1
|
Fusion-expressed CtxB-TcpA-C-CPE improves both systemic and mucosal humoral and T-cell responses against cholera in mice. Microb Pathog 2021; 157:104978. [PMID: 34022352 DOI: 10.1016/j.micpath.2021.104978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Development of an effective oral vaccine against Cholera, a life-threatening dehydrating diarrheal disease, proved to be a challenging task. To improve oral subunit vaccine immunogenicity and to prevent the state of oral tolerance, application of mucosal adjuvants might be a promising approach. In the present study, the CtxB-TcpA-C-CPE fusion was constructed in which CtxB and C-CPE were used as mucosal adjuvants and vaccine delivery system, respectively, to induce mucosal immune responses, and to improve the anti-toxin and anti-colonizing immunity against V. cholerae. MATERIALS & METHODS The fusion construct was synthesized, sub-cloned in pQE30 and expressed in E. coli. The three antigen, making the fusion protein, were also separately expressed in E. coli. The recombinant proteins were purified by affinity chromatography using Ni-NTA agarose. Western blot analysis using anti-His antibody was applied to confirm identity of the purified proteins. BALB/c mice were subcutaneously immunized with CtxB, TcpA, C-CPE and the fusion protein CtxB-TcpA-C-CPE separately. The mice were orally immunized (in 3 boosts) by the same vaccine. Mucosal immune response stimulation was evaluated by measuring the levels of intestinal IgA. Systemic immune response was evaluated by measuring total serum IgG, IgG1, IgG2a, IgG2b subclasses, and also IL-4, IL-5, IL-10 and IFN-γ cytokines in spleen cell culture. RESULTS The recombinant proteins CtxB, TcpA, C-CPE and the fusion protein CtxB-TcpA-C-CPE were expressed in E. coli and highly purified in a single step of chromatography. BALB/c mice immunized with the fusion protein had highest levels of intestinal IgA, serum IgG and IgG subclasses, compared to each of the three proteins making the fusion. Moreover, stimulated splenocytes of mice immunized with the fusion protein displayed significantly higher amounts of IL-5 and IFN-ɣ cytokines. Th2 dominance of the immune response was more evident in mice receiving the fusion protein. CONCLUSION Inclusion of CtxB, as the mucosal adjuvant, and C-CPE, as the vaccine delivery system, in the fusion protein CtxB-TcpA-C-CPE significantly enhanced the elicited mucosal and systemic immune responses, compared to TcpA alone. Of note, significant production of intestinal IgA in mice immunized with the fusion protein is presumably capable of neutralizing TcpA, CtxB and C-CPE antigens, preventing V. cholera colonization, and toxic function of CtxB and C-CPE. Challenge infection of the immunized mice is required to evaluate protective potential of the fusion protein against V. cholera.
Collapse
|
2
|
Ferdous S, Kelm S, Baker TS, Shi J, Martin AC. B-cell epitopes: Discontinuity and conformational analysis. Mol Immunol 2019; 114:643-650. [DOI: 10.1016/j.molimm.2019.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/07/2019] [Accepted: 09/13/2019] [Indexed: 11/26/2022]
|
3
|
Ebrahimi S, Mohabatkar H, Behbahani M. Predicting Promiscuous T Cell Epitopes for Designing a Vaccine Against Streptococcus pyogenes. Appl Biochem Biotechnol 2018; 187:90-100. [PMID: 29948995 PMCID: PMC7091373 DOI: 10.1007/s12010-018-2804-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/03/2018] [Indexed: 01/17/2023]
Abstract
One of the most dangerous human pathogens with high prevalence worldwide is Streptococcus pyogenes, which has major impacts on global morbidity and mortality. A major challenge for S. pyogenes vaccine development is the detection of epitopes that confer protection from infection by multiple S. pyogenes types. Our aim was to identify the most conserved and immunogenic antigens of S. pyogenes, which can be a potential candidate for vaccine design in the future. Eight important surface proteins were analyzed. Using different prediction servers, strongest epitopes were selected. They had the ability to stimulate the humoral and cell-mediated immune system. Molecular docking was performed for measuring free-binding energy of selected epitopes. Seven epitopes from three surface proteins were selected as potential candidates for vaccine development. Conservation of selected epitopes among different Streptococcus types was checked. Further in vitro and in vivo tests are required to validate the suitability of the epitopes for vaccine design.
Collapse
Affiliation(s)
- Samira Ebrahimi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran.
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Hauke CA, Taylor RK. Production of putative enhanced oral cholera vaccine strains that express toxin-coregulated pilus. PLoS One 2017; 12:e0175170. [PMID: 28384206 PMCID: PMC5383245 DOI: 10.1371/journal.pone.0175170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 03/21/2017] [Indexed: 01/27/2023] Open
Abstract
The use of whole cell killed (WCK) oral cholera vaccines is an important strategy for cholera prevention in endemic areas. To overcome current vaccine limitations, we engineered strains of V. cholerae to be non-toxigenic and to express the protective protein colonization factor, toxin-coregulated pilus (TCP), under scale-up conditions potentially amenable to vaccine production. Two V. cholerae clinical strains were selected and their cholera toxin genes deleted. The tcp operon was placed under control of a rhamnose-inducible promoter. Production and stability of TCP were assessed under various conditions. The strains lack detectable cholera toxin production. The addition of 0.1% rhamnose to the growth medium induced robust production of TCP and TcpA antigen. The strains produced intact TCP in larger growth volumes (1 L), and pili appeared stable during heat-killing or acid treatment of the bacterial cultures. To date, no WCK cholera vaccines have included TCP. We have constructed putative strains of V. cholerae for use in a vaccine that produce high levels of stable TCP antigen, which has not previously been achieved.
Collapse
Affiliation(s)
- Caitlyn A. Hauke
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
5
|
A new class of inhibitors of the AraC family virulence regulator Vibrio cholerae ToxT. Sci Rep 2017; 7:45011. [PMID: 28332578 PMCID: PMC5362913 DOI: 10.1038/srep45011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/20/2017] [Indexed: 11/28/2022] Open
Abstract
Vibrio cholerae is responsible for the diarrheal disease cholera that infects millions of people worldwide. While vaccines protecting against cholera exist, and oral rehydration therapy is an effective treatment method, the disease will remain a global health threat until long-term solutions such as improved sanitation and access to clean water become widely available. Because of this, there is a pressing need for potent therapeutics that can either mitigate cholera symptoms, or act prophylactically to prevent the virulent effects of a cholera infection. Here we report the design, synthesis, and characterization of a set of compounds that bind and inhibit ToxT, the transcription factor that directly regulates the two primary V. cholerae virulence factors. Using the folded structure of the monounsaturated fatty acid observed in the X-ray structure of ToxT as a template, we designed ten novel compounds that inhibit the virulence cascade to a greater degree than any known inhibitor. Our findings provide a structural and functional basis for the development of viable antivirulence therapeutics that combat cholera and, potentially, other forms of bacterial pathogenic disease.
Collapse
|
6
|
Ng D, Harn T, Altindal T, Kolappan S, Marles JM, Lala R, Spielman I, Gao Y, Hauke CA, Kovacikova G, Verjee Z, Taylor RK, Biais N, Craig L. The Vibrio cholerae Minor Pilin TcpB Initiates Assembly and Retraction of the Toxin-Coregulated Pilus. PLoS Pathog 2016; 12:e1006109. [PMID: 27992883 PMCID: PMC5207764 DOI: 10.1371/journal.ppat.1006109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/03/2017] [Accepted: 12/02/2016] [Indexed: 01/03/2023] Open
Abstract
Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system. Bacterial pathogens utilize a number of highly complex and sophisticated molecular systems to colonize their hosts and alter them, creating customized niches in which to reproduce. One such system is the Type IV pilus system, made up of dozens of proteins that form a macromolecular machine to polymerize small pilin proteins into long thin filaments that are displayed on the bacterial surface. These pili have a remarkable array of functions that rely on their ability to (i) adhere to many substrates, including host cell surfaces, pili from nearby bacteria, DNA and bacterial viruses (bacteriophage), and (ii) to depolymerize or retract, which pulls the bacteria along mucosal surfaces, pulls them close together in protective aggregates, and can even draw in substrates like DNA and bacteriophage for nutrition and genetic variation. For most Type IV pilus systems, retraction is an energy-driven process facilitated by a retraction ATPase. We show here that in the simplest of the Type IV pilus systems, the Vibrio cholerae toxin-coregulated pilus, a pilin-like protein initiates pilus retraction by what appears to be mechanical rather than enzymatic means. Our results provide a framework for understanding more complex Type IV pili and the related Type II secretion systems, which represent targets for novel highly specific antibiotics.
Collapse
Affiliation(s)
- Dixon Ng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tony Harn
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tuba Altindal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Subramania Kolappan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jarrad M. Marles
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Rajan Lala
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Ingrid Spielman
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
| | - Yang Gao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Caitlyn A. Hauke
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gabriela Kovacikova
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Zia Verjee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nicolas Biais
- Biology Department, Brooklyn College, City University of New York, Brooklyn, New York, United States of America
- Graduate Center, City University of New York, Brooklyn, New York, United States of America
- * E-mail: (LC); (NB)
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (LC); (NB)
| |
Collapse
|
7
|
Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform 2014; 53:405-14. [PMID: 25464113 DOI: 10.1016/j.jbi.2014.11.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/16/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Exploitation of recombinant DNA and sequencing technologies has led to a new concept in vaccination in which isolated epitopes, capable of stimulating a specific immune response, have been identified and used to achieve advanced vaccine formulations; replacing those constituted by whole pathogen-formulations. In this context, bioinformatics approaches play a critical role on analyzing multiple genomes to select the protective epitopes in silico. It is conceived that cocktails of defined epitopes or chimeric protein arrangements, including the target epitopes, may provide a rationale design capable to elicit convenient humoral or cellular immune responses. This review presents a comprehensive compilation of the most advantageous online immunological software and searchable, in order to facilitate the design and development of vaccines. An outlook on how these tools are supporting vaccine development is presented. HIV and influenza have been taken as examples of promising developments on vaccination against hypervariable viruses. Perspectives in this field are also envisioned.
Collapse
Affiliation(s)
- Ruth E Soria-Guerra
- Laboratorio de Ingeniería de Biorreactores, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico
| | - Ricardo Nieto-Gomez
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico
| | - Dania O Govea-Alonso
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico.
| |
Collapse
|
8
|
Muse M, Grandjean C, Wade TK, Wade WF. A one dose experimental cholera vaccine. ACTA ACUST UNITED AC 2012; 66:98-115. [DOI: 10.1111/j.1574-695x.2012.00993.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Terri K. Wade
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon; NH; USA
| | - William F. Wade
- Department of Microbiology and Immunology; Geisel School of Medicine at Dartmouth; Lebanon; NH; USA
| |
Collapse
|
9
|
Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model. J Bacteriol 2011; 193:5260-70. [PMID: 21804008 DOI: 10.1128/jb.00378-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization of the human small intestine by Vibrio cholerae is an essential step in pathogenesis that requires the type IV toxin-coregulated pilus (TCP). To date, three functions of TCP have been characterized: it serves as the CTXΦ receptor, secretes the colonization factor TcpF, and functions in microcolony formation by mediating bacterium-bacterium interactions. Although type IV pili in other pathogenic bacteria have been characterized as playing a major role in attachment to epithelial cells, there are very few studies to suggest that TCP acts as an attachment factor. Taking this into consideration, we investigated the function of TCP in attachment to Caco-2 cells and found that mutants lacking TCP were defective in attachment compared to the wild type. Overexpression of ToxT, the activator of TCP, significantly increased attachment of wild-type V. cholerae to Caco-2 cells. Using field-emission scanning electron microscopy (FESEM), we also observed TCP-mediated attachment to the small intestines of infected infant mice by using antibodies specific to TCP and V. cholerae. Remarkably, we also visualized matrices comprised of TCP appearing to engulf V. cholerae during infection, and we demonstrated that these matrices protected the bacteria from a component of bile, disclosing a possible new role of this pilus in protection of the bacterial cells from antimicrobial agents. This study provides new insights into TCP's function in V. cholerae colonization of the small intestine, describing additional roles in mediating attachment and protection of V. cholerae bacterial cells.
Collapse
|
10
|
Krebs SJ, Taylor RK. Nutrient-dependent, rapid transition of Vibrio cholerae to coccoid morphology and expression of the toxin co-regulated pilus in this form. MICROBIOLOGY-SGM 2011; 157:2942-2953. [PMID: 21778208 DOI: 10.1099/mic.0.048561-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The acute diarrhoeal disease cholera is caused by the aquatic pathogen Vibrio cholerae upon ingestion of contaminated food or water by the human host. The mechanisms by which V. cholerae is able to persist and survive in the host and aquatic environments have been studied for years; however, little is known about the factors involved in the adaptation or response of V. cholerae transitioning between these two environments. The transition from bacillary to coccoid morphology is thought to be one mechanism of survival that V. cholerae uses in response to environmental stress. Coccoid morphology has been observed for V. cholerae while in a viable but non-culturable (VBNC) state, during times of nutrient limitation, and in the water-diluted stool of cholera-infected patients. In this study we sought conditions to study the coccoid morphology of V. cholerae, and found that coccoid-shaped cells can express and produce the virulence factor toxin co-regulated pilus (TCP) and are able to colonize the infant mouse to the same extent as bacillus-shaped cells. This study suggests that TCP may be one factor that V. cholerae utilizes for adaptation and survival during the transition between the host and the aquatic environment.
Collapse
Affiliation(s)
- Shelly J Krebs
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Ronald K Taylor
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
11
|
Megli CJ, Yuen ASW, Kolappan S, Richardson MR, Dharmasena MN, Krebs SJ, Taylor RK, Craig L. Crystal structure of the Vibrio cholerae colonization factor TcpF and identification of a functional immunogenic site. J Mol Biol 2011; 409:146-58. [PMID: 21440558 DOI: 10.1016/j.jmb.2011.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 01/09/2023]
Abstract
Vibrio cholerae relies on two main virulence factors--toxin-coregulated pilus (TCP) and cholera toxin--to cause the gastrointestinal disease cholera. TCP is a type IV pilus that mediates bacterial autoagglutination and colonization of the intestine. TCP is encoded by the tcp operon, which also encodes TcpF, a protein of unknown function that is secreted by V. cholerae in a TCP-dependent manner. Although TcpF is not required for TCP biogenesis, a tcpF mutant has a colonization defect in the infant mouse cholera model that is as severe as a pilus mutant. Furthermore, TcpF antisera protect against V. cholerae infection. TcpF has no apparent sequence homology to any known protein. Here, we report the de novo X-ray crystal structure of TcpF and the identification of an epitope that is critical for its function as a colonization factor. A monoclonal antibody recognizing this epitope is protective against V. cholerae challenge and adds to the protection provided by an anti-TcpA antibody. These data suggest that TcpF has a novel function in V. cholerae colonization and define a region crucial for this function.
Collapse
Affiliation(s)
- Christina J Megli
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The ability of Vibrio cholerae to persist in bodies of water will continue to confound our ability to eradicate cholera through improvements to infrastructure, and thus cholera vaccines are needed. We aim for an inexpensive vaccine that can provide long-lasting protection from all epidemic cholera infections, currently caused by O1 or O139 serogroups. Recent insights into correlates of protection, epidemiology and pathogenesis may help us design improved vaccines. This notwithstanding, we have come to appreciate that even marginally protective vaccines, such as oral whole-cell killed vaccines, if widely distributed, can provide significant protection, owing to herd immunity. Further efforts are still required to provide more effective protection of young children.
Collapse
Affiliation(s)
- Anne L Bishop
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Howard Hughes Medical Institute, Boston, MA 02111, USA
| | | |
Collapse
|
13
|
Lim MS, Ng D, Zong Z, Arvai AS, Taylor RK, Tainer JA, Craig L. Vibrio cholerae El Tor TcpA crystal structure and mechanism for pilus-mediated microcolony formation. Mol Microbiol 2010; 77:755-70. [PMID: 20545841 DOI: 10.1111/j.1365-2958.2010.07244.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type IV pili (T4P) are critical to virulence for Vibrio cholerae and other bacterial pathogens. Among their diverse functions, T4P mediate microcolony formation, which protects the bacteria from host defences and concentrates secreted toxins. The T4P of the two V. cholerae O1 disease biotypes, classical and El Tor, share 81% identity in their TcpA subunits, yet these filaments differ in their interaction patterns as assessed by electron microscopy. To understand the molecular basis for pilus-mediated microcolony formation, we solved a 1.5 A resolution crystal structure of N-terminally truncated El Tor TcpA and compared it with that of classical TcpA. Residues that differ between the two pilins are located on surface-exposed regions of the TcpA subunits. By iteratively changing these non-conserved amino acids in classical TcpA to their respective residues in El Tor TcpA, we identified residues that profoundly affect pilus:pilus interaction patterns and bacterial aggregation. These residues lie on either the protruding d-region of the TcpA subunit or in a cavity between pilin subunits in the pilus filament. Our results support a model whereby pili interact via intercalation of surface protrusions on one filament into depressions between subunits on adjacent filaments as a means to hold V. cholerae cells together in microcolonies.
Collapse
Affiliation(s)
- Mindy S Lim
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes. Proc Natl Acad Sci U S A 2010; 107:2860-5. [PMID: 20133655 DOI: 10.1073/pnas.0915021107] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 A resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding that cis-palmitoleic acid reduces TCP and CT expression in V. cholerae and prevents ToxT from binding to DNA in vitro provides a direct link between the host environment of V. cholerae and regulation of virulence gene expression.
Collapse
|
15
|
Integration host factor positively regulates virulence gene expression in Vibrio cholerae. J Bacteriol 2008; 190:4736-48. [PMID: 18456804 DOI: 10.1128/jb.00089-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulence gene expression in Vibrio cholerae is dependent upon a complex transcriptional cascade that is influenced by both specific and global regulators in response to environmental stimuli. Here, we report that the global regulator integration host factor (IHF) positively affects virulence gene expression in V. cholerae. Inactivation of ihfA and ihfB, the genes encoding the IHF subunits, decreased the expression levels of the two main virulence factors tcpA and ctx and prevented toxin-coregulated pilus and cholera toxin production. IHF was found to directly bind to and bend the tcpA promoter region at an IHF consensus site centered at position -162 by using gel mobility shift assays and DNase I footprinting experiments. Deletion or mutation of the tcpA IHF consensus site resulted in the loss of IHF binding and additionally disrupted the binding of the repressor H-NS. DNase I footprinting revealed that H-NS protection overlaps with both the IHF and the ToxT binding sites at the tcpA promoter. In addition, disruption of ihfA in an hns or toxT mutant background had no effect on tcpA expression. These results suggest that IHF may function at the tcpA promoter to alleviate H-NS repression.
Collapse
|
16
|
Li J, Lim MS, Li S, Brock M, Pique ME, Woods VL, Craig L. Vibrio cholerae toxin-coregulated pilus structure analyzed by hydrogen/deuterium exchange mass spectrometry. Structure 2008; 16:137-48. [PMID: 18184591 PMCID: PMC2238685 DOI: 10.1016/j.str.2007.10.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/05/2007] [Accepted: 10/13/2007] [Indexed: 10/22/2022]
Abstract
The bacterial pathogen Vibrio cholerae uses toxin-coregulated pili (TCP) to colonize the human intestine, causing the severe diarrheal disease cholera. TCP are long, thin, flexible homopolymers of the TcpA subunit that self-associate to hold cells together in microcolonies and serve as the receptor for the cholera toxin phage. To better understand TCP's roles in pathogenesis, we characterized its structure using hydrogen/deuterium exchange mass spectrometry and computational modeling. We show that the pilin subunits are held together by tight packing of the N-terminal alpha helices, but loose packing of the C-terminal globular domains leaves substantial gaps on the filament surface. These gaps expose a glycine-rich, amphipathic segment of the N-terminal alpha-helix, contradicting the consensus view that this region is buried in the filament core. Our results explain extreme filament flexibility, suggest a molecular basis for pilus-pilus interactions, and reveal a previously unrecognized therapeutic target for V. cholerae and other enteric pathogens.
Collapse
Affiliation(s)
- Juliana Li
- Molecular Biology and Biochemistry Department, Simon Fraser University, 8888 University Dr., Burnaby, BC Canada V5A 1S6
| | - Mindy S. Lim
- Molecular Biology and Biochemistry Department, Simon Fraser University, 8888 University Dr., Burnaby, BC Canada V5A 1S6
| | - Sheng Li
- Department of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0656, USA
| | - Melissa Brock
- Department of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0656, USA
| | - Michael E. Pique
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Virgil L. Woods
- Department of Medicine and Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0656, USA
| | - Lisa Craig
- Molecular Biology and Biochemistry Department, Simon Fraser University, 8888 University Dr., Burnaby, BC Canada V5A 1S6
| |
Collapse
|
17
|
Gershoni JM, Roitburd-Berman A, Siman-Tov DD, Tarnovitski Freund N, Weiss Y. Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs 2007; 21:145-56. [PMID: 17516710 PMCID: PMC7100438 DOI: 10.2165/00063030-200721030-00002] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Antibodies are an effective line of defense in preventing infectious diseases. Highly potent neutralizing antibodies can intercept a virus before it attaches to its target cell and, thus, inactivate it. This ability is based on the antibodies’ specific recognition of epitopes, the sites of the antigen to which antibodies bind. Thus, understanding the antibody/epitope interaction provides a basis for the rational design of preventive vaccines. It is assumed that immunization with the precise epitope, corresponding to an effective neutralizing antibody, would elicit the generation of similarly potent antibodies in the vaccinee. Such a vaccine would be a ‘B-cell epitope-based vaccine’, the implementation of which requires the ability to backtrack from a desired antibody to its corresponding epitope. In this article we discuss a range of methods that enable epitope discovery based on a specific antibody. Such a reversed immunological approach is the first step in the rational design of an epitope-based vaccine. Undoubtedly, the gold standard for epitope definition is x-ray analyses of crystals of antigen: antibody complexes. This method provides atomic resolution of the epitope; however, it is not readily applicable to many antigens and antibodies, and requires a very high degree of sophistication and expertise. Most other methods rely on the ability to monitor the binding of the antibody to antigen fragments or mutated variations. In mutagenesis of the antigen, loss of binding due to point modification of an amino acid residue is often considered an indication of an epitope component. In addition, computational combinatorial methods for epitope mapping are also useful. These methods rely on the ability of the antibody of interest to affinity isolate specific short peptides from combinatorial phage display peptide libraries. The peptides are then regarded as leads for the definition of the epitope corresponding to the antibody used to screen the peptide library. For epitope mapping, computational algorithms have been developed, such as Mapitope, which has recently been found to be effective in mapping conformational discontinuous epitopes. The pros and cons of various approaches towards epitope mapping are also discussed.
Collapse
Affiliation(s)
- Jonathan M Gershoni
- Department of Cell Research and Immunology, Tel Aviv University, Tel-Aviv, Israel.
| | | | | | | | | |
Collapse
|
18
|
Fernandes PJ, Guo Q, Waag DM, Donnenberg MS. The type IV pilin of Burkholderia mallei is highly immunogenic but fails to protect against lethal aerosol challenge in a murine model. Infect Immun 2007; 75:3027-32. [PMID: 17403869 PMCID: PMC1932848 DOI: 10.1128/iai.00150-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia mallei is the cause of glanders and a proven biological weapon. We identified and purified the type IV pilin protein of this organism to study its potential as a subunit vaccine. We found that purified pilin was highly immunogenic. Furthermore, mice infected via sublethal aerosol challenge developed significant increases in titers of antibody against the pilin, suggesting that it is expressed in vivo. Nevertheless, we found no evidence that high-titer antipilin antisera provided passive protection against a sublethal or lethal aerosol challenge and no evidence of protection afforded by active immunization with purified pilin. These results contrast with the utility of type IV pilin subunit vaccines against other infectious diseases and highlight the need for further efforts to identify protective responses against this pathogen.
Collapse
Affiliation(s)
- Paula J Fernandes
- Division of Infectious Diseases, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
19
|
Rollenhagen JE, Kalsy A, Cerda F, John M, Harris JB, Larocque RC, Qadri F, Calderwood SB, Taylor RK, Ryan ET. Transcutaneous immunization with toxin-coregulated pilin A induces protective immunity against Vibrio cholerae O1 El Tor challenge in mice. Infect Immun 2006; 74:5834-9. [PMID: 16988262 PMCID: PMC1594919 DOI: 10.1128/iai.00438-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-coregulated pilin A (TcpA) is the main structural subunit of a type IV bundle-forming pilus of Vibrio cholerae, the cause of cholera. Toxin-coregulated pilus is involved in formation of microcolonies of V. cholerae at the intestinal surface, and strains of V. cholerae deficient in TcpA are attenuated and unable to colonize intestinal surfaces. Anti-TcpA immunity is common in humans recovering from cholera in Bangladesh, and immunization against TcpA is protective in murine V. cholerae models. To evaluate whether transcutaneously applied TcpA is immunogenic, we transcutaneously immunized mice with 100 mug of TcpA or TcpA with an immunoadjuvant (cholera toxin [CT], 50 mug) on days 0, 19, and 40. Mice immunized with TcpA alone did not develop anti-TcpA responses. Mice that received transcutaneously applied TcpA and CT developed prominent anti-TcpA immunoglobulin G (IgG) serum responses but minimal anti-TcpA IgA. Transcutaneous immunization with CT induced prominent IgG and IgA anti-CT serum responses. In an infant mouse model, offspring born to dams transcutaneously immunized either with TcpA and CT or with CT alone were challenged with 10(6) CFU (one 50% lethal dose) wild-type V. cholerae O1 El Tor strain N16961. At 48 h, mice born to females transcutaneously immunized with CT alone had 36% +/- 10% (mean +/- standard error of the mean) survival, while mice born to females transcutaneously immunized with TcpA and CT had 69% +/- 6% survival (P < 0.001). Our results suggest that transcutaneous immunization with TcpA and an immunoadjuvant induces protective anti-TcpA immune responses. Anti-TcpA responses may contribute to an optimal cholera vaccine.
Collapse
Affiliation(s)
- Julianne E Rollenhagen
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Köhler R, Schäfer K, Müller S, Vignon G, Diederichs K, Philippsen A, Ringler P, Pugsley AP, Engel A, Welte W. Structure and assembly of the pseudopilin PulG. Mol Microbiol 2005; 54:647-64. [PMID: 15491357 DOI: 10.1111/j.1365-2958.2004.04307.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pseudopilin PulG is one of several essential components of the type II pullulanase secretion machinery (the Pul secreton) of the Gram-negative bacterium Klebsiella oxytoca. The sequence of the N-terminal 25 amino acids of the PulG precursor is hydrophobic and very similar to the corresponding region of type IV pilins. The structure of a truncated PulG (lacking the homologous region), as determined by X-ray crystallography, was found to include part of the long N-terminal alpha-helix and the four internal anti-parallel beta-strands that characterize type IV pilins, but PulG lacks the highly variable loop region with a disulphide bond that is found in the latter. When overproduced, PulG forms flexible pili whose structural features, as visualized by electron microscopy, are similar to those of bacterial type IV pili. The average helical repeat comprises 17 PulG subunits and four helical turns. Electron microscopy and molecular modelling show that PulG probably assembles into left-handed helical pili with the long N-terminal alpha-helix tightly packed in the centre of the pilus. As in the type IV pilins, the hydrophobic N-terminal part of the PulG alpha-helix is necessary for its assembly. Subtle sequence variations within this highly conserved segment seem to determine whether or not a type IV pilin can be assembled into pili by the Pul secreton.
Collapse
Affiliation(s)
- Rolf Köhler
- Molecular Genetics Unit, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Reguera G, Kolter R. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol 2005; 187:3551-5. [PMID: 15866944 PMCID: PMC1112007 DOI: 10.1128/jb.187.10.3551-3555.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The toxin-coregulated pilus (TCP) of Vibrio cholerae is required for intestinal colonization and cholera toxin acquisition. Here we report that TCP mediates bacterial interactions required for biofilm differentiation on chitinaceous surfaces. We also show that undifferentiated TCP- biofilms have reduced ecological fitness and, thus, that chitin colonization may represent an ecological setting outside the host in which selection for a host colonization factor may take place.
Collapse
Affiliation(s)
- Gemma Reguera
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
22
|
Hung DT, Mekalanos JJ. Bile acids induce cholera toxin expression in Vibrio cholerae in a ToxT-independent manner. Proc Natl Acad Sci U S A 2005; 102:3028-33. [PMID: 15699331 PMCID: PMC549475 DOI: 10.1073/pnas.0409559102] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The production of cholera toxin (CT) during Vibrio cholerae infection results in the hallmark diarrhea that characterizes the disease cholera. The transmembrane protein ToxR was originally identified as a functional transcriptional activator of ctxAB in a heterologous Escherichia coli system. However, direct ToxR activation of the ctxAB promoter in V. cholerae has not been previously demonstrated. Instead, a regulatory cascade has been defined in which the activators ToxRS and TcpPH modulate ctxAB expression by acting in concert to transcriptionally activate another regulator, ToxT. ToxT, in turn, directly activates ctxAB expression as well as expression of the tcp genes and other virulence-associated genes. In this study, we show that ToxRS directly activates ctxAB in a ToxT-independent manner in a classical biotype V. cholerae, and that this activation requires the presence of bile acids. Although the levels of CT induced by this mechanism are lower than levels induced under other in vitro conditions, the bile-dependent conditions described here are more physiologic, being independent of pH and temperature. We further show that the inability of bile acids to stimulate ToxRS-dependent expression of CT in El Tor biotype strains is related to the differences between classical and El Tor ctxAB promoters, which differ in the number of heptad TTTTGAT repeats in their respective upstream regions. The ability of bile acids to stimulate direct activation of ctxAB by ToxRS depends upon the transmembrane domain of ToxR, which may interact with bile acids in the inner membrane of V. cholerae.
Collapse
Affiliation(s)
- Deborah T Hung
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
23
|
Taylor RK, Kirn TJ, Meeks MD, Wade TK, Wade WF. A Vibrio cholerae classical TcpA amino acid sequence induces protective antibody that binds an area hypothesized to be important for toxin-coregulated pilus structure. Infect Immun 2004; 72:6050-60. [PMID: 15385509 PMCID: PMC517590 DOI: 10.1128/iai.72.10.6050-6060.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is a gram-negative bacterium that has been associated with cholera pandemics since the early 1800s. Whole-cell, killed, and live-attenuated oral cholera vaccines are in use. We and others have focused on the development of a subunit cholera vaccine that features standardized epitopes from various V. cholerae macromolecules that are known to induce protective antibody responses. TcpA protein is assembled into toxin-coregulated pilus (TCP), a type IVb pilus required for V. cholerae colonization, and thus is a strong candidate for a cholera subunit vaccine. Polypeptides (24 to 26 amino acids) in TcpA that can induce protective antibody responses have been reported, but further characterization of their amino acid targets relative to tertiary or quaternary TCP structures has not been done. We report a refinement of the TcpA sequences that can induce protective antibody. One sequence, TcpA 15 (residues 170 to 183), induces antibodies that bind linear TcpA in a Western blot as well as weakly bind soluble TcpA in solution. These antibodies bind assembled pili at high density and provide 80 to 100% protection in the infant mouse protection assay. This is in sharp contrast to other anti-TcpA peptide sera (TcpA 11, TcpA 13, and TcpA 17) that bind very strongly in Western blot and solution assays yet do not provide protection or effectively bind TCP, as evidenced by immunoelectron microscopy. The sequences of TcpA 15 that induce protective antibody were localized on a model of assembled TCP. These sequences are centered on a site that is predicted to be important for TCP structure.
Collapse
Affiliation(s)
- Ronald K Taylor
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | | | | | |
Collapse
|
24
|
Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 2004; 118:69-82. [PMID: 15242645 DOI: 10.1016/j.cell.2004.06.009] [Citation(s) in RCA: 737] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/18/2004] [Accepted: 05/18/2004] [Indexed: 11/20/2022]
Abstract
Quorum-sensing bacteria communicate with extracellular signal molecules called autoinducers. This process allows community-wide synchronization of gene expression. A screen for additional components of the Vibrio harveyi and Vibrio cholerae quorum-sensing circuits revealed the protein Hfq. Hfq mediates interactions between small, regulatory RNAs (sRNAs) and specific messenger RNA (mRNA) targets. These interactions typically alter the stability of the target transcripts. We show that Hfq mediates the destabilization of the mRNA encoding the quorum-sensing master regulators LuxR (V. harveyi) and HapR (V. cholerae), implicating an sRNA in the circuit. Using a bioinformatics approach to identify putative sRNAs, we identified four candidate sRNAs in V. cholerae. The simultaneous deletion of all four sRNAs is required to stabilize hapR mRNA. We propose that Hfq, together with these sRNAs, creates an ultrasensitive regulatory switch that controls the critical transition into the high cell density, quorum-sensing mode.
Collapse
Affiliation(s)
- Derrick H Lenz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
25
|
Craig L, Pique ME, Tainer JA. Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2004; 2:363-78. [PMID: 15100690 DOI: 10.1038/nrmicro885] [Citation(s) in RCA: 572] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lisa Craig
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
26
|
Craig L, Taylor RK, Pique ME, Adair BD, Arvai AS, Singh M, Lloyd SJ, Shin DS, Getzoff ED, Yeager M, Forest KT, Tainer JA. Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 2003; 11:1139-50. [PMID: 12769840 DOI: 10.1016/s1097-2765(03)00170-9] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pilin assembly into type IV pili is required for virulence by bacterial pathogens that cause diseases such as cholera, pneumonia, gonorrhea, and meningitis. Crystal structures of soluble, N-terminally truncated pilin from Vibrio cholera toxin-coregulated pilus (TCP) and full-length PAK pilin from Pseudomonas aeruginosa reveal a novel TCP fold, yet a shared architecture for the type IV pilins. In each pilin subunit a conserved, extended, N-terminal alpha helix wrapped by beta strands anchors the structurally variable globular head. Inside the assembled pilus, characterized by cryo-electron microscopy and crystallography, the extended hydrophobic alpha helices make multisubunit contacts to provide mechanical strength and flexibility. Outside, distinct interactions of adaptable heads contribute surface variation for specificity of pilus function in antigenicity, motility, adhesion, and colony formation.
Collapse
Affiliation(s)
- Lisa Craig
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kovacikova G, Skorupski K. Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol Microbiol 2002; 46:1135-47. [PMID: 12421317 DOI: 10.1046/j.1365-2958.2002.03229.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Quorum sensing negatively influences virulence gene expression in certain toxigenic Vibrio cholerae strains. At high cell densities, the response regulator LuxO fails to reduce the expression of HapR, which, in turn, represses the expression of the virulence cascade. A critical regulatory step in the cascade is activation of tcpPH expression by AphA and AphB. We show here that HapR influences the virulence cascade by directly repressing aphA expression. In strain C6706, aphA expression was increased in a delta hapR mutant and decreased in a delta luxO mutant, indicating a negative and positive influence, respectively, of these gene products on the promoter. Overexpression of HapR also reduced aphA expression in both C6706 and Escherichia coli. DNase I footprinting showed that purified HapR binds to the aphA promoter between -85 and -58. Although it appears that quorum sensing does not influence virulence gene expression in strain O395 solely because of a frameshift in hapR, overproduced HapR did not repress expression from the O395 aphA promoter in either Vibrio or E. coli, nor did the protein bind to the promoter. Two basepair differences from C6706 are present in the O395 HapR binding site at -85 and -77. Introducing the -77 change into C6706 prevented HapR binding and repression of aphA expression. This mutation also eliminated the repression of toxin-co-regulated pilus (TCP) and cholera toxin (CT) that occurs in a delta luxO mutant, indicating that HapR function at aphA is critical for density-dependent regulation of virulence genes.
Collapse
Affiliation(s)
- Gabriela Kovacikova
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
28
|
Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 2002; 110:303-14. [PMID: 12176318 DOI: 10.1016/s0092-8674(02)00829-2] [Citation(s) in RCA: 477] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The marine bacterium Vibrio harveyi possesses two quorum sensing systems (System 1 and System 2) that regulate bioluminescence. Although the Vibrio cholerae genome sequence reveals that a V. harveyi-like System 2 exists, it does not predict the existence of a V. harveyi-like System 1 or any obvious quorum sensing-controlled target genes. In this report we identify and characterize the genes encoding an additional V. cholerae autoinducer synthase and its cognate sensor. Analysis of double mutants indicates that a third as yet unidentified sensory circuit exists in V. cholerae. This quorum sensing apparatus is unusually complex, as it is composed of at least three parallel signaling channels. We show that in V. cholerae these communication systems converge to control virulence.
Collapse
Affiliation(s)
- Melissa B Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
29
|
Boyd EF, Waldor MK. Evolutionary and functional analyses of variants of the toxin-coregulated pilus protein TcpA from toxigenic Vibrio cholerae non-O1/non-O139 serogroup isolates. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1655-1666. [PMID: 12055286 DOI: 10.1099/00221287-148-6-1655] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The toxin-coregulated pilus (TCP) is a critical determinant of the pathogenicity of Vibrio cholerae. This bundle-forming pilus is an essential intestinal colonization factor and also serves as a receptor for CTXphi, the filamentous phage that encodes cholera toxin (CT). TCP is a polymer of repeating subunits of the major pilin protein TcpA and tcpA is found within the Vibrio pathogenicity island (VPI). In this study genetic variation at the tcpA locus in toxigenic isolates of V. cholerae was investigated and three novel TcpA sequences from V. cholerae strains V46, V52 and V54, belonging to serogroups O141, O37 and O8, respectively, were identified. These novel tcpA alleles grouped into three distinct clonal lineages. The polymorphisms in TcpA were predominantly located in the carboxyl region of TcpA in surface-exposed regions of TCP fibres. Comparison of the genetic diversity among V. cholerae isolates at the tcpA locus with that of aldA, another locus within the VPI, and mdh, a chromosomal locus, revealed that tcpA sequences are far more diverse than these other loci. Most likely, this diversity is a reflection of diversifying selection in adaptation to the host immune response or to CTXphi susceptibility. An assessment of the functional properties of the variant tcpA sequences in the non-O1 V. cholerae strains was carried out by analysing whether these strains could be infected by CTXphi and colonize the suckling mouse. Similar to El Tor strains of V. cholerae O1, in vitro CTXphi infection of these strains required the exogenous expression of toxT, suggesting that in these strains ToxT regulates TCP expression and that these TcpA variants can serve as CTXphi receptors. All the V. cholerae non-O1 serogroup isolates tested were capable of colonizing the suckling mouse small intestine, suggesting that the different TcpA variants could function as colonization factors.
Collapse
Affiliation(s)
- E Fidelma Boyd
- Department of Microbiology, National University of Ireland, University College Cork, Cork, Ireland1
| | - Matthew K Waldor
- Howard Hughes Medical Institute and Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center and Tufts University School of Medicine, 750 Washington Street, Boston, MA 02111, USA2
| |
Collapse
|
30
|
Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 2002; 99:3129-34. [PMID: 11854465 PMCID: PMC122484 DOI: 10.1073/pnas.052694299] [Citation(s) in RCA: 691] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The production of virulence factors including cholera toxin and the toxin-coregulated pilus in the human pathogen Vibrio cholerae is strongly influenced by environmental conditions. The well-characterized ToxR signal transduction cascade is responsible for sensing and integrating the environmental information and controlling the virulence regulon. We show here that, in addition to the known components of the ToxR signaling circuit, quorum-sensing regulators are involved in regulation of V. cholerae virulence. We focused on the regulators LuxO and HapR because homologues of these two proteins control quorum sensing in the closely related luminous marine bacterium Vibrio harveyi. Using an infant mouse model, we found that a luxO mutant is severely defective in colonization of the small intestine. Gene arrays were used to profile transcription in the V. cholerae wild type and the luxO mutant. These studies revealed that the ToxR regulon is repressed in the luxO mutant, and that this effect is mediated by another negative regulator, HapR. We show that LuxO represses hapR expression early in log-phase growth, and constitutive expression of hapR blocks ToxR-regulon expression. Additionally, LuxO and HapR regulate a variety of other cellular processes including motility, protease production, and biofilm formation. Together these data suggest a role for quorum sensing in modulating expression of blocks of virulence genes in a reciprocal fashion in vivo.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
31
|
Meeks MD, Wade TK, Taylor RK, Wade WF. Immune response genes modulate serologic responses to Vibrio cholerae TcpA pilin peptides. Infect Immun 2001; 69:7687-94. [PMID: 11705949 PMCID: PMC98863 DOI: 10.1128/iai.69.12.7687-7694.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cholera is an enteric disease caused by Vibrio cholerae. Toxin-coregulated pilus (TCP), a type 4 pilus expressed by V. cholerae, is a cholera virulence factor that is required for host colonization. The TCP polymer is composed of subunits of TcpA pilin. Antibodies directed against TcpA are protective in animal models of cholera. While natural or recombinant forms of TcpA are difficult to purify to homogeneity, it is anticipated that synthesized TcpA peptides might serve as immunogens in a subunit vaccine. We wanted to assess the potential for effects of the immune response (Ir) gene that could complicate a peptide-based vaccine. Using a panel of mice congenic at the H-2 locus we tested the immunogenicity of TcpA peptide sequences (peptides 4 to 6) found in the carboxyl termini of both the classical (Cl) and El Tor (ET) biotypes of TCP. Cl peptides have been shown to be immunogenic in CD-1 mice. Our data clearly establish that there are effects of the Ir gene associated with both biotypes of TcpA. These effects are dynamic and dependent on the biotype of TcpA and the haplotypes of the host. In addition to the effects of the classic class II Ir gene, class I (D, L) or nonclassical class I (Qa-2) may also affect immune responses to TcpA peptides. To overcome the effects of the class II Ir gene, multiple TcpA peptides similar to peptides 4, 5, and 6 could be used in a subunit vaccine formulation. Identification of the most protective B-cell epitopes of TcpA within a particular peptide and conjugation to a universal carrier may be the most effective method to eliminate the effects of the class II and class I Ir genes.
Collapse
Affiliation(s)
- M D Meeks
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | | | |
Collapse
|
32
|
Wu JY, Taylor RK, Wade WF. Anti-class II monoclonal antibody-targeted Vibrio cholerae TcpA pilin: modulation of serologic response, epitope specificity, and isotype. Infect Immun 2001; 69:7679-86. [PMID: 11705948 PMCID: PMC98862 DOI: 10.1128/iai.69.12.7679-7686.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-coregulated pilus (TCP) is a colonization factor required for cholera infection. It is not a strong immunogen when delivered in the context of whole cells, yet pilus subunits or TcpA derivative synthetic peptides induce protective responses. We examined the efficacy of immunizing mice with TCP conjugated to anti-class II monoclonal antibodies (MAb) with or without the addition of cholera toxin (CT) or anti-CD40 MAb to determine if the serologic response to TcpA could be manipulated. Anti-class II MAb-targeted TCP influenced the anti-TCP peptide serologic response with respect to titer and isotype. Responses to TcpA peptide 4 were induced with class II MAb-targeted TCP and not with nontargeted TCP. Class II MAb-targeting TcpA reduced the response to peptide 6 compared to the nontargeted TCP response. Class II MAb-targeted TcpA, if delivered with CT, enhanced the serologic response to TcpA peptides. The effectiveness of the combination of targeted TCP and CT was reduced if anti-CD40 MAb were included in the primary immunization. These data establish the need to understand the role of TCP presentation in the generation of B-cell epitopes in order to optimize TcpA-based cholera vaccines.
Collapse
Affiliation(s)
- J Y Wu
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | |
Collapse
|
33
|
Wu JY, Wade WF, Taylor RK. Evaluation of cholera vaccines formulated with toxin-coregulated pilin peptide plus polymer adjuvant in mice. Infect Immun 2001; 69:7695-702. [PMID: 11705950 PMCID: PMC98864 DOI: 10.1128/iai.69.12.7695-7702.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2001] [Accepted: 08/24/2001] [Indexed: 11/20/2022] Open
Abstract
Cholera is an acute diarrheal disease that is caused by the gram-negative bacterium Vibrio cholerae. The low efficacy of currently available killed-whole-cell vaccines and the reactinogenicity coupled with potential reversion of live vaccines have thus far precluded widespread vaccination for the control of cholera. Recent studies on the molecular nature of the virulence components that contribute to V. cholerae pathogenesis have provided insights into possible approaches for the development of a defined subunit cholera vaccine. Genetic analysis has demonstrated that the toxin-coregulated pilus (TCP) is the major factor that contributes to colonization of the human intestine by V. cholerae. In addition, polyclonal and several monoclonal antibodies directed against TCP have been shown to provide passive immunity to disease in the infant mouse cholera model. In the present study, synthetic peptides corresponding to portions of the C-terminal disulfide region of TcpA pilin were formulated with polymer adjuvants currently in clinical trials and used to actively immunize adult female CD-1 mice. The experimental vaccine formulations elicited high levels of antigen-specific immunoglobulin G (IgG), including a broad spectrum of subclasses (IgG1, IgG2a, IgG2b, and IgG3), and lower levels of IgA. Infant mice born to the immunized mothers showed 100% protection against a 50% lethal dose (1 LD(50)) challenge and 50% protection against a 10-LD(50) challenge with virulent strain O395. These results indicate that specific regions of TcpA, including those delineated by the peptides used in this study, have the potential to be incorporated into an effective defined subunit vaccine for cholera.
Collapse
Affiliation(s)
- J Y Wu
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
34
|
Kovacikova G, Skorupski K. Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP-CRP at the Vibrio cholerae tcpPH promoter. Mol Microbiol 2001; 41:393-407. [PMID: 11489126 DOI: 10.1046/j.1365-2958.2001.02518.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of the Vibrio cholerae virulence factors, toxin-co-regulated pilus (TCP) and cholera toxin (CT), are dependent on the ability of the LysR regulator AphB to co-operate with a second protein, AphA, to activate the expression of the membrane-bound transcription factors TcpP and TcpH. To gain insights into the mechanism by which AphA and AphB co-operate to activate the expression of tcpPH, we have purified these two proteins to near homogeneity and show that they are each capable of interacting with the classical tcpPH promoter at distinct binding sites. As shown by tcpP-lacZ promoter deletion experiments, gel shift and DNase I footprinting, AphA binds to and activates from a region of the promoter between -101 and -71 from the start of transcription. AphB binds to and activates from a partially overlapping downstream site between -78 and -43, and these functions are dependent upon a region of partial dyad symmetry that resembles the well-characterized LysR-binding motif. A single basepair difference in this region of dyad symmetry has been shown previously to play a critical role in the expression of virulence genes between the two disease-causing biotypes of V. cholerae, classical and El Tor. We also show here that the tcpPH promoter is negatively influenced by the global regulator cAMP-CRP. Purified CRP binds to a near-consensus sequence in the tcpPH promoter in a cAMP-dependent manner and protects from DNase I digestion a region that is completely within the region protected by AphA and AphB. These findings raise the possibility that the negative effect of cAMP-CRP on virulence gene expression is the result of its ability to influence AphA- and AphB-dependent transcriptional activation of tcpPH under various conditions.
Collapse
Affiliation(s)
- G Kovacikova
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
35
|
Nye MB, Pfau JD, Skorupski K, Taylor RK. Vibrio cholerae H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J Bacteriol 2000; 182:4295-303. [PMID: 10894740 PMCID: PMC101945 DOI: 10.1128/jb.182.15.4295-4303.2000] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H-NS is an abundant nucleoid-associated protein involved in the maintenance of chromosomal architecture in bacteria. H-NS also has a role in silencing the expression of a variety of environmentally regulated genes during growth under nonpermissive conditions. In this study we demonstrate a role for H-NS in the negative modulation of expression of several genes within the ToxR virulence regulon of Vibrio cholerae. Deletion of hns resulted in high, nearly constitutive levels of expression of the genes encoding cholera toxin, toxin-coregulated pilus, and the ToxT virulence gene regulatory protein. For the cholera toxin- and ToxT-encoding genes, elevated expression in an hns mutant was found to occur in the absence of the cognate activator proteins, suggesting that H-NS functions directly at these promoters to decrease gene expression. Deletion analysis of the region upstream of toxT suggests that an extensive region located far upstream of the transcriptional start site is required for complete H-NS-mediated repression of gene expression. These data indicate that H-NS negatively influences multiple levels of gene expression within the V. cholerae virulence cascade and raise the possibility that the transcriptional activator proteins in the ToxR regulon function to counteract the repressive effects of H-NS at the various promoters as well as to recruit RNA polymerase.
Collapse
Affiliation(s)
- M B Nye
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
36
|
Kovacikova G, Skorupski K. Differential activation of the tcpPH promoter by AphB determines biotype specificity of virulence gene expression in Vibrio cholerae. J Bacteriol 2000; 182:3228-38. [PMID: 10809704 PMCID: PMC94511 DOI: 10.1128/jb.182.11.3228-3238.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae strains of the classical biotype express the genes encoding cholera toxin (CT) and toxin-coregulated pilus (TCP) under a variety of environmental conditions in vitro, whereas El Tor biotype strains express these genes only under specialized culture conditions. We show here that a single base-pair difference at positions -65 and -66 of the classical and El Tor tcpPH promoters, respectively, is responsible for the differential regulation of virulence gene expression in these two disease-causing biotypes. Analysis of tcpP-lacZ fusions in both V. cholerae and Escherichia coli indicated that transcriptional activation of the El Tor tcpPH promoter by the LysR regulator AphB was significantly reduced relative to that of the classical promoter. Reciprocal exchange of the tcpPH promoter between the two biotypes in V. cholerae showed that the ability to activate the transcription of tcpPH is not dependent on the biotype of the strain per se but on the tcpPH promoter itself. Classical and El Tor tcpP-lacZ promoter chimeras in E. coli localized the region responsible for the differential activation of tcpPH by AphB to within 75 bp of the transcriptional start site. Individual base-pair changes within this region showed that the presence of either an A or a G at position -65 or -66 conferred the classical or El Tor, respectively, pattern of tcpPH activation by AphB. Reciprocal exchange of these base pairs between biotypes in V. cholerae switched the biotype-specific pattern of expression of tcpPH as well as the production of CT and TCP in response to environmental stimuli.
Collapse
Affiliation(s)
- G Kovacikova
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
37
|
Kirn TJ, Lafferty MJ, Sandoe CM, Taylor RK. Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Mol Microbiol 2000; 35:896-910. [PMID: 10692166 DOI: 10.1046/j.1365-2958.2000.01764.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The toxin-co-regulated pilus (TCP), a type 4 pilus that is expressed by epidemic strains of Vibrio cholerae O1 and O139, is required for colonization of the human intestine. The TCP structure is assembled as a polymer of repeating subunits of TcpA pilin that form long fibres, which laterally associate into bundles. Previous passive immunization studies have suggested that the C-terminal region of TcpA is exposed on the surface of the pilus fibre and has a critical role in mediating the colonization functions of TCP. In the present study, we have used site-directed mutagenesis to delineate two domains within the C-terminal region that contribute to TCP structure and function. Alterations in the first domain, termed the structural domain, result in altered pilus stability or morphology. Alterations in the second domain, termed the interaction domain, affect colonization and/or infection by CTX-bacteriophage without affecting pilus morphology. In vitro and in vivo analyses of the tcpA mutants revealed that a major function of TCP is to mediate bacterial interaction through direct pilus-pilus contact required for microcolony formation and productive intestinal colonization. The importance of this function is supported by the finding that intragenic suppressor mutations that restore colonization ability to colonization-deficient mutants simultaneously restore pilus-mediated bacterial interactions. The alterations resulting from the suppressor mutations also provide insight into the molecular interactions between pilin subunits within and between pilus fibres.
Collapse
Affiliation(s)
- T J Kirn
- Dartmouth Medical School, Department of Microbiology, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
38
|
Nandi B, Nandy RK, Vicente AC, Ghose AC. Molecular characterization of a new variant of toxin-coregulated pilus protein (TcpA) in a toxigenic non-O1/Non-O139 strain of Vibrio cholerae. Infect Immun 2000; 68:948-52. [PMID: 10639469 PMCID: PMC97228 DOI: 10.1128/iai.68.2.948-952.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A toxigenic non-O1/non-O139 strain of Vibrio cholerae (10259) was found to contain a new variant of the toxin-coregulated pilus (TCP) protein gene (tcpA) as determined by PCR and Southern hybridization experiments. Nucleotide sequence analysis data of the new tcpA gene in strain 10259 (O53) showed it to be about 74 and 72% identical to those of O1 classical and El Tor biotype strains, respectively. The predicted amino acid sequence of the 10259 TcpA protein shared about 81 and 78% identity with the corresponding sequences of classical and El Tor TcpA strains, respectively. An antiserum raised against the TCP of a classical strain, O395, although it recognized the TcpA protein of strain 10259 in an immunoblotting experiment, exhibited considerably less protection against 10259 challenge compared to that observed against the parent strain. Incidentally, the tcpA sequences of two other toxigenic non-O1/non-O139 strains (V2 and S7, both belonging to the serogroup O37) were determined to be almost identical to that of classical tcpA. Further, tcpA of another toxigenic non-O1/non-O139 strain V315-1 (O nontypeable) was closely related to that of El Tor tcpA. Analysis of these results with those already available in the literature suggests that there are at least four major variants of the tcpA gene in V. cholerae which probably evolved in parallel from a common ancestral gene. Existence of highly conserved as well as hypervariable regions within the sequence of the TcpA protein would also predict that such evolution is under the control of considerable selection pressure.
Collapse
Affiliation(s)
- B Nandi
- Department of Microbiology, Bose Institute, Calcutta 700 054, India
| | | | | | | |
Collapse
|
39
|
Lee SH, Hava DL, Waldor MK, Camilli A. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 1999; 99:625-34. [PMID: 10612398 DOI: 10.1016/s0092-8674(00)81551-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The temporal expression patterns of the critical Vibrio cholerae virulence genes, tcpA and ctxA, were determined during infection using a recombinase reporter. TcpA was induced biphasically in two temporally and spatially separable events in the small intestine, whereas ctxA was induced monophasically only after, and remarkably, dependent upon, tcpA expression; however, this dependence was not observed during in vitro growth. The requirements of the virulence regulators, ToxR, TcpP, and ToxT, for expression of tcpA and ctxA were determined and were found to differ significantly during infection versus during growth in vitro. These results illustrate the importance of examining virulence gene expression in the context of bona fide host-pathogen interactions.
Collapse
Affiliation(s)
- S H Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | |
Collapse
|
40
|
Kovacikova G, Skorupski K. A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J Bacteriol 1999; 181:4250-6. [PMID: 10400582 PMCID: PMC93926 DOI: 10.1128/jb.181.14.4250-4256.1999] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe here a new member of the LysR family of transcriptional regulators, AphB, which is required for activation of the Vibrio cholerae ToxR virulence cascade. AphB activates the transcription of the tcpPH operon in response to environmental stimuli, and this process requires cooperation with a second protein, AphA. The expression of neither aphA or aphB is strongly regulated by environmental stimuli, raising the possibility that the activities of the proteins themselves may be influenced under various conditions. Strains of the El Tor biotype of V. cholerae typically exhibit lower expression of ToxR-regulated virulence genes in vitro than classical strains and require specialized culture conditions (AKI medium) to induce high-level expression. We show here that expression of aphB from the tac promoter in El Tor biotype strains dramatically increases virulence gene expression to levels similar to those observed in classical strains under all growth conditions examined. These results suggest that AphB plays a role in the differential regulation of virulence genes between the two disease-causing biotypes.
Collapse
Affiliation(s)
- G Kovacikova
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
41
|
Skorupski K, Taylor RK. A new level in the Vibrio cholerae ToxR virulence cascade: AphA is required for transcriptional activation of the tcpPH operon. Mol Microbiol 1999; 31:763-71. [PMID: 10048021 DOI: 10.1046/j.1365-2958.1999.01215.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of the ToxR virulence regulon is dependent upon the regulatory proteins ToxR/ToxS, TcpP/TcpH and ToxT. We describe here a previously unidentified gene in Vibrio cholerae, aphA (activator of tcpP and tcpH expression), which is required for the transcription of the tcpPH operon. Under conditions normally optimal for virulence gene expression, an in frame aphA deletion decreased the expression of a cholera toxin promoter fusion (ctx-lacZ) and prevented the production of the toxin co-regulated pilus (TCP). Plasmids producing ToxT or TcpP/H, but not ToxR, restored ctx-lacZ expression and TCP production in the delta aphA strain, suggesting that the mutation interferes with toxT expression by influencing the transcription of tcpPH. Indeed, the expression of a chromosomal tcpP-lacZ fusion was reduced in the delta aphA mutant and increased in both V. cholerae and Escherichia coli by introducing aphA expressed from an inducible promoter. These results support a model in which AphA functions at a previously unknown step in the ToxR virulence cascade to activate the transcription of tcpPH. TcpP/TcpH, together with ToxR/ToxS, then activate the expression of toxT, resulting ultimately in the production of virulence factors such as cholera toxin and TCP.
Collapse
Affiliation(s)
- K Skorupski
- Dartmouth Medical School, Department of Microbiology, Hanover, NH 03755, USA.
| | | |
Collapse
|
42
|
Russel M. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J Mol Biol 1998; 279:485-99. [PMID: 9641973 DOI: 10.1006/jmbi.1998.1791] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A decade ago, Pugsley and colleagues reported the existence of a large region of Klebsiella DNA, distinct from the Klebsiella gene encoding pullulanase, which was necessary for secretion of this enzyme to the cell surface in Escherichia coli (d'Enfert et al., 1987a,b). The pul genes it contained proved to be the tip of an iceberg. The sequences reported before 1992 (d'Enfert et al., 1987a,b; d'Enfert & Pugsley, 1989; Pugsley & Reyss, 1990; Reyss & Pugsley, 1990) included only one gene (pulD) that matched any sequence in the data base; a 220 amino acid residue segment of PulD was 32% identical with a portion of the filamentous phage-encoded protein, pIV. But by the time the sequence of the 18.8 kb DNA fragment that contained the pul genes had been completed (Possot et al., 1992), reports of sets of homologous genes in several species of Gram-negative plant and animal pathogens had appeared. For the most part, these gene clusters were cloned by their ability to complement mutants that produced, but failed to secrete, proteins normally found in the extracellular milieu; when tested, the mutants showed reduced pathogenicity or were totally avirulent. The secreted proteins included hydrolytic enzymes such as cellulase and pectinase from plant pathogens, and proteases and toxins from animal pathogens. The multi-gene family necessary for secretion of these enzymes is now known as the type II system or the main terminal branch (MTB) of the general secretion pathway (GSP). As summarized by Pugsley et al. (1997), the current tally includes type II systems from Klebsiella oxytoca (pul), Erwinia chrysanthemi and carotovora (out), Xanthomonas campestris (xps), Pseudomonas aeruginosa (xcp), Aeromonas hydrophila (exe), and Vibrio cholerae (eps). A second type II system (sps) necessary for deposition of the S-layer on the cell surface in A. hydrophila is more similar to the X. campestris than A. hydrophila genes (Thomas & Trust, 1995). The biggest surprise has been the discovery of a complete set of type II secretion genes in E. coli K12. The E. coli genes are not expressed under normal growth conditions, and a search is underway to find inducing conditions and secretion substrates (Francetic & Pugsley, 1996). Impressive progress has already been made in defining components of the pathway. What remains to be understood in mechanistic detail is how this protein secretion system functions.
Collapse
Affiliation(s)
- M Russel
- Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
43
|
|
44
|
Sun D, Lafferty MJ, Peek JA, Taylor RK. Domains within the Vibrio cholerae toxin coregulated pilin subunit that mediate bacterial colonization. Gene 1997; 192:79-85. [PMID: 9224877 DOI: 10.1016/s0378-1119(97)00007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several experimental approaches have provided evidence suggesting that a domain within the C-terminal region of the TcpA pilin, delineated by the single disulfide loop, is directly responsible for the colonization function mediated by the toxin coregulated pilus (TCP) of Vibrio cholerae. This evidence includes the mapping of domains recognized by protective monoclonal antibodies to this region, the ability of peptides from within this region to elicit cholera protective antibody, the construction of tcpA missense mutations that abolish TCP function, and the requirement of a periplasmic disulfide isomerase to produce functional TCP.
Collapse
Affiliation(s)
- D Sun
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
45
|
Iredell JR, Manning PA. Outer membrane translocation arrest of the TcpA pilin subunit in rfb mutants of Vibrio cholerae O1 strain 569B. J Bacteriol 1997; 179:2038-46. [PMID: 9068652 PMCID: PMC178930 DOI: 10.1128/jb.179.6.2038-2046.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The toxin-coregulated pilus (TCP) of Vibrio cholerae is a type 4-related fimbrial adhesin and a useful model for the study of type 4 pilus biogenesis and related bacterial macromolecular transport pathways. Transposon mutagenesis of the putative perosamine biosynthesis genes in the rfb operon of V. cholerae 569B eliminates lipopolysaccharide (LPS) O-antigen biosynthesis but also leads to a specific defect in TCP export. Localization of TcpA is made difficult by the hydrophobic nature of this bundle-forming pilin, which floats anomalously in sucrose density gradients, but the processed form of TcpA can be found in membrane and periplasmic fractions prepared from these strains. While TcpA cannot be detected by surface immunogold labelling in transmission electron microscope preparations, EDTA pretreatment facilitates immunofluorescent antibody labelling of whole cells, and ultrathin cryosectioning techniques confirm membrane and periplasmic accumulation of TcpA. Salt and detergent extraction, protease accessibility, and chemical cross-linking experiments suggest that although TcpA has not been assembled on the cell surface, subunit interactions are otherwise identical to those within TCP. In addition, TcpA-mediated fucose-resistant hemagglutination of murine erythrocytes is preserved in whole-cell lysates, suggesting that TcpA has obtained its mature conformation. These data localize a stage of type 4 pilin translocation to the outer membrane, at which stage export failure leads to the accumulation of pilin subunits in a configuration similar to that within the mature fiber. Possible candidates for the outer membrane defect are discussed.
Collapse
Affiliation(s)
- J R Iredell
- Department of Microbiology and Immunology, University of Adelaide, Australia
| | | |
Collapse
|
46
|
Skorupski K, Taylor RK. Cyclic AMP and its receptor protein negatively regulate the coordinate expression of cholera toxin and toxin-coregulated pilus in Vibrio cholerae. Proc Natl Acad Sci U S A 1997; 94:265-70. [PMID: 8990197 PMCID: PMC19310 DOI: 10.1073/pnas.94.1.265] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Insertion mutations in two Vibrio cholerae genes, cya and crp, which encode adenylate cyclase and the cyclic AMP (cAMP) receptor protein (CRP), respectively, derepressed the expression of a chromosomal cholera toxin (CT) promoter-lacZ fusion at the nonpermissive temperature of 37 degrees C. In the classical biotype strain O395, the crp mutation increased the production of both CT and toxin-coregulated pilus (TCP) in vitro under a variety of growth conditions not normally permissive for their expression. The most dramatic increase in CT and TCP was observed with the crp mutant in Luria-Bertani (LB) medium pH 8.5, at 30 degrees C. El Tor biotype strains differ from classical strains in that they do not produce CT or TCP when grown in LB media. Incorporation of the crp mutation into El Tor strain C6706 permitted production of these proteins in LB medium pH 6.5, at 30 degrees C. In the infant mouse cholera model, the crp mutation decreased colonization in both biotypes at least 100-fold relative to the wild-type strains. The data presented here suggest a model whereby cAMP-CRP negatively regulates the expression of CT and TCP in both classical and El Tor biotypes under certain environmental conditions and also influences pathogenesis by regulating other processes necessary for optimal growth in vivo.
Collapse
Affiliation(s)
- K Skorupski
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | |
Collapse
|
47
|
Mukhopadhyay AK, Garg S, Mitra R, Basu A, Rajendran K, Dutta D, Bhattacharya SK, Shimada T, Takeda T, Takeda Y, Nair GB. Temporal shifts in traits of Vibrio cholerae strains isolated from hospitalized patients in Calcutta: a 3-year (1993 to 1995) analysis. J Clin Microbiol 1996; 34:2537-43. [PMID: 8880516 PMCID: PMC229313 DOI: 10.1128/jcm.34.10.2537-2543.1996] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study presents results of a surveillance on cholera conducted with hospitalized patients admitted to the Infectious Diseases Hospital, Calcutta, India, from January 1993 to December 1995. The O139 serogroup of Vibrio cholerae dominated in 1993 but was replaced by O1 as the dominant serogroup in 1994 and 1995. The isolation rate of V. cholerae non-O1 non-O139 did not exceed 4.9% throughout the study period, while the isolation rate of the O139 serogroup in 1994 and 1995 was below 9%. No temporal clustering of any non-O1 non-O139 serogroup was observed. With the exception of 1 strain, none of the 64 strains belonging to the non-O1 non-O139 serogroup hybridized with ctx, zot, and ace gene probes, while 97.3 and 97.7% of the O139 and O1 strains, respectively, hybridized with all the three probes. Multiplex PCR studies revealed that all the O1 strains belonged to the EIT or biotype. There was a progressive increase in the cytotoxic response on CHO and HeLa cells evoked by culture supernatants of strains of V. cholerae non-O1 non-O139 isolated during 1994 and 1995 compared with the response evoked by those isolated in 1993. Dramatic shifts in patterns of resistance to antibiotics between strains of V. cholerae belonging to different serogroups and within strains of a serogroup isolated during different time periods were observed. There was a discernible increase in the incidence of multidrug-resistant strains of V. cholerae O1 isolated in 1994 and 1995 compared with that in 1993. On the basis of the results of this study, we predict the possibility of newer variants of V. cholerae emerging in the future.
Collapse
Affiliation(s)
- A K Mukhopadhyay
- Department of Microbiology, National Institute of Cholera and Enteric Diseases, Calcutta, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Thelin KH, Taylor RK. Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect Immun 1996; 64:2853-6. [PMID: 8698524 PMCID: PMC174155 DOI: 10.1128/iai.64.7.2853-2856.1996] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The relative contributions of toxin-coregulated pilus (TCP) and cell-associated mannose-sensitive hemagglutinin (MSHA) to the colonization ability of Vibrio cholerae O1 El Tor biotype strains and O139 Bengal strains was determined by using isogenic parental and in-frame deletion mutant pairs in the infant mouse cholera model. Both the El Tor and O139 tcpA mutant strains showed a dramatic defect in colonization as indicated by their competitive indices, whereas deletion of mshA had a negligible effect on colonization in either background.
Collapse
Affiliation(s)
- K H Thelin
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
49
|
Bernkop-Schnürch A, Gabor F, Szostak MP, Lubitz W. An adhesive drug delivery system based on K99-fimbriae. Eur J Pharm Sci 1995. [DOI: 10.1016/0928-0987(95)00018-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Abstract
The toxin coregulated pilus (TCP) is required for Vibrio cholerae to colonize the human intestine. The expression of the pilin gene, tcpA, is dependent upon ToxR and upon ToxT. The toxT gene was recently mapped within the TCP biogenesis gene cluster and shown to be capable of activating a tcpA::TnphoA fusion when cloned in Escherichia coli. In this study, we determined that ToxR/ToxT activation occurs at the level of tcpA transcription. ToxT expressed in E. coli could activate a tcp operon fusion, while ToxR, ToxR with ToxS, or a ToxR-PhoA fusion failed to activate the tcp operon fusion and we could not demonstrate binding of a ToxR extract to the tcpA promoter region in DNA mobility-shift assays. The start site for the regulated promoter was shown by primer extension to lie 75 bp upstream of the first codon of tcpA. An 800-base tcpA message was identified, by Northern analysis, that correlates by size to the distance between the transcriptional start and a hairpin-loop sequence between tcpA and tcpB. The more-sensitive assay of RNase protection analysis demonstrated that a regulated transcript probably extends through the rest of the downstream tcp genes, including toxT and the adjacent accessory colonization factor (acf) genes. An in-frame tcpA deletion, but not a polar tcpA::TnphoA fusion, could be complemented for pilus surface expression by providing tcpA in trans. This evidence suggests that the tcp genes, including toxT, are organized in an operon directly activated by ToxT in a ToxR-dependent manner. Most of the toxT expression under induced conditions requires transcription of the tcpA promoter. Further investigation of how tcp::TnphoA insertions that are polar on toxT expression retain regulation showed that a low basal level of toxT expression is present in toxR and tcp::TnphoA strains. Overall, these observations support the ToxR/ToxT cascade of regulation for tcp. Once induced, toxT expression becomes autoregulatory via the tcp promoter, linking tcp expression to that of additional colonization factors, exotoxin production, and genes of unknown function in cholera pathogenesis.
Collapse
Affiliation(s)
- R C Brown
- University of Tennessee, Health Science Center, Department of Microbiology and Immunology, Memphis 38163, USA
| | | |
Collapse
|