1
|
Nolasco-Pérez TDJ, Cervantes-Candelas LA, Buendía-González FO, Aguilar-Castro J, Fernández-Rivera O, Salazar-Castañón VH, Legorreta-Herrera M. Immunomodulatory effects of testosterone and letrozole during Plasmodium berghei ANKA infection. Front Cell Infect Microbiol 2023; 13:1146356. [PMID: 37384220 PMCID: PMC10296187 DOI: 10.3389/fcimb.2023.1146356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Malaria is one of the leading health problems globally. Plasmodium infection causes pronounced sexual dimorphism, and the lethality and severity are more remarkable in males than in females. To study the role of testosterone in the susceptibility and mortality of males in malaria, it is common to increase its concentration. However, this strategy does not consider the enzyme CYP19A1 aromatase, which can transform it into oestrogens. Methods To avoid the interference of oestrogens, we inhibited in vivo CYP19A1 aromatase with letrozole and increased the testosterone level by exogen administration before infection with Plasmodium berghei ANKA. We measured the impact on free testosterone, 17β-oestradiol and dehydroepiandrosterone levels in plasma; additionally, we evaluated parasitaemia, body temperature, body mass, glucose levels and haemoglobin concentration. Furthermore, we evaluated the effects of testosterone on the immune response; we quantified the CD3+/CD4+, CD3+/CD8+, CD19+, Mac-3+ and NK cells in the spleen and the plasma concentrations of the cytokines IL-2, IL-4, IL-6, IFN-, IL-10, TNF-α and IL-17A. Finally, we quantified the levels of antibodies. Results We found that mice treated with the combination of letrozole and testosterone and infected with Plasmodium berghei ANKA had increased concentrations of free testosterone and DHEA but decreased levels of 17β-oestradiol. As a result, parasitaemia increased, leading to severe anaemia. Interestingly, testosterone increased temperature and decreased glucose concentration as a possible testosterone-mediated regulatory mechanism. The severity of symptomatology was related to critical immunomodulatory effects generated by free testosterone; it selectively increased CD3+CD8+ T and CD19+ cells but decreased Mac-3+. Remarkably, it reduced IL-17A concentration and increased IL-4 and TNF-α. Finally, it increased IgG1 levels and the IgG1/IgG2a ratio. In conclusion, free testosterone plays an essential role in pathogenesis in male mice by increasing CD8+ and decreasing Mac3+ cells and mainly reducing IL-17A levels, which is critical in the development of anaemia. Our results are important for understanding the mechanisms that regulate the exacerbated inflammatory response in infectious diseases and would be useful for the future development of alternative therapies to reduce the mortality generated by inflammatory processes.
Collapse
Affiliation(s)
- Teresita de Jesús Nolasco-Pérez
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Antonio Cervantes-Candelas
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Fidel Orlando Buendía-González
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jesús Aguilar-Castro
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Fernández-Rivera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Víctor Hugo Salazar-Castañón
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
2
|
Aguilar-Castro J, Cervantes-Candelas LA, Buendía-González FO, Fernández-Rivera O, Nolasco-Pérez TDJ, López-Padilla MS, Chavira-Ramírez DR, Cervantes-Sandoval A, Legorreta-Herrera M. Testosterone induces sexual dimorphism during infection with Plasmodium berghei ANKA. Front Cell Infect Microbiol 2022; 12:968325. [PMID: 36237427 PMCID: PMC9551224 DOI: 10.3389/fcimb.2022.968325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria is the most lethal parasitic disease worldwide; men exhibit higher mortality and more severe symptomatology than women; however, in most studies of immune response in malaria, sex is not considered a variable. Sex hormones 17β-oestradiol and testosterone are responsible for the main physiological differences between sexes. When interacting with their receptors on different immune cells, they modify the expression of genes that modulate cell proliferation, differentiation, and synthesis of cytokines. The immunosuppressive activity of testosterone is well accepted; however, its participation in the sexual dimorphism of the immune response to malaria has not been studied. In this work, we analysed whether altering the concentration of testosterone, through increasing the concentration of this hormone for exogenous administration for three weeks, or gonadectomy before infection with Plasmodium berghei ANKA affects different cells of the immune response necessary for parasite clearance. We also assessed the concentration of pro-and anti-inflammatory cytokines in male and female CBA/Ca mice infected or not with the parasite. Our results show that testosterone changes affect females more than males, resulting in sex-associated patterns. Testosterone administration increased parasitaemia in intact males while reducing it in intact females leading to a dimorphic pattern. In addition, gonadectomy increased parasitaemia in both sexes. Moreover, testosterone administration prevented both weight loss caused by the infection in females and hypothermia in gonadectomized mice of both sexes. Boosting testosterone concentration increased CD3+ and CD8+ populations but decreased the B220+ cells exclusively in females. Additionally, testosterone reduced IFN-γ concentration and increased IL-6 levels only in females, while in males, testosterone increased the number of NK cells. Finally, gonadectomy decreased TNF-α concentration in both sexes. Our results demonstrate that testosterone induces different patterns depending on sex and testosterone concentration. The results of this work contribute to understanding the impact of modifying testosterone concentration on the immune response specific against Plasmodium and the participation of this hormone in sexual dimorphism in malaria.
Collapse
Affiliation(s)
- Jesús Aguilar-Castro
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Antonio Cervantes-Candelas
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Fidel Orlando Buendía-González
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Fernández-Rivera
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Teresita de Jesús Nolasco-Pérez
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Monserrat Sofía López-Padilla
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - David Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Armando Cervantes-Sandoval
- Laboratorio de Aplicaciones Computacionales, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México, Mexico
| | - Martha Legorreta-Herrera
- Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico. Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Martha Legorreta-Herrera,
| |
Collapse
|
3
|
Subramaniam KS, Spaulding E, Ivan E, Mutimura E, Kim RS, Liu X, Dong C, Feintuch CM, Zhang X, Anastos K, Lauvau G, Daily JP. The T-Cell Inhibitory Molecule Butyrophilin-Like 2 Is Up-regulated in Mild Plasmodium falciparum Infection and Is Protective During Experimental Cerebral Malaria. J Infect Dis 2015; 212:1322-31. [PMID: 25883389 DOI: 10.1093/infdis/jiv217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 04/01/2015] [Indexed: 11/12/2022] Open
Abstract
Plasmodium falciparum infection can result in severe disease that is associated with elevated inflammation and vital organ dysfunction; however, malaria-endemic residents gain protection from lethal outcomes and manifest only mild symptoms during infection. To characterize host responses associated with this more effective antimalarial response, we characterized whole-blood transcriptional profiles in Rwandan adults during a mild malaria episode and compared them with findings from a convalescence sample. We observed transcriptional up-regulation in many pathways, including type I interferon, interferon γ, complement activation, and nitric oxide during malaria infection, which provide benchmarks of mild disease physiology. Transcripts encoding negative regulators of T-cell activation, such as programmed death ligand 1 (PD-L1), programmed death 1 ligand 2 (PD-L2), and the butyrophilin family member butyrophilin-like 2 (BTNL2) were also increased. To support an important functional role for BTNL2 during malaria infection, we studied chimeric mice reconstituted with BTNL2(-/-) or wild-type hematopoietic cells that were inoculated with Plasmodium berghei ANKA, a murine model of cerebral malaria. We found that BTNL2(-/-) chimeric mice had a significant decrease in survival compared with wild-type counterparts. Collectively these data characterize the immune responses associated with mild malaria and uncover a novel role for BTNL2 in the host response to malaria.
Collapse
Affiliation(s)
| | | | - Emil Ivan
- Department of Biomedical Laboratory Sciences, College of Medicine and Health Sciences, University of Rwanda
| | | | | | - Xikui Liu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston
| | - Chen Dong
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston
| | | | | | - Kathryn Anastos
- Medicine, Albert Einstein College of Medicine, Bronx, New York
| | | | - Johanna P Daily
- Departments of Microbiology and Immunology Medicine, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
4
|
Al-Quraishy S, Dkhil MA, Delic D, Abdel-Baki AA, Wunderlich F. Organ-specific testosterone-insensitive response of miRNA expression of C57BL/6 mice to Plasmodium chabaudi malaria. Parasitol Res 2012; 111:1093-101. [PMID: 22562236 DOI: 10.1007/s00436-012-2937-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Increasing evidence critically implicates miRNAs in the pathogenesis of diseases, but little is known in context with infectious diseases. This study investigates as to whether the testosterone-induced persistent susceptibility to blood-stage malaria of Plasmodium chabaudi coincides with changes in miRNA expression of the anti-malaria effectors sites spleen and liver. Female C57BL/6 mice were treated with vehicle or testosterone (T) for 3 weeks. Then, T treatment was discontinued for 12 weeks before challenge with 10(6) P. chabaudi-parasitized erythrocytes. The miRNA expression was examined after 12 weeks of T withdrawal and during infections at peak parasitemia on day 8 p.i. using miRXplore™ microarray technology. P. chabaudi infections induce an organ-specific response of miRNA expression. We can identify 25 miRNA species to be downregulated by more than 2-fold in the spleen and 169 miRNA species in the liver. Among these 194 miRNA species, there are 12 common miRNA species that are downregulated by 0.48-0.14-fold in both spleen and liver, which are miR-194, miR-192, miR-193A-3P, miR-145, miR-16, miR-99A, miR-99B, miR-15A, miR-152, let-7G, let-7B, and miR-455-3P. Only in the liver, there is an upregulation of the miR-142-5p by 2.5-fold and miR-342-3p by 5.1-fold. After 12 weeks of T withdrawal, the spleen exhibits only the miR-200A that is upregulated by 2.7-fold. In the liver, miR-376B, miR-493*, and miR-188-3P are upregulated by 2.4-fold, 2.2-fold, and 2.1-fold, respectively, and miR-347, miR-200A, and miR-200B are downregulated by approximately 0.4-fold. Upon infection, however, these changes are not sustained, i.e., the miRNA expressions of both spleen and liver of T-pretreated mice exhibit the same response to P. chabaudi malaria as that of vehicle-treated control mice. Our data suggest (1) that the P. chabaudi-induced downregulation of miRNA expression in spleen and liver is required to allow the upregulation of their numerous target genes in response to infection, and (2) that the T-induced persistent susceptibility to P. chabaudi does not affect the responsiveness of miRNA expression in spleen and liver to blood-stage malaria.
Collapse
Affiliation(s)
- Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
5
|
Krücken J, Delić D, Pauen H, Wojtalla A, El-Khadragy M, Dkhil MA, Mossmann H, Wunderlich F. Augmented particle trapping and attenuated inflammation in the liver by protective vaccination against Plasmodium chabaudi malaria. Malar J 2009; 8:54. [PMID: 19341445 PMCID: PMC2679048 DOI: 10.1186/1475-2875-8-54] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 04/02/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND To date all efforts to develop a malaria vaccine have failed, reflecting the still fragmentary knowledge about protective mechanisms against malaria. In order to evaluate if vaccination changes responses of the anti-malaria effectors spleen and liver to blood stage malaria, BALB/c mice succumbing to infection with Plasmodium chabaudi were compared to those surviving after vaccination. METHODS Mice were vaccinated with host cell plasma membranes isolated from P. chabaudi-infected erythrocytes. Hepatic and splenic capacity to trap particulate material was determined after injection of fluorescent polystyrol beads. Hepatic gene expression was measured using real-time RT-PCR and Northern blotting. RESULTS Survival of BALB/c mice was raised from 0% to 80% and peak parasitaemia was decreased by about 30% by vaccination. Vaccination boosted particle trapping capacity of the liver during crisis when splenic trapping is minimal due to spleen 'closing'. It also attenuated malaria-induced inflammation, thus diminishing severe damages and hence liver failure. Vaccination increased hepatic IFN-gamma production but mitigated acute phase response. Vaccination has a complex influence on infection-induced changes in expression of hepatic nuclear receptors (CAR, FXR, RXR, and PXR) and of the metabolic enzymes Sult2a and Cyp7a1. Although vaccination decreased CAR mRNA levels and prevented Cyp7a1 suppression by the CAR ligand 1,2-bis [2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) on day 8 p.i., Sult2a-induction by TCPOBOP was restored. CONCLUSION These data support the view that the liver is an essential effector site for a vaccine against blood stage malaria: vaccination attenuates malaria-induced inflammation thus improving hepatic metabolic activity and particle trapping activity of the liver.
Collapse
Affiliation(s)
- Jürgen Krücken
- Institute for Parasitology, University of Veterinary Medicine Foundation, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Shevchuk NA, Radoja S. Possible stimulation of anti-tumor immunity using repeated cold stress: a hypothesis. Infect Agent Cancer 2007; 2:20. [PMID: 17999770 PMCID: PMC2211456 DOI: 10.1186/1750-9378-2-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 11/13/2007] [Indexed: 12/21/2022] Open
Abstract
Background The phenomenon of hormesis, whereby small amounts of seemingly harmful or stressful agents can be beneficial for the health and lifespan of laboratory animals has been reported in literature. In particular, there is accumulating evidence that daily brief cold stress can increase both numbers and activity of peripheral cytotoxic T lymphocytes and natural killer cells, the major effectors of adaptive and innate tumor immunity, respectively. This type of regimen (for 8 days) has been shown to improve survival of mice infected with intracellular parasite Toxoplasma gondii, which would also be consistent with enhanced cell-mediated immunity. Presentation of the hypothesis This paper hypothesizes that brief cold-water stress repeated daily over many months could enhance anti-tumor immunity and improve survival rate of a non-lymphoid cancer. The possible mechanism of the non-specific stimulation of cellular immunity by repeated cold stress appears to involve transient activation of the sympathetic nervous system, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as described in more detail in the text. Daily moderate cold hydrotherapy is known to reduce pain and does not appear to have noticeable adverse effects on normal test subjects, although some studies have shown that it can cause transient arrhythmias in patients with heart problems and can also inhibit humoral immunity. Sudden immersion in ice-cold water can cause transient pulmonary edema and increase permeability of the blood-brain barrier, thereby increasing mortality of neurovirulent infections. Testing the hypothesis The proposed procedure is an adapted cold swim (5–7 minutes at 20 degrees Celsius, includes gradual adaptation) to be tested on a mouse tumor model. Mortality, tumor size, and measurements of cellular immunity (numbers and activity of peripheral CD8+ T lymphocytes and natural killer cells) of the cold-exposed group would be compared to those of control groups (warm swim and no treatment). Cold-water stress would be administered twice a day for the duration of several months. Implications of the hypothesis If the hypothesis is supported by empirical studies and the method is shown to be safe, this could lead to the development of an adjunctive immunotherapy for some (non-lymphoid) cancers, including those caused by viral infections.
Collapse
Affiliation(s)
- Nikolai A Shevchuk
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA.
| | | |
Collapse
|
7
|
Krücken J, Mehnert LI, Dkhil MA, El-Khadragy M, Benten WPM, Mossmann H, Wunderlich F. Massive destruction of malaria-parasitized red blood cells despite spleen closure. Infect Immun 2005; 73:6390-8. [PMID: 16177310 PMCID: PMC1230986 DOI: 10.1128/iai.73.10.6390-6398.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is currently accepted that malaria-parasitized red blood cells (pRBC) are eliminated, like senescent erythrocytes, phagocytically by macrophages in the red pulp of the spleen. Here, however, we show that self-healing Plasmodium chabaudi malaria activates spleen closure in C57BL/6 mice. Confocal laser scanning microscopy revealed that spleen closing was manifested by elimination of entry into the red pulp of 3-microm polystyrol particles, pRBC, and nonparasitized red blood cells but not of bovine serum albumin. This spleen closure did not reflect a reduction in the number of phagocytic cells, as shown by flow cytometry, whereas marginal zone macrophages (MZM) were lost and red pulp macrophages entered the white pulp. Splenic trapping of pBRC was strongly reduced in the absence of MZM and marginal metallophilic macrophages (MMM), as it is in noninfected mice with a disrupted lymphotoxin beta receptor (LTbetaR(-/-)), and it was still significantly reduced when the number of MZM and MMM was diminished, as in tumor necrosis factor alpha-deficient (TNF-alpha(-/-)) mice. Moreover, mice deficient in TNF-alpha, tumor necrosis factor receptor I (TNFRI(-/-)), and LTbetaR exhibited progressive impairment in malaria-induced spleen closing. Treatment of C57BL/6 mice with TNF-alpha induced loss of MZM and spleen closing by about 20%. Our data indicate that TNF/TNFRI signaling is involved in regulating malaria-induced spleen closure, which is maximal during crisis, when parasitemia declines more than 100-fold. Consequently, the vast majority of pRBC cannot be destroyed by the spleen during crisis, suggesting that the known sophisticated sequestration system of Plasmodium parasites did not evolve to avoid splenic clearance.
Collapse
Affiliation(s)
- Jürgen Krücken
- Division of Molecular Parasitology and Centre for Biological and Medical Research, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Krücken J, Braun JV, Dkhil MA, Grunwald A, Wunderlich F. Deletion of LTbetaR augments male susceptibility to Plasmodium chabaudi. Parasite Immunol 2005; 27:205-12. [PMID: 16048639 DOI: 10.1111/j.1365-3024.2005.00763.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SUMMARY Disruption of the lymphotoxin beta receptor (LTbetaR) gene has been shown to result in enhanced resistance of female mice to blood-stage Plasmodium chabaudi malaria. Here, we investigate the effect of LTbetaR deletion on host defence of males. In contrast to females, male LTbetaR(-/-) mice do not exhibit any increase in resistance. Conversely, they are even more susceptible than wild-type C57BL/6 mice, which becomes evident after lowering circulating levels of testosterone by castration, which makes C57BL/6 males resistant, whereas LTbetaR(-/-) remain susceptible. Gene-expression analysis using cDNA arrays revealed no differences in immunological responses in spleen of malaria-resistant female and malaria-susceptible castrated male LTbetaR(-/-) mice. In the liver, however, expression levels of plasminogen activator inhibitor PAI1, chemokine CXCL10, dual specificity phosphatase DUSP1, and hydroxysteroid-specific sulfotransferases Sult2a1/2 were decreased 6- to 85-fold in susceptible castrated male LTbetaR(-/-) mice in comparison to resistant female LTbetaR(-/-) mice at maximal parasitaemia, as evidenced by Northern blot analyses. The present data support our previous view that the liver is involved in the combat against malarial blood stages and that down-regulation of the genes DUSP1 and Sult2a1/2 signals dysregulation of protective liver responses, thus possibly contributing to male susceptibility of LTbetaR(-/-) mice.
Collapse
Affiliation(s)
- J Krücken
- Division of Molecular Parasitology and Biological and Medical Research Centre, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
9
|
Garcia A, Dieng AB, Rouget F, Migot-Nabias F, Le Hesran JY, Gaye O. Role of environment and behaviour in familial resemblances of Plasmodium falciparum infection in a population of Senegalese children. Microbes Infect 2005; 6:68-75. [PMID: 14738895 DOI: 10.1016/j.micinf.2003.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Despite the importance of both environment and behaviour in vector-borne disease epidemiology, these factors are unable to explain alone the distribution of cases in a community and the diversity of clinical presentations, suggesting the involvement of more individual factors such as age, sex, immunity or genetic background. The existence of a genetic factor involved in the susceptibility/resistance to a disease can be suspected by the demonstration of a familial aggregation of cases or by the stability over time of infectious status (infected vs. uninfected; mean level of parasite density (PD), etc.). These familial resemblances can be explained by shared environment, family habits and behaviours (use of bed nets, field activities, etc.). In this preliminary study, we essentially investigated the influence of environment and behaviour on Plasmodium falciparum infection levels and reported the effects of these factors on the existence of familial resemblances. Our results are consistent with the existence of familial resemblances for both the level of P. falciparum infection and the qualitative infection status (QIS) (infected vs. uninfected) that seem to be more related to shared behaviour and environment than to a genetic factor. However, although familial resemblances decreased significantly when adjusted for shared behaviour and environment, this decrease is around 12% for the variability between families, against only 4.5% of that within families. Furthermore, we also demonstrated that the QIS is remarkably stable over time. Both these results are consistent with the hypothesis of the existence of a strong and complex individual factor involved in the control of infection status.
Collapse
Affiliation(s)
- André Garcia
- Institut de Recherche pour le Développement (IRD), Unité de Recherche 010: Santé de la mère et de l'enfant en milieu tropical, BP 1386, Dakar, Senegal.
| | | | | | | | | | | |
Collapse
|
10
|
Wunderlich F, Dkhil MA, Mehnert LI, Braun JV, El-Khadragy M, Borsch E, Hermsen D, Benten WPM, Pfeffer K, Mossmann H, Krücken J. Testosterone responsiveness of spleen and liver in female lymphotoxin β receptor-deficient mice resistant to blood-stage malaria. Microbes Infect 2005; 7:399-409. [PMID: 15788153 DOI: 10.1016/j.micinf.2004.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 11/18/2004] [Accepted: 11/18/2004] [Indexed: 11/23/2022]
Abstract
Disrupted signaling through lymphotoxin beta receptor (LTbetaR) results in severe defects of the spleen and even loss of all other secondary lymphoid tissues, making mice susceptible to diverse infectious agents. Surprisingly, however, we find that female LTbetaR-deficient mice are even more resistant to blood stages of Plasmodium chabaudi malaria than wild-type C57BL/6 mice. Higher resistance of LTbetaR-deficient mice correlates with an earlier onset of reticulocytosis, and the period of anemia is shorter. After surviving fulminant parasitemias of about 35%, mice develop long-lasting protective immunity against homologous rechallenge, with both spleen and liver acting as anti-malaria effectors. Testosterone suppresses resistance, i.e. all mice succumb to infections during or shortly after peak parasitemia. At peak parasitemia, testosterone does not essentially affect cellularity and apoptosis in the spleen, but aggravates liver pathology in terms of increased cell swelling, numbers of apoptotic and binucleated cells and reduced serum alkaline phosphatase levels, and conversely, reduces inflammatory lymphocytic infiltrates in the liver. In the spleen, hybridization of cDNA arrays identified only a few testosterone-induced changes in gene expression, in particular upregulation of INFgamma and IFN-regulated genes. By contrast, a much larger number of testosterone-affectable genes was observed in the liver, including genes involved in regulation of the extracellular matrix, in chemokine and cytokine signaling, and in cell cycle control. Collectively, our data suggest that testosterone dysregulates the inflammatory response in spleen and liver during their differentiation to anti-malaria effectors in malaria-resistant female LTbetaR-deficient mice, thus contributing to the testosterone-induced lethal outcome of malaria.
Collapse
Affiliation(s)
- Frank Wunderlich
- Division of Molecular Parasitology and Biological and Medical Research Center, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Krücken J, Dkhil MA, Braun JV, Schroetel RMU, El-Khadragy M, Carmeliet P, Mossmann H, Wunderlich F. Testosterone suppresses protective responses of the liver to blood-stage malaria. Infect Immun 2005; 73:436-43. [PMID: 15618182 PMCID: PMC538982 DOI: 10.1128/iai.73.1.436-443.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Testosterone induces a lethal outcome in otherwise self-healing blood-stage malaria caused by Plasmodium chabaudi. Here, we examine possible testosterone effects on the antimalaria effectors spleen and liver in female C57BL/6 mice. Self-healing malaria activates gating mechanisms in the spleen and liver that lead to a dramatic reduction in trapping activity, as measured by quantifying the uptake of 3-mum-diameter fluorescent polystyrol particles. However, testosterone delays malaria-induced closing of the liver, but not the spleen. Coincidently, testosterone causes an approximately 3- to 28-fold depression of the mRNA levels of nine malaria-responsive genes, out of 299 genes tested, only in the liver and not in the spleen, as shown by cDNA arrays and Northern blotting. Among these are the genes encoding plasminogen activator inhibitor (PAI1) and hydroxysteroid sulfotransferase (STA2). STA2, which detoxifies bile acids, is suppressed 10-fold by malaria and an additional 28-fold by testosterone, suggesting a severe perturbation of bile acid metabolism. PAI1 is protective against malaria, since disruption of the PAI1 gene results in partial loss of the ability to control the course of P. chabaudi infections. Collectively, our data indicate that the liver rather than the spleen is a major target organ for testosterone-mediated suppression of resistance against blood-stage malaria.
Collapse
Affiliation(s)
- Jürgen Krücken
- Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hernandez-Valladares M, Naessens J, Gibson JP, Musoke AJ, Nagda S, Rihet P, Ole-MoiYoi OK, Iraqi FA. Confirmation and dissection of QTL controlling resistance to malaria in mice. Mamm Genome 2004; 15:390-8. [PMID: 15170228 DOI: 10.1007/s00335-004-3042-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 12/17/2003] [Indexed: 11/25/2022]
Abstract
We developed an F(11) AIL population from an F(1) cross of A/J (susceptible) and C57BL/6J (resistant) mouse strains. One thousand F(11) mice were challenged with P.c. chabaudi 54X, and 340 mice selected from the phenotypic extremes for susceptibility and resistance were genotyped for microsatellite markers on Chromosomes (Chrs) 5, 8, and 17. QTL originally detected in backcross and F(2) populations were confirmed on the three chromosomes within narrower genomic regions, by maximum likelihood and regression analyses. Each of the previously mapped QTL on Chrs 5 and 17 resolved into two linked QTLs. The distal and proximal QTLs on Chrs 5 and 17, respectively, map to the previously reported QTL.
Collapse
|
13
|
Kanda N, Watanabe S. 17Beta-estradiol enhances the production of nerve growth factor in THP-1-derived macrophages or peripheral blood monocyte-derived macrophages. J Invest Dermatol 2003; 121:771-80. [PMID: 14632195 DOI: 10.1046/j.1523-1747.2003.12487.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined in vitro effects of 17beta-estradiol (E2) on nerve growth factor production by macrophages derived from monocytic cell line THP-1-or periphereal blood monocytes. E2 and membrane-impermeable bovine serum albumin-conjugated E2 (E2-BSA) enhanced nerve growth factor secretion and mRNA expression in both types of macrophages E2 enhanced nerve growth factor promotor activity in THP-1-derived macrophages and two activator protein-1 binding sites on the promoter were responsible for the enhancement. E2 and E2-BSA enhanced transcriptional activity and DNA binding of activator protein-1. E2 and E2-BSA shifted the activator protein-1 composition from c-Jun homodimers to c-Fos/c-Jun heterodimers. E2 and E2-BSA transiently induced c-Fos mRNA, which was constitutively undetectable in both types of macrophages. Adenylate cyclase inhibitor SQ22536 suppressed E2-induced nerve growth factor production and c-Fos expression. E2 and E2-BSA increased intracellular cyclic adenosine monophosphate level in both types of macrophages. Antisense oligonucleotide against guanine nucleotide-binding protein-coupled receptor, GPR30 suppressed the E2-induced cyclic adenosine monophosphate signal, c-Fos expression, and nerve growth factor secretion in both types of macrophages. These results suggest that E2 may enhance nerve growth factor production by inducing c-Fos expression via cyclic adenosine monophosphate signal in macrophages. These effects may be mediated via GPR30.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University, School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
14
|
Kanda N, Watanabe S. 17beta-estradiol inhibits the production of interferon-induced protein of 10 kDa by human keratinocytes. J Invest Dermatol 2003; 120:411-9. [PMID: 12603854 DOI: 10.1046/j.1523-1747.2003.12066.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The natural course of psoriasis is often modulated during pregnancy, indicating the regulatory effect of estrogen or progesterone on psoriasis. Interferon-induced protein of 10 kDa chemoattracts T helper 1 cells, and interferon-induced protein of 10 kDa production by keratinocytes is enhanced in psoriatic skin lesions. We examined in vitro effects of sex hormones on the interferon-induced protein of 10 kDa production by human keratinocytes. 17beta-estradiol inhibited interferon-gamma-induced interferon-induced protein of 10 kDa secretion, mRNA expression, and promoter activity. Interferon-stimulated response element on the promoter was responsible for the inhibition by 17beta-estradiol. Interferon-gamma-induced protein of 10 kDa production was also inhibited by anti-estrogens, ICI 182 780 and tamoxifen, and membrane-impermeable bovine serum albumin-conjugated 17beta-estradiol, suggesting the effects via membrane estrogen receptor, whereas 17alpha-estradiol, progesterone, and dihydrotestosterone had no effects. 17beta-estradiol and bovine serum albumin-conjugated 17beta-estradiol suppressed interferon-gamma-induced transcription through the interferon-stimulated response element and signal transducer and activator of transcription 1alpha binding to interferon-stimulated response element. 17beta-estradiol and bovine serum albumin-conjugated 17beta-estradiol suppressed interferon-gamma-induced tyrosine phosphorylation of signal transducer and activator of transcription 1alpha, and Janus tyrosine kinase 1 and 2. 17beta-estradiol-mediated suppression on the interferon-gamma-induced signal transducer and activator of transcription 1alpha activation and interferon-induced protein of 10 kDa synthesis was counteracted by adenylate cyclase inhibitor SQ22536. 17beta-estradiol, bovine serum albumin-conjugated 17beta-estradiol, ICI 182 780, and tamoxifen increased intracellular 3',5'-adenosine cyclic monophosphate level by activating adenylate cyclase in keratinocytes. Fluorescein isothiocyanate-labeled bovine serum albumin-conjugated 17beta-estradiol bound to the surface of keratinocytes, and mRNA for estrogen receptor beta but not for estrogen receptor alpha was detected in keratinocytes. These results suggest that 17beta-estradiol may interact with the membrane receptor on keratinocytes and generate 3',5'-adenosine cyclic monophosphate by activating adenylate cyclase, which may lead to the inhibition of interferon-gamma-induced signal transducer and activator of transcription 1alpha activation and interferon-induced protein of 10 kDa synthesis.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University, School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
15
|
Benten WPM, Becker A, Schmitt-Wrede HP, Wunderlich F. Developmental regulation of intracellular and surface androgen receptors in T cells. Steroids 2002; 67:925-31. [PMID: 12234628 DOI: 10.1016/s0039-128x(02)00055-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increasing information indicates that testosterone actions on cells are mediated not only through the classical intracellular androgen receptor (iAR), but also through membrane androgen receptors (mAR) on cell surfaces. Here, we investigate the expression pattern of mAR and iAR in thymic T cells, which is compared with that of splenic T cells. Thymic T cells are testosterone-sensitive in vivo, i.e. treatment of female C57BL/10 mice with testosterone for 3 weeks decreased the total number of thymic T cells by approximately 90%. The percentage of CD4(-) CD8(-) T cells increased, whereas that of the subsequent CD4(+) CD8(+) T cells was diminished. Flow cytometry and confocal laser scanning microscopy (CLSM) with different anti-iAR antibodies localized iAR predominantly in the cytoplasm, but not on the surface of thymic T cells. The iAR are functionally active since the iAR are induced by testosterone to translocate from cytoplasm to nucleus, and they bind the testosterone analogue 3H-R1881 with high affinity (K(d) approximately 2.2 nM) and saturable capacity (approximately 10,000 binding sites per cell) as determined by Scatchard analysis. By contrast, the impeded ligand testosterone-BSA-FITC (T-BSA-FITC) did not bind to the surface of thymic T cells. In accordance, testosterone was unable to induce any rapid rise in the intracellular free Ca(2+) concentration of Fura-2 loaded thymocytes. This indicates that thymic T cells do not express any significant amounts of mAR. Conversely, splenic T cells express functionally active mAR, whereas their expressed iAR are not functional in the genomic pathway. Our results support the view of a delicately balanced developmental regulation of iAR and mAR in T cells.
Collapse
Affiliation(s)
- W Peter M Benten
- Division of Molecular Parasitology and Centre for Biological-Medical Research, Heinrich-Heine-University, Universitaetsstr 1, 40225 Duesseldorf, Germany
| | | | | | | |
Collapse
|
16
|
Fortin A, Stevenson MM, Gros P. Complex genetic control of susceptibility to malaria in mice. Genes Immun 2002; 3:177-86. [PMID: 12058252 DOI: 10.1038/sj.gene.6363841] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2001] [Revised: 11/26/2001] [Accepted: 11/26/2001] [Indexed: 01/31/2023]
Abstract
Malaria is a major infectious disease worldwide, with over 1 million deaths in African children every year. The molecular pathways of pathogenesis of the Plasmodium parasite and the host mechanisms of defense against this infection remain poorly understood. Epidemiological studies, together with linkage analyses in endemic areas have clearly pointed at a genetic component of innate susceptibility and severity of disease. In humans, this genetic trait is complex, and has been studied in a mouse experimental model over the past few years. Inbred strains of mice show different degrees of susceptibility to infection with Plasmodium chabaudi, and the genetic component of these inter-strain differences has been studied in standard informative backcross and F2 populations, as well as in recombinant inbred strains and more recently, in recombinant congenic strains. These studies have shown that genetic susceptibility to malaria is also complex in mice, and have led to the mapping of major susceptibility Char (Chabaudi resistance) loci, located on chromosomes 9 (Char1), 8 (Char2), 17 (Char3) and 3 (Char4).
Collapse
Affiliation(s)
- A Fortin
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | | |
Collapse
|
17
|
Benten WPM, Stephan C, Wunderlich F. B cells express intracellular but not surface receptors for testosterone and estradiol. Steroids 2002; 67:647-54. [PMID: 11996938 DOI: 10.1016/s0039-128x(02)00013-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increasing evidence indicates the existence of membrane receptors for testosterone (mAR) and estradiol (mER) on the surface of cells, besides the classic intracellular androgen receptor (iAR) and estrogen receptors (iER). Here, we investigate the occurrence of sex steroid receptors in B cells isolated from the spleen of C57BL/10 mice using magnetic cell sorting. RT-PCR reveals the presence of iAR, iERalpha, but not iERbeta. Using different anti-iAR and anti-iER antibodies flow cytometry and confocal laser scanning microscopy (CLSM) localize iAR and iERalpha in the cytoplasm, which are translocatable to the nucleus upon incubation with testosterone (T) and 17beta-estradiol (E(2)). The surface of B cells is devoid of iAR and iERalpha and does not bind any T and E(2) conjugated to BSA-FITC as revealed by flow cytometry and CLSM. In accordance, T and E(2) are not able to induce any rapid rise in in the intracellular free Ca2+ concentration of Fura-2 loaded B cells. Our data indicate that B cells express neither mAR nor mER on their surfaces, in contrast to other major cells of the immune system such as T cells and macrophages.
Collapse
Affiliation(s)
- W Peter M Benten
- Division of Molecular Parasitology and Centre for Biological-Medical Research, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | | | | |
Collapse
|
18
|
Wunderlich F, Benten WPM, Lieberherr M, Guo Z, Stamm O, Wrehlke C, Sekeris CE, Mossmann H. Testosterone signaling in T cells and macrophages. Steroids 2002; 67:535-8. [PMID: 11960632 DOI: 10.1016/s0039-128x(01)00175-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review summarizes data about non-genomic actions of testosterone on murine malaria, T cells and macrophages produced by our group during the last 15 years. In C57BL/10 mice, testosterone induces a lethal outcome of blood stage infections with Plasmodium chabaudi which normally takes a self-healing course controlled by genes of the H-2 complex and the non-H-2 background. This suppressive effect of testosterone is mediated neither via the classic intracellular androgen receptor (AR) response nor, after conversion of testosterone to estradiol, via the estrogen receptor. Testosterone acts non-genomically, i.e. through surface receptors, on murine T cells and macrophages, which becomes evident as a rapid rise in the intracellular free Ca(2+) concentration ([Ca(2+)](i)). In T cells, this rise reflects predominantly influx of extracellular Ca(2+), while it is predominantly due to release of Ca(2+) from intracellular Ca(2+)-stores in macrophages. The testosterone-induced rise in [Ca(2+)](i) of both macrophages and T cells is not inhibited by the AR-blocker cyproterone, and it is also inducible by the plasma membrane impermeable ligand testosterone-BSA. The surface receptors initiate a transcription-independent signaling pathway of testosterone. Currently, we are trying to isolate testosterone surface receptors and to investigate a possible cross-talk of non-genomic testosterone signaling with other genotropic signaling pathways.
Collapse
Affiliation(s)
- Frank Wunderlich
- Division of Molecular Parasitology, Heinrich-Heine-University, 40225 Duesseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fortin A, Cardon LR, Tam M, Skamene E, Stevenson MM, Gros P. Identification of a new malaria susceptibility locus (Char4) in recombinant congenic strains of mice. Proc Natl Acad Sci U S A 2001; 98:10793-8. [PMID: 11535821 PMCID: PMC58554 DOI: 10.1073/pnas.191288998] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic component of susceptibility to malaria is complex, both in humans and in the mouse model of infection. Two murine loci on chromosomes 8 (Pchr/Char2) and 9 (Char1) have previously been mapped in F(2) crosses, and play an important role in regulating blood parasitemia and survival to infection with Plasmodium chabaudi. These loci explain only part of the interstrain phenotypic variance, and their penetrance and expressivity vary in different inbred strains. Novel loci regulating response to P. chabaudi infection were investigated by using an alternative strategy based on a newly derived set of AcB/BcA recombinant congenic strains bred from malaria-susceptible A/J (A) and resistant C57BL/6J (B6). One of the AcB strains, AcB55, is shown to be highly resistant to infection despite 83% susceptible A genomic composition, including susceptibility alleles at Char1 and Pchr/Char2. Early onset of parasite clearance in AcB55 is associated with lower peak parasitemia and absence of mortality. Linkage analysis in an informative (AcB55 x A)F(2) population, using peak parasitemia as a quantitative trait, located a new B6-derived resistance locus on chromosome 3 (lod score = 6.57) that we designate Char4. A second, suggestive linkage on chromosome 10 (lod score = 2.53) shows additive effect with Char4 on peak parasitemia. Char4 maps to a small congenic B6 fragment in AcB55 that should facilitate the search for candidate genes. Our findings provide an entry point for parallel association studies in humans between the syntenic 4q21-4q25 region and susceptibility to disease in endemic areas of malaria.
Collapse
Affiliation(s)
- A Fortin
- Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Numerous epidemiological and clinical studies have noted differences in the incidence and severity of parasitic diseases between males and females. Although in some instances this may be due to gender-associated differences in behavior, there is overwhelming evidence that sex-associated hormones can also modulate immune responses and consequently directly influence the outcome of parasitic infection. Animal models of disease can often recreate the gender-dependent differences observed in humans, and the role of sex-associated hormones can be confirmed by experimentally altering their levels. Under normal circumstances, levels of sex hormones not only differ between males and females but vary according to age. Furthermore, not only are females of reproductive age subject to the regular hormonal cycles which control ovulation, they are also exposed to dramatically altered levels during pregnancy. It is thus not surprising that the severity of many diseases, including those caused by parasites, has been shown to be affected by one or more of these circumstances. In addition, infection with many pathogens has been shown to have an adverse influence on pregnancy. In this article we review the impact of sex-associated hormones on the immune system and the development and maintenance of immunity to the intracellular protozoan parasites Toxoplasma gondii, Plasmodium spp., and Leishmania spp.
Collapse
Affiliation(s)
- C W Roberts
- Department of Immunology, Strathclyde Institute of Biomedical Sciences, University of Strathclyde, 27 Taylor St., Glasgow G4 ONR, Scotland, United Kingdom.
| | | | | |
Collapse
|
21
|
Zhang Z, Chen L, Saito S, Kanagawa O, Sendo F. Possible modulation by male sex hormone of Th1/Th2 function in protection against Plasmodium chabaudi chabaudi AS infection in mice. Exp Parasitol 2000; 96:121-9. [PMID: 11162362 DOI: 10.1006/expr.2000.4572] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zhang, Z.-H., Chen, L., Saito, S., Kanagawa, O., and Sendo, F. 2000. Possible modulation by male sex hormone of Th1/Th2 function in protection against Plasmodium chabaudi chabaudi AS infection in mice. Experimental Parasitology 96, 121-129. We examined the mortality, survival time, and parasitemia in interferon gamma receptor (IFN-gamma R)-deficient (IFN-gamma R(-/-)) and IL-4-deficient (IL-4(-/-)) mice infected with Plasmodium chabaudi AS and compared them with the wild type counterparts (IFN-gamma R(+/+) and IL-4(+/+), respectively). (1) Mortality was higher and survival time was shorter in males of both IFN-gamma R(-/-) and IL-4(-/-) mice infected with P. chabaudi AS, compared with their wild type counterparts, whereas such a difference was not observed in female mice. (2) These differences between males and females were not observed when male mice were castrated; however, female castration had no effect on the data. (3) The rate of parasitemia in both male and female IFN-gamma R(-/-) and IL-4(-/-) mice was higher at some points during the observation than in the wild type counterparts. (4) These results on susceptibility vs resistance to P. chabaudi AS infection can be explained partially by the levels of expression of Th1/Th2 cytokine and chemokine mRNAs in the spleen cells of the infected mice. These results suggest that male sex hormones modulate the function of Th1/Th2 cells and that these T cells counteract the activity of these hormones in protection against P. chabaudi AS infection in mice.
Collapse
Affiliation(s)
- Z Zhang
- Department of Immunology and Parasitology, Yamagata University School of Medicine, 2-2-2, Iida-Nishi, Yamagata 990-9585, Japan
| | | | | | | | | |
Collapse
|
22
|
Su Z, Stevenson MM. Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infect Immun 2000; 68:4399-406. [PMID: 10899836 PMCID: PMC98333 DOI: 10.1128/iai.68.8.4399-4406.2000] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of endogenous gamma interferon (IFN-gamma) in protective immunity against blood-stage Plasmodium chabaudi AS malaria was studied using IFN-gamma gene knockout (GKO) and wild-type (WT) C57BL/6 mice. Following infection with 10(6) parasitized erythrocytes, GKO mice developed significantly higher parasitemia during acute infection than WT mice and had severe mortality. In infected GKO mice, production of interleukin 12 (IL-12) p70 and tumor necrosis factor alpha in vivo and IL-12 p70 in vitro by splenic macrophages was significantly reduced compared to that in WT mice and the enhanced nitric oxide (NO) production observed in infected WT mice was completely absent. WT and GKO mice had comparable numbers of total nucleated spleen cells and B220(+) and Mac-1(+) spleen cells both before and after infection. Infected WT mice, however, had significantly more F4/80(+), NK1.1(+), and F4/80(+)Ia(+) spleen cells than infected GKO mice; male WT had more CD3(+) cells than male GKO mice. In comparison with those from WT mice, splenocytes from infected GKO mice had significantly higher proliferation in vitro in response to parasite antigen or concanavalin A stimulation and produced significantly higher levels of IL-10 in response to parasite antigen. Infected WT mice produced more parasite-specific immunoglobulin M (IgM), IgG2a, and IgG3 and less IgG1 than GKO mice. Significant gender differences in both GKO and WT mice in peak parasitemia levels, mortality, phenotypes of spleen cells, and proliferation of and cytokine production by splenocytes in vitro were apparent during infection. These results thus provide unequivocal evidence for the central role of endogenous IFN-gamma in the development of protective immunity against blood-stage P. chabaudi AS.
Collapse
Affiliation(s)
- Z Su
- Centre for the Study of Host Resistance, Montreal General Hospital Research Institute and McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
23
|
Benten WP, Lieberherr M, Stamm O, Wrehlke C, Guo Z, Wunderlich F. Testosterone signaling through internalizable surface receptors in androgen receptor-free macrophages. Mol Biol Cell 1999; 10:3113-23. [PMID: 10512854 PMCID: PMC25566 DOI: 10.1091/mbc.10.10.3113] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Testosterone acts on cells through intracellular transcription-regulating androgen receptors (ARs). Here, we show that mouse IC-21 macrophages lack the classical AR yet exhibit specific nongenomic responses to testosterone. These manifest themselves as testosterone-induced rapid increase in intracellular free [Ca(2+)], which is due to release of Ca(2+) from intracellular Ca(2+) stores. This Ca(2+) mobilization is also inducible by plasma membrane-impermeable testosterone-BSA. It is not affected by the AR blockers cyproterone and flutamide, whereas it is completely inhibited by the phospholipase C inhibitor U-73122 and pertussis toxin. Binding sites for testosterone are detectable on the surface of intact IC-21 cells, which become selectively internalized independent on caveolae and clathrin-coated vesicles upon agonist stimulation. Internalization is dependent on temperature, ATP, cytoskeletal elements, phospholipase C, and G-proteins. Collectively, our data provide evidence for the existence of G-protein-coupled, agonist-sequestrable receptors for testosterone in plasma membranes, which initiate a transcription-independent signaling pathway of testosterone.
Collapse
Affiliation(s)
- W P Benten
- Division of Molecular Parasitology and Centre of Biological-Medical Research, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Benten WP, Lieberherr M, Giese G, Wrehlke C, Stamm O, Sekeris CE, Mossmann H, Wunderlich F. Functional testosterone receptors in plasma membranes of T cells. FASEB J 1999; 13:123-33. [PMID: 9872937 DOI: 10.1096/fasebj.13.1.123] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T cells are considered to be unresponsive to testosterone due to the absence of androgen receptors (AR). Here, we demonstrate the testosterone responsiveness of murine splenic T cells in vitro as well as the presence of unconventional cell surface receptors for testosterone and classical intracellular AR. Binding sites for testosterone on the surface of both CD4(+) and CD8(+) subsets of T cells are directly revealed with the impeded ligand testosterone-BSA-FITC by confocal laser scanning microscopy (CLSM) and flow cytometry, respectively. Binding of the plasma membrane impermeable testosterone-BSA conjugate induces a rapid rise (<5 s) in [Ca2+]i of Fura-2-loaded T cells. This rise reflects influx of extracellular Ca2+ through non-voltage-gated and Ni2+-blockable Ca2+ channels of the plasma membrane. The testosterone-BSA-induced Ca2+ import is not affected by cyproterone, a blocker of the AR. In addition, AR are not detectable on the surface of intact T cells when using anti-AR antibodies directed against the amino and carboxy terminus of the AR, although T cells contain AR, as revealed by reverse transcription-polymerase chain reactions and Western blotting. AR can be visualized with the anti-AR antibodies in the cytoplasm of permeabilized T cells by using CLSM, though AR are not detectable in cytosol fractions when using the charcoal binding assay with 3H-R1881 as ligand. Cytoplasmic AR do not translocate to the nucleus of T cells in the presence of testosterone, in contrast to cytoplasmic AR in human cancer LNCaP cells. These findings suggest that the classical AR present in splenic T cells are not active in the genomic pathway. By contrast, the cell surface receptors for testosterone are in a functionally active state, enabling T cells a nongenomic response to testosterone.
Collapse
Affiliation(s)
- W P Benten
- Division of Molecular Parasitology and Centre of Biological-Medical Research, Heinrich Heine University, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Benten WP, Lieberherr M, Giese G, Wunderlich F. Estradiol binding to cell surface raises cytosolic free calcium in T cells. FEBS Lett 1998; 422:349-53. [PMID: 9498814 DOI: 10.1016/s0014-5793(98)00039-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Fura-2 method is used to examine a possible action of 17beta-estradiol (E2) on [Ca2+]i of splenic T cells isolated from female C57BL/10 mice. E2 concentrations between 10 fM and 10 nM induce a rapid and dose-dependent increase in [Ca2+]i due to Ca2+ influx and release of Ca2+ from intracellular stores. Ca2+ influx is mediated by Ca2+ channels which are completely blockable by Ni2+ and partly by nifedipine. The antiestrogen tamoxifen does not inhibit the E2-induced rise in [Ca2+]i. Ca2+ influx and Ca2+ release from intracellular stores is also inducible by plasma membrane impermeable E2 conjugated to BSA. E2-BSA-FITC binds to the surface of T cells of both the CD4+ and CD8+ subset. Our data suggest a novel E2-signalling pathway in T cells which is not mediated through the classical nuclear estrogen receptor response but rather through putative plasma membrane receptors for E2.
Collapse
Affiliation(s)
- W P Benten
- Division of Molecular Parasitology and Center for Biological and Medical Research, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
26
|
Wrehlke C, Schmitt-Wrede HP, Qiao Z, Wunderlich F. Enhanced expression in spleen macrophages of the mouse homolog to the human putative tumor suppressor gene ZFM1. DNA Cell Biol 1997; 16:761-7. [PMID: 9212169 DOI: 10.1089/dna.1997.16.761] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have characterized the cDNA of MZFM, the mouse homolog to the novel human putative tumor suppressor gene ZFM1. The total length of the cDNA is 2,637 nucleotides with an open reading frame for a protein of 548 amino acids containing 4.7% methionine and 17.2% proline. The predicted molecular mass of 59 kD fits the 62-kD band experimentally determined by NaDodSO4-PAGE from in vitro translation products of in vitro-transcribed MZFM cDNA. The MZFM cDNA best matches to that ZFM1-isoform without the so-called 0.25-kb E-domain and to the L49345 cDNA recently identified in a human leukemia cell line. Northern analysis reveals expression of MZFM only in spleen macrophages. Reverse transcription polymerase chain reaction (RT-PCR) in combination with Southern analysis also detects a low basal expression in splenic T cells and B cells, as well as in other tissues such as heart, kidney, brain, liver, testis, bone marrow, adrenal gland, lymph nodes, pancreas, and thymus. In splenic macrophages, MZFM mRNA is alternatively spliced yielding a 3.6-kb transcript with E-domain, a 3.0-kb transcript without E-domain, and a 2.7-kb transcript with E-domain. The predicted MZFM protein contains diverse functional domains, i.e., a nuclear localization signal, a metal binding motif, a glutamine/proline stretch, proline-clusters, a CGA-motif, and a QUA1-KH-QUA2 region, thus indicating multiple functions of MZFM. Presumably, MZFM is a new member of those proteins combining features of signal transduction and RNA activation (STAR-proteins). The different MZFM-isoforms may be part of a macrophage-inherent program of transduction of environmental signals into different activational states of macrophages.
Collapse
Affiliation(s)
- C Wrehlke
- Division of Molecular Parasitology and Centre for Biological and Medical Research, Heinrich-Heine-University, Duesseldorf, Germany
| | | | | | | |
Collapse
|
27
|
Benten WP, Lieberherr M, Sekeris CE, Wunderlich F. Testosterone induces Ca2+ influx via non-genomic surface receptors in activated T cells. FEBS Lett 1997; 407:211-4. [PMID: 9166901 DOI: 10.1016/s0014-5793(97)00346-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using the Fura-2 method we investigated a possible direct action of testosterone on cytosolic free calcium of splenic T cells isolated from female C57BL/10 mice. Testosterone at physiological concentrations of 1-10 nM induces an increase in [Ca2+]i within seconds, which is due to Ca2+ influx and not to Ca2+ release from intracellular stores. In contrast, estradiol induces both Ca2+ influx and Ca2+ release. The testosterone-induced Ca2+ influx is mediated by Ni2+-blockable channels and is not inhibited by cyproterone, a blocker of the classical androgen receptor. Ca2+ influx can also be induced by testosterone conjugated to BSA which is impermeable to the plasma membrane. These data indicate a novel mode of direct action of testosterone on T cells which is not mediated through the classical androgen receptor response, but through unconventional plasma membrane receptors.
Collapse
Affiliation(s)
- W P Benten
- Division of Molecular Parasitology and Centre for Biological and Medical Research, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
28
|
Krücken J, Schmitt-Wrede HP, Markmann-Mulisch U, Wunderlich F. Novel gene expressed in spleen cells mediating acquired testosterone-resistant immunity to Plasmodium chabaudi malaria. Biochem Biophys Res Commun 1997; 230:167-70. [PMID: 9020038 DOI: 10.1006/bbrc.1996.5876] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report the identification of a novel mouse cDNA encoding IAP38, a putative plasma membrane protein of 38 kDa in splenic macrophages, B cells and T cells. The expression of iap38 is induced by blood-stage infections of Plasmodium chabaudi malaria and is testosterone-sensitive in non-immune mice. However, when mice have acquired testosterone-resistant immunity to P. chabaudi, there is an about 40-fold increase in the expression of iap38, which has then largely lost its responsiveness to infection and testosterone. The gene iap38 is suggested to be involved in imparting spleen cells the ability to mediate testosterone-resistant immunity to P. chabaudi malaria.
Collapse
Affiliation(s)
- J Krücken
- Division of Molecular Parasitology and Biological-Medical Research Centre, Heinrich-Heine-University, Duesseldorf, Germany
| | | | | | | |
Collapse
|
29
|
Mossmann H, Benten WP, Galanos C, Freudenberg M, Kühn-Velten WN, Reinauer H, Wunderlich F. Dietary testosterone suppresses protective responsiveness to Plasmodium chabaudi malaria. Life Sci 1997; 60:839-48. [PMID: 9076323 DOI: 10.1016/s0024-3205(97)00012-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study investigates the effect of orally administered testosterone on serum testosterone levels and immune responses including outcome of Plasmodium chabaudi malaria. Female C57BL/10 mice were fed on a diet impregnated with 17 alpha-methyl-testosterone for 3 weeks. This raised the circulating testosterone levels from 0.28 ng/ml to 2.69 ng/ml on the average. In these mice, blood-stage infections of P. chabaudi resulted in a lethal outcome, whereas protective immunity developed in about 80% of mice fed on control diet without testosterone. Dietary 17 alpha-methyl-testosterone reduced the capacity of peritoneal cells to generate reactive oxygen intermediates after stimulation with C3b-coated zymosan and phorbol-myristate-acetate. Also, mice fed on dietary 17 alpha-methyl-testosterone responded to heat-killed Salmonella typhimurium with a higher increase in serum TNF, whereas the induced increase in the production of IL-10 by spleen cells was largely suppressed and no effect was found with respect to the production of IFN-gamma and IL-4. Our data indicate that the method of oral administration of 17 alpha-methyl-testosterone raises circulating testosterone to levels that impair protective immune responses to P. chabaudi malaria.
Collapse
Affiliation(s)
- H Mossmann
- Max-Planck-Institute of Immunobiology, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Landgraf B, Kollaritsch H, Wiedermann G, Wernsdorfer WH. Parasite density of Plasmodium falciparum malaria in Ghanaian schoolchildren: evidence for influence of sex hormones? Trans R Soc Trop Med Hyg 1994; 88:73-4. [PMID: 8154009 DOI: 10.1016/0035-9203(94)90505-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- B Landgraf
- Institute of Specific Prophylaxis and Tropical Medicine, University of Vienna, Austria
| | | | | | | |
Collapse
|
31
|
Benten WP, Wunderlich F, Mossmann H. Plasmodium chabaudi: estradiol suppresses acquiring, but not once-acquired immunity. Exp Parasitol 1992; 75:240-7. [PMID: 1516672 DOI: 10.1016/0014-4894(92)90184-c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study investigates the effect of estradiol (E) on self-healing of Plasmodium chabaudi malaria in mice of the inbred strain C57BL/10. Our data show: (1) Female mice and male castrates are capable of self-healing infections when challenged with 10(6) P. chabaudi-infected erythrocytes. Self-healing is completely suppressed after pretreatment of mice with 12 micrograms E injected sc twice a week for 3 weeks. (2) The suppressive effect of E is prevented by the estrogen receptor blockers tamoxifen and clomiphene. (3) The nonsteroidal E-agonist diethylstilbestrol (DES) also suppresses self-healing. This suppressive DES effect is prevented by tamoxifen. (4) In mice immune to P. chabaudi, neither survival rate nor the course of parasitemia is affected by E, even at 10-fold higher E doses. Our data suggest that the immunosuppressive action of E is a specific genomic effect, i.e., E-induced gene products prevent the development of protective immunity against P. chabaudi.
Collapse
Affiliation(s)
- W P Benten
- Division of Parasitology, Heinrich-Heine-University, Freiburg, Germany
| | | | | |
Collapse
|
32
|
Fiebig S, Schmitt-Wrede HP, Wunderlich F, Stangier J, Schiltz E. Testosterone-induced diminution of two peptides in spleen cells from testosterone-immunosuppressed B10 mice. Mol Cell Endocrinol 1992; 84:R27-30. [PMID: 1639211 DOI: 10.1016/0303-7207(92)90088-n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-performance liquid chromatography (HPLC) is used to detect testosterone (T)-sensitive peptides in spleen cells isolated from female C57BL/10 mice immunosuppressed against Plasmodium chabaudi malaria by T treatment. Two peaks with retention times of about 25 min and 34 min, respectively, were identified to be diminished by about 52% and 47%, respectively, in spleen cells from T-treated mice compared to those from untreated mice. Amino acid sequencing revealed that the 24 min peak consisted of the dipeptide Met-Phe and the 34 min peak contained a degradative fragment of the alpha-chain of hemoglobin. Our data suggest that the immunosuppressive T treatment of B10 mice induces a perturbation of erythrophagocytosis in spleens.
Collapse
Affiliation(s)
- S Fiebig
- Division of Parasitology, Heinrich-Heine-University, Dusseldorf, Germany
| | | | | | | | | |
Collapse
|