, Carter CE, Bogitsh BJ, Singh PK, Zimmerman LJ, Molenda JJ, Jones MM. Chelating agent inhibition of Trypanosoma cruzi epimastigotes in vitro. J Inorg Biochem 1995; 60:277-88. [PMID: 8530923 DOI: 10.1016/0162-0134(95)00027-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A number of chelating agents and some of their derivatives are as effective as, or superior to, benznidazole, the compound currently in clinical use, in the suppression of the reproduction of epimastigotes of Trypanosoma cruzi, the protozoa that causes Chagas' disease. All compounds were examined at a culture concentration of 5 micrograms/mL. The most effective compounds included N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine, sodium diethylamine-N-carbodithioate, piperidine-N-carbodithioate and several of its analogs, a number of other carbodithioates with two nonpolar groups on the nitrogen, and tetraethylthiuram disulfide, a prodrug of sodium diethylamine-N-carbodithioate and widely used in the treatment of alcoholism. The introduction of additional ionic or nonionic polar groups on the chelating molecule generally results in a loss of tyrpanocidal activity. Common commercially available chelating agents which exhibited no activity included D-penicillamine, meso-2,3-dimercaptosuccinic acid, and triethylenetetramine tetrahydrochloride. Dose-response data on the culture indicated that some of these compounds exhibited inhibition of Trypanosoma cruzi epimastigotes at concentrations as low as 0.625 microgram/mL. It is proposed that the mechanism of action of these compounds is based on their ability to interfere with the essential metal metabolism at intracellular sites of the epimastigote involving iron, copper, or zinc. The results also indicate that a certain degree of hydrophobicity may be necessary for the groups attached to the literal metal-bonding structure if the compounds are to successfully inhibit the epimastigotes of Trypanosoma cruzi. The development of antiprotozoal drugs which are chelating agents specifically designed to selectively disrupt the essential metal metabolism of Trypanosoma cruzi should furnish a new generation of drugs which can be used in the treatment of Chagas' disease.
Collapse
Affiliation(s)
- R R Rodrigues
- Department of Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fortier AH, Leiby DA, Narayanan RB, Asafoadjei E, Crawford RM, Nacy CA, Meltzer MS. Growth of Francisella tularensis LVS in macrophages: the acidic intracellular compartment provides essential iron required for growth. Infect Immun 1995; 63:1478-83. [PMID: 7890413 PMCID: PMC173178 DOI: 10.1128/iai.63.4.1478-1483.1995] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Murine macrophages supported exponential intracellular growth of Francisella tularensis LVS in vitro with a doubling time of 4 to 6 h. LVS was internalized and remained in a vacuolar compartment throughout its growth cycle. The importance of endosome acidification to intracellular growth of this bacterium was assessed by treatment of LVS-infected macrophages with several different lysosomotropic agents (chloroquine, NH4Cl, and ouabain). Regardless of the agent used or its mechanism of action, macrophages treated with agents that blocked endosome acidification no longer supported replication of LVS. Over several experiments for each lysosomotropic agent, the number of CFU of LVS recovered from treated macrophage cultures was equivalent to the input inoculum (approximately 10(4) CFU) at 72 h. In contrast, over 10(8) CFU was consistently recovered from untreated cultures. Pretreatment of macrophages with these endosome acidification inhibitors did not alter their ingestion of bacteria. Further, the effects of the inhibitors were completely reversible: inhibitor-pretreated LVS-infected macrophages washed free of the agent and cultured in medium fully supported LVS growth over 72 h. Endosome acidification is an important cellular event essential for release of iron from transferrin. The growth-inhibitory effects of both chloroquine and NH4Cl were completely reversed by addition of ferric PPi, a transferrin-independent iron source, at a neutral pH but not by addition of excess holotransferrin. Thus, intracellular localization in an acidic vesicle which facilitates the availability of iron essential for Francisella growth is a survival tactic of this bacterium, and iron depletion is one mechanism that macrophages use to inhibit its growth.
Collapse
Affiliation(s)
- A H Fortier
- Department of Cellular Immunology, Walter Reed Army Institute of Research, Washington, D.C. 20307-5100
| | | | | | | | | | | | | |
Collapse
|
32
|
Gauthier JD, Vasta GR. Inhibition of in vitro replication of the oyster parasite Perkinsus marinus by the natural iron chelators transferrin, lactoferrin, and desferrioxamine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1994; 18:277-286. [PMID: 7883057 DOI: 10.1016/s0145-305x(94)90353-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The mammalian iron-binding proteins transferrin and lactoferrin, the bactericidal peptide lactoferricin B, and the bacterial siderophore desferrioxamine were tested for their ability to inhibit the in vitro replication of the oyster parasite Perkinsus marinus. All three chelators were effective in reducing the parasite proliferation in a dose-dependent manner. Lactoferricin B, a peptide of lactoferrin that exhibits bactericidal properties unrelated to iron chelation, had no inhibitory activity on the parasite. When the chelators were partially or completely saturated with the appropriate iron equivalents, their inhibitory effects on the parasite proliferation were diminished or abolished accordingly, confirming that this activity was related to the chelator's capacity for iron sequestration. Our results indicate that the parasite has a strong requirement for soluble iron and its growth rates are correlated with iron availability. We propose that excess iron accumulation in the host Crassostrea virginica promotes parasite proliferation. P. marinus may avoid oxidative damage that would compromise its intracellular survival by exhaustion the host's intracellular selected iron pools required for superoxide and hydroxyl radical production.
Collapse
Affiliation(s)
- J D Gauthier
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore 21202
| | | |
Collapse
|
33
|
Newman SL, Gootee L, Brunner G, Deepe GS. Chloroquine induces human macrophage killing of Histoplasma capsulatum by limiting the availability of intracellular iron and is therapeutic in a murine model of histoplasmosis. J Clin Invest 1994; 93:1422-9. [PMID: 8163646 PMCID: PMC294155 DOI: 10.1172/jci117119] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We investigated the role of intracellular iron on the capacity of Histoplasma capsulatum (Hc) yeasts to multiply within human macrophages (Mphi). Coculture of Hc-infected Mphi with the iron chelator deferoxamine suppressed the growth of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by iron-free transferrin (apotransferrin). Chloroquine, which prevents release of iron from transferrin by raising endocytic and lysosomal pH, induced human Mphi to kill Hc. The effect of chloroquine was reversed by iron nitriloacetate, an iron compound that is soluble at neutral to alkaline pH, but not by holotransferrin, which releases iron only in an acidic environment. Chloroquine (40-120 mg/kg) given intraperitoneally for 6 d to Hc-infected C57BL/6 mice significantly reduced the growth of Hc in a dose-dependent manner. At 120 mg/kg there was a 17- and 15-fold reduction (P < 0.01) in CFU in spleens and livers, respectively. The therapeutic effect of chloroquine also correlated with the length of treatment. As little as 2 d of chloroquine therapy (120 mg/kg), when started at day 5 after infection, reduced CFU in the spleen by 50%. Treatment with chloroquine for 10 d after a lethal inoculum of Hc protected six of nine mice; all control mice were dead by day 11 (P = 0.009). This study demonstrates that: (a) iron is of critical importance to the survival and multiplication of Hc yeasts in human Mphi; (b) in vitro, chloroquine induces Mphi killing of Hc yeasts by restricting the availability of intracellular iron; and (c) in vivo, chloroquine significantly reduces the number of organisms in the spleens and livers of Hc-infected mice and can protect mice from a lethal inoculum of Hc yeasts. Thus, chloroquine may be effective in the treatment of active histoplasmosis and also may be useful in preventing relapse of histoplasmosis in patients with acquired immunodeficiency syndromes.
Collapse
Affiliation(s)
- S L Newman
- Department of Medicine, University of Cincinnati College of Medicine, Ohio 45267
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- C Hershko
- Department of Medicine, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
35
|
Murray HW, Granger AM, Teitelbaum RF. Gamma interferon-activated human macrophages and Toxoplasma gondii, Chlamydia psittaci, and Leishmania donovani: antimicrobial role of limiting intracellular iron. Infect Immun 1991; 59:4684-6. [PMID: 1937829 PMCID: PMC259098 DOI: 10.1128/iai.59.12.4684-4686.1991] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Iron-saturated transferrin did not reverse the intracellular killing or inhibition of Toxoplasma gondii, Chlamydia psittaci, or Leishmania donovani by gamma interferon-activated human macrophages. Deferoxamine, an iron chelator, also did not impair replication within unstimulated macrophages. Limiting the availability of intracellular iron is an unlikely mechanism in human macrophage activity against these three diverse pathogens.
Collapse
Affiliation(s)
- H W Murray
- Division of Infectious Diseases, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
36
|
Lane TE, Wu-Hsieh BA, Howard DH. Iron limitation and the gamma interferon-mediated antihistoplasma state of murine macrophages. Infect Immun 1991; 59:2274-8. [PMID: 1904840 PMCID: PMC258006 DOI: 10.1128/iai.59.7.2274-2278.1991] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The zoopathogenic fungus Histoplasma capsulatum requires iron for growth. Intracellular growth of the fungus within mouse peritoneal macrophages is inhibited by recombinant murine gamma interferon (IFN-gamma). Such treatment of mouse peritoneal macrophages induces a marked downshift in transferrin receptors. We tested whether the antihistoplasma effect of IFN-gamma-treated macrophages is the result of iron deprivation. Treatment of mouse peritoneal macrophages with the intracellular iron chelator deferoxamine inhibits the intracellular growth of H. capsulatum. Exposure of macrophages to holotransferrin antagonizes the effect of both recombinant murine IFN-gamma and deferoxamine treatments. These results suggest that iron restriction may be one of the bases for the IFN-gamma-induced antihistoplasma effect of mouse macrophages.
Collapse
Affiliation(s)
- T E Lane
- Department of Microbiology and Immunology, University of California School of Medicine, Los Angeles 90024
| | | | | |
Collapse
|
37
|
Voyiatzaki CS, Soteriadou KP. Evidence of transferrin binding sites on the surface of Leishmania promastigotes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)45716-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
38
|
Iheanacho EN, Samuni A, Avramovici-Grisaru S, Sarel S, Spira DT. Inhibition of Plasmodium falciparum growth by a synthetic iron chelator. Trans R Soc Trop Med Hyg 1990; 84:213-6. [PMID: 2202102 DOI: 10.1016/0035-9203(90)90259-h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The susceptibility of the chloroquine-resistant malaria parasite Plasmodium falciparum (FCR-3) to a pyridoxal-based iron chelator was tested. 10 microM of the chelator 1[N-ethoxycarbonylmethyl-pyridoxy-lidenium]-2-[2'-pyri dyl] hydrazine bromide (code name L2-9) effectively inhibited growth in vitro of the parasites. Presaturation of the chelator with either ferric or ferrous iron partially blocked the inhibitory effect. Two hours' exposure of parasites to 20 microM L2-9 was sufficient to inhibit their growth irreversibly. Desferrioxamine blocked the inhibitory effect of L2-9. It is suggested that the chelator may be acting by generating free radicals in complexing intracellular iron.
Collapse
Affiliation(s)
- E N Iheanacho
- Kuvin Centre for the Study of Infectious and Tropical Diseases, Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
39
|
Pedrosa ML, Silva ME, Silva ME, Silva ME, Nicoli JR, Vieira EC. The effect of iron deficiency and iron overload on the evolution of Chagas disease produced by three strains of Trypanosoma cruzi in CFW mice. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1990; 97:235-43. [PMID: 1710956 DOI: 10.1016/0300-9629(90)90178-u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. CFW mice were fed either on control diet or on iron-deficient diet. 2. After 5 months the mice were infected with CL, Y or YuYu strain of Trypanosoma cruzi. 3. On the fifth day after the infection, the mice on control diet were divided in three groups: one group remained as controls, two groups were injected either with desferrioxamine or iron-dextran. 4. The severity of the disease was evaluated by parasitemia and mortality. 5. The experimental groups were compared with the infected group fed on the control diet. 6. In mice fed on the iron-deficient diet, the disease was more severe for CL strain and less severe for Y and YuYu strains. 7. Treatment with desferrioxamine produced a less severe disease with YuYu strain and no difference with the other strains. 8. On Treatment with iron-dextran, the disease became more severe with Y and CL strains; no effect was observed with YuYu strain. 9. These findings may be due to intraspecific differences among the strains.
Collapse
Affiliation(s)
- M L Pedrosa
- Departamento de Ciéncias Biológicas, Universidade Federal de Ouro Preto, Brasil
| | | | | | | | | | | |
Collapse
|
40
|
Segovia M, Navarro A, Artero JM. The effect of liposome-entrapped desferrioxamine on Leishmania donovani in vitro. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 1989; 83:357-60. [PMID: 2604473 DOI: 10.1080/00034983.1989.11812357] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Desferrioxamine was tested in vitro for activity against promastigotes of Leishmania donovani. In addition, the effects of liposome-encapsulated desferrioxamine and free desferrioxamine on macrophages infected with amastigotes of L. donovani were compared. The drug was added to the culture medium for three days, and the results were compared with several controls; the drug solvent, empty liposomes, and desferrioxamine which had been re-ferrated with an equimolar concentration of ferric ammonium sulphate. Desferrioxamine was found to be inactive against growing promastigotes at the highest concentration used, 50 micrograms ml-1. On the other hand, 44% and 60% of amastigotes were eliminated when macrophages infected with L. donovani were exposed to 50 micrograms ml-1 of free or liposome-encapsulated desferrioxamine respectively.
Collapse
Affiliation(s)
- M Segovia
- Department of Microbiology, Faculty of Medicine, University of Murcia, Spain
| | | | | |
Collapse
|
41
|
Byrd TF, Horwitz MA. Interferon gamma-activated human monocytes downregulate transferrin receptors and inhibit the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. J Clin Invest 1989; 83:1457-65. [PMID: 2496141 PMCID: PMC303847 DOI: 10.1172/jci114038] [Citation(s) in RCA: 255] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have investigated the role of iron in the intracellular biology of Legionella pneumophila in human monocytes and in the effector arm of cell-mediated immune defense against this intracellular bacterial pathogen. To determine if L. pneumophila intracellular multiplication is iron dependent, we studied the effect of the iron chelator deferoxamine on L. pneumophila infection of monocytes. Deferoxamine at 15 microM completely inhibited L. pneumophila intracellular multiplication. The inhibitory effect of deferoxamine was reversed with equimolar iron-saturated transferrin but not apotransferrin. To examine the potential role of iron in monocyte activation, we investigated the influence of iron-saturated transferrin on L. pneumophila multiplication in IFN gamma-activated monocytes. Iron transferrin, but not apotransferrin, neutralized the capacity of activated monocytes to inhibit L. pneumophila multiplication. To explore a potential mechanism by which activated monocytes might limit the availability of intracellular iron, we examined transferrin receptor expression on nonactivated and activated monocytes cultured in vitro for 5 d. By fluorescence-activated flow cytometry, activated monocytes exhibited markedly fewer transferrin receptors than nonactivated monocytes. By Scatchard analysis of 125I-transferrin binding to monocytes, nonactivated monocytes had 38,300 +/- 12,700 (mean +/- SE) transferrin binding sites, whereas activated monocytes had 10,300 +/- 1,600, a reduction of 73%. Activated and nonactivated monocytes had a similar mean Kd (1.8 +/- 0.2 nM). This study demonstrates that (a) L. pneumophila intracellular multiplication is iron dependent; (b) activated monocytes inhibit L. pneumophila multiplication by limiting the availability of intracellular iron; and (c) transferrin receptors are downregulated on IFN gamma-activated monocytes.
Collapse
Affiliation(s)
- T F Byrd
- Department of Medicine, School of Medicine, University of California, Los Angeles 90024
| | | |
Collapse
|
42
|
Ampel NM, Van Wyck DB, Aguirre ML, Willis DG, Popp RA. Resistance to infection in murine beta-thalassemia. Infect Immun 1989; 57:1011-7. [PMID: 2925237 PMCID: PMC313221 DOI: 10.1128/iai.57.4.1011-1017.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Clinical evidence suggests that individuals with chronic iron overload may be at increased risk of bacterial infection. We studied this question by using a unique model in which mice homozygous for a deletion in the gene encoding for the beta-major globin develop moderate anemia, splenomegaly, and tissue iron overload, a syndrome similar to beta-thalassemia in humans. Mice heterozygous for the gene deletion were phenotypically normal. Homozygous mice were significantly more susceptible to infection with Listeria monocytogenes than were heterozygous mice (P less than 0.01). This increased susceptibility was associated with a greater number of organisms in the liver and spleen than was found in heterozygous mice (P less than 0.05). However, histologic studies demonstrated similar inflammatory responses within these organs in homozygous and heterozygous mice. The increased susceptibility of homozygous mice to infection with L. monocytogenes was not seen when homozygotes were immunized with a low dose of L. monocytogenes. Although the results were not as striking as with L. monocytogenes, homozygous mice were also found to be more susceptible to infection with Salmonella typhimurium than were heterozygous mice (P less than 0.05). Splenic mononuclear cells from homozygous mice demonstrated less responsiveness in vitro to the mitogens concanavalin A and phytohemagglutinin than did those from heterozygotes (P less than 0.05). These data suggest that there is a generalized defect in innate immunity in homozygous mice which makes them more susceptible to infection by L. monocytogenes and S. typhimurium. The site of this immunological defect is not known but is most likely in the mononuclear phagocyte and may be due to tissue iron overload.
Collapse
Affiliation(s)
- N M Ampel
- Veterans Administration Medical Center, Tucson, Arizona
| | | | | | | | | |
Collapse
|
43
|
Farrell N. Antiviral and Antiparasitic Effects of Metal Complexes. TRANSITION METAL COMPLEXES AS DRUGS AND CHEMOTHERAPEUTIC AGENTS 1989. [DOI: 10.1007/978-94-011-7568-5_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
44
|
Dvorak JA, Engel JC, Leapman RD, Swyt CR, Pella PA. Trypanosoma cruzi: elemental composition heterogeneity of cloned stocks. Mol Biochem Parasitol 1988; 31:19-26. [PMID: 3054539 DOI: 10.1016/0166-6851(88)90141-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Concentrates of the epimastigote stage of Trypanosoma cruzi stocks derived from single cell clones and cultured under identical conditions display a spectrum of 'colors' varying from dark brown to milk white. The color of the concentrate is reproducible for a parasite stock. An essential component of the culture medium for epimastigote growth is hemin, an iron-containing compound. Consequently, it seemed possible that the color spectrum of the epimastigote stocks reflected differences in the uptake, concentration or utilization of iron. This report describes the quantitative studies utilizing electron probe X-ray elemental mapping, energy dispersive X-ray microanalysis, and energy dispersive X-ray fluorescence spectrometry of the epimastigote stage of two T. cruzi stocks (CA-I/72 and HO-3/15) which display extreme color differences. Striking and statistically significant quantitative differences were found in the levels of Fe, Zn, and K between the two stocks. On the basis of atomic ratios, the CA-I/72 stock contains approximately two-fold more Fe per cell than the HO-3/15 stock. However, in the case of Zn the ratio is reversed; the HO-3/15 stock contains approximately two-fold more Zn per cell than the CA-I/72 stock. The marked inter-stock differences which exist in the levels of several elements could modulate the pathogenicity, survival, or adaptability of T. cruzi and, consequently, be important factors in our understanding of the complex problem of Chagas' disease.
Collapse
Affiliation(s)
- J A Dvorak
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
45
|
Fritsch G, Sawatzki G, Treumer J, Jung A, Spira DT. Plasmodium falciparum: inhibition in vitro with lactoferrin, desferriferrithiocin, and desferricrocin. Exp Parasitol 1987; 63:1-9. [PMID: 3542546 DOI: 10.1016/0014-4894(87)90072-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The microbial iron chelators desferriferrithiocin and desferricrocin as well as human lactoferrin were tested in vitro against Plasmodium falciparum. The microbial chelators inhibit the growth of P. falciparum in a dose dependent way. Parasite multiplication is stopped at 25-30 microM desferriferrithiocin, whereas 60-90 microM desferricrocin are needed to exhibit the same effect. After iron saturation, the microbial chelators are ineffective. Human lactoferrin (30 microM), both iron free and iron saturated, inhibits P. falciparum. A 3-day preincubation of host erythrocytes with iron free and iron saturated lactoferrin prior to infection enhances this effect, which is therefore attributed to lactoferrin bound iron. It has been suggested that the lactoferrin/iron complex generates oxygen free radicals, which may cause membrane damage of both erythrocyte and parasite. This process can be considered to lead to growth inhibition of the parasite.
Collapse
|