1
|
Khatun M, Islam A, Baek BK. Comparative Analysis of Humoral Immune Response and Cognate Antigen Detection in Experimentally Infected Sprague Dawley Rats with Brucella abortus Biotype 1. Vector Borne Zoonotic Dis 2024; 24:27-35. [PMID: 37955673 DOI: 10.1089/vbz.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
Background: This study investigated the IgG-specific humoral immune responses against specific antigen-like whole-cell antigen (WCA), outer membrane protein (OMP), periplasmic protein (PP), and cytoplasmic protein (CP) during the acute and subacute stages of Brucella abortus biotype 1 infection in Sprague Dawley (SD) rats. Materials and Methods: The intraperitoneal method was used to experimentally infect forty-four 6- to 8-week-old SD rats with 1 × 109 colony-forming units (CFUs) of B. abortus biotype 1. Following inoculation, the rat was serially sampled for serum at 0, 3, 7, 14, 21, 28, 35, 42, 60, 90, and 120 days. The IgG-specific immune responses and recognition of immunodominant antigens in WCA, OMP, PP, and CP of B. abortus were assessed by indirect enzyme-linked immunosorbent assay (IELISA) and western blot (WB) assay using infected rat sera. Results: The IgG antibody response was detectable at 3 days after infection. The peak serum IgG antibody titers were recorded against CP and PP at 28 days after infection. The highest serum IgG antibody titers were recorded at 42 days after infection against WCA and 90 days after infection only against OMP. WB assay revealed a wide array of protein bands between molecular weight of 13 and 95 kDa for WCA, 13 and 95 kDa for OMP, 15 and 65 kDa for PP, and 12 and 85 kDa for CP. Proteins bands of 10, 13, 20, 24, 46, and 76 kDa for WCA; 28, 35, 39, 85, and 95 for OMP; 20, 30, 40, 43, 46, and 65 kDa for PP, and 12, 23, 68, and 85 for CP were intensely recognized. Conclusion: Data of this study indicated that WCA, CP, and PP of B. abortus could be useful for diagnosis of acute and subacute brucellosis in SD rat model. OMP of B. abortus could be useful for differential diagnosis of subacute brucellosis.
Collapse
Affiliation(s)
- Minara Khatun
- Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ariful Islam
- Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Byeong Kirl Baek
- Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Verbeke J, Fayt Y, Martin L, Yilmaz O, Sedzicki J, Reboul A, Jadot M, Renard P, Dehio C, Renard H, Letesson J, De Bolle X, Arnould T. Host cell egress of Brucella abortus requires BNIP3L-mediated mitophagy. EMBO J 2023; 42:e112817. [PMID: 37232029 PMCID: PMC10350838 DOI: 10.15252/embj.2022112817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.
Collapse
Affiliation(s)
- Jérémy Verbeke
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Youri Fayt
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Lisa Martin
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Oya Yilmaz
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | | | - Angéline Reboul
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Michel Jadot
- Research Unit in Molecular Physiology (URPhyM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Patricia Renard
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | | | - Henri‐François Renard
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Jean‐Jacques Letesson
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Xavier De Bolle
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Thierry Arnould
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| |
Collapse
|
3
|
Golchin M, Mollayi S, Mohammadi E, Eskandarzade N. Development of a diagnostic indirect ELISA test for detection of Brucella antibody using recombinant outer membrane protein 16 kDa (rOMP16). VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:387-391. [PMID: 36320311 PMCID: PMC9548234 DOI: 10.30466/vrf.2021.524590.3141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/08/2021] [Indexed: 11/22/2022]
Abstract
Brucellosis is considered as one of the important global zoonotic diseases that causes medical as well as economic problems especially in tropical countries. The illness has no specific pathognomonic signs; therefore, the rapid and accurate diagnosis of the disease has a very important role in preventing the Brucella spillover and treatment. The purpose of this study was to design a new indirect ELISA test for detection of human brucellosis based on using recombinant Brucella abortus outer membrane protein 16 kDa (rOMP16) as an antigen. OMP16 gene of B. abortus was initially synthesized and cloned in pET-21d vector and then expressed in Escherichia coli cells. The expression was confirmed by the SDS-PAGE, western blotting and dot blotting. The purified protein was coated in ELISA plates and an indirect ELISA was performed on 70 human serum samples. The results were evaluated with a commercial IgG ELISA kit and Rose Bengal plate agglutination tests as reference tests. Diagnostic performance of designed OMP16 ELISA test in comparison with Rose Bengal plate test revealed 100% of sensitivity, 95.00% of specificity and good Fleiss kappa agreement, whereas, where it was compared to commercial ELISA kit, it revealed very good kappa agreement with 100% of sensitivity and 100% of specificity in cut-off value of 0.13. It was concluded that OMP 16 kDa could be acceptable alternative antigen for detecting Brucella IgG antibody with high accuracy.
Collapse
Affiliation(s)
- Mehdi Golchin
- Department of Pathobiology, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Somayye Mollayi
- Department of Pathobiology, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Elham Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Neda Eskandarzade
- Department of Basic Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Xu D, Zhao J, Jiang L, Song J, Zong S, Yan X, Liu H, Zhang H, Hu S, Bu Z. Comparison of transcriptional change of B. melitensis M5-90 after macrophage infection highlights the role of ribosome gene L31 in virulence. Vet Microbiol 2020; 253:108951. [PMID: 33373884 DOI: 10.1016/j.vetmic.2020.108951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/07/2020] [Indexed: 01/11/2023]
Abstract
Brucella, a facultative intracellular bacterium, can survive and replicate in various cell types such as epithelial cell, fibroblasts and macrophage. Macrophage is the most important sites for the survival of Brucella in vivo. The mechanisms of pathogenesis are difficult to address, since the unknown virulence genes are still exist. RNA-seq is available to study transcriptional changes that occur during disease as a way to identify important virulence-related genes. Here we described and analyzed the transcriptional change of avirulent strain Brucella melitensis M5-90 (B. melitensis M5-90) during macrophage infection using RNA-seq technology. We detected 601 significant changed genes of which 428 were upregulated after infection. The upregulated gene L31 which involved in ribosome KEGG pathway was selected to illustrate its effect on virulence in a vaccine strain B. melitensis M5-90 and a virulent strain B. melitensis M28. Deletion of L31 significant attenuates the spleen colonization in model of M5-90 or M28 infection mouse at 7, 21 and 35 days post-infection (P < 0.05). We further examine the role of L31 in a macrophage cell infection model, and the result showed a significant reduction of intracellular M28ΔL31 cells at 48 h post-infection (P < 0.001). In total, our study provided a view of transcriptional landscape of B. melitensis M5-90 intracellular, and found L31 gene is required for the full virulence of B. melitensis.
Collapse
Affiliation(s)
- Da Xu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Jianlong Zhao
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Liying Jiang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Jiabao Song
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Shucheng Zong
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Xin Yan
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Haican Liu
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Huitong Zhang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Sen Hu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhigao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
5
|
Abstract
Brucellosis is a bacterial disease of domestic animals and humans. The pathogenic ability of Brucella organisms relies on their stealthy strategy and their capacity to replicate within host cells and to induce long-lasting infections. Brucella organisms barely induce neutrophil activation and survive within these leukocytes by resisting microbicidal mechanisms. Very few Brucella-infected neutrophils are found in the target organs, except for the bone marrow, early in infection. Still, Brucella induces a mild reactive oxygen species formation and, through its lipopolysaccharide, promotes the premature death of neutrophils, which release chemokines and express "eat me" signals. This effect drives the phagocytosis of infected neutrophils by mononuclear cells that become thoroughly susceptible to Brucella replication and vehicles for bacterial dispersion. The premature death of the infected neutrophils proceeds without NETosis, necrosis/oncosis, or classical apoptosis morphology. In the absence of neutrophils, the Th1 response exacerbates and promotes bacterial removal, indicating that Brucella-infected neutrophils dampen adaptive immunity. This modulatory effect opens a window for bacterial dispersion in host tissues before adaptive immunity becomes fully activated. However, the hyperactivation of immunity is not without a price, since neutropenic Brucella-infected animals develop cachexia in the early phases of the disease. The delay in the immunological response seems a sine qua non requirement for the development of long-lasting brucellosis. This property may be shared with other pathogenic alphaproteobacteria closely related to Brucella We propose a model in which Brucella-infected polymorphonuclear neutrophils (PMNs) function as "Trojan horse" vehicles for bacterial dispersal and as modulators of the Th1 adaptive immunity in infection.
Collapse
|
6
|
Lopez P, Guaimas F, Czibener C, Ugalde JE. A genomic island in Brucella involved in the adhesion to host cells: Identification of a new adhesin and a translocation factor. Cell Microbiol 2020; 22:e13245. [PMID: 32657513 DOI: 10.1111/cmi.13245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Adhesion to host cells is the first step in the virulence cycle of any pathogen. In Gram-negative bacteria, adhesion is mediated, among other virulence factors such as the lipopolysaccharides, by specific outer-membrane proteins generally termed adhesins that belong to a wide variety of families and have different evolutionary origins. In Brucella, a widespread zoonotic pathogen of animal and human health concern, adhesion is central as it may determine the intracellular fate of the bacterium, an essential stage in its pathogenesis. In the present paper, we further characterised a genomic locus that we have previously reported encodes an adhesin (BigA) with a bacterial immunoglobulin-like domain (BIg-like). We found that this region encodes a second adhesin, which we have named BigB; and PalA, a periplasmic protein necessary for the proper display in the outer membrane of BigA and BigB. Deletion of bigB or palA diminishes the adhesion of the bacterium and overexpression of BigB dramatically increases it. Incubation of cells with the recombinant BIg-like domain of BigB induced important cytoskeletal rearrangements and affected the focal adhesion sites indicating that the adhesin targets cell-cell or cell-matrix proteins. We additionally show that PalA has a periplasmic localisation and is completely necessary for the proper display of BigA and BigB, probably avoiding their aggregation and facilitating their transport to the outer membrane. Our results indicate that this genomic island is entirely devoted to the adhesion of Brucella to host cells.
Collapse
Affiliation(s)
- Paula Lopez
- Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Francisco Guaimas
- Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Cecilia Czibener
- Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Juan E Ugalde
- Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| |
Collapse
|
7
|
Bulashev A, Akibekov O, Syzdykova A, Suranshiyev Z, Ingirbay B. Use of recombinant Brucella outer membrane proteins 19, 25, and 31 for serodiagnosis of bovine brucellosis. Vet World 2020; 13:1439-1447. [PMID: 32848322 PMCID: PMC7429377 DOI: 10.14202/vetworld.2020.1439-1447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Brucellosis remains one of the most common zoonoses. The current anti-brucellosis measures are largely deemed ineffective due to a lack of specificity of conventional serological tests. This study evaluated the use of Brucella outer membrane protein (Omp)19 for serodiagnostic testing. Materials and Methods The antigenicity of recombinant Brucella Omp19, Omp25, and Omp31 was examined in serum samples from mice and rabbits immunized with Omp19 or Brucella abortus 19 whole cell (WC) and 12 and 152 cows experimentally or naturally infected with brucellosis, respectively. Serum samples were collected from 151 cows that were vaccinated with B. abortus 19 and 12 unvaccinated heifers that were maintained on a brucellosis-free farm. Results Immunization with Omp19 resulted in antibody production in mice after a single injection without the use of adjuvant. Serum antibodies obtained from rabbits immunized with inactivated B. abortus strain 19 WC targeted Omps by enzyme-linked immunosorbent assay (ELISA) and Western blot. Antibodies targeting Omp19 were identified in all B. abortus strain 544 experimentally infected cows at day 14 post-inoculation (p.i.); Omp25 was detected by ELISA at day 28 p.i., while an ELISA targeting Omp31 was negative for 25% of cows at this time point. Omp19 and Omp25 were readily detected by sera from cows from a new epizootic focus. Antibodies recognizing Omps were also detected in >50% of the animals maintained in a brucellosis-free herd at 10 months after vaccination. Conclusion Brucella Omp19 in combination with Omp25 and Omp31 may be utilized as target antigens in an ELISA designed for serological testing of unvaccinated cattle.
Collapse
Affiliation(s)
- Aitbay Bulashev
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Orken Akibekov
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Alfiya Syzdykova
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Zhanbolat Suranshiyev
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Bakytkali Ingirbay
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| |
Collapse
|
8
|
Sidhu-Muñoz RS, Sancho P, Vizcaíno N. Evaluation of human trophoblasts and ovine testis cell lines for the study of the intracellular pathogen Brucella ovis. FEMS Microbiol Lett 2019; 365:5210084. [PMID: 30476113 DOI: 10.1093/femsle/fny278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/23/2018] [Indexed: 01/24/2023] Open
Abstract
Since pathogenic Brucella survive and replicate inside phagocytes, cellular models of infection constitute important tools in brucellosis research. We describe the behavior of B. ovis PA (which causes a type of ovine brucellosis mainly affecting the male reproductive tract) and representative attenuated mutants in two commercially available cell lines of non-professional phagocytes related to Brucella tissue preference: OA3.Ts ovine testis cells and JEG-3 human trophoblasts. In comparison with J774.A1 macrophages and HeLa cells, intracellular bacteria were enumerated at several post-infection time points and visualized by confocal microscopy. Replication of B. ovis in OA3.Ts and JEG-3 cells was equivalent to that observed in J774.A1 macrophages-despite the more efficient internalization in the latter-and better than in HeLa cells. Multiplication and/or survival in all phagocytes was dependent on virB2 and vjbR but independent of cgs, despite the attenuation in mice of the Δcgs mutant. However, Omp25c was required for B. ovis internalization only in HeLa cells, and removal of Omp31 increased bacterial internalization in human HeLa and JEG-3 cells. The results presented here demonstrate variability in the interaction of B. ovis with different host cells and provide advantageous models of non-professional phagocytes to study the intracellular behavior of B. ovis.
Collapse
Affiliation(s)
- Rebeca Singh Sidhu-Muñoz
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 52-182, 37007 Salamanca, Spain
| | - Pilar Sancho
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Paseo de San Vicente 52-182, 37007 Salamanca, Spain
| |
Collapse
|
9
|
Pasquevich KA, Carabajal MV, Guaimas FF, Bruno L, Roset MS, Coria LM, Rey Serrantes DA, Comerci DJ, Cassataro J. Omp19 Enables Brucella abortus to Evade the Antimicrobial Activity From Host's Proteolytic Defense System. Front Immunol 2019; 10:1436. [PMID: 31297115 PMCID: PMC6607954 DOI: 10.3389/fimmu.2019.01436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/07/2019] [Indexed: 01/18/2023] Open
Abstract
Pathogenic microorganisms confront several proteolytic events in the molecular interplay with their host, highlighting that proteolysis and its regulation play an important role during infection. Microbial inhibitors, along with their target endogenous/exogenous enzymes, may directly affect the host's defense mechanisms and promote infection. Omp19 is a Brucella spp. conserved lipoprotein anchored by the lipid portion in the Brucella outer membrane. Previous work demonstrated that purified unlipidated Omp19 (U-Omp19) has protease inhibitor activity against gastrointestinal and lysosomal proteases. In this work, we found that a Brucella omp19 deletion mutant is highly attenuated in mice when infecting by the oral route. This attenuation can be explained by bacterial increased susceptibility to host proteases met by the bacteria during establishment of infection. Omp19 deletion mutant has a cell division defect when exposed to pancreatic proteases that is linked to cell-cycle arrest in G1-phase, Omp25 degradation on the cell envelope and CtrA accumulation. Moreover, Omp19 deletion mutant is more susceptible to killing by macrophage derived microsomes than wt strain. Preincubation with gastrointestinal proteases led to an increased susceptibility of Omp19 deletion mutant to macrophage intracellular killing. Thus, in this work, we describe for the first time a physiological function of B. abortus Omp19. This activity enables Brucella to better thrive in the harsh gastrointestinal tract, where protection from proteolytic degradation can be a matter of life or death, and afterwards invade the host and bypass intracellular proteases to establish the chronic infection.
Collapse
Affiliation(s)
- Karina A Pasquevich
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Marianela V Carabajal
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Francisco F Guaimas
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Laura Bruno
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Mara S Roset
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Lorena M Coria
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Diego A Rey Serrantes
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Diego J Comerci
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Juliana Cassataro
- Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| |
Collapse
|
10
|
Rezaei M, Rabbani-Khorasgani M, Zarkesh-Esfahani SH, Emamzadeh R, Abtahi H. Prediction of the Omp16 Epitopes for the Development of an Epitope-based Vaccine Against Brucellosis. Infect Disord Drug Targets 2019; 19:36-45. [PMID: 29984663 DOI: 10.2174/1871526518666180709121653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/07/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Brucellosis is an infectious disease caused by Brucella bacteria that cause disease in animals and humans. Brucellosis is one of the most common zoonotic diseases transmitted from animals-to-human through direct contact with infected animals and also consumption of unpasteurized dairy products. Due to the wide incidence of brucellosis in Iran and economical costs in industrial animal husbandry, Vaccination is the best way to prevent this disease. All of the available commercial vaccines against brucellosis are derived from live attenuated strains of Brucella but because of the disadvantage of live attenuated vaccines, protective subunit vaccine against Brucella may be a good candidate for the production of new recombinant vaccines based on Brucella Outer Membrane Protein (OMP) antigens. In the present study, comprehensive bioinformatics analysis has been conducted on prediction software to predict T and B cell epitopes, the secondary and tertiary structures and antigenicity of Omp16 antigen and the validation of used software confirmed by experimental results. CONCLUSION The final epitope prediction results have proposed that the three epitopes were predicted for the Omp16 protein with antigenicity ability. We hypothesized that these epitopes likely have the protective capacity to stimulate both the B-cell and T-cell mediated immune responses and so may be effective as an immunogenic candidate for the development of an epitope-based vaccine against brucellosis.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | | | | | - Rahman Emamzadeh
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Science, Arak, Iran
| |
Collapse
|
11
|
Vassen V, Valotteau C, Feuillie C, Formosa-Dague C, Dufrêne YF, De Bolle X. Localized incorporation of outer membrane components in the pathogen Brucella abortus. EMBO J 2019; 38:e100323. [PMID: 30635335 PMCID: PMC6396147 DOI: 10.15252/embj.2018100323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
The zoonotic pathogen Brucella abortus is part of the Rhizobiales, which are alpha-proteobacteria displaying unipolar growth. Here, we show that this bacterium exhibits heterogeneity in its outer membrane composition, with clusters of rough lipopolysaccharide co-localizing with the essential outer membrane porin Omp2b, which is proposed to allow facilitated diffusion of solutes through the porin. We also show that the major outer membrane protein Omp25 and peptidoglycan are incorporated at the new pole and the division site, the expected growth sites. Interestingly, lipopolysaccharide is also inserted at the same growth sites. The absence of long-range diffusion of main components of the outer membrane could explain the apparent immobility of the Omp2b clusters, as well as unipolar and mid-cell localizations of newly incorporated outer membrane proteins and lipopolysaccharide. Unipolar growth and limited mobility of surface structures also suggest that new surface variants could arise in a few generations without the need of diluting pre-existing surface antigens.
Collapse
Affiliation(s)
- Victoria Vassen
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| | - Claire Valotteau
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Formosa-Dague
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Xavier De Bolle
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
12
|
Bialer MG, Ruiz-Ranwez V, Sycz G, Estein SM, Russo DM, Altabe S, Sieira R, Zorreguieta A. MapB, the Brucella suis TamB homologue, is involved in cell envelope biogenesis, cell division and virulence. Sci Rep 2019; 9:2158. [PMID: 30770847 PMCID: PMC6377625 DOI: 10.1038/s41598-018-37668-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Brucella species are Gram-negative, facultative intracellular pathogens responsible for a worldwide zoonosis. The envelope of Brucella exhibits unique characteristics that make these bacteria furtive pathogens and resistant to several host defence compounds. We have identified a Brucella suis gene (mapB) that appeared to be crucial for cell envelope integrity. Indeed, the typical resistance of Brucella to both lysozyme and the cationic lipopeptide polymyxin B was markedly reduced in a ∆mapB mutant. MapB turned out to represent a TamB orthologue. This last protein, together with TamA, a protein belonging to the Omp85 family, form a complex that has been proposed to participate in the translocation of autotransporter proteins across the outer membrane (OM). Accordingly, we observed that MapB is required for proper assembly of an autotransporter adhesin in the OM, as most of the autotransporter accumulated in the mutant cell periplasm. Both assessment of the relative amounts of other specific outer membrane proteins (OMPs) and a proteome approach indicated that the absence of MapB did not lead to an extensive alteration in OMP abundance, but to a reduction in the relative amounts of a protein subset, including proteins from the Omp25/31 family. Electron microscopy revealed that ∆mapB cells exhibit multiple anomalies in cell morphology, indicating that the absence of the TamB homologue in B. suis severely affects cell division. Finally, ∆mapB cells were impaired in macrophage infection and showed an attenuated virulence phenotype in the mouse model. Collectively, our results indicate that the role of B. suis TamB homologue is not restricted to participating in the translocation of autotransporters across the OM but that it is essential for OM stability and protein composition and that it is involved in cell envelope biogenesis, a process that is inherently coordinated with cell division.
Collapse
Affiliation(s)
- Magalí Graciela Bialer
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Verónica Ruiz-Ranwez
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Silvia Marcela Estein
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (U.N.C.P.B.A), Tandil, Argentina
| | - Daniela Marta Russo
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Silvia Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo, Rosario, Argentina
| | - Rodrigo Sieira
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET. Patricias Argentinas 435, (C1405BWE), Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Sun Z, Liu L, Zhang H, Li Y, Wei F, Li Z, Wang P, Fu Q, Ren Y, Zhang Y, Guo Z, Chen C. Expression and functional analysis of Brucella outer membrane protein 25 in recombinant goat pox virus. Mol Med Rep 2019; 19:2323-2329. [PMID: 30664205 DOI: 10.3892/mmr.2019.9868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/22/2017] [Indexed: 11/06/2022] Open
Abstract
The Capripoxvirus (CaPV) has a large double‑stranded DNA genome and a restricted host‑range. At present, it is being investigated as an ideal vaccine vector. In the present study, a novel recombinant goat pox virus (rGTPV) was constructed to express Brucella outer membrane protein (OMP)25, and was validated by in vitro and in vivo immunization assays. A novel rGTPV vector was created, in which the thymidine kinase gene was used as a flanking sequence, I1L was inserted as a promoter element to enhance Brucella OMP25 expression, and p7.5 as another promoter element was used to regulate guanine phosphoribosyl‑transferase as a selection maker. The rGTPV vector was transfected into sheep fetal fibroblast/lamb testis cells pre‑infected with GTPV G14‑STV44‑55 to recombine. Brucella OMP25 protein was expressed in cells by rGTPV, and activated immune reactivity to Brucella OMP25 protein, as detected by western blotting. Furthermore, rGTPV elicited, anti‑Brucella‑specific immunoglobulin G responses, as determined by ELISA. Mice vaccinated with rGTPV did not exhibit pathology alterations in the kidney and liver. These results suggested that the novel rGTPV was able to efficiently drive Brucella OMP25 protein expression and activate immune reactivity, and may have applications in CaPV live vector vaccines and associated research.
Collapse
Affiliation(s)
- Zhihua Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Laizhen Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Youwen Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Feng Wei
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan 476000, P.R. China
| | - Pengyan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Qiang Fu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Yan Ren
- College of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Yu Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Zhiru Guo
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
14
|
Salvador-Bescós M, Gil-Ramírez Y, Zúñiga-Ripa A, Martínez-Gómez E, de Miguel MJ, Muñoz PM, Cloeckaert A, Zygmunt MS, Moriyón I, Iriarte M, Conde-Álvarez R. WadD, a New Brucella Lipopolysaccharide Core Glycosyltransferase Identified by Genomic Search and Phenotypic Characterization. Front Microbiol 2018; 9:2293. [PMID: 30319590 PMCID: PMC6171495 DOI: 10.3389/fmicb.2018.02293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 01/20/2023] Open
Abstract
Brucellosis, an infectious disease caused by Brucella, is one of the most extended bacterial zoonosis in the world and an important cause of economic losses and human suffering. The lipopolysaccharide (LPS) of Brucella plays a major role in virulence as it impairs normal recognition by the innate immune system and delays the immune response. The LPS core is a branched structure involved in resistance to complement and polycationic peptides, and mutants in glycosyltransferases required for the synthesis of the lateral branch not linked to the O-polysaccharide (O-PS) are attenuated and have been proposed as vaccine candidates. For this reason, the complete understanding of the genes involved in the synthesis of this LPS section is of particular interest. The chemical structure of the Brucella LPS core suggests that, in addition to the already identified WadB and WadC glycosyltransferases, others could be implicated in the synthesis of this lateral branch. To clarify this point, we identified and constructed mutants in 11 ORFs encoding putative glycosyltransferases in B. abortus. Four of these ORFs, regulated by the virulence regulator MucR (involved in LPS synthesis) or the BvrR/BvrS system (implicated in the synthesis of surface components), were not required for the synthesis of a complete LPS neither for virulence or interaction with polycationic peptides and/or complement. Among the other seven ORFs, six seemed not to be required for the synthesis of the core LPS since the corresponding mutants kept the O-PS and reacted as the wild type with polyclonal sera. Interestingly, mutant in ORF BAB1_0953 (renamed wadD) lost reactivity against antibodies that recognize the core section while kept the O-PS. This suggests that WadD is a new glycosyltransferase adding one or more sugars to the core lateral branch. WadD mutants were more sensitive than the parental strain to components of the innate immune system and played a role in chronic stages of infection. These results corroborate and extend previous work indicating that the Brucella LPS core is a branched structure that constitutes a steric impairment preventing the elements of the innate immune system to fight against Brucella.
Collapse
Affiliation(s)
- Miriam Salvador-Bescós
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Yolanda Gil-Ramírez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Estrella Martínez-Gómez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - María J de Miguel
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2 (CITA - Universidad de Zaragoza), Zaragoza, Spain
| | - Pilar M Muñoz
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2 (CITA - Universidad de Zaragoza), Zaragoza, Spain
| | - Axel Cloeckaert
- Institut National de la Recherche Agronomique, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Michel S Zygmunt
- Institut National de la Recherche Agronomique, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Ignacio Moriyón
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
15
|
Sidhu-Muñoz RS, Sancho P, Cloeckaert A, Zygmunt MS, de Miguel MJ, Tejedor C, Vizcaíno N. Characterization of Cell Envelope Multiple Mutants of Brucella ovis and Assessment in Mice of Their Vaccine Potential. Front Microbiol 2018; 9:2230. [PMID: 30294312 PMCID: PMC6158377 DOI: 10.3389/fmicb.2018.02230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023] Open
Abstract
Brucella ovis is a non-zoonotic Brucella species lacking specific vaccine. It presents a narrow host range, a unique biology relative to other Brucella species, and important distinct surface properties. To increase our knowledge on its peculiar surface and virulence features, and seeking to develop a specific vaccine, multiple mutants for nine relevant cell-envelope-related genes were investigated. Mutants lacking Omp10 plus Omp19 could not be obtained, suggesting that at least one of these lipoproteins is required for viability. A similar result was obtained for the double deletion of omp31 and omp25 that encode two major surface proteins. Conversely, the absence of major Omp25c (proved essential for internalization in HeLa cells) together with Omp25 or Omp31 was tolerated by the bacterium. Although showing important in vitro and in vivo defects, the Δomp10Δomp31Δomp25c mutant was obtained, demonstrating that B. ovis PA survives to the simultaneous absence of Omp10 and four out seven proteins of the Omp25/Omp31 family (i.e., Omp31, Omp25c, Omp25b, and Omp31b, the two latter naturally absent in B. ovis). Three multiple mutants were selected for a detailed analysis of virulence in the mouse model. The Δomp31Δcgs and Δomp10Δomp31Δomp25c mutants were highly attenuated when inoculated at 106 colony forming units/mouse but they established a persistent infection when the infection dose was increased 100-fold. The Δomp10ΔugpBΔomp31 mutant showed a similar behavior until week 3 post-infection but was then totally cleared from spleen. Accordingly, it was retained as vaccine candidate for mice protection assays. When compared to classical B. melitensis Rev1 heterologous vaccine, the triple mutant induced limited splenomegaly, a significantly higher antibody response against whole B. ovis PA cells, an equivalent memory cellular response and, according to spleen colonization measurements, better protection against a challenge with virulent B. ovis PA. Therefore, it would be a good candidate to be evaluated in the natural host as a specific vaccine against B. ovis that would avoid the drawbacks of B. melitensis Rev1. In addition, the lack in this attenuated strain of Omp31, recognized as a highly immunogenic protein during B. ovis infection, would favor the differentiation between infected and vaccinated animals using Omp31 as diagnostic target.
Collapse
Affiliation(s)
- Rebeca Singh Sidhu-Muñoz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Pilar Sancho
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Axel Cloeckaert
- Plasticité Génomique, Biodiversité, Antibiorésistance (PGBA), UR1282 - Infectiologie Animale, Santé Publique (IASP-311), Institut National de la Recherche Agronomique Centre Val de Loire, Nouzilly, France
| | - Michel Stanislas Zygmunt
- Plasticité Génomique, Biodiversité, Antibiorésistance (PGBA), UR1282 - Infectiologie Animale, Santé Publique (IASP-311), Institut National de la Recherche Agronomique Centre Val de Loire, Nouzilly, France
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón - IA2, Zaragoza, Spain
| | - Carmen Tejedor
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| |
Collapse
|
16
|
Development of improved enzyme-based and lateral flow immunoassays for rapid and accurate serodiagnosis of canine brucellosis. Vet Microbiol 2017; 208:174-180. [DOI: 10.1016/j.vetmic.2017.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 11/19/2022]
|
17
|
Detection of Brucella abortus by immunofluorescence assay using anti-16-kDa outer membrane protein (OMP16) antibody. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-017-2529-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Saini S, Gupta VK, Gururaj K, Singh DD, Pawaiya RVS, Gangwar NK, Mishra AK, Dwivedi D, Andani D, Kumar A, Goswami TK. Comparative diagnostic evaluation of OMP31 gene based TaqMan® real-time PCR assay with visual LAMP assay and indirect ELISA for caprine brucellosis. Trop Anim Health Prod 2017. [DOI: 10.1007/s11250-017-1323-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Li J, Hu F, Chen S, Luo P, He Z, Wang W, Allain JP, Li C. Characterization of novel Omp31 antigenic epitopes of Brucella melitensis by monoclonal antibodies. BMC Microbiol 2017; 17:115. [PMID: 28506316 PMCID: PMC5433040 DOI: 10.1186/s12866-017-1025-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/05/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Brucellosis is a severe zoonotic disease worldwide. Detection and identification of Brucella species are essential to prevent or treat brucellosis in humans and animals. The outer membrane protein-31 (Omp31) is a major protein of Brucellae except for B. abortus, while the Omp31 antigenic epitopes have not been extensively characterized yet. RESULTS A total of 22 monoclonal antibodies (mAbs) were produced against Omp31 of Brucella (B.) melitensis, of which 13 recognized five linear epitopes, 7 reacted with semi-conformational epitopes and 2 reacted with conformational epitopes, respectively. The mAb isotypes were 11 (50%) IgG2a, 5 (23%) IgG1 and 6 (27%) IgM. On the basis of epitope recognition and reactivity levels, 8 mAbs including 3 IgM and 5 IgG clones were considered as highly reactive and potentially diagnostic antibodies. Among these mAbs, 7A3 (IgG1), 5B1 (IgG2a), 2C1 (IgG2a) and 5B3 (IgG2a) reacted with differently conserved linear epitopes of B. melitensis, B. ovis, B. suis and B. canis strains, while 5H3 (IgG2a) highly reacted with a conformational epitope of Omp31 when tested with several immunoassays. CONCLUSIONS These potent monoclonal antibodies can be used for identifying Omp31 antigens or detecting B. melitensis and other Brucella species beyond B. abortus in vitro or in vivo.
Collapse
Affiliation(s)
- Jinfeng Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Feihuan Hu
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Shouyi Chen
- Guangzhou Center of Disease Control and Prevention (CDC), Guangzhou, China
| | - Peifang Luo
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China.,Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Zuoping He
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China.
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China.,Department of Hematology, University of Cambridge, Cambridge, UK
| | - Chengyao Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China. .,School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Szewczyk J, Collet JF. The Journey of Lipoproteins Through the Cell: One Birthplace, Multiple Destinations. Adv Microb Physiol 2016; 69:1-50. [PMID: 27720009 DOI: 10.1016/bs.ampbs.2016.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial lipoproteins are a very diverse group of proteins characterized by the presence of an N-terminal lipid moiety that serves as a membrane anchor. Lipoproteins have a wide variety of crucial functions, ranging from envelope biogenesis to stress response. In Gram-negative bacteria, lipoproteins can be targeted to various destinations in the cell, including the periplasmic side of the cytoplasmic or outer membrane, the cell surface or the external milieu. The sorting mechanisms have been studied in detail in Escherichia coli, but exceptions to the rules established in this model bacterium exist in other bacteria. In this chapter, we will present the current knowledge on lipoprotein sorting in the cell. Our particular focus will be on the surface-exposed lipoproteins that appear to be much more common than previously assumed. We will discuss the different targeting strategies, provide numerous examples of surface-exposed lipoproteins and discuss the techniques used to assess their surface exposure.
Collapse
Affiliation(s)
- J Szewczyk
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - J-F Collet
- WELBIO, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
21
|
Ducrotoy MJ, Conde-Álvarez R, Blasco JM, Moriyón I. A review of the basis of the immunological diagnosis of ruminant brucellosis. Vet Immunol Immunopathol 2016; 171:81-102. [DOI: 10.1016/j.vetimm.2016.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/07/2016] [Accepted: 02/02/2016] [Indexed: 01/18/2023]
|
22
|
Sidhu-Muñoz RS, Sancho P, Vizcaíno N. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties. Vet Microbiol 2016; 186:59-66. [PMID: 27016758 DOI: 10.1016/j.vetmic.2016.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae.
Collapse
Affiliation(s)
- Rebeca S Sidhu-Muñoz
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Pilar Sancho
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain.
| |
Collapse
|
23
|
Ahmed IM, Khairani-Bejo S, Hassan L, Bahaman AR, Omar AR. Serological diagnostic potential of recombinant outer membrane proteins (rOMPs) from Brucella melitensis in mouse model using indirect enzyme-linked immunosorbent assay. BMC Vet Res 2015; 11:275. [PMID: 26530141 PMCID: PMC4630882 DOI: 10.1186/s12917-015-0587-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/16/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Brucella melitensis is the most important pathogenic species of Brucella spp. which affects goats and sheep and causes caprine and ovine brucellosis, respectively. Serological tests for diagnosis of brucellosis such as Rose Bengal plate test (RBPT) and enzyme-linked immunosorbent assay (ELISA) usually utilize smooth lipopolysaccharides (S-LPS) as a diagnostic antigen which could give false positive serological reactions. Outer membrane proteins (OMP) of B. melitensis have been used as alternative diagnostic antigens rather than S-LPS for differential serological diagnosis of brucellosis, mainly in ELISA with single recombinant OMP (rOMP) as a diagnostic antigen. Nevertheless, the use of single format mainly showed lack of sensitivity against the desired rOMP. Therefore, this study aimed to determine whether a newly developed rOMPs indirect ELISA (rOMPs I-ELISA), based on combination of rOMP25, rOMP28 and rOMP31of B. melitensis, has a potential benefit for use in the serodiagnosis of brucellosis. METHODS In this study, omp25, omp28 and omp31 of B. melitensis were cloned and expressed using prokaryotic pET-32 Ek/LIC system and their respective rOMPs were combined as one coating antigen to develop rOMPs I-ELISA. Three groups of BALB/c mice were used to elicit antibody response. Group 1, infected with B. melitensis strain 0331 field strain; group 2, injected with B. melitensis Rev.1 vaccine strain and group 3, infected with Yersinia enterocolitica O:9. Antibody responses in three groups of mice were investigated using Rose Bengal plate test (RBPT) and rOMPs I-ELISA. RESULTS The production of rOMP25, rOMP28 and rOMP31 of B. melitensis were achieved and Western immunoblotting analysis demonstrated their reactivity. The RBPT was unable to differentiate the vaccinated mice (group 2) and mice infected with Y. enterocolitica O:9 (group 3) and categorized them wrongly as positive for brucellosis. In contrast, the rOMPs I-ELISA was able to differentiate the mice infected with B. melitensis strain 0331 (group 1) from both of group 2 and group 3, and recorded 100% sensitivity and 100% specificity. CONCLUSIONS The results of this study suggested that rOMPs of B. melitensis has potential diagnostic ability to differentiate the FPSR in serological diagnosis of brucellosis.
Collapse
Affiliation(s)
- Ihsan Muneer Ahmed
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
- Department of Microbiology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq.
| | - Siti Khairani-Bejo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
| | - Abdul Rani Bahaman
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia.
| |
Collapse
|
24
|
Goolab S, Roth RL, van Heerden H, Crampton MC. Analyzing the molecular mechanism of lipoprotein localization in Brucella. Front Microbiol 2015; 6:1189. [PMID: 26579096 PMCID: PMC4623201 DOI: 10.3389/fmicb.2015.01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 01/18/2023] Open
Abstract
Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella.
Collapse
Affiliation(s)
- Shivani Goolab
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Robyn L. Roth
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Michael C. Crampton
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| |
Collapse
|
25
|
Silbereisen A, Tamborrini M, Wittwer M, Schürch N, Pluschke G. Development of a bead-based Luminex assay using lipopolysaccharide specific monoclonal antibodies to detect biological threats from Brucella species. BMC Microbiol 2015; 15:198. [PMID: 26438077 PMCID: PMC4595103 DOI: 10.1186/s12866-015-0534-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brucella, a Gram-negative bacterium, is classified as a potential bioterrorism agent mainly due to the low dose needed to cause infection and the ability to transmit the bacteria via aerosols. Goats/sheep, cattle, pigs, dogs, sheep and rodents are infected by B. melitensis, B. abortus, B. suis, B. canis, B. ovis and B. neotomae, respectively, the six classical Brucella species. Most human cases are caused by B. melitensis and B. abortus. Our aim was to specifically detect Brucellae with 'smooth' lipopolysaccharide (LPS) using a highly sensitive monoclonal antibody (mAb) based immunological assay. METHODS To complement molecular detection systems for potential bioterror agents, as required by international biodefense regulations, sets of mAbs were generated by B cell hybridoma technology and used to develop immunological assays. The combination of mAbs most suitable for an antigen capture assay format was identified and an immunoassay using the Luminex xMAP technology was developed. RESULTS MAbs specific for the LPS O-antigen of Brucella spp. were generated by immunising mice with inactivated B. melitensis or B. abortus cells. Most mAbs recognised both B. melitensis and B. abortus and antigen binding was not impeded by inactivation of the bacterial cells by γ irradiation, formalin or heat treatment, a step required to analyse the samples immunologically under biosafety level two conditions. The Luminex assay recognised all tested Brucella species with 'smooth' LPS with detection limits of 2×10(2) to 8×10(4) cells per mL, depending on the species tested. Milk samples spiked with Brucella spp. cells were identified successfully using the Luminex assay. In addition, the bead-based immunoassay was integrated into a multiplex format, allowing for simultaneous, rapid and specific detection of Brucella spp., Bacillus anthracis, Francisella tularensis and Yersinia pestis within a single sample. CONCLUSION Overall, the robust Luminex assay should allow detection of Brucella spp. in both natural outbreak and bio-threat situations.
Collapse
Affiliation(s)
- Angelika Silbereisen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Marco Tamborrini
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Matthias Wittwer
- Federal Office for Civil Protection, Spiez Laboratory, Spiez, Switzerland.
| | - Nadia Schürch
- Federal Office for Civil Protection, Spiez Laboratory, Spiez, Switzerland.
| | - Gerd Pluschke
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Evaluation of the efficacy of outer membrane protein 31 vaccine formulations for protection against Brucella canis in BALB/c mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1689-94. [PMID: 25339409 DOI: 10.1128/cvi.00527-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Canine brucellosis is an infectious disease caused by the Gram-negative bacterium Brucella canis. Unlike conventional control programs for other species of the genus Brucella, currently there is no vaccine available against canine brucellosis, and preventive measures are simply diagnosis and isolation of infected dogs. New approaches are therefore needed to develop an effective and safe immunization strategy against this zoonotic pathogen. In this study, BALB/c mice were subcutaneously immunized with the following: (i) the recombinant Brucella Omp31 antigen formulated in different adjuvants (incomplete Freund adjuvant, aluminum hydroxide, Quil A, and Montanide IMS 3012 VGPR), (ii) plasmid pCIOmp31, or (iii) pCIOmp31 plasmid followed by boosting with recombinant Omp31 (rOmp31). The immune response and the protective efficacy against B. canis infection were characterized. The different strategies induced a strong immunoglobulin G (IgG) response. Furthermore, spleen cells from rOmp31-immunized mice produced gamma interferon and interleukin-4 (IL-4) after in vitro stimulation with rOmp31, indicating the induction of a mixed Th1-Th2 response. Recombinant Omp31 administered with different adjuvants as well as the prime-boost strategy conferred protection against B. canis. In conclusion, our results suggest that Omp31 could be a useful candidate for the development of a subcellular vaccine against B. canis infection.
Collapse
|
27
|
Soler-Lloréns P, Gil-Ramírez Y, Zabalza-Baranguá A, Iriarte M, Conde-Álvarez R, Zúñiga-Ripa A, San Román B, Zygmunt MS, Vizcaíno N, Cloeckaert A, Grilló MJ, Moriyón I, López-Goñi I. Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice. Vet Res 2014; 45:72. [PMID: 25029920 PMCID: PMC4107470 DOI: 10.1186/s13567-014-0072-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
Brucella spp. are Gram-negative bacteria that behave as facultative intracellular parasites of a variety of mammals. This genus includes smooth (S) and rough (R) species that carry S and R lipopolysaccharides (LPS), respectively. S-LPS is a virulence factor, and mutants affected in the S-LPS O-polysaccharide (R mutants), core oligosaccharide or both show attenuation. However, B. ovis is naturally R and is virulent in sheep. We studied the role of B. ovis LPS in virulence by mutating the orthologues of wadA, wadB and wadC, three genes known to encode LPS core glycosyltransferases in S brucellae. When mapped with antibodies to outer membrane proteins (Omps) and R-LPS, wadB and wadC mutants displayed defects in LPS structure and outer membrane topology but inactivation of wadA had little or no effect. Consistent with these observations, the wadB and wadC but not the wadA mutants were attenuated in mice. When tested as vaccines, the wadB and wadC mutants protected mice against B. ovis challenge. The results demonstrate that the LPS core is a structure essential for survival in vivo not only of S brucellae but also of a naturally R Brucella pathogenic species, and they confirm our previous hypothesis that the Brucella LPS core is a target for vaccine development. Since vaccine B. melitensis Rev 1 is S and thus interferes in serological testing for S brucellae, wadB mutant represents a candidate vaccine to be evaluated against B. ovis infection of sheep suitable for areas free of B. melitensis.
Collapse
Affiliation(s)
- Pedro Soler-Lloréns
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Yolanda Gil-Ramírez
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Ana Zabalza-Baranguá
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Pamplona, 31006, Spain
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Beatriz San Román
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Pamplona, 31006, Spain
| | - Michel S Zygmunt
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, F-37380, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, F-37000, France
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, F-37380, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, F-37000, France
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología (CSIC-Universidad Pública de Navarra-Gobierno de Navarra), Pamplona, 31006, Spain
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| | - Ignacio López-Goñi
- Departamento de Microbiología y Parasitología and Instituto de Salud Tropical, Universidad de Navarra, Pamplona, 31008, Spain
| |
Collapse
|
28
|
A lysozyme-like protein in Brucella abortus is involved in the early stages of intracellular replication. Infect Immun 2013; 81:956-64. [PMID: 23319555 DOI: 10.1128/iai.01158-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretion of proteins in Gram-negative bacteria is a high-energy-consuming process that requires translocation across two membranes and a periplasmic space composed of a mesh-like layer, the peptidoglycan. To achieve this, bacteria have evolved complex secretion systems that cross these barriers, and in many cases there are specific peptidoglycanases that degrade the peptidoglycan to allow the proper assembly of the secretion machinery. We describe here the identification and characterization of a muramidase in Brucella abortus that participates in the intracellular multiplication in professional and nonprofessional phagocytes. We demonstrated that this protein has peptidoglycanase activity, that a strain with a clean deletion of the gene displayed a defect in the early stages of the intracellular multiplication curve, and that this is dependent on the lytic activity. While neither the attachment nor the invasion of the strain was affected, we demonstrated that it had a defect in excluding the lysosomal marker LAMP-1 but not in acquiring the reticulum endoplasmic marker calnexin, indicating that the gene participates in the early stages of the intracellular trafficking but not in the establishment of the replicative niche. Analysis of the assembly status and functionality of the VirB secretion apparatus indicated that the mutant has affected the proper function of this central virulence factor.
Collapse
|
29
|
Mirabella A, Yañez Villanueva RM, Delrue RM, Uzureau S, Zygmunt MS, Cloeckaert A, De Bolle X, Letesson JJ. The two-component system PrlS/PrlR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. MICROBIOLOGY-SGM 2012; 158:2642-2651. [PMID: 22859617 DOI: 10.1099/mic.0.060863-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial adaptation to environmental conditions is essential to ensure maximal fitness in the face of several stresses. In this context, two-component systems (TCSs) represent a predominant signal transduction mechanism, allowing an appropriate response to be mounted when a stimulus is sensed. As facultative intracellular pathogens, Brucella spp. face various environmental conditions, and an adequate response is required for a successful infection process. Recently, bioinformatic analysis of Brucella genomes predicted a set of 15 bona fide TCS pairs, among which some have been previously investigated. In this report, we characterized a new TCS locus called prlS/R, for probable proline sensor-regulator. It encodes a hybrid histidine kinase (PrlS) with an unusual Na(+)/solute symporter N-terminal domain and a transcriptional regulator (belonging to the LuxR family) (PrlR). In vitro, Brucella spp. with a functional PrlR/S system form bacterial aggregates, which seems to be an adaptive response to a hypersaline environment, while a prlS/R mutant does not. We identified ionic strength as a possible signal sensed by this TCS. Finally, this work correlates the absence of a functional PrlR/S system with the lack of hypersaline-induced aggregation in particular marine Brucella spp.
Collapse
Affiliation(s)
- Aurélie Mirabella
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Rosse-Mary Yañez Villanueva
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Rose-May Delrue
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Sophie Uzureau
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Michel S Zygmunt
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France.,INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Axel Cloeckaert
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France.,INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Xavier De Bolle
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes (URBM), NARILIS, University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
30
|
Lipopolysaccharide heterogeneity in the atypical group of novel emerging Brucella species. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1370-3. [PMID: 22761298 DOI: 10.1128/cvi.00300-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, novel Brucella strains with phenotypic characteristics that were atypical for strains belonging to the genus Brucella have been reported. Phenotypically many of these strains were initially misidentified as Ochrobactrum spp. Two novel species have been described so far for these strains, i.e., B. microti and B. inopinata, and other strains genetically related to B. inopinata may constitute other novel species as well. In this study, we analyzed the lipopolysaccharides (LPS) (smooth LPS [S-LPS] and rough LPS [R-LPS]) of these atypical strains using different methods and a panel of monoclonal antibodies (MAbs) directed against several epitopes of the Brucella O-polysaccharide (O-PS) and R-LPS. Among the most striking results, Brucella sp. strain BO2, isolated from a patient with chronic destructive pneumonia, showed a completely distinct S-LPS profile in silver stain gels that looked more similar to that of enterobacterial S-LPS. This strain also failed to react with MAbs against Brucella O-PS epitopes and showed weak reactivity with anti-R-LPS MAbs. B. inopinata reference strain BO1 displayed an M-dominant S-LPS type with some heterogeneity relative to the classical M-dominant Brucella S-LPS type. Australian wild rodent strains belonging also to the B. inopinata group showed a classical A-dominant S-LPS but lacked the O-PS common (C) epitopes, as previously reported for B. suis biovar 2 strains. Interestingly, some strains also failed to react with anti-R-LPS MAbs, such as the B. microti reference strain and B. inopinata BO1, suggesting modifications in the core-lipid A moieties of these strains. These results have several implications for serological typing and serological diagnosis and underline the need for novel tools for detection and correct identification of such novel emerging Brucella spp.
Collapse
|
31
|
Adone R, Francia M, Pistoia C, Petrucci P, Pesciaroli M, Pasquali P. Protective role of antibodies induced by Brucella melitensis B115 against B. melitensis and Brucella abortus infections in mice. Vaccine 2012; 30:3992-5. [PMID: 22521283 DOI: 10.1016/j.vaccine.2012.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 11/26/2022]
Abstract
It has been demonstrated that antibodies specific for O-PS antigen of Brucella smooth strains are involved in the protective immunity of brucellosis. Since the rough strain Brucella melitensis B115 was able to protect mice against wild Brucella strains brucellosis despite the lack of anti-OPS antibodies, in this study we evaluated the biological significance of antibodies induced by this strain, directed to antigens other than O-PS, passively tranferred to untreated mice prior to infection with Brucella abortus 2308 and B. melitensis 16M virulent strains. The protective ability of specific antisera collected from mice vaccinated with B. melitensis B115, B. abortus RB51 and B. abortus S19 strains was compared. The results indicated that antibodies induced by B115 were able to confer a satisfactory protection, especially against B. abortus 2308, similar to that conferred by the antiserum S19, while the RB51 antiserum was ineffective. These findings suggest that antibodies induced by B115 could act as opsonins as well as antibodies anti-O-PS, thus triggering more efficient internalization and degradation of bacteria within phagocytes. This is the first study assessing the efficacy of antibodies directed to antigens other than O-PS in the course of brucellosis infection.
Collapse
Affiliation(s)
- Rosanna Adone
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Goel D, Bhatnagar R. Intradermal immunization with outer membrane protein 25 protects Balb/c mice from virulent B. abortus 544. Mol Immunol 2012; 51:159-68. [PMID: 22464098 DOI: 10.1016/j.molimm.2012.02.126] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
Abstract
Brucella abortus is a causative agent of brucellosis, a zoonosis affecting the endemic areas, which infects domestic animals as well as humans, thus, posing a potential bioterror threat. Outer membrane protein 25 is conserved among the Brucella species. Omp25 mutant strain of Brucella is shown to be attenuated in mice emphasizing on the role of Omp25 in Brucella virulence. Moreover, Omp25 has been shown to inhibit TNF-α production in human macrophages, thereby, abrogating cell mediated immunity. In this study, we evaluated the immunogenic potential of recombinant Omp25 and its protective efficacy against virulent B. abortus challenge in Balb/c mice. Recombinant Omp25 was administered via two routes of immunization: intraperitoneal and intradermal. Dosage reduction was observed with intradermal immunization when compared with intraperitoneal immunization. A higher IgG1:IgG2b ratio suggested a strong Th2 bias of immune response in both the routes of immunization. In vitro stimulation of splenocytes from immunized mice resulted in high level of IL-4 along with increasing levels of IL-12 and IFN-γ indicating a mixed Th1 and Th2 type of immune response. Immunized mice were challenged with virulent B. abortus and splenic colonization of B. abortus reduced significantly in intradermally immunized mice. Intradermal immunization gave protection comparable to that of B. abortus S-19 strain. Cytokine levels in spleen homogenate after challenge revealed a cell mediated immune response with elevated levels of IL-12 and IFN-γ but no detectable amount of IL-4. This can be a possible reason behind the protection observed in mice after rOmp25 immunization. Thus, our study proposes recombinant Omp25 to be a potential subunit vaccine candidate against brucellosis.
Collapse
Affiliation(s)
- Divya Goel
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
33
|
Quorum-sensing and BvrR/BvrS regulation, the type IV secretion system, cyclic glucans, and BacA in the virulence of Brucella ovis: similarities to and differences from smooth brucellae. Infect Immun 2012; 80:1783-93. [PMID: 22392933 DOI: 10.1128/iai.06257-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella ovis is a rough bacterium--lacking O-polysaccharide chains in the lipopolysaccharide--that is virulent in its natural host and whose virulence mechanisms remain almost unexplored. In a search for additional traits that distinguish B. ovis from smooth Brucella, which require O-polysaccharide chains for virulence, we have analyzed the significance in B. ovis of the main virulence factors described for smooth Brucella. Attempts to obtain strains of virulent B. ovis strain PA that are mutated in the BvrR/BvrS two-component regulatory system were unsuccessful, suggesting the requirement of that system for in vitro survival, while the inactivation of bacA--in contrast to the results seen with smooth Brucella--did not affect splenic colonization in mice or behavior in J774.A1 murine macrophages. Defects in the synthesis of cyclic ß-1,2 glucans reduced the uptake of B. ovis PA in macrophages and, although the intracellular multiplication rate was unaffected, led to attenuation in mice. Growth of strains with mutations in the type IV secretion system (encoded by the virB operon) and the quorum-sensing-related regulator VjbR was severely attenuated in the mouse model, and although the mutant strains internalized like the parental strain in J774.A1 murine macrophages, they were impaired for intracellular replication. As described for B. melitensis, VjbR regulates the transcription of the virB operon positively, and the N-dodecanoyl-dl-homoserine lactone (C(12)-HSL) autoinducer abrogates this effect. In contrast, no apparent VjbR-mediated regulation of the fliF flagellar gene was observed in B. ovis, probably due to the two deletions detected upstream of fliF. These results, together with others reported in the text, point to similarities between rough virulent B. ovis and smooth Brucella species as regards virulence but also reveal distinctive traits that could be related to the particular pathogenicity and host tropism characteristics of B. ovis.
Collapse
|
34
|
Adone R, Muscillo M, La Rosa G, Francia M, Tarantino M. Antigenic, immunologic and genetic characterization of rough strains B. abortus RB51, B. melitensis B115 and B. melitensis B18. PLoS One 2011; 6:e24073. [PMID: 22065984 PMCID: PMC3204967 DOI: 10.1371/journal.pone.0024073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022] Open
Abstract
The lipopolysaccharide (LPS) is considered the major virulent factor in Brucella spp. Several genes have been identified involved in the synthesis of the three LPS components: lipid A, core and O-PS. Usually, Brucella strains devoid of O-PS (rough mutants) are less virulent than the wild type and do not induce undesirable interfering antibodies. Such of them proved to be protective against brucellosis in mice. Because of these favorable features, rough strains have been considered potential brucellosis vaccines. In this study, we evaluated the antigenic, immunologic and genetic characteristics of rough strains B.abortus RB51, B.melitensis B115 and B.melitensis B18. RB51 derived from B.abortus 2308 virulent strain and B115 is a natural rough strain in which the O-PS is present in the cytoplasm. B18 is a rough rifampin-resistan mutant isolated in our laboratory. The surface antigenicity of RB51, B115 and B18 was evaluated by testing their ability to bind antibodies induced by rough or smooth Brucella strains. The antibody response induced by each strain was evaluated in rabbits. Twenty-one genes, involved in the LPS-synthesis, were sequenced and compared with the B.melitensis 16M strain. The results indicated that RB51, B115 and B18 have differences in antigenicity, immunologic and genetic properties. Particularly, in B115 a nonsense mutation was detected in wzm gene, which could explain the intracellular localization of O-PS in this strain. Complementation studies to evaluate the precise role of each mutation in affecting Brucella morphology and its virulence, could provide useful information for the assessment of new, attenuated vaccines for brucellosis.
Collapse
Affiliation(s)
- Rosanna Adone
- Dipartimento Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | | | |
Collapse
|
35
|
Jaradat ZW, Rashdan AM, Ababneh QO, Jaradat SA, Bhunia AK. Characterization of surface proteins of Cronobacter muytjensii using monoclonal antibodies and MALDI-TOF Mass spectrometry. BMC Microbiol 2011; 11:148. [PMID: 21702985 PMCID: PMC3224122 DOI: 10.1186/1471-2180-11-148] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cronobacter spp. is a newly emerging pathogen that causes meningitis in infants and other diseases in elderly and immunocompromised individuals. This study was undertaken to investigate surface antigenic determinants in Cronobacter spp. using monoclonal antibodies (MAbs) and MALDI-TOF Mass spectrometry. RESULTS Spleenocytes from mice that were immunized with heat-killed (20 min, 80°C) Cronobacter cells were fused with SP2 myeloma cells. Five desirable MAbs (A1, B5, 2C2, C5 and A4) were selected. MAbs A1, B5, 2C2 and C5 were of IgG2a isotype while A4 was an IgM. Specificity of the MAbs was determined by using immunoblotting with outer membrane protein preparations (OMPs) extracted from 12 Cronobacter and 6 non-Cronobacter bacteria. All MAbs recognized proteins with molecular weight ranging between 36 and 49 kDa except for one isolate (44) in which no OMPs were detected. In addition, MAbs recognized two bands (38-41 kDa) in four of the non-Cronobacter bacteria. Most of the proteins recognized by the MAbs were identified by MALDI-TOF peptide sequencing and appeared to be heterogeneous with the identities of some of them are still unknown. All MAbs recognized the same epitope as determined by an additive Index ELISA with their epitopes appeared to be conformational rather than sequential. Further, none of the MAbs recognized purified LPS from Cronobacter spp. Specificity of the MAbs toward OMPs was further confirmed by transmission electron microscopy. CONCLUSIONS Results obtained in this study highlight the immunological cross-reactivity among Cronobacter OMPs and their Enterobacteriaceae counterparts. Nevertheless, the identity of the identified proteins appeared to be different as inferred from the MALDI-TOF sequencing and identification.
Collapse
Affiliation(s)
- Ziad W Jaradat
- Department of Biotechnology and Genetic Engineering, PO Box 3030, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | | | | | | | | |
Collapse
|
36
|
Validation of an ELISA method for the serological diagnosis of canine brucellosis due to Brucella canis. Res Vet Sci 2011; 90:425-31. [DOI: 10.1016/j.rvsc.2010.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 07/06/2010] [Accepted: 07/10/2010] [Indexed: 01/18/2023]
|
37
|
Functional characterization of the incomplete phosphotransferase system (PTS) of the intracellular pathogen Brucella melitensis. PLoS One 2010; 5. [PMID: 20844759 PMCID: PMC2937029 DOI: 10.1371/journal.pone.0012679] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 08/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In many bacteria, the phosphotransferase system (PTS) is a key player in the regulation of the assimilation of alternative carbon sources notably through catabolic repression. The intracellular pathogens Brucella spp. possess four PTS proteins (EINtr, NPr, EIIANtr and an EIIA of the mannose family) but no PTS permease suggesting that this PTS might serve only regulatory functions. METHODOLOGY/PRINCIPAL FINDINGS In vitro biochemical analyses and in vivo detection of two forms of EIIANtr (phosphorylated or not) established that the four PTS proteins of Brucella melitensis form a functional phosphorelay. Moreover, in vitro the protein kinase HprK/P phosphorylates NPr on a conserved serine residue, providing an additional level of regulation to the B. melitensis PTS. This kinase activity was inhibited by inorganic phosphate and stimulated by fructose-1,6 bisphosphate. The genes encoding HprK/P, an EIIAMan-like protein and NPr are clustered in a locus conserved among α-proteobacteria and also contain the genes for the crucial two-component system BvrR-BvrS. RT-PCR revealed a transcriptional link between these genes suggesting an interaction between PTS and BvrR-BvrS. Mutations leading to the inactivation of EINtr or NPr significantly lowered the synthesis of VirB proteins, which form a type IV secretion system. These two mutants also exhibit a small colony phenotype on solid media. Finally, interaction partners of PTS proteins were identified using a yeast two hybrid screen against the whole B. melitensis ORFeome. Both NPr and HprK/P were shown to interact with an inorganic pyrophosphatase and the EIIAMan-like protein with the E1 component (SucA) of 2-oxoglutarate dehydrogenase. CONCLUSIONS/SIGNIFICANCE The B. melitensis can transfer the phosphoryl group from PEP to the EIIAs and a link between the PTS and the virulence of this organism could be established. Based on the protein interaction data a preliminary model is proposed in which this regulatory PTS coordinates also C and N metabolism.
Collapse
|
38
|
Eoh H, Jeon BY, Kim Z, Kim SC, Cho SN. Expression and Validation of D-Erythrulose 1-Phosphate Dehydrogenase from Brucella abortus: A Diagnostic Reagent for Bovine Brucellosis. J Vet Diagn Invest 2010; 22:524-30. [DOI: 10.1177/104063871002200405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Brucella abortus is a bacterium of brucellosis causing abortion in cattle. The diagnosis of bovine brucellosis mainly relies on serologic tests using smooth lipopolysaccharide (S-LPS) from B. abortus. However, the usefulness of this method is limited by false-positive reactions due to cross-reaction with other Gram-negative bacteria. In the present study, the eryC gene encoding B. abortus D-erythrulose 1-phosphate dehydrogenase, which is involved in the erythritol metabolism in virulent B. abortus strain but is absent from a B. abortus vaccine strain (S19), was cloned. Recombinant EryC was expressed and purified for the evaluation as a diagnostic reagent for bovine brucellosis. Other B. abortus proteins, Omp16, PP26, and CP39 were also purified and their seroreactivities were compared. Recombinant EryC, Omp16, PP26, and PP39 were all reactive to B. abortus-positive serum. The specificity of recombinant Omp 16, PP26, CP39, and EryC, were shown to be approximately 98%, whereas that of B. abortus whole cell lysates was shown to be 95%. The sensitivity of Omp16, PP26, CP39, and EryC were 10%, 51%, 64%, and 43%, respectively, whereas that of B. abortus whole cell lysates was 53%. These results suggested that B. abortus EryC would be a potential reagent for diagnosis for bovine brucellosis as a single protein antigen.
Collapse
Affiliation(s)
- Hyungjin Eoh
- Department of Microbiology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine
| | - Bo-Young Jeon
- Department of Microbiology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine
| | - Zhiyeol Kim
- Chemical Defense Research Institute, The Armed Force CBR Defense Commend, Seoul, Republic of Korea
| | - Seung-Cheol Kim
- Chemical Defense Research Institute, The Armed Force CBR Defense Commend, Seoul, Republic of Korea
| | - Sang-Nae Cho
- Department of Microbiology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine
| |
Collapse
|
39
|
Godefroid M, Svensson MV, Cambier P, Uzureau S, Mirabella A, De Bolle X, Van Cutsem P, Widmalm G, Letesson JJ. Brucella melitensis 16M produces a mannan and other extracellular matrix components typical of a biofilm. ACTA ACUST UNITED AC 2010; 59:364-77. [PMID: 20497223 DOI: 10.1111/j.1574-695x.2010.00689.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the Brucella melitensis quorum-sensing (QS) system are involved in the formation of clumps containing an exopolysaccharide. Here, we show that the overexpression of a gene called aiiD in B. melitensis gives rise to a similar clumping phenotype. The AiiD enzyme degrades AHL molecules and leads therefore to a QS-deficient strain. We demonstrated the presence of exopolysaccharide and DNA, two classical components of extracellular matrices, in clumps produced by this strain. We also observed that the production of outer membrane vesicles is strongly increased in the aiiD-overexpressing strain. Moreover, this strain allowed us to purify the exopolysaccharide and to obtain its composition and the first structural information on the complex exopolysaccharide produced by B. melitensis 16M, which was found to have a molecular weight of about 16 kDa and to be composed of glucosamine, glucose and mostly mannose. In addition, we found the presence of 2- and/or 6-substituted mannosyl residues, which provide the first insights into the linkages involved in this polymer. We used a classical biofilm attachment assay and an HeLa cell infection model to demonstrate that the clumping strain is more adherent to polystyrene plates and to HeLa cell surfaces than the wild-type one. Taken together, these data reinforce the evidence that B. melitensis could form biofilms in its lifecycle.
Collapse
Affiliation(s)
- Marie Godefroid
- Unité de Recherche en Biologie Moléculaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cho D, Nam H, Kim J, Heo E, Cho Y, Hwang I, Kim J, Kim J, Jung S, More S. QUANTITATIVE ROSE BENGAL TEST FOR DIAGNOSIS OF BOVINE BRUCELLOSIS. J Immunoassay Immunochem 2010; 31:120-30. [DOI: 10.1080/15321811003617420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
41
|
Kaushik P, Singh DK, Kumar SV, Tiwari AK, Shukla G, Dayal S, Chaudhuri P. Protection of mice against Brucella abortus 544 challenge by vaccination with recombinant OMP28 adjuvanted with CpG oligonucleotides. Vet Res Commun 2009; 34:119-32. [PMID: 20013309 DOI: 10.1007/s11259-009-9337-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2009] [Indexed: 11/24/2022]
Abstract
Brucella abortus, a gram negative, facultative intracellular pathogen causes brucellosis in many animal species and humans. Although live, attenuated vaccines are available against this infection, they suffer from certain limitations. Therefore, the development of an effective subunit vaccine against brucellosis is an area of intense research. The outer membrane proteins (OMPs) of Brucella species have been extensively studied for its immunogenicity and protective ability. We have investigated the potential of CpG ODN to enhance the immunogenicity and protective efficacy of recombinant 28 kDa outer membrane protein (rOMP28) of Brucella melitensis. The study demonstrated vigorous immunoglobulin G (IgG) response of OMP28. The administration of rOMP28 with CpG caused increased cell mediated immune response in terms of induced IgG2a, T-cell proliferation and up-regulation of type I cytokine expression. In contrast, the free antigen suppressed the interferon gamma (type I cytokine) production on in-vitro stimulation of spleenocytes. The result indicates the role of OMP28 in the down regulation of IFN-gamma production. Moreover, the B. abortus S-19 vaccinated mice showed highest production of IL-4 and IFN-gamma. The protective ability of the antigen was evaluated by systemic bacterial clearance after challenging the mouse with B. abortus 544 pathogen. The level of protection was significant in rOMP28+CpG treated mice but was lower than the required level. The results of the present study indicate that rOMP28 could be an immunogen capable of inducing both humoral and cellular immune response. The humoral response was biased towards Th1 type when it was co-administered with CpG.
Collapse
Affiliation(s)
- Purushottam Kaushik
- Division of Veterinary Public Health, Bihar Veterinary College, Patna, Bihar, India.
| | | | | | | | | | | | | |
Collapse
|
42
|
Fugier E, Salcedo SP, de Chastellier C, Pophillat M, Muller A, Arce-Gorvel V, Fourquet P, Gorvel JP. The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog 2009; 5:e1000487. [PMID: 19557163 PMCID: PMC2695806 DOI: 10.1371/journal.ppat.1000487] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 05/27/2009] [Indexed: 12/21/2022] Open
Abstract
The intracellular pathogen Brucella abortus survives and replicates inside host cells within an endoplasmic reticulum (ER)-derived replicative organelle named the “Brucella-containing vacuole” (BCV). Here, we developed a subcellular fractionation method to isolate BCVs and characterize for the first time the protein composition of its replicative niche. After identification of BCV membrane proteins by 2 dimensional (2D) gel electrophoresis and mass spectrometry, we focused on two eukaryotic proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 recruited to the vacuolar membrane of Brucella. These proteins were previously described to localize on vesicular and tubular clusters (VTC) and to regulate the VTC membrane traffic between the endoplasmic reticulum (ER) and the Golgi. Inhibition of either GAPDH or Rab 2 expression by small interfering RNA strongly inhibited B. abortus replication. Consistent with this result, inhibition of other partners of GAPDH and Rab 2, such as COPI and PKC ι, reduced B. abortus replication. Furthermore, blockage of Rab 2 GTPase in a GDP-locked form also inhibited B. abortus replication. Bacteria did not fuse with the ER and instead remained in lysosomal-associated membrane vacuoles. These results reveal an essential role for GAPDH and the small GTPase Rab 2 in B. abortus virulence within host cells. A key determinant for intracellular pathogenic bacteria to ensure their virulence within host cells is their ability to bypass the endocytic pathway and to reach a safe replication niche. Brucella bacteria reach the endoplasmic reticulum (ER) to create their replicating niche called the Brucella-containing vacuole (BCV). The ER is a suitable strategic place for pathogenic Brucella. Bacteria can be hidden from host cell defences to persist within the host, and can take advantage of the membrane reservoir delivered by the ER to replicate. Interactions between BCV and the ER lead to the presence of ER proteins on the BCV membrane. Currently, no other proteins (eukaryotic or prokaryotic) have yet been associated with the BCV membrane. Here we show that non-ER related proteins are also present on the BCV membrane, in particular, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 known to be located on secretory vesicles that traffic between the ER and the Golgi apparatus. GAPDH and the small GTPase Rab 2 are involved in Brucella replication at late post-infection. Similarly, integrity of secretory vesicle trafficking is also necessary for Brucella replication. Here, we show that recruitment of the two eukaryotic proteins GAPDH and Rab 2 on BCV membranes is necessary for the establishment of the replicative niche by sustaining interactions between the ER and secretory membrane vesicles.
Collapse
Affiliation(s)
- Emilie Fugier
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Suzana P. Salcedo
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Chantal de Chastellier
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Matthieu Pophillat
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Alexandre Muller
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Vilma Arce-Gorvel
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Patrick Fourquet
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
| | - Jean-Pierre Gorvel
- Aix Marseille Université, Faculté des Sciences de Luminy, Centre d'Immunologie de Marseille-Luminy (CIML), UMR6546, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U631, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR6102, Marseille, France
- * E-mail:
| |
Collapse
|
43
|
Martín-Martín AI, Caro-Hernández P, Sancho P, Tejedor C, Cloeckaert A, Fernández-Lago L, Vizcaíno N. Analysis of the occurrence and distribution of the Omp25/Omp31 family of surface proteins in the six classical Brucella species. Vet Microbiol 2008; 137:74-82. [PMID: 19135812 DOI: 10.1016/j.vetmic.2008.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
Abstract
Members of the Omp25/Omp31 family of surface proteins were previously shown to participate in the virulence of some Brucella species and a different distribution of the seven proteins of this family among species could be related to the difference in pathogenicity and host preference they exhibit. Accordingly, in this work we have analyzed the expression of the genes coding for the Omp25/Omp31 family in the six classical Brucella species and a set of B. ovis mutant strains with each omp gene inactivated. Immunoblot of whole-cell lysates with antibodies raised against the purified recombinant outer membrane proteins (OMPs) did not show the simultaneous presence of the seven OMPs in any of the Brucella strains studied, but different Omp25/Omp31 profiles were detected, in our experimental conditions, between the Brucella strains representative of the six classical species. Transcripts for omp31, omp25 and omp25c were, in general, the most abundant of the family and some hits were found in B. ovis for a posttranscriptional regulation mechanism and for a compensatory mechanism increasing the synthesis of a protein to compensate for the absence of another one. Finally, the potential interest of Omp25c and Omp31b as subcellular vaccines, considering their occurrence in the Brucella strains studied and their antigenic relatedness with other proteins of the family, is discussed.
Collapse
Affiliation(s)
- Ana I Martín-Martín
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Estevan M, Gamazo C, Martínez-Galan F, Irache JM. Stability of poly(epsilon-caprolactone) microparticles containing Brucella ovis antigens as a vaccine delivery system against brucellosis. AAPS PharmSciTech 2008; 9:1063-9. [PMID: 18923907 DOI: 10.1208/s12249-008-9149-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/11/2008] [Indexed: 11/30/2022] Open
Abstract
In previous works, our research group has successfully proved the use of subcellular vaccines based on poly(epsilon-caprolactone) (PEC) microparticles containing an antigenic extract of Brucella ovis (HS) against experimental brucellosis in both mice and rams. However, the successful exploitation of pharmaceutical products, and therefore of this product as veterinary vaccine, requires preservation of both biological activity and native structure in all steps of development from purification to storage. In this context, we have carried out an accelerated stability study to evaluate the relative stability of HS when loading in PEC microparticles. For this purpose, freeze-dried microparticles were stored at 40 +/- 1 degrees C and 75% RH as a preliminary analysis of a stability testing. The results showed that both physico-chemical (size, morphology, antigen content, release profile) and biological (integrity and antigenicity of the HS) properties were preserved after 6 months of storage. On the contrary, after 1 year of storage, the HS release profile was dramatically affected probably due to a progressive loss of the polymer microstructure. In addition, the degradation and loss of the antigenicity of the HS components was also evident by SDS-PAGE and immunoblotting analysis. In fact, after 12 months of storage, only the integrity and antigenicity of two of the major protective proteins of the HS antigenic complex were preserved.
Collapse
|
45
|
Jaradat ZW, Zawistowski J. Antigenically stable 35 kDa outer membrane protein ofSalmonella. FOOD AGR IMMUNOL 2008. [DOI: 10.1080/09540109809354989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
46
|
González D, Grilló MJ, De Miguel MJ, Ali T, Arce-Gorvel V, Delrue RM, Conde-Álvarez R, Muñoz P, López-Goñi I, Iriarte M, Marín CM, Weintraub A, Widmalm G, Zygmunt M, Letesson JJ, Gorvel JP, Blasco JM, Moriyón I. Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS One 2008; 3:e2760. [PMID: 18648644 PMCID: PMC2453230 DOI: 10.1371/journal.pone.0002760] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/24/2008] [Indexed: 11/19/2022] Open
Abstract
Background The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. Methodology/Principal Findings To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. Conclusions/Significance The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas.
Collapse
Affiliation(s)
- David González
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Pamplona, Spain
| | - María-Jesús De Miguel
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Tara Ali
- Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Rose-May Delrue
- Laboratoire d'Immunologie et Microbiologie - Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires - Notre-Dame de la Paix (FUNDP), Namur, Belgium
| | - Raquel Conde-Álvarez
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Pilar Muñoz
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Ignacio López-Goñi
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Maite Iriarte
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Clara-M. Marín
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Andrej Weintraub
- Karolinska Institute, Department Laboratory Medicine, Division of Clinical Bacteriology, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Widmalm
- Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Michel Zygmunt
- INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly, France
| | - Jean-Jacques Letesson
- Laboratoire d'Immunologie et Microbiologie - Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires - Notre-Dame de la Paix (FUNDP), Namur, Belgium
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - José-María Blasco
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Ignacio Moriyón
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
47
|
Barrouin-Melo SM, Poester FP, Ribeiro MB, de Alcântara AC, Aguiar PHP, Nascimento IL, Schaer RE, Nascimento RM, Freire SM. Diagnosis of canine brucellosis by ELISA using an antigen obtained from wild Brucella canis. Res Vet Sci 2007; 83:340-6. [PMID: 17442351 DOI: 10.1016/j.rvsc.2007.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 02/05/2007] [Accepted: 02/19/2007] [Indexed: 01/18/2023]
Abstract
An indirect ELISA test was developed for the diagnosis of Brucella canis infection in dogs. A bacterial whole cell extract was used as a solid phase antigen, using B. canis isolated from an infected animal. Sera from culture-positive and healthy negative animals were used as internal reference controls. The cut-off point was determined by a mathematical formula for a statistically valid value, which defined the upper prediction limit, based on the upper tail of the t-distribution of 21 negative control sera readings, for the confidence level of 99.5%. The sensitivity and specificity of the ELISA test were 95% and 91%, respectively. The ELISA test showed a significant concordance index (K=0.84) with the agar gel immunodiffusion test. The reliability of the ELISA for the detection of infected animals was established by a double blind study testing 280 sera provided by serum banks from different diagnostic and research institutions and analyzed by ROC Curve.
Collapse
Affiliation(s)
- Stella Maria Barrouin-Melo
- Departamento de Patologia e Clínicas, Escola de Medicina Veterinária, Universidade Federal da Bahia, Av. Adhemar de Barros, 500 Salvador, BA, CEP 40170-110, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brucella abortus inhibits major histocompatibility complex class II expression and antigen processing through interleukin-6 secretion via Toll-like receptor 2. Infect Immun 2007; 76:250-62. [PMID: 17984211 DOI: 10.1128/iai.00949-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-gamma)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-gamma production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection.
Collapse
|
49
|
Caro-Hernández P, Fernández-Lago L, de Miguel MJ, Martín-Martín AI, Cloeckaert A, Grilló MJ, Vizcaíno N. Role of the Omp25/Omp31 family in outer membrane properties and virulence of Brucella ovis. Infect Immun 2007; 75:4050-61. [PMID: 17562767 PMCID: PMC1952020 DOI: 10.1128/iai.00486-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The genes coding for the five outer membrane proteins (OMPs) of the Omp25/Omp31 family expected to be located in the outer membrane (OM) of rough virulent Brucella ovis PA were inactivated to evaluate their role in virulence and OM properties. The OM properties of the mutant strains and of the mutants complemented with the corresponding wild-type genes were analyzed, in comparison with the parental strain and rough B. abortus RB51, in several tests: (i) binding of anti-Omp25 and anti-Omp31 monoclonal antibodies, (ii) autoagglutination of bacterial suspensions, and (iii) assessment of susceptibility to polymyxin B, sodium deoxycholate, hydrogen peroxide, and nonimmune ram serum. A tight balance of the members of the Omp25/Omp31 family was seen to be essential for the stability of the B. ovis OM, and important differences between the OMs of B. ovis PA and B. abortus RB51 rough strains were observed. Regarding virulence, the absence of Omp25d and Omp22 from the OM of B. ovis PA led to a drastic reduction in spleen colonization in mice. While the greater susceptibility of the Deltaomp22 mutant to nonimmune serum and its difficulty in surviving in the stationary phase might be on the basis of its dramatic attenuation, no defects in the OM able to explain the attenuation of the Deltaomp25d mutant were found, especially considering that the fully virulent Deltaomp25c mutant displayed more important OM defects. Accordingly, Omp25d, and perhaps Omp22, could be directly involved in the penetration and/or survival of B. ovis inside host cells. This aspect, together with the role of Omp25d and Omp22 in the virulence both of B. ovis in rams and of other Brucella species, should be thoroughly evaluated in future studies.
Collapse
Affiliation(s)
- Paola Caro-Hernández
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
50
|
Uzureau S, Godefroid M, Deschamps C, Lemaire J, De Bolle X, Letesson JJ. Mutations of the quorum sensing-dependent regulator VjbR lead to drastic surface modifications in Brucella melitensis. J Bacteriol 2007; 189:6035-47. [PMID: 17557825 PMCID: PMC1952030 DOI: 10.1128/jb.00265-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Successful establishment of infection by bacterial pathogens requires fine-tuning of virulence-related genes. Quorum sensing (QS) is a global regulation process based on the synthesis of, detection of, and response to small diffusible molecules, called N-acyl-homoserine lactones (AHL), in gram-negative bacteria. In numerous species, QS has been shown to regulate genes involved in the establishment of pathogenic interactions with the host. Brucella melitensis produces N-dodecanoyl homoserine lactones (C(12)-HSL), which down regulate the expression of flagellar genes and of the virB operon (encoding a type IV secretion system), both of which encode surface virulence factors. A QS-related regulator, called VjbR, was identified as a transcriptional activator of these genes. We hypothesized that VjbR mediates the C(12)-HSL effects described above. vjbR alleles mutated in the region coding for the AHL binding domain were constructed to test this hypothesis. These alleles expressed in trans in a DeltavjbR background behave as constitutive regulators both in vitro and in a cellular model of infection. Interestingly, the resulting B. melitensis strains, unable to respond to AHLs, aggregate spontaneously in liquid culture. Preliminary characterization of these strains showed altered expression of some outer membrane proteins and overproduction of a matrix-forming exopolysaccharide, suggesting for the first time that B. melitensis could form biofilms. Together, these results indicate that QS through VjbR is a major regulatory system of important cell surface structures of Brucella and as such plays a key role in host-pathogen interactions.
Collapse
Affiliation(s)
- Sophie Uzureau
- Facultés Universitaires Notre-Dame de la Paix, Unité de Recherche en Biologie Moléculaire, Laboratoire d'Immunologie-Microbiologie, rue de Bruxelles 61, 5000-Namur, Belgium
| | | | | | | | | | | |
Collapse
|