1
|
Shende N, Karale A, Deshpande H, Belapurkar H, Gulhane A, Bhagade S, Bore P, Soni D, Marathe P, Patni S, Dhere R, Mallya A. Evaluation of GC-MS for identification and characterization of pneumococcal serotype 24A, 24B, and 24F capsular polysaccharide. Biochem Biophys Res Commun 2024; 729:150356. [PMID: 38986261 DOI: 10.1016/j.bbrc.2024.150356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Analysis of pneumococcal polysaccharides (PnPs) has been an arduous task, especially in similar serotypes. Pneumococci invades the host immune response by modulating capsule structure with small genetic changes making them indistinguishable from similar serotypes by conventional modes of analysis. The new serotype 24F causing invasive pneumococcal-resistant infection is an analytical challenge for its analysis as related serotypes 24A and 24B Ps share a common backbone. The difference in the branched chain which contains arabinitol and ribitol in 24F and 24B respectively are stereoisomers making their identification even more challenging. The composition analysis by GC-MS revealed distinct peaks for arabinitol in 24F and 24A Ps and ribitol in Pn 24B serotype polysaccharide. The mass spectral analysis confirmed their identification along with a heterologous cross-reactivity which confirmed anti-Pn-24F mAb reactive to Pn 24B than Pn 24A. The quantitative analysis of pneumococcal 24A, 24B and 24F using GC-MS showed sensitive analysis over the concentration range 3.125-200 μg/mL with regression coefficient >0.99 making ideal modality for the characterization, identification, and quantitation of pneumococcal 24A, 24B and 24F similar serotypes.
Collapse
Affiliation(s)
- Niraj Shende
- Research and Development Department, Serum Institute of India Pvt Ltd., India
| | - Abhijeet Karale
- Research and Development Department, Serum Institute of India Pvt Ltd., India
| | | | | | - Ashish Gulhane
- Research and Development Department, Serum Institute of India Pvt Ltd., India
| | - Sudhakar Bhagade
- Research and Development Department, Serum Institute of India Pvt Ltd., India
| | - Prashant Bore
- Research and Development Department, Serum Institute of India Pvt Ltd., India
| | - Dipen Soni
- Research and Development Department, Serum Institute of India Pvt Ltd., India
| | - Preeti Marathe
- Research and Development Department, Serum Institute of India Pvt Ltd., India
| | - Sushil Patni
- Research and Development Department, Serum Institute of India Pvt Ltd., India
| | - Rajeev Dhere
- Research and Development Department, Serum Institute of India Pvt Ltd., India
| | - Asha Mallya
- Research and Development Department, Serum Institute of India Pvt Ltd., India.
| |
Collapse
|
2
|
Wang J, Hu L, Zhang Z, Sui C, Zhu X, Wu C, Zhang L, Lv M, Yang W, Zhou D, Shang Z. Mice fatal pneumonia model induced by less-virulent Streptococcus pneumoniae via intratracheal aerosolization. Future Microbiol 2024; 19:1055-1070. [PMID: 38913747 PMCID: PMC11323861 DOI: 10.1080/17460913.2024.2355738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/26/2024] Open
Abstract
Aim: Animal models of fatal pneumonia caused by Streptococcus pneumoniae (Spn) have not been reliably generated using many strains of less virulent serotypes.Materials & methods: Pulmonary infection of a less virulent Spn serotype1 strain in the immunocompetent mice was established via the intratracheal aerosolization (ITA) route. The survival, local and systemic bacterial spread, pathological changes and inflammatory responses of this model were compared with those of mice challenged via the intratracheal instillation, intranasal instillation and intraperitoneal injection routes.Results: ITA and intratracheal instillation both induced fatal pneumonia; however, ITA resulted in better lung bacterial deposition and distribution, pathological homogeneity and delivery efficiency.Conclusion: ITA is an optimal route for developing animal models of severe pulmonary infections.
Collapse
Affiliation(s)
- Jiazhen Wang
- Department of Immunology of Basic Medical College, Guizhou Medical University, Guian New Area, 561113, China
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhijun Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chengyu Sui
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
- Department of Microbiology of Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xiaoyu Zhu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chengxi Wu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lili Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Meng Lv
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhengling Shang
- Department of Immunology of Basic Medical College, Guizhou Medical University, Guian New Area, 561113, China
| |
Collapse
|
3
|
Sekulovic O, Gallagher C, Lee J, Hao L, Zinonos S, Tan CY, Anderson A, Kanevsky I. Evidence of Reduced Virulence and Increased Colonization Among Pneumococcal Isolates of Serotype 3 Clade II Lineage in Mice. J Infect Dis 2024; 230:e182-e188. [PMID: 39052735 PMCID: PMC11272092 DOI: 10.1093/infdis/jiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024] Open
Abstract
Recent phylogenetic profiling of pneumococcal serotype 3 (Pn3) isolates revealed a dynamic interplay among major lineages with the emergence and global spread of a variant termed clade II. The cause of Pn3 clade II dissemination along with epidemiological and clinical ramifications are currently unknown. Here, we sought to explore biological characteristics of dominant Pn3 clades in a mouse model of pneumococcal invasive disease and carriage. Carriage and virulence potential were strain dependent with marked differences among clades. We found that clinical isolates from Pn3 clade II are less virulent and less invasive in mice compared to clade I isolates. We also observed that clade II isolates are carried for longer and at higher bacterial densities in mice compared to clade I isolates. Taken together, our data suggest that the epidemiological success of Pn3 clade II could be related to alterations in the pathogen's ability to cause invasive disease and to establish a robust carriage episode.
Collapse
Affiliation(s)
- Ognjen Sekulovic
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Caitlyn Gallagher
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Jonathan Lee
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Li Hao
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Stavros Zinonos
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Charles Y Tan
- Pfizer Inc, Early Clinical Development, Collegeville, Pennsylvania
| | | | - Isis Kanevsky
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| |
Collapse
|
4
|
Brendel M, Kohler TP, Neufend JV, Puppe A, Gisch N, Hammerschmidt S. Lipoteichoic Acids Are Essential for Pneumococcal Colonization and Membrane Integrity. J Innate Immun 2024; 16:370-384. [PMID: 38901409 PMCID: PMC11324232 DOI: 10.1159/000539934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION The hydrophilic, polymeric chain of the lipoteichoic acid (LTA) of the Gram-positive pathobiont Streptococcus pneumoniae is covalently linked to the glycosylglycerolipid α-d-glucopyranosyl-(1,3)-diacylglycerol by the LTA ligase TacL, leading to its fixation in the cytoplasmic membrane. Pneumococcal LTA, sharing identical repeating units with the wall teichoic acids (WTA), is dispensable for normal growth but required for full virulence in invasive infections. METHODS Mutants deficient in TacL and complemented strains constructed were tested for their growth, resistance against oxidative stress, and susceptibility against antimicrobial peptides. Further, the membrane fluidity of pneumococci, their capability to adhere to lung epithelial cells, and virulence in a Galleria mellonella as well as intranasal mouse infection model were assessed. RESULTS In the present study, we indicate that LTA is already indispensable for pneumococcal adherence to human nasopharyngeal cells and colonization in an intranasal mouse infection model. Mutants deficient for TacL did not show morphological defects. However, our analysis of pneumococcal membranes in different serotypes showed an altered membrane fluidity and surface protein abundance of lipoproteins in mutants deficient for LTA but not WTA. These mutants had a decreased membrane fluidity, exhibited higher amounts of lipoproteins, and showed an increased susceptibility to antimicrobial peptides. In complemented mutant strains, this defect was fully restored. CONCLUSION Taken together, LTA is crucial for colonization and required to effectively protect pneumococci from innate immune defence mechanisms by maintaining the membrane integrity.
Collapse
Affiliation(s)
- Max Brendel
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Thomas P. Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Janine V. Neufend
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Astrid Puppe
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Duke JA, Avci FY. Emerging vaccine strategies against the incessant pneumococcal disease. NPJ Vaccines 2023; 8:122. [PMID: 37591986 PMCID: PMC10435554 DOI: 10.1038/s41541-023-00715-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
The incidence of invasive pneumococcal disease (IPD) caused by infection with the pathogen Streptococcus pneumoniae (Spn) has been on a downward trend for decades due to worldwide vaccination programs. Despite the clinical successes observed, the Center for Disease Control (CDC) reports that the continued global burden of S. pneumoniae will be in the millions each year, with a case-fatality rate hovering around 5%. Thus, it is a top priority to continue developing new Spn vaccination strategies to harness immunological insight and increase the magnitude of protection provided. As emphasized by the World Health Organization (WHO), it is also crucial to broaden the implementation of vaccines that are already obtainable in the clinical setting. This review focuses on the immune mechanisms triggered by existing pneumococcal vaccines and provides an overview of the current and upcoming clinical strategies being employed. We highlight the associated challenges of serotype selectivity and using pneumococcal-derived proteins as alternative vaccine antigens.
Collapse
Affiliation(s)
- Jeremy A Duke
- Sanofi, Suite 300, 2501 Discovery Drive, Orlando, FL, 32826, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Ostermann L, Seeliger B, David S, Flasche C, Maus R, Reinboth MS, Christmann M, Neumann K, Brand K, Seltmann S, Bühling F, Paton JC, Roth J, Vogl T, Viemann D, Welte T, Maus UA. S100A9 is indispensable for survival of pneumococcal pneumonia in mice. PLoS Pathog 2023; 19:e1011493. [PMID: 37467233 DOI: 10.1371/journal.ppat.1011493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/18/2023] [Indexed: 07/21/2023] Open
Abstract
S100A8/A9 has important immunomodulatory roles in antibacterial defense, but its relevance in focal pneumonia caused by Streptococcus pneumoniae (S. pneumoniae) is understudied. We show that S100A9 was significantly increased in BAL fluids of patients with bacterial but not viral pneumonia and correlated with procalcitonin and sequential organ failure assessment scores. Mice deficient in S100A9 exhibited drastically elevated Zn2+ levels in lungs, which led to bacterial outgrowth and significantly reduced survival. In addition, reduced survival of S100A9 KO mice was characterized by excessive release of neutrophil elastase, which resulted in degradation of opsonophagocytically important collectins surfactant proteins A and D. All of these features were attenuated in S. pneumoniae-challenged chimeric WT→S100A9 KO mice. Similarly, therapy of S. pneumoniae-infected S100A9 KO mice with a mutant S100A8/A9 protein showing increased half-life significantly decreased lung bacterial loads and lung injury. Collectively, S100A9 controls central antibacterial immune mechanisms of the lung with essential relevance to survival of pneumococcal pneumonia. Moreover, S100A9 appears to be a promising biomarker to distinguish patients with bacterial from those with viral pneumonia. Trial registration: Clinical Trials register (DRKS00000620).
Collapse
Affiliation(s)
- Lena Ostermann
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Benjamin Seeliger
- Clinic for Pneumology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Hannover, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Carolin Flasche
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Marieke S Reinboth
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Martin Christmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Frank Bühling
- Labopart Medical Laboratories, Dresden and Chemnitz, Germany
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Center for Infection Research, University Würzburg, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Hannover, Germany
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Hannover, Germany
| |
Collapse
|
7
|
Abdul Rahman NA, Mohd Desa MN, Masri SN, Taib NM, Sulaiman N, Hazman H, John J. The Molecular Approaches and Challenges of Streptococcus pneumoniae Serotyping for Epidemiological Surveillance in the Vaccine Era. Pol J Microbiol 2023; 72:103-115. [PMID: 37314355 DOI: 10.33073/pjm-2023-023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) belongs to the Gram-positive cocci. This bacterium typically colonizes the nasopharyngeal region of healthy individuals. It has a distinct polysaccharide capsule - a virulence factor allowing the bacteria to elude the immune defense mechanisms. Consequently, it might trigger aggressive conditions like septicemia and meningitis in immunocompromised or older individuals. Moreover, children below five years of age are at risk of morbidity and mortality. Studies have found 101 S. pneumoniae capsular serotypes, of which several correlate with clinical and carriage isolates with distinct disease aggressiveness. Introducing pneumococcal conjugate vaccines (PCV) targets the most common disease-associated serotypes. Nevertheless, vaccine selection pressure leads to replacing the formerly dominant vaccine serotypes (VTs) by non-vaccine types (NVTs). Therefore, serotyping must be conducted for epidemiological surveillance and vaccine assessment. Serotyping can be performed using numerous techniques, either by the conventional antisera-based (Quellung and latex agglutination) or molecular-based approaches (sequetyping, multiplex PCR, real-time PCR, and PCR-RFLP). A cost-effective and practical approach must be used to enhance serotyping accuracy to monitor the prevalence of VTs and NVTs. Therefore, dependable pneumococcal serotyping techniques are essential to precisely monitor virulent lineages, NVT emergence, and genetic associations of isolates. This review discusses the principles, associated benefits, and drawbacks of the respective available conventional and molecular approaches, and potentially the whole genome sequencing (WGS) to be directed for future exploration.
Collapse
Affiliation(s)
- Nurul Asyikin Abdul Rahman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- 2School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Kuala Pilah, Malaysia
| | - Mohd Nasir Mohd Desa
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Norbaya Masri
- 3Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Niazlin Mohd Taib
- 3Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nurshahira Sulaiman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hazmin Hazman
- 1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - James John
- 4Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
8
|
Downs SL, Madhi SA, van der Merwe L, Nunes MC, Olwagen CP. Optimization of a high-throughput nanofluidic real-time PCR to detect and quantify of 15 bacterial species and 92 Streptococcus pneumoniae serotypes. Sci Rep 2023; 13:4588. [PMID: 36944704 PMCID: PMC10030628 DOI: 10.1038/s41598-023-31820-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Sensitive tools for detecting concurrent colonizing pneumococcal serotypes are needed for detailed evaluation of the direct and indirect impact of routine pneumococcal conjugate vaccine (PCV) immunization. A high-throughput quantitative nanofluidic real-time PCR (Standard BioTools 'Fluidigm') reaction-set was developed to detect and quantify 92 pneumococcal serotypes in archived clinical samples. Nasopharyngeal swabs collected in 2009-2011 from South African children ≤ 5 years-old, previously serotyped with standard culture-based methods were used for comparison. The reaction-set within the 'Fluidigm' effectively amplified all targets with high efficiency (90-110%), reproducibility (R2 ≥ 0.98), and at low limit-of-detection (< 102 CFU/ml). A blind analysis of 1 973 nasopharyngeal swab samples showed diagnostic sensitivity > 80% and specificity > 95% compared with the referent standard, culture based Quellung method. The qPCR method was able to serotype pneumococcal types with good discrimination compared with Quellung (ROC-AUC: > 0.73). The high-throughput nanofluidic real-time PCR method simultaneously detects 57 individual serotypes, and 35 serotypes within 16 serogroups in 96 samples (including controls), within a single qPCR run. This method can be used to evaluate the impact of current PCV formulations on vaccine-serotype and non-vaccine-serotype colonization, including detection of multiple concurrently colonizing serotypes. Our qPCR method can allow for monitoring of serotype-specific bacterial load, as well as emergence or ongoing transmission of minor or co-colonizing serotypes that may have invasive disease potential.
Collapse
Affiliation(s)
- Sarah L Downs
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shabir A Madhi
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lara van der Merwe
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Courtney P Olwagen
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
9
|
Sackett K, Brown P, Dutta K, Scully IL, Gangolli S, Looi K, Nemani S, Yu AYH, Kleven M, Xie J, Moran J, Pride MW, Anderson AS, Lotvin J. Identification of a Novel Keto Sugar Component in Streptococcus pneumoniae Serotype 12F Capsular Polysaccharide and Impact on Vaccine Immunogenicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:764-773. [PMID: 36723033 PMCID: PMC9986053 DOI: 10.4049/jimmunol.2100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/09/2023] [Indexed: 02/02/2023]
Abstract
Implementation of conjugate vaccine technology revolutionized the ability to effectively elicit long-lasting immune responses to bacterial capsular polysaccharides. Although expansion of conjugate vaccine serotype coverage is designed to target residual disease burden to pneumococcal serotypes not contained in earlier vaccine versions, details of polysaccharide Ag structure, heterogeneity, and epitope structure components contributing to vaccine-mediated immunity are not always clear. Analysis of Streptococcus pneumoniae serotype 12F polysaccharide by two-dimensional nuclear magnetic resonance spectroscopy and mass spectrometry revealed a partial substitution of N-acetyl-galactosamine by the keto sugar 2-acetamido-2,6-dideoxy-xylo-hexos-4-ulose (Sug) in up to 25% of the repeat units. This substitution was not described in previous published structures for 12F. Screening a series of contemporary 12F strains isolated from humans (n = 17) identified Sug incorporation at varying levels in all strains examined. Thus, partial Sug substitution in S. pneumoniae serotype 12F may have always been present but is now detectable by state-of-the-art analytical techniques. During the steps of conjugation, the serotype 12F Sug epitope is modified by reduction, and both polysaccharide PPSV23 and conjugate PCV20 vaccines contain 12F Ags with little to no Sug epitope. Both PCV20 and PPSV23 vaccines were evaluated for protection against circulating 12F strains with varying amounts of Sug in their repeat unit based on an opsonophagocytic killing assay involving HL-60 cells and rabbit complement. Both vaccines elicited human-derived neutralizing Abs against serotype 12F, independent of Sug level between ∼2 and 25 mol%. These findings suggest that the newly identified serotype 12F Sug epitope is likely not an essential epitope for vaccine-elicited protection.
Collapse
Affiliation(s)
- Kelly Sackett
- Pfizer Analytical Research and Development, Groton, CT
| | - Paul Brown
- Pfizer Analytical Research and Development, Chesterfield, MO
| | - Kaushik Dutta
- Pfizer Vaccine Research and Development, Pearl River, NY
| | | | - Seema Gangolli
- Pfizer Vaccine Research and Development, Pearl River, NY
| | - Kelvin Looi
- Pfizer Vaccine Research and Development, Pearl River, NY
| | - Sandeep Nemani
- Pfizer Vaccine Research and Development, Pearl River, NY
| | | | - Mark Kleven
- Pfizer Vaccine Research and Development, Pearl River, NY
| | - Jin Xie
- Pfizer Bioprocess Research and Development, Chesterfield, MO
| | - Justin Moran
- Pfizer Vaccine Research and Development, Pearl River, NY
| | | | | | - Jason Lotvin
- Pfizer Vaccine Research and Development, Pearl River, NY
| |
Collapse
|
10
|
Combination of Cefditoren and N-acetyl-l-Cysteine Shows a Synergistic Effect against Multidrug-Resistant Streptococcus pneumoniae Biofilms. Microbiol Spectr 2022; 10:e0341522. [PMID: 36445126 PMCID: PMC9769599 DOI: 10.1128/spectrum.03415-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biofilm formation by Streptococcus pneumoniae is associated with colonization of the upper respiratory tract, including the carrier state, and with chronic respiratory infections in patients suffering from chronic obstructive pulmonary disease (COPD). The use of antibiotics alone to treat recalcitrant infections caused by biofilms is insufficient in many cases, requiring novel strategies based on a combination of antibiotics with other agents, including antibodies, enzybiotics, and antioxidants. In this work, we demonstrate that the third-generation oral cephalosporin cefditoren (CDN) and the antioxidant N-acetyl-l-cysteine (NAC) are synergistic against pneumococcal biofilms. Additionally, the combination of CDN and NAC resulted in the inhibition of bacterial growth (planktonic and biofilm cells) and destruction of the biofilm biomass. This marked antimicrobial effect was also observed in terms of viability in both inhibition (prevention) and disaggregation (treatment) assays. Moreover, the use of CDN and NAC reduced bacterial adhesion to human lung epithelial cells, confirming that this strategy of combining these two compounds is effective against resistant pneumococcal strains colonizing the lung epithelium. Finally, administration of CDN and NAC in mice suffering acute pneumococcal pneumonia caused by a multidrug-resistant strain was effective in clearing the bacteria from the respiratory tract in comparison to treatment with either compound alone. Overall, these results demonstrate that the combination of oral cephalosporins and antioxidants, such as CDN and NAC, respectively, is a promising strategy against respiratory biofilms caused by S. pneumoniae. IMPORTANCE Streptococcus pneumoniae is one of the deadliest bacterial pathogens, accounting for up to 2 million deaths annually prior to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccines have decreased the burden of diseases produced by S. pneumoniae, but the rise of antibiotic-resistant strains and nonvaccine serotypes is worrisome. Pneumococcal biofilms are associated with chronic respiratory infections, and treatment is challenging, making the search for new antibiofilm therapies a priority as biofilms become resistant to traditional antibiotics. In this work, we used the combination of an antibiotic (CDN) and an antioxidant (NAC) to treat the pneumococcal biofilms of relevant clinical isolates. We demonstrated a synergy between CDN and NAC that inhibited and treated pneumococcal biofilms, impaired pneumococcal adherence to the lung epithelium, and treated pneumonia in a mouse pneumonia model. We propose the widely used cephalosporin CDN and the repurposed drug NAC as a new antibiofilm therapy against S. pneumoniae biofilms, including those formed by antibiotic-resistant clinical isolates.
Collapse
|
11
|
Robinson RE, Mitsi E, Nikolaou E, Pojar S, Chen T, Reiné J, Nyazika TK, Court J, Davies K, Farrar M, Gonzalez-Dias P, Hamilton J, Hill H, Hitchins L, Howard A, Hyder-Wright A, Lesosky M, Liatsikos K, Matope A, McLenaghan D, Myerscough C, Murphy A, Solórzano C, Wang D, Burhan H, Gautam M, Begier E, Theilacker C, Beavon R, Anderson AS, Gessner BD, Gordon SB, Collins AM, Ferreira DM. Human Infection Challenge with Serotype 3 Pneumococcus. Am J Respir Crit Care Med 2022; 206:1379-1392. [PMID: 35802840 DOI: 10.1164/rccm.202112-2700oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rationale: Streptococcus pneumoniae serotype 3 (SPN3) is a cause of invasive pneumococcal disease and associated with low carriage rates. Following the introduction of pediatric 13-valent pneumococcal conjugate vaccine (PCV13) programs, SPN3 declines are less than other vaccine serotypes and incidence has increased in some populations coincident with a shift in predominant circulating SPN3 clade, from I to II. A human challenge model provides an effective means for assessing the impact of PCV13 on SPN3 in the upper airway. Objectives: To establish SPN3's ability to colonize the nasopharynx using different inoculum clades and doses, and the safety of an SPN3 challenge model. Methods: In a human challenge study involving three well-characterized and antibiotic-sensitive SPN3 isolates (PFESP306 [clade Ia], PFESP231 [no clade], and PFESP505 [clade II]), inoculum doses (10,000, 20,000, 80,000, and 160,000 cfu/100 μl) were escalated until maximal colonization rates were achieved, with concurrent acceptable safety. Measurement and Main Results: Presence and density of experimental SPN3 nasopharyngeal colonization in nasal wash samples, assessed using microbiological culture and molecular methods, on Days 2, 7, and 14 postinoculation. A total of 96 healthy participants (median age 21, interquartile range 19-25) were inoculated (n = 6-10 per dose group, 10 groups). Colonization rates ranged from 30.0-70.0% varying with dose and isolate. 30.0% (29/96) reported mild symptoms (82.8% [24/29] developed a sore throat); one developed otitis media requiring antibiotics. No serious adverse events occurred. Conclusions: An SPN3 human challenge model is feasible and safe with comparable carriage rates to an established Serotype 6B human challenge model. SPN3 carriage may cause mild upper respiratory symptoms.
Collapse
Affiliation(s)
- Ryan E Robinson
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Elena Mitsi
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elissavet Nikolaou
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sherin Pojar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tao Chen
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tinashe K Nyazika
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - James Court
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kelly Davies
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Madlen Farrar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Josh Hamilton
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Helen Hill
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lisa Hitchins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ashleigh Howard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Angela Hyder-Wright
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Maia Lesosky
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Agnes Matope
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Daniella McLenaghan
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Annabel Murphy
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solórzano
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Duolao Wang
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hassan Burhan
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Manish Gautam
- Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | | | | | | | | | | | - Stephen B Gordon
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Andrea M Collins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Daniela M Ferreira
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
12
|
Silva PH, Vázquez Y, Campusano C, Retamal-Díaz A, Lay MK, Muñoz CA, González PA, Kalergis AM, Bueno SM. Non-capsular based immunization approaches to prevent Streptococcus pneumoniae infection. Front Cell Infect Microbiol 2022; 12:949469. [PMID: 36225231 PMCID: PMC9548657 DOI: 10.3389/fcimb.2022.949469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium and the leading cause of bacterial pneumonia in children and the elderly worldwide. Currently, two types of licensed vaccines are available to prevent the disease caused by this pathogen: the 23-valent pneumococcal polysaccharide-based vaccine and the 7-, 10, 13, 15 and 20-valent pneumococcal conjugate vaccine. However, these vaccines, composed of the principal capsular polysaccharide of leading serotypes of this bacterium, have some problems, such as high production costs and serotype-dependent effectiveness. These drawbacks have stimulated research initiatives into non-capsular-based vaccines in search of a universal vaccine against S. pneumoniae. In the last decades, several research groups have been developing various new vaccines against this bacterium based on recombinant proteins, live attenuated bacterium, inactivated whole-cell vaccines, and other newer platforms. Here, we review and discuss the status of non-capsular vaccines against S. pneumoniae and the future of these alternatives in a post-pandemic scenario.
Collapse
Affiliation(s)
- Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Campusano
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Christian A. Muñoz
- Unidad de Microbiología, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Susan M. Bueno,
| |
Collapse
|
13
|
Hao L, Kuttel MM, Ravenscroft N, Thompson A, Prasad AK, Gangolli S, Tan C, Cooper D, Watson W, Liberator P, Pride MW, Jansen KU, Anderson AS, Scully IL. Streptococcus pneumoniae serotype 15B polysaccharide conjugate elicits a cross-functional immune response against serotype 15C but not 15A. Vaccine 2022; 40:4872-4880. [PMID: 35810060 DOI: 10.1016/j.vaccine.2022.06.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Protection conferred by pneumococcal polysaccharide conjugate vaccines (PCVs) is associated with PCV-induced antibodies against vaccine-covered serotypes that exhibit functional opsonophagocytic activity (OPA). Structural similarity between capsular polysaccharides of closely related serotypes may result in induction of cross-reactive antibodies with or without a cross-functional activity against a serotype not covered by a PCV, with the former providing an additional protective clinical benefit. Serotypes 15B, 15A, and 15C, in the serogroup 15, are among the most prevalent Streptococcus pneumoniae serotypes associated with invasive pneumococcal disease following the implementation of a 13-valent PCV; in addition, 15B contributes significantly to acute otitis media. Serological discrimination between closely related serotypes such as 15B and 15C is complicated; here, we implemented an algorithm to quickly differentiate 15B from its closely related serotypes 15C and 15A directly from whole-genome sequencing data. In addition, molecular dynamics simulations of serotypes 15A, 15B, and 15C polysaccharides demonstrated that while 15B and 15C polysaccharides assume rigid branched conformation, 15A polysaccharide assumes a flexible linear conformation. A serotype 15B conjugate, included in a 20-valent PCV (PCV20), induced cross-functional OPA serum antibody responses against the structurally similar serotype 15C but not against serotype 15A, both not included in PCV20. In PCV20-vaccinated adults (18-49 years), robust OPA antibody titers were detected against both serotypes 15B (the geometric mean titer [GMT] of 19,334) and 15C (GMTs of 1692 and 2747 for strains PFE344340 and PFE1160, respectively), but were negligible against serotype 15A (GMTs of 10 and 30 for strains PFE593551 and PFE647449, respectively). Cross-functional 15B/C responses were also confirmed using sera from a larger group of older adults (60-64 years).
Collapse
Affiliation(s)
- Li Hao
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Allison Thompson
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - A Krishna Prasad
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Seema Gangolli
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Charles Tan
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - David Cooper
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Wendy Watson
- Pfizer Vaccine Clinical Research & Development, 500 Arcola Rd, Collegeville, PA 19422, USA
| | - Paul Liberator
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Michael W Pride
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Kathrin U Jansen
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Annaliesa S Anderson
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA
| | - Ingrid L Scully
- Pfizer Vaccine Research & Development, 401 N. Middletown Rd, Pearl River, NY 10965, USA.
| |
Collapse
|
14
|
An H, Qian C, Huang Y, Li J, Tian X, Feng J, Hu J, Fang Y, Jiao F, Zeng Y, Huang X, Meng X, Liu X, Lin X, Zeng Z, Guilliams M, Beschin A, Chen Y, Wu Y, Wang J, Oggioni MR, Leong J, Veening JW, Deng H, Zhang R, Wang H, Wu J, Cui Y, Zhang JR. Functional vulnerability of liver macrophages to capsules defines virulence of blood-borne bacteria. J Exp Med 2022; 219:e20212032. [PMID: 35258552 PMCID: PMC8908791 DOI: 10.1084/jem.20212032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Many encapsulated bacteria use capsules to cause invasive diseases. However, it remains largely unknown how the capsules enhance bacterial virulence under in vivo infection conditions. Here we show that the capsules primarily target the liver to enhance bacterial survival at the onset of blood-borne infections. In a mouse sepsis model, the capsules enabled human pathogens Streptococcus pneumoniae and Escherichia coli to circumvent the recognition of liver-resident macrophage Kupffer cells (KCs) in a capsular serotype-dependent manner. In contrast to effective capture of acapsular bacteria by KCs, the encapsulated bacteria are partially (low-virulence types) or completely (high-virulence types) "untouchable" for KCs. We finally identified the asialoglycoprotein receptor (ASGR) as the first known capsule receptor on KCs to recognize the low-virulence serotype-7F and -14 pneumococcal capsules. Our data identify the molecular interplay between the capsules and KCs as a master controller of the fate and virulence of encapsulated bacteria, and suggest that the interplay is targetable for therapeutic control of septic infections.
Collapse
Affiliation(s)
- Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chenyun Qian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yijia Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Xianbin Tian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jiaying Feng
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jiao Hu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yujie Fang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Fangfang Jiao
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yuna Zeng
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Xueting Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xianbin Meng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Xin Lin
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhutian Zeng
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije University Brussel, Brussels, Belgium
| | - Yongwen Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jing Wang
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | - John Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Jiang Wu
- Beijing Center for Disease Control and Prevention, Beijing, China
| | - Yan Cui
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Zhou M, Wang Z, Zhang L, Kudinha T, An H, Qian C, Jiang B, Wang Y, Xu Y, Liu Z, Zhang H, Zhang J. Serotype Distribution, Antimicrobial Susceptibility, Multilocus Sequencing Type and Virulence of Invasive Streptococcus pneumoniae in China: A Six-Year Multicenter Study. Front Microbiol 2022; 12:798750. [PMID: 35095809 PMCID: PMC8793633 DOI: 10.3389/fmicb.2021.798750] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background:Streptococcus pneumoniae is an important human pathogen that can cause severe invasive pneumococcal diseases (IPDs). The aim of this multicenter study was to investigate the serotype and sequence type (ST) distribution, antimicrobial susceptibility, and virulence of S. pneumoniae strains causing IPD in China. Methods: A total of 300 invasive S. pneumoniae isolates were included in this study. The serotype, ST, and antimicrobial susceptibility of the strains, were determined by the Quellung reaction, multi-locus sequence typing (MLST) and broth microdilution method, respectively. The virulence level of the strains in the most prevalent serotypes was evaluated by a mouse sepsis model, and the expression level of well-known virulence genes was measured by RT-PCR. Results: The most common serotypes in this study were 23F, 19A, 19F, 3, and 14. The serotype coverages of PCV7, PCV10, PCV13, and PPV23 vaccines on the strain collection were 42.3, 45.3, 73.3 and 79.3%, respectively. The most common STs were ST320, ST81, ST271, ST876, and ST3173. All strains were susceptible to ertapenem, levofloxacin, moxifloxacin, linezolid, and vancomycin, but a very high proportion (>95%) was resistant to macrolides and clindamycin. Based on the oral, meningitis and non-meningitis breakpoints, penicillin non-susceptible Streptococcus pneumoniae (PNSP) accounted for 67.7, 67.7 and 4.3% of the isolates, respectively. Serotype 3 strains were characterized by high virulence levels and low antimicrobial-resistance rates, while strains of serotypes 23F, 19F, 19A, and 14, exhibited low virulence and high resistance rates to antibiotics. Capsular polysaccharide and non-capsular virulence factors were collectively responsible for the virulence diversity of S. pneumoniae strains. Conclusion: Our study provides a comprehensive insight into the epidemiology and virulence diversity of S. pneumoniae strains causing IPD in China.
Collapse
Affiliation(s)
- Menglan Zhou
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Ziran Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Li Zhang
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Timothy Kudinha
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, Australia
- NSW Health Pathology, Regional and Rural, Orange Hospital, Orange, NSW, Australia
| | - Haoran An
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chenyun Qian
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Bin Jiang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yao Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yingchun Xu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Zhengyin Liu
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Zhengyin Liu,
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Hong Zhang,
| | - Jingren Zhang
- NSW Health Pathology, Regional and Rural, Orange Hospital, Orange, NSW, Australia
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Jingren Zhang,
| |
Collapse
|
16
|
Brazel EB, Tan A, Neville SL, Iverson AR, Udagedara SR, Cunningham BA, Sikanyika M, De Oliveira DMP, Keller B, Bohlmann L, El-Deeb IM, Ganio K, Eijkelkamp BA, McEwan AG, von Itzstein M, Maher MJ, Walker MJ, Rosch JW, McDevitt CA. Dysregulation of Streptococcus pneumoniae zinc homeostasis breaks ampicillin resistance in a pneumonia infection model. Cell Rep 2022; 38:110202. [PMID: 35021083 PMCID: PMC9084593 DOI: 10.1016/j.celrep.2021.110202] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/24/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is the primary cause of community-acquired bacterial pneumonia with rates of penicillin and multidrug-resistance exceeding 80% and 40%, respectively. The innate immune response generates a variety of antimicrobial agents to control infection, including zinc stress. Here, we characterize the impact of zinc intoxication on S. pneumoniae, observing disruptions in central carbon metabolism, lipid biogenesis, and peptidoglycan biosynthesis. Characterization of the pivotal peptidoglycan biosynthetic enzyme GlmU indicates a sensitivity to zinc inhibition. Disruption of the sole zinc efflux pathway, czcD, renders S. pneumoniae highly susceptible to β-lactam antibiotics. To dysregulate zinc homeostasis in the wild-type strain, we investigated the safe-for-human-use ionophore 5,7-dichloro-2-[(dimethylamino)methyl]quinolin-8-ol (PBT2). PBT2 rendered wild-type S. pneumoniae strains sensitive to a range of antibiotics. Using an invasive ampicillin-resistant strain, we demonstrate in a murine pneumonia infection model the efficacy of PBT2 + ampicillin treatment. These findings present a therapeutic modality to break antibiotic resistance in multidrug-resistant S. pneumoniae.
Collapse
Affiliation(s)
- Erin B Brazel
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Aimee Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Amy R Iverson
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Saumya R Udagedara
- School of Chemistry and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Bliss A Cunningham
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Mwilye Sikanyika
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia
| | - David M P De Oliveira
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, QLD 4072, Australia
| | - Bernhard Keller
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, QLD 4072, Australia
| | - Lisa Bohlmann
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, QLD 4072, Australia
| | | | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Bart A Eijkelkamp
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, QLD 4072, Australia
| | | | - Megan J Maher
- School of Chemistry and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3000, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, QLD 4072, Australia
| | - Jason W Rosch
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christopher A McDevitt
- Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
17
|
Anatomical site-specific carbohydrate availability impacts Streptococcus pneumoniae virulence and fitness during colonization and disease. Infect Immun 2021; 90:e0045121. [PMID: 34748366 DOI: 10.1128/iai.00451-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (Spn) colonizes the nasopharynx asymptomatically but can also cause severe life-threatening disease. Importantly, stark differences in carbohydrate availability exist between the nasopharynx and invasive disease sites, such as the bloodstream, which most likely impact Spn's behavior. Herein, using chemically-defined media (CDM) supplemented with physiological levels of carbohydrates, we examined how anatomical-site specific carbohydrate availability impacted Spn physiology and virulence. Spn grown in CDM modeling the nasopharynx (CDM-N) had reduced metabolic activity, slower growth rate, demonstrated mixed acid fermentation with marked H2O2 production, and were in a carbon-catabolite repression (CCR)-derepressed state versus Spn grown in CDM modeling blood (CDM-B). Using RNA-seq, we determined the transcriptome for Spn WT and its isogenic CCR deficient mutant in CDM-N and CDM-B. Genes with altered expression as a result of changes in carbohydrate availability or catabolite control protein deficiency, respectively, were primarily involved in carbohydrate metabolism, but also encoded for established virulence determinants such polysaccharide capsule and surface adhesins. We confirmed that anatomical site-specific carbohydrate availability directly influenced established Spn virulence traits. Spn grown in CDM-B formed shorter chains, produced more capsule, were less adhesive, and were more resistant to macrophage killing in an opsonophagocytosis assay. Moreover, growth of Spn in CDM-N or CDM-B prior to the challenge of mice impacted relative fitness in a colonization and invasive disease model, respectively. Thus, anatomical site-specific carbohydrate availability alters Spn physiology and virulence, in turn promoting anatomical-site specific fitness.
Collapse
|
18
|
Jha V, Nicholson LK, Gardner EM, Rahkola JT, Pratap H, Scott J, Borgeson M, Jacobelli J, Janoff EN. Impact of HIV-1 Infection and Antigen Class on T Follicular Helper Cell Responses to Pneumococcal Polysaccharide-Protein Conjugate Vaccine-13. THE JOURNAL OF IMMUNOLOGY 2021; 206:2402-2411. [PMID: 33931485 DOI: 10.4049/jimmunol.2001133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
Pneumococcal infections are common and serious complications of HIV-1 disease. Prevention has been compromised by the limited magnitude and quality of Ab responses to T cell-independent type 2 pneumococcal capsular polysaccharides (PPS). The pneumococcal polysaccharide-protein conjugate vaccine-13 (PCV-13) contains PPS conjugated to the T cell-dependent protein (diphtheria toxoid [DT] [CRM197]). We investigated the differential response to PPS and DT by human Ab-secreting B cells (ASC) after immunization with PCV-13 in newly diagnosed healthy HIV+ and control adults. The numbers of PPS-specific IgG ASC increased significantly and similarly in HIV+ and controls. However, DT-specific IgG ASC increased in controls but not HIV+ subjects. To determine the cellular basis of these disparate responses to DT and PPS, we characterized the frequency and activation of T follicular helper (Tfh) cells, the predominant T cell subset providing B cell help. Expression of inducible T cell costimulator (ICOS), which sustains Tfh function and phenotype, increased significantly among controls, when compared with the HIV+ group. Increases in ICOS+ Tfh correlated with changes in T-dependent, DT-specific IgG ASC in controls but not in HIV+ In contrast, ICOS expression did not correlate with T cell-independent type 2 PPS-specific ASC in either group. Of note, upon optimized ex vivo stimulation, CD4 T cells from HIV+ subjects differentiated into Tfh cells and formed synapses with Raji B cells at frequencies similar to that of controls. In summary, PCV-13-induced increase in ICOS expression on Tfh was associated with responses to DT, which was compromised in recently diagnosed healthy HIV+ adults and can be restored ex vivo by providing effective Tfh-differentiating signals.
Collapse
Affiliation(s)
- Vibha Jha
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Lindsay K Nicholson
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | | | - Jeremy T Rahkola
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Harsh Pratap
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | | | - Mandy Borgeson
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Jordan Jacobelli
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Edward N Janoff
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO .,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
19
|
Ali MQ, Kohler TP, Burchhardt G, Wüst A, Henck N, Bolsmann R, Voß F, Hammerschmidt S. Extracellular Pneumococcal Serine Proteases Affect Nasopharyngeal Colonization. Front Cell Infect Microbiol 2021; 10:613467. [PMID: 33659218 PMCID: PMC7917122 DOI: 10.3389/fcimb.2020.613467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae has evolved versatile strategies to colonize the nasopharynx of humans. Colonization is facilitated by direct interactions with host cell receptors or via binding to components of the extracellular matrix. In addition, pneumococci hijack host-derived extracellular proteases such as the serine protease plasmin(ogen) for ECM and mucus degradation as well as colonization. S. pneumoniae expresses strain-dependent up to four serine proteases. In this study, we assessed the role of secreted or cell-bound serine proteases HtrA, PrtA, SFP, and CbpG, in adherence assays and in a mouse colonization model. We hypothesized that the redundancy of serine proteases compensates for the deficiency of a single enzyme. Therefore, double and triple mutants were generated in serotype 19F strain EF3030 and serotype 4 strain TIGR4. Strain EF3030 produces only three serine proteases and lacks the SFP encoding gene. In adherence studies using Detroit-562 epithelial cells, we demonstrated that both TIGR4Δcps and 19F mutants without serine proteases or expressing only CbpG, HtrA, or PrtA have a reduced ability to adhere to Detroit-562 cells. Consistent with these results, we show that the mutants of strain 19F, which preferentially colonizes mice, abrogate nasopharyngeal colonization in CD-1 mice after intranasal infection. The bacterial load in the nasopharynx was monitored for 14 days. Importantly, mutants showed significantly lower bacterial numbers in the nasopharynx two days after infection. Similarly, we detected a significantly reduced pneumococcal colonization on days 3, 7, and 14 post-inoculations. To assess the impact of pneumococcal serine proteases on acute infection, we infected mice intranasally with bioluminescent and invasive TIGR4 or isogenic triple mutants expressing only CbpG, HtrA, PrtA, or SFP. We imaged the acute lung infection in real-time and determined the survival of the mice. The TIGR4lux mutant expressing only PrtA showed a significant attenuation and was less virulent in the acute pneumonia model. In conclusion, our results showed that pneumococcal serine proteases contributed significantly to pneumococcal colonization but played only a minor role in pneumonia and invasive diseases. Because colonization is a prerequisite for invasive diseases and transmission, these enzymes could be promising candidates for the development of antimicrobials to reduce pneumococcal transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
20
|
Kurbatova EA, Akhmatova NK, Zaytsev AE, Akhmatova EA, Egorova NB, Yastrebova NE, Sukhova EV, Yashunsky DV, Tsvetkov YE, Nifantiev NE. Higher Cytokine and Opsonizing Antibody Production Induced by Bovine Serum Albumin (BSA)-Conjugated Tetrasaccharide Related to Streptococcus pneumoniae Type 3 Capsular Polysaccharide. Front Immunol 2020; 11:578019. [PMID: 33343566 PMCID: PMC7746847 DOI: 10.3389/fimmu.2020.578019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/05/2020] [Indexed: 01/31/2023] Open
Abstract
A number of studies have demonstrated the limited efficacy of S. pneumoniae type 3 capsular polysaccharide (CP) in the 13-valent pneumococcal conjugate vaccine against serotype 3 invasive pneumococcal diseases and carriage. Synthetic oligosaccharides (OSs) may provide an alternative to CPs for development of novel conjugated pneumococcal vaccines and diagnostic test systems. A comparative immunological study of di-, tri-, and tetra-bovine serum albumin (BSA) conjugates was performed. All oligosaccharides conjugated with biotin and immobilized on streptavidin-coated plates stimulated production of IL-1α, IL-2, IL-4, IL-5, IL-10, IFNγ, IL-17A, and TNFα, but not IL-6 and GM-CSF in monocultured mice splenocytes. The tetrasaccharide-biotin conjugate stimulated the highest levels of IL-4, IL-5, IL-10, and IFNγ, which regulate expression of specific immunoglobulin isotypes. The tetra-BSA conjugate adjuvanted with aluminum hydroxide elicited high levels of IgM, IgG1, IgG2a, and IgG2b antibodies (Abs). Anti-CP-induced Abs could only be measured using the biotinylated tetrasaccharide. The tetrasaccharide ligand possessed the highest binding capacity for anti-OS and antibacterial IgG Abs in immune sera. Sera to the tetra-BSA conjugate promoted greater phagocytosis of bacteria by neutrophils and monocytes than the CRM197-CP-antisera. Sera of mice immunized with the tetra-BSA conjugate exhibited the highest titer of anti-CP IgG1 Abs compared with sera of mice inoculated with the same doses of di- and tri-BSA conjugates. Upon intraperitoneal challenge with lethal doses of S. pneumoniae type 3, the tri- and tetra-BSA conjugates protected mice more significantly than the di-BSA conjugate. Therefore, it may be concluded that the tetrasaccharide ligand is an optimal candidate for development of a semi-synthetic vaccine against S. pneumoniae type 3 and diagnostic test systems.
Collapse
Affiliation(s)
- Ekaterina A. Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Nelli K. Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Anton E. Zaytsev
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elina A. Akhmatova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Nadezhda B. Egorova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Natalya E. Yastrebova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elena V. Sukhova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Dmitriy V. Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
21
|
Therapeutic Activity of Type 3 Streptococcus pneumoniae Capsule Degrading Enzyme Pn3Pase. Pharm Res 2020; 37:236. [PMID: 33140159 PMCID: PMC7605875 DOI: 10.1007/s11095-020-02960-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
Purpose Streptococcus pneumoniae (Spn) serotype 3 (Spn3) is considered one of the most virulent serotypes with resistance to conventional vaccine and treatment regimens. Pn3Pase is a glycoside hydrolase that we have previously shown to be highly effective in degrading the capsular polysaccharide of type 3 Spn, sensitizing it to host immune clearance. To begin assessing the value and safety of this enzyme for future clinical studies, we investigated the effects of high doses of Pn3Pase on host cells and immune system. Methods We assessed the enzyme’s catalytic activity following administration in mice, and performed septic infection models to determine if prior administration of the enzyme inhibited repeat treatments of Spn3-challenged mice. We assessed immune populations in mouse tissues following administration of the enzyme, and tested Pn3Pase toxicity on other mammalian cell types in vitro. Results Repeated administration of the enzyme in vivo does not prevent efficacy of the enzyme in promoting bacterial clearance following bacterial challenge, with insignificant antibody response generated against the enzyme. Immune homeostasis is maintained following high-dose treatment with Pn3Pase, and no cytotoxic effects were observed against mammalian cells. Conclusions These data indicate that Pn3Pase has potential as a therapy against Spn3. Further development as a drug product could overcome a great hurdle of pneumococcal infections.
Collapse
|
22
|
Asner SA, Agyeman PKA, Gradoux E, Posfay-Barbe KM, Heininger U, Giannoni E, Crisinel PA, Stocker M, Bernhard-Stirnemann S, Niederer-Loher A, Kahlert CR, Hasters P, Relly C, Baer W, Aebi C, Schlapbach LJ, Berger C. Burden of Streptococcus pneumoniae Sepsis in Children After Introduction of Pneumococcal Conjugate Vaccines: A Prospective Population-based Cohort Study. Clin Infect Dis 2020; 69:1574-1580. [PMID: 30601988 DOI: 10.1093/cid/ciy1139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Population-based studies assessing the impact of pneumococcal conjugate vaccines (PCV) on burden of pneumococcal sepsis in children are lacking. We aimed to assess this burden following introduction of PCV-13 in a nationwide cohort study. METHODS The Swiss Pediatric Sepsis Study (September 2011 to December 2015) prospectively recruited children <17 years of age with blood culture-proven sepsis due to Streptococcus pneumoniae, meeting criteria for systemic inflammatory response syndrome. Infection with vaccine serotype in children up to date with PCV immunization was defined as vaccine failure. Main outcomes were admission to pediatric intensive care unit (PICU) and length of hospital stay (LOS). RESULTS Children with pneumococcal sepsis (n = 117) accounted for a crude incidence of 2.0 per 100 000 children (95% confidence interval [CI] 1.7-2.4) and 25% of community-acquired sepsis episodes. Case fatality rate was 8%. Forty-two (36%) patients required PICU admission. Children with meningitis (29; 25%) were more often infected by serotypes not included in PCV (69% vs 31%; P < .001). Sixteen (26%) of 62 children up to date with PCV immunization presented with vaccine failure, including 11 infected with serotype 3. In multivariable analyses, children with meningitis (odds ratio [OR] 6.8; 95% CI 2.4-19.3; P < .001) or infected with serotype 3 (OR 2.8; 95% CI 1.1-7.3; P = .04) were more often admitted to PICU. Children infected with serotype 3 had longer LOS (β coefficient 0.2, 95% CI .1-1.1; P = .01). CONCLUSIONS The incidence of pneumococcal sepsis in children shortly after introduction of PCV-13 remained substantial. Meningitis mostly due to non-vaccine serotypes and disease caused by serotype 3 represented significant predictors of severity.
Collapse
Affiliation(s)
- Sandra A Asner
- Pediatric Infectious Diseases and Vaccinology Unit, Department Mother-Woman-Child, Switzerland.,Infectious Diseases Service, Department of Internal Medicine, Lausanne University Hospital, Switzerland
| | - Philipp K A Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, Switzerland
| | - Eugénie Gradoux
- Pediatric Infectious Diseases and Vaccinology Unit, Department Mother-Woman-Child, Switzerland
| | - Klara M Posfay-Barbe
- Pediatric Infectious Diseases Unit, Children's Hospital of Geneva, University Hospitals of Geneva, Switzerland
| | - Ulrich Heininger
- Infectious Diseases and Vaccinology, University Children's Hospital Basel, Switzerland
| | - Eric Giannoni
- Infectious Diseases Service, Department of Internal Medicine, Lausanne University Hospital, Switzerland.,Clinic of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital, Switzerland
| | - Pierre A Crisinel
- Pediatric Infectious Diseases and Vaccinology Unit, Department Mother-Woman-Child, Switzerland
| | - Martin Stocker
- Department of Pediatrics, Children's Hospital Lucerne, Switzerland
| | | | | | | | - Paul Hasters
- Department of Neonatology, University Hospital Zurich, Switzerland
| | - Christa Relly
- Division of Infectious Diseases and Children's Research Center, University Children's Hospital Zurich, Switzerland
| | | | - Christoph Aebi
- Department of Pediatrics, Inselspital, Bern University Hospital, Switzerland
| | - Luregn J Schlapbach
- Department of Pediatrics, Inselspital, Bern University Hospital, Switzerland.,Faculty of Medicine, Child Health Research Centre, The University of Queensland, Brisbane, Australia.,Paediatric Critical Care Research Group, Child Health Research Centre, The University of Queensland, Brisbane, Australia.,Intensive Care Unit, Queensland Children's Hospital, Children's Health Queensland, Brisbane, Australia
| | - Christoph Berger
- Division of Infectious Diseases and Children's Research Center, University Children's Hospital Zurich, Switzerland
| |
Collapse
|
23
|
Wantuch PL, Jella S, Duke JA, Mousa JJ, Henrissat B, Glushka J, Avci FY. Characterization of the β-glucuronidase Pn3Pase as the founding member of glycoside hydrolase family GH169. Glycobiology 2020; 31:266-274. [PMID: 32810871 DOI: 10.1093/glycob/cwaa070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Paenibacillus sp. 32352 is a soil-dwelling bacterium capable of producing an enzyme, Pn3Pase that degrades the capsular polysaccharide of Streptococcus pneumoniae serotype 3 (Pn3P). Recent reports on Pn3Pase have demonstrated its initial characterization and potential for protection against highly virulent S. pneumoniae serotype 3 infections. Initial experiments revealed this enzyme functions as an exo-β1,4-glucuronidase cleaving the β(1,4) linkage between glucuronic acid and glucose. However, the catalytic mechanism of this enzyme is still unknown. Here, we report the detailed biochemical analysis of Pn3Pase. Pn3Pase shows no significant sequence similarity to known glycoside hydrolase (GH) families, thus this novel enzyme establishes a new carbohydrate-active enzyme (CAZy) GH family. Site-directed mutagenesis studies revealed two catalytic residues along with truncation mutants defining essential domains for function. Pn3Pase and its mutants were screened for activity, substrate binding and kinetics. Additionally, nuclear magnetic resonance spectroscopy analysis revealed that Pn3Pase acts through a retaining mechanism. This study exhibits Pn3Pase activity at the structural and mechanistic level to establish the new CAZy GH family GH169 belonging to the large GH-A clan. This study will also serve toward generating Pn3Pase derivatives with optimal activity and pharmacokinetics aiding in the use of Pn3Pase as a novel therapeutic approach against type 3 S. pneumoniae infections.
Collapse
Affiliation(s)
- Paeton L Wantuch
- Department of Biochemistry & Molecular Biology, University of Georgia, 325 Riverbend Rd, Athens GA 30602, USA.,Center for Molecular Medicine, University of Georgia, 325 Riverbend Rd, Athens GA 30602, USA
| | - Satya Jella
- Center for Molecular Medicine, University of Georgia, 325 Riverbend Rd, Athens GA 30602, USA
| | - Jeremy A Duke
- Department of Biochemistry & Molecular Biology, University of Georgia, 325 Riverbend Rd, Athens GA 30602, USA.,Center for Molecular Medicine, University of Georgia, 325 Riverbend Rd, Athens GA 30602, USA
| | - Jarrod J Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Dr Athens, Athens GA 30602, USA.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Dr Athens, Athens GA 30602, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, 163 Avenue de Luminy, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France.,USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, 163 Avenue de Luminy, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Al Jami`ah, Jeddah, 23218, Saudi Arabia
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens GA 30602, USA
| | - Fikri Y Avci
- Department of Biochemistry & Molecular Biology, University of Georgia, 325 Riverbend Rd, Athens GA 30602, USA.,Center for Molecular Medicine, University of Georgia, 325 Riverbend Rd, Athens GA 30602, USA
| |
Collapse
|
24
|
Disruption of the cpsE and endA Genes Attenuates Streptococcus pneumoniae Virulence: Towards the Development of a Live Attenuated Vaccine Candidate. Vaccines (Basel) 2020; 8:vaccines8020187. [PMID: 32326482 PMCID: PMC7349068 DOI: 10.3390/vaccines8020187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of deaths due to Streptococcus pneumoniae infections are in developing countries. Although polysaccharide-based pneumococcal vaccines are available, newer types of vaccines are needed to increase vaccine affordability, particularly in developing countries, and to provide broader protection across all pneumococcal serotypes. To attenuate pneumococcal virulence with the aim of engineering candidate live attenuated vaccines (LAVs), we constructed knockouts in S. pneumoniae D39 of one of the capsular biosynthetic genes, cpsE that encodes glycosyltransferase, and the endonuclease gene, endA, that had been implicated in the uptake of DNA from the environment as well as bacterial escape from neutrophil-mediated killing. The cpsE gene knockout significantly lowered peak bacterial density, BALB/c mice nasopharyngeal (NP) colonisation but increased biofilm formation when compared to the wild-type D39 strain as well as the endA gene knockout mutant. All constructed mutant strains were able to induce significantly high serum and mucosal antibody response in BALB/c mice. However, the cpsE-endA double mutant strain, designated SPEC, was able to protect mice from high dose mucosal challenge of the D39 wild-type. Furthermore, SPEC showed 23-fold attenuation of virulence compared to the wild-type. Thus, the cpsE-endA double-mutant strain could be a promising candidate for further development of a LAV for S. pneumoniae.
Collapse
|
25
|
Abstract
Capsular polysaccharide is a key factor underlying the virulence of Streptococcus pneumoniae in human diseases. Thus, a deep understanding of capsular polysaccharide synthesis is essential for uncovering the pathogenesis of S. pneumoniae infection. In this study, we show that protein SPD_1495 interacts with phosphorylated ComE to negatively regulate the formation of capsular polysaccharide. Deletion of spd1495 increased capsular polysaccharide synthesis and thereby enhanced bacterial virulence. These findings further reveal the synthesis mechanism of capsular polysaccharide and provide new insight into the biology of this clinically important bacterium. Streptococcus pneumoniae, a Gram-positive human pathogen, causes a series of serious diseases in humans. SPD_1495 from S. pneumoniae is annotated as a hypothetical ABC sugar-binding protein in the NCBI database, but there are few reports on detailed biological functions of SPD_1495. To fully study the influence of SPD_1495 on bacterial virulence in S. pneumoniae, we constructed a deletion mutant (D39Δspd1495) and an overexpressing strain (D39spd1495+). Comparative analysis of iTRAQ-based quantitative proteomic data of the wild-type D39 strain (D39-WT) and D39Δspd1495 showed that several differentially expressed proteins that participate in capsular polysaccharide synthesis, such as Cps2M, Cps2C, Cps2L, Cps2T, Cps2E, and Cps2D, were markedly upregulated in D39Δspd1495. Subsequent transmission electron microscopy and uronic acid detection assay confirmed that capsular polysaccharide synthesis was enhanced in D39Δspd1495 compared to that in D39-WT. Moreover, knockout of spd1495 resulted in increased capsular polysaccharide synthesis, as well as increased bacterial virulence, as confirmed by the animal study. Through a coimmunoprecipitation assay, surface plasmon resonance, and electrophoretic mobility shift assay, we found that SPD_1495 negatively regulated cps promoter expression by interacting with phosphorylated ComE, a negative transcriptional regulator for capsular polysaccharide formation. Overall, this study suggested that SPD_1495 negatively regulates capsular polysaccharide formation and thereby enhances bacterial virulence in the host. These findings also provide valuable insights into understanding the biology of this clinically important bacterium. IMPORTANCE Capsular polysaccharide is a key factor underlying the virulence of Streptococcus pneumoniae in human diseases. Thus, a deep understanding of capsular polysaccharide synthesis is essential for uncovering the pathogenesis of S. pneumoniae infection. In this study, we show that protein SPD_1495 interacts with phosphorylated ComE to negatively regulate the formation of capsular polysaccharide. Deletion of spd1495 increased capsular polysaccharide synthesis and thereby enhanced bacterial virulence. These findings further reveal the synthesis mechanism of capsular polysaccharide and provide new insight into the biology of this clinically important bacterium.
Collapse
|
26
|
Marshall H, Aguayo S, Kilian M, Petersen F, Bozec L, Brown J. In Vivo Relationship between the Nano-Biomechanical Properties of Streptococcal Polysaccharide Capsules and Virulence Phenotype. ACS NANO 2020; 14:1070-1083. [PMID: 31854972 DOI: 10.1021/acsnano.9b08631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In common with many bacterial pathogens, Streptococcus pneumoniae has a polysaccharide capsule which facilitates immune evasion and determines virulence. Recent data have shown that the closely related Streptococcus mitis also expresses polysaccharide capsules including those with an identical chemical structure to S. pneumoniae capsular serotypes. We utilized atomic force microscopy (AFM) techniques to investigate the biophysical properties of S. mitis and S. pneumoniae strains expressing the same capsular serotypes that might relate to differences in virulence potential. When comparing S. mitis and S. pneumoniae strains with identical capsule serotypes, S. mitis strains were susceptible to neutrophil killing, and electron microscopy and AFM demonstrated significant morphological differences. Force-volume mapping using AFM showed distinct force-curve profiles for the center and edge areas of encapsulated streptococcal strains. This "edge effect" was not observed in unencapsulated bacteria and therefore was a direct representation of the mechanical properties of the bacterial capsule. When two strains of S. mitis and S. pneumoniae expressed an identical capsular serotype, they presented similar biomechanical characteristics. This infers a potential relationship between capsule biochemistry and nanomechanics, independent of bacterial strain. Overall, this study demonstrates that it is possible to investigate reproducibly the mechanistic, structural, and mechanical properties of both the capsule and the body of individual living bacterial cells and relate the data to virulence phenotypes. We have demonstrated that using nanomechanics to investigate individual bacterial cells we can now begin to identify the surface properties bacterial pathogens require to avoid host-mediated immunity.
Collapse
Affiliation(s)
- Helina Marshall
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School , Rayne Institute , London WC1E 6JF , United Kingdom
- School of Biological Sciences , Queen's University Belfast , Belfast BT7 1NN , United Kingdom
| | - Sebastian Aguayo
- Biomaterials and Tissue Engineering, Eastman Dental Institute , University College London , London WC1E 6BT , United Kingdom
- School of Dentistry, Faculty of Medicine , Pontificia Universidad Catolica de Chile , Santiago , Chile
| | - Mogens Kilian
- Department of Biomedicine, Faculty of Health , Aarhus University , Aarhus 8000 , Denmark
| | - Fernanda Petersen
- Faculty of Dentistry, Institute of Oral Biology , University of Oslo , Oslo 0315 , Norway
| | - Laurent Bozec
- Biomaterials and Tissue Engineering, Eastman Dental Institute , University College London , London WC1E 6BT , United Kingdom
- Faculty of Dentistry , University of Toronto , Toronto , Ontario M5G 1G6 , Canada
| | - Jeremy Brown
- Centre for Inflammation and Tissue Repair, Department of Medicine, Royal Free and University College Medical School , Rayne Institute , London WC1E 6JF , United Kingdom
| |
Collapse
|
27
|
Immunogenicity Comparison of a Next Generation Pneumococcal Conjugate Vaccine in Animal Models and Human Infants. Pediatr Infect Dis J 2020; 39:70-77. [PMID: 31725555 DOI: 10.1097/inf.0000000000002522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Evaluation of a pneumococcal conjugate vaccine (PCV) in an animal model provides an initial assessment of the performance of the vaccine prior to evaluation in humans. Cost, availability, study duration, cross-reactivity and applicability to humans are several factors which contribute to animal model selection. PCV15 is an investigational 15-valent PCV which includes capsular polysaccharides from pneumococcal serotypes (ST) 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F and 33F all individually conjugated to cross-reactive material 197 (CRM197). METHODS Immunogenicity of PCV15 was evaluated in infant rhesus macaques (IRM), adult New Zealand white rabbits (NZWR) and CD1 mice using multiplexed pneumococcal electrochemiluminescent (Pn ECL) assay to measure serotype-specific IgG antibodies, multiplexed opsonophagocytosis assay (MOPA) to measure serotype-specific functional antibody responses and bacterial challenge in mice to evaluate protection against a lethal dose of S. pneumoniae. RESULTS PCV15 was immunogenic and induced both IgG and functional antibodies to all 15 vaccine serotypes in all animal species evaluated. PCV15 also protected mice from S. pneumoniae serotype 14 intraperitoneal challenge. Opsonophagocytosis assay (OPA) titers measured from sera of human infants vaccinated with PCV15 in a Phase 2 clinical trial showed a good correlation with that observed in IRM (rs=0.69, P=0.006), a medium correlation with that of rabbits (rs=0.49, P=0.06), and no correlation with that of mice (rs=0.04, P=0.89). In contrast, there was no correlation in serum IgG levels between human infants and animal models. CONCLUSIONS These results demonstrate that PCV15 is immunogenic across multiple animal species, with IRM and human infants showing the best correlation for OPA responses.
Collapse
|
28
|
Fujimoto K, Kawaguchi Y, Shimohigoshi M, Gotoh Y, Nakano Y, Usui Y, Hayashi T, Kimura Y, Uematsu M, Yamamoto T, Akeda Y, Rhee JH, Yuki Y, Ishii KJ, Crowe SE, Ernst PB, Kiyono H, Uematsu S. Antigen-Specific Mucosal Immunity Regulates Development of Intestinal Bacteria-Mediated Diseases. Gastroenterology 2019; 157:1530-1543.e4. [PMID: 31445037 DOI: 10.1053/j.gastro.2019.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Dysregulation of the microbiome has been associated with development of complex diseases, such as obesity and diabetes. However, no method has been developed to control disease-associated commensal microbes. We investigated whether immunization with microbial antigens, using CpG oligodeoxynucleotides and/or curdlan as adjuvants, induces systemic antigen-specific IgA and IgG production and affects development of diseases in mice. METHODS C57BL/6 mice were given intramuscular injections of antigens (ovalbumin, cholera toxin B-subunit, or pneumococcal surface protein A) combined with CpG oligodeoxynucleotides and/or curdlan. Blood and fecal samples were collected weekly and antigen-specific IgG and IgA titers were measured. Lymph nodes and spleens were collected and analyzed by enzyme-linked immunosorbent assay for antigen-specific splenic T-helper 1 cells, T-helper 17 cells, and memory B cells. Six weeks after primary immunization, mice were given a oral, nasal, or vaginal boost of ovalbumin; intestinal lamina propria, bronchial lavage, and vaginal swab samples were collected and antibodies and cytokines were measured. Some mice were also given oral cholera toxin or intranasal Streptococcus pneumoniae and the severity of diarrhea or pneumonia was analyzed. Gnotobiotic mice were gavaged with fecal material from obese individuals, which had a high abundance of Clostridium ramosum (a commensal microbe associated with obesity and diabetes), and were placed on a high-fat diet 2 weeks after immunization with C ramosum. Intestinal tissues were collected and analyzed by quantitative real-time polymerase chain reaction. RESULTS Serum and fecal samples from mice given injections of antigens in combination with CpG oligodeoxynucleotides and curdlan for 3 weeks contained antigen-specific IgA and IgG, and splenocytes produced interferon-gamma and interleukin 17A. Lamina propria, bronchial, and vaginal samples contained antigen-specific IgA after the ovalbumin boost. This immunization regimen prevented development of diarrhea after injection of cholera toxin, and inhibited lung colonization by S pneumoniae. In gnotobiotic mice colonized with C ramosum and placed on a high-fat diet, the mice that had been immunized with C ramosum became less obese than the nonimmunized mice. CONCLUSIONS Injection of mice with microbial antigens and adjuvant induces antigen-specific mucosal and systemic immune responses. Immunization with S pneumoniae antigen prevented lung infection by this bacteria, and immunization with C ramosum reduced obesity in mice colonized with this microbe and placed on a high-fat diet. This immunization approach might be used to protect against microbe-associated disorders of intestine.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan; Division of Innate Immune Regulation
| | - Yunosuke Kawaguchi
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan; Division of Innate Immune Regulation; Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Shimohigoshi
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan; Division of Innate Immune Regulation; Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiyuki Gotoh
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Mucosal Symbiosis, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Nakano
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan; Division of Innate Immune Regulation
| | - Yuki Usui
- Division of Systems Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Hayashi
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Hematology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasumasa Kimura
- Division of Systems Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Miho Uematsu
- Division of Mucosal Symbiosis, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takuya Yamamoto
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan; Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yukihiro Akeda
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan; Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Joon Haeng Rhee
- Department of Microbiology and Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan; Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sheila E Crowe
- Department of Medicine, University of California, San Diego, La Jolla, La Jolla, California
| | - Peter B Ernst
- Division of Gastroenterology, Department of Medicine, Chiba University-University of California, San Diego Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, La Jolla, California; Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California; Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, La Jolla, California
| | - Hiroshi Kiyono
- Division of Gastroenterology, Department of Medicine, Chiba University-University of California, San Diego Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, La Jolla, California; Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, La Jolla, California; Department of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan; Division of Innate Immune Regulation; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
29
|
G-CSFR antagonism reduces neutrophilic inflammation during pneumococcal and influenza respiratory infections without compromising clearance. Sci Rep 2019; 9:17732. [PMID: 31776393 PMCID: PMC6881371 DOI: 10.1038/s41598-019-54053-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive neutrophilic inflammation can contribute to the pathogenesis of pneumonia. Whilst anti-inflammatory therapies such as corticosteroids are used to treat excessive inflammation, they do not selectively target neutrophils and may compromise antimicrobial or antiviral defences. In this study, neutrophil trafficking was targeted with a granulocyte-colony stimulating factor receptor monoclonal antibody (G-CSFR mAb) during Streptococcus pneumoniae (serotype 19F) or influenza A virus (IAV, strain HKx31) lung infection in mice. Firstly, we demonstrated that neutrophils are indispensable for the clearance of S. pneumoniae from the airways using an anti-Ly6G monoclonal antibody (1A8 mAb), as the complete inhibition of neutrophil recruitment markedly compromised bacterial clearance. Secondly, we demonstrated that G-CSF transcript lung levels were significantly increased during pneumococcal infection. Prophylactic or therapeutic administration of G-CSFR mAb significantly reduced blood and airway neutrophil numbers by 30–60% without affecting bacterial clearance. Total protein levels in the bronchoalveolar lavage (BAL) fluid (marker for oedema) was also significantly reduced. G-CSF transcript levels were also increased during IAV lung infection. G-CSFR mAb treatment significantly reduced neutrophil trafficking into BAL compartment by 60% and reduced blood neutrophil numbers to control levels in IAV-infected mice. Peak lung viral levels at day 3 were not altered by G-CSFR therapy, however there was a significant reduction in the detection of IAV in the lungs at the day 7 post-infection phase. In summary, G-CSFR signalling contributes to neutrophil trafficking in response to two common respiratory pathogens. Blocking G-CSFR reduced neutrophil trafficking and oedema without compromising clearance of two pathogens that can cause pneumonia.
Collapse
|
30
|
Abstract
Streptococcus pneumoniae remains the most common bacterial pathogen causing lower respiratory tract infections and is a leading cause of morbidity and mortality worldwide, especially in children and the elderly. Another important aspect related to pneumococcal infections is the persistent rate of penicillin and macrolide resistance. Therefore, animal models have been developed to better understand the pathogenesis of pneumococcal disease and test new therapeutic agents and vaccines. This narrative review will focus on the characteristics of the different animal pneumococcal pneumonia models. The assessment of the different animal models will include considerations regarding pneumococcal strains, microbiology properties, procedures used for bacterial inoculation, pathogenesis, clinical characteristics, diagnosis, treatment, and preventive approaches.
Collapse
|
31
|
Hartmann N, McMurtrey C, Sorensen ML, Huber ME, Kurapova R, Coleman FT, Mizgerd JP, Hildebrand W, Kronenberg M, Lewinsohn DM, Harriff MJ. Riboflavin Metabolism Variation among Clinical Isolates of Streptococcus pneumoniae Results in Differential Activation of Mucosal-associated Invariant T Cells. Am J Respir Cell Mol Biol 2019; 58:767-776. [PMID: 29356555 DOI: 10.1165/rcmb.2017-0290oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae is an important bacterial pathogen that causes a range of noninvasive and invasive diseases. The mechanisms underlying variability in the ability of S. pneumoniae to transition from nasopharyngeal colonization to disease-causing pathogen are not well defined. Mucosal-associated invariant T (MAIT) cells are prevalent in mucosal tissues such as the airways and are believed to play an important role in the early response to infection with bacterial pathogens. The ability of MAIT cells to recognize and contain infection with S. pneumoniae is not known. In the present study, we analyzed MAIT-cell responses to infection with clinical isolates of S. pneumoniae serotype 19A, a serotype linked to invasive pneumococcal disease. We found that although MAIT cells were capable of responding to human dendritic and airway epithelial cells infected with S. pneumoniae, the magnitude of response to different serotype 19A isolates was determined by genetic differences in the expression of the riboflavin biosynthesis pathway. MAIT-cell release of cytokines correlated with differences in the ability of MAIT cells to respond to and control S. pneumoniae in vitro and in vivo in a mouse challenge model. Together, these results demonstrate first that there are genetic differences in riboflavin metabolism among clinical isolates of the same serotype and second that these likely determine MAIT-cell function in response to infection with S. pneumoniae. These differences are critical when considering the role that MAIT cells play in early responses to pneumococcal infection and determining whether invasive disease will develop.
Collapse
Affiliation(s)
- Nadine Hartmann
- 1 La Jolla Institute for Allergy and Immunology, San Diego, California
| | - Curtis McMurtrey
- 2 Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michelle L Sorensen
- 3 Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon
| | - Megan E Huber
- 3 Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon
| | - Regina Kurapova
- 3 Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon
| | - Fadie T Coleman
- 4 Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts; and
| | - Joseph P Mizgerd
- 4 Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts; and
| | - William Hildebrand
- 2 Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - David M Lewinsohn
- 3 Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon.,5 VA Portland Health Care System, Portland, Oregon
| | - Melanie J Harriff
- 3 Department of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon.,5 VA Portland Health Care System, Portland, Oregon
| |
Collapse
|
32
|
van Tonder AJ, Gladstone RA, Lo SW, Nahm MH, du Plessis M, Cornick J, Kwambana-Adams B, Madhi SA, Hawkins PA, Benisty R, Dagan R, Everett D, Antonio M, Klugman KP, von Gottberg A, Breiman RF, McGee L, Bentley SD. Putative novel cps loci in a large global collection of pneumococci. Microb Genom 2019; 5. [PMID: 31184299 PMCID: PMC6700660 DOI: 10.1099/mgen.0.000274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pneumococcus produces a polysaccharide capsule, encoded by the cps locus, that provides protection against phagocytosis and determines serotype. Nearly 100 serotypes have been identified with new serotypes still being discovered, especially in previously understudied regions. Here we present an analysis of the cps loci of more than 18 000 genomes from the Global Pneumococcal Sequencing (GPS) project with the aim of identifying novel cps loci with the potential to produce previously unrecognized capsule structures. Serotypes were assigned using whole genome sequence data and 66 of the approximately 100 known serotypes were included in the final dataset. Closer examination of each serotype’s sequences identified nine putative novel cps loci (9X, 11X, 16X, 18X1, 18X2, 18X3, 29X, 33X and 36X) found in ~2.6 % of the genomes. The large number and global distribution of GPS genomes provided an unprecedented opportunity to identify novel cps loci and consider their phylogenetic and geographical distribution. Nine putative novel cps loci were identified and examples of each will undergo subsequent structural and immunological analysis.
Collapse
Affiliation(s)
- Andries J van Tonder
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rebecca A Gladstone
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stephanie W Lo
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Moon H Nahm
- Division of Pulmonary Medicine, Departments of Medicine and Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa.,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Paulina A Hawkins
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Rachel Benisty
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheeba, Beer-Sheva, Israel
| | - Ron Dagan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheeba, Beer-Sheva, Israel
| | - Dean Everett
- Queens Research Institute, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Martin Antonio
- Vaccines and Immunity Theme, MRC Unit, Banjul, The Gambia
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa.,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Robert F Breiman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Queens Research Institute, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Lesley McGee
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen D Bentley
- Parasites and Microbes, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Emory Global Health Institute, Emory University, Atlanta, GA, USA
| | -
- https://www.pneumogen.net/gps/
| |
Collapse
|
33
|
Complete Genome Sequence of Streptococcus pneumoniae Serotype 19F Strain EF3030. Microbiol Resour Announc 2019; 8:8/19/e00198-19. [PMID: 31072896 PMCID: PMC6509521 DOI: 10.1128/mra.00198-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome sequence of Streptococcus pneumoniae EF3030, a serotype 19F isolate that colonizes the nasopharynx of mice while being mostly noninvasive. Such attributes make this strain highly attractive in pneumococcal carriage studies. We report the complete genome sequence of Streptococcus pneumoniae EF3030, a serotype 19F isolate that colonizes the nasopharynx of mice while being mostly noninvasive. Such attributes make this strain highly attractive in pneumococcal carriage studies. The availability of its complete genomic sequence is likely to advance studies in the field.
Collapse
|
34
|
Abstract
Streptococcus pneumoniae (the pneumoccus) is the leading cause of otitis media, community-acquired pneumonia, and bacterial meningitis. The success of the pneumococcus stems from its ability to persist in the population as a commensal and avoid killing by immune system. This chapter first reviews the molecular mechanisms that allow the pneumococcus to colonize and spread from one anatomical site to the next. Then, it discusses the mechanisms of inflammation and cytotoxicity during emerging and classical pneumococcal infections.
Collapse
|
35
|
Cools F, Torfs E, Aizawa J, Vanhoutte B, Maes L, Caljon G, Delputte P, Cappoen D, Cos P. Optimization and Characterization of a Galleria mellonella Larval Infection Model for Virulence Studies and the Evaluation of Therapeutics Against Streptococcus pneumoniae. Front Microbiol 2019; 10:311. [PMID: 30846978 PMCID: PMC6394149 DOI: 10.3389/fmicb.2019.00311] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of bacterial pneumonia. Infection is linked to high morbidity and mortality rates and antibiotic resistance within this pathogen is on the rise. Therefore, there is a need for novel antimicrobial therapies. To lower the time and costs of the drug discovery process, alternative in vivo models should be considered. As such, Galleria mellonella larvae can be of great value. The larval immunity consisting of several types of haemocytes is remarkably similar to the human innate immune system. Furthermore, these larvae don’t require specific housing, are cheap and are easy to handle. In this study, the use of a G. mellonella infection model to study early pneumococcal infections and treatment is proposed. Firstly, the fitness of this model to study pneumococcal virulence factors is confirmed using streptococcal strains TIGR4, ATCC®49619, D39 and its capsule-deficient counterpart R6 at different inoculum sizes. The streptococcal polysaccharide capsule is considered the most important virulence factor without which streptococci are unable to sustain an in vivo infection. Kaplan–Meier survival curves showed indeed a higher larval survival after infection with streptococcal strain R6 compared to strain D39. Then, the infection was characterized by determining the number of haemocytes, production of oxygen free radicals and bacterial burden at several time points during the course of infection. Lastly, treatment of infected larvae with the standard antibiotics amoxicillin and moxifloxacin was evaluated. Treatment has proven to have a positive outcome on the course of infection, depending on the administered dosage. These data imply that G. mellonella larvae can be used to evaluate antimicrobial therapies against S. pneumoniae, apart from using the larval model to study streptococcal properties. The in-depth knowledge acquired regarding this model, makes it more suitable for use in future research.
Collapse
Affiliation(s)
- Freya Cools
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Eveline Torfs
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Juliana Aizawa
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Bieke Vanhoutte
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
36
|
Wantuch PL, Avci FY. Invasive pneumococcal disease in relation to vaccine type serotypes. Hum Vaccin Immunother 2019; 15:874-875. [PMID: 30668209 DOI: 10.1080/21645515.2018.1564444] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Since 1983 the world has been introduced to four vaccines combating disease caused by Streptococcus pneumoniae bacteria. However, despite vaccination programs disease caused by S. pneumoniae continues to lead to high morbidity and mortality worldwide. Surprisingly, instances of invasive pneumococcal disease (IPD) are still highly attributed to serotypes found in the current vaccine, such as serotypes 3 and 19A. Conversely, non-conjugate vaccine serotypes, such as 35B, are increasing and of rising interest. The persistence of vaccine type serotypes and the increase in non-conjugate vaccine type serotypes show the need for further research into conjugate vaccine design and the need for novel strategies to combat IPD. Abbreviation: IPD: invasive pneumococcal disease.
Collapse
Affiliation(s)
- Paeton L Wantuch
- a Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and Complex Carbohydrate Research Center , University of Georgia , Athens , GA , USA
| | - Fikri Y Avci
- a Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and Complex Carbohydrate Research Center , University of Georgia , Athens , GA , USA
| |
Collapse
|
37
|
Complementary Role of CD4+ T Cells in Response to Pneumococcal Polysaccharide Vaccines in Humans. Vaccines (Basel) 2019; 7:vaccines7010018. [PMID: 30754689 PMCID: PMC6466080 DOI: 10.3390/vaccines7010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/29/2019] [Indexed: 01/14/2023] Open
Abstract
Bacterial pathogens expressing capsular polysaccharides are common causes of mucosal infections (pneumonia, intestinal), as well as often fatal, invasive infections (meningitis, bloodstream infections) in children and adults worldwide. These chemically simple but structurally complex carbohydrate structures on the bacterial surface confer resistance to recognition and clearance by the immune system through a range of mechanisms. Such recognition of capsular polysaccharides may be reduced by their limited ability to directly stimulate B cells and the T cells that may facilitate these humoral responses. The capsules may promote the evasion of complement deposition and activation and may sterically shield the recognition of other subjacent protein antigens by innate factors. Antibodies to capsular polysaccharides, elicited by infection and vaccines, may overcome these obstacles and facilitate bacterial agglutination at mucosal surfaces, as well as the opsonization and clearance of these organisms in tissues and the systemic compartment. However, the immunogenicity of these antigens may be limited by their lack of direct recognition by T cells (“T-independent” antigens) and their restricted ability to generate effective memory responses. In this review, we consider the mechanisms by which polysaccharides may initiate B cell responses and specific antibody responses and the role of T cells, particularly CD4+ follicular helper (TFH) cells to support this process. In addition, we also consider more recent counterintuitive data that capsular polysaccharides themselves may bind major histocompatibility antigen HLA class II to provide a more physiologic mechanism of T cell enhancement of B cell responses to capsular polysaccharides. Defining the contributions of T cells in the generation of effective humoral responses to the capsular polysaccharides will have important implications for understanding and translating this immunobiology for the development of more effective vaccines, to prevent the morbidity and mortality associated with these common mucosal and invasive pathogens in populations at risk.
Collapse
|
38
|
Azarian T, Mitchell PK, Georgieva M, Thompson CM, Ghouila A, Pollard AJ, von Gottberg A, du Plessis M, Antonio M, Kwambana-Adams BA, Clarke SC, Everett D, Cornick J, Sadowy E, Hryniewicz W, Skoczynska A, Moïsi JC, McGee L, Beall B, Metcalf BJ, Breiman RF, Ho PL, Reid R, O’Brien KL, Gladstone RA, Bentley SD, Hanage WP. Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathog 2018; 14:e1007438. [PMID: 30475919 PMCID: PMC6283594 DOI: 10.1371/journal.ppat.1007438] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/06/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae serotype 3 remains a significant cause of morbidity and mortality worldwide, despite inclusion in the 13-valent pneumococcal conjugate vaccine (PCV13). Serotype 3 increased in carriage since the implementation of PCV13 in the USA, while invasive disease rates remain unchanged. We investigated the persistence of serotype 3 in carriage and disease, through genomic analyses of a global sample of 301 serotype 3 isolates of the Netherlands3-31 (PMEN31) clone CC180, combined with associated patient data and PCV utilization among countries of isolate collection. We assessed phenotypic variation between dominant clades in capsule charge (zeta potential), capsular polysaccharide shedding, and susceptibility to opsonophagocytic killing, which have previously been associated with carriage duration, invasiveness, and vaccine escape. We identified a recent shift in the CC180 population attributed to a lineage termed Clade II, which was estimated by Bayesian coalescent analysis to have first appeared in 1968 [95% HPD: 1939-1989] and increased in prevalence and effective population size thereafter. Clade II isolates are divergent from the pre-PCV13 serotype 3 population in non-capsular antigenic composition, competence, and antibiotic susceptibility, the last of which resulting from the acquisition of a Tn916-like conjugative transposon. Differences in recombination rates among clades correlated with variations in the ATP-binding subunit of Clp protease, as well as amino acid substitutions in the comCDE operon. Opsonophagocytic killing assays elucidated the low observed efficacy of PCV13 against serotype 3. Variation in PCV13 use among sampled countries was not independently correlated with the CC180 population shift; therefore, genotypic and phenotypic differences in protein antigens and, in particular, antibiotic resistance may have contributed to the increase of Clade II. Our analysis emphasizes the need for routine, representative sampling of isolates from disperse geographic regions, including historically under-sampled areas. We also highlight the value of genomics in resolving antigenic and epidemiological variations within a serotype, which may have implications for future vaccine development.
Collapse
Affiliation(s)
- Taj Azarian
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Patrick K. Mitchell
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Maria Georgieva
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Claudette M. Thompson
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Amel Ghouila
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford; NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine (CCVTM), Churchill Hospital, Oxford, United Kingdom
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mignon du Plessis
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Martin Antonio
- Medical Research Council Unit The Gambia, Fajara, The Gambia
| | | | - Stuart C. Clarke
- Faculty of Medicine and Institute for Life Sciences and Global Health Research Institute, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, United Kingdom
| | - Dean Everett
- Queens Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Cornick
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Ewa Sadowy
- National Medicines Institute, Warsaw, Poland
| | | | | | - Jennifer C. Moïsi
- Pfizer Vaccines, Medical Development, Scientific and Clinical Affairs, Paris, France
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Benjamin J. Metcalf
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Robert F. Breiman
- Global Health Institute, Emory University, Atlanta, Georgia, United States of America
| | - PL Ho
- Department of Microbiology, Queen Mary Hospital University of Hong Kong, Hong Kong, People’s Republic of China
| | - Raymond Reid
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katherine L. O’Brien
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rebecca A. Gladstone
- Wellcome Trust, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen D. Bentley
- Wellcome Trust, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
39
|
Totten AH, Xiao L, Luo D, Briles D, Hale JY, Crabb DM, Schoeb TR, Alishlash AS, Waites KB, Atkinson TP. Allergic airway sensitization impairs antibacterial IgG antibody responses during bacterial respiratory tract infections. J Allergy Clin Immunol 2018; 143:1183-1197.e7. [PMID: 30092287 DOI: 10.1016/j.jaci.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/02/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Mycoplasma pneumoniae, an atypical human pathogen, has been associated with asthma initiation and exacerbation. Asthmatic patients have been reported to have higher carriage rates of M pneumoniae compared with nonasthmatic subjects and are at greater risk for invasive respiratory infections. OBJECTIVE We sought to study whether prior allergen sensitization affects the host response to chronic bacterial infection. METHODS BALB/cJ and IL-4 receptor α-/- mice were sensitized with ovalbumin (OVA) and then infected with M pneumoniae or Streptococcus pneumoniae. Immune parameters were analyzed at 30 days postinfection and included cellular profiles in bronchoalveolar lavage fluid (BALF) and serum IgG and IgE antibody levels to whole bacterial lysate, recombinant P1 adhesin, and OVA. Total lung RNA was examined for transcript levels, and BALF was examined for cytokine protein profiles. RESULTS Anti-M pneumoniae antibody responses were decreased in allergen-sensitized, M pneumoniae-infected animals compared with control animals, but OVA-specific IgG responses were unaffected. Similar decreases in anti-S pneumoniae antibody levels were found in OVA-sensitized animals. However, M pneumoniae, but not S pneumoniae, infection augmented anti-OVA IgE antibody responses. Loss of IL-4 receptor signaling partially restored anti-M pneumoniae antibody responses in IgG2a and IgG2b subclasses. Inflammatory cytokine levels in BALF from OVA-sensitized, M pneumoniae-infected or S pneumoniae-infected animals were reduced compared with those in uninfected OVA-sensitized control animals. Unexpectedly, airway hyperreactivity to methacholine was essentially ablated in M pneumoniae-infected, OVA-sensitized animals. CONCLUSIONS An established type 2-biased host immune response impairs the host immune response to respiratory bacterial infection in a largely pathogen-independent manner. Some pathogens, such as M pneumoniae, can augment ongoing allergic responses and inhibit pulmonary type 2 cytokine responses and allergic airway hyperreactivity.
Collapse
Affiliation(s)
- Arthur H Totten
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
| | - Danlin Luo
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - David Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Ala
| | - Joanetha Y Hale
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Ala
| | - Donna M Crabb
- Department of Pathology, Diagnostic Mycoplasma Laboratory, University of Alabama at Birmingham, Birmingham, Ala
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Ala
| | | | - Ken B Waites
- Department of Pathology, Diagnostic Mycoplasma Laboratory, University of Alabama at Birmingham, Birmingham, Ala
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala.
| |
Collapse
|
40
|
Enzymatic Hydrolysis of Pneumococcal Capsular Polysaccharide Renders the Bacterium Vulnerable to Host Defense. Infect Immun 2018; 86:IAI.00316-18. [PMID: 29866907 DOI: 10.1128/iai.00316-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022] Open
Abstract
Despite a century of investigation, Streptococcus pneumoniae remains a major human pathogen, causing a number of diseases, such as pneumonia, meningitis, and otitis media. Like many encapsulated pathogens, the capsular polysaccharide (CPS) of S. pneumoniae is a critical component for colonization and virulence in mammalian hosts. This study aimed to evaluate the protective role of a glycoside hydrolase, Pn3Pase, targeting the CPS of type 3 S. pneumoniae, which is one of the most virulent serotypes. We have assessed the ability of Pn3Pase to degrade the capsule on a live type 3 strain. Through in vitro assays, we observed that Pn3Pase treatment increases the bacterium's susceptibility to phagocytosis by macrophages and complement-mediated killing by neutrophils. We have demonstrated that in vivo Pn3Pase treatment reduces nasopharyngeal colonization and protects mice from sepsis caused by type 3 S. pneumoniae Due to the increasing shifts in serotype distribution, the rise in drug-resistant strains, and poor immune responses to vaccine-included serotypes, it is necessary to investigate approaches to combat pneumococcal infections. This study evaluates the interaction of pneumococcal CPS with the host at molecular, cellular, and systemic levels and offers an alternative therapeutic approach for diseases caused by S. pneumoniae through enzymatic hydrolysis of the CPS.
Collapse
|
41
|
John J, Kasudhan KS, Kanungo R, Sharma S, Dohe V, Prashanth K. Distribution of different genes responsible for invasive characteristics, detection of point mutations in capsular gene wchA and biofilm production among the invasive and non-invasive isolates of Streptococcus pneumoniae. Indian J Med Microbiol 2018; 35:511-517. [PMID: 29405142 DOI: 10.4103/ijmm.ijmm_17_183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Streptococcus pneumoniae continues to cause morbidity and mortality across the globe, with developing countries bearing the brunt of the disease. It is mainly responsible for meningitis, pneumonia and septicaemia primarily in children, elderly and immunocompromised persons. Colonisation and persistence in the human nasopharynx occur during early childhood, and it appears to be prerequisite for invasive pneumococcal disease (IPD). Factors that help in persistent colonisation and subsequent invasion are ill understood. Several virulence factors have been incriminated for nasopharyngeal carriage (NC) as well as for the manifestation of the pathogenesis of IPD. MATERIALS AND METHODS This study attempts to characterise the S. pneumoniae isolates through analysing the distribution of different virulence markers such as lytA, ply, pbpA, eno, psaA, amiA, ciaR and wchA among the isolates obtained from disease and NC. A total of 37 isolates which include 14 invasive and 23 non-invasive isolates were investigated by polymerase chain reaction to detect the genes. Eight representative isolates were investigated for mutations in wchA by DNA sequencing that may responsible for capsular variation. RESULTS Ply, pbpA, amiA and eno were observed in a greater percentage of invasive isolates than non-invasive isolates though these differences are not statistically significant. Other two genes ciaH and psaA did not show any significant difference between two groups of isolates. Biofilm production was significantly higher in than non-invasive isolates when compared to invasive isolates. Sequence analysis of wchA revealed three significant point mutations or single-nucleotide polymorphisms (SNPs) among the isolates of one particular cluster (cluster III). These SNPs are responsible for a non-synonymous mutation in wchA bringing in an amino acid change in WchA protein, which is a part of the capsule of S. pneumoniae. Notably, all the three isolates present in cluster III had these SNPs and all of them were isolated from ocular infections. CONCLUSION The results of our study implies a possible capsular variations among the isolates and this may have an impact on capsular typing.
Collapse
Affiliation(s)
- James John
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Kripa Shanker Kasudhan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry; Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reba Kanungo
- Department of Microbiology, Pondicherry Institute of Medical Sciences, Puducherry, India
| | - Savitri Sharma
- Jhaveri Microbiology Centre, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Vaishali Dohe
- Department of Microbiology, Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
| | - K Prashanth
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
42
|
Transcutaneous immunization with pneumococcal surface protein A in mice. Laryngoscope 2017; 128:E91-E96. [DOI: 10.1002/lary.26971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 11/07/2022]
|
43
|
Blevins LK, Parsonage D, Oliver MB, Domzalski E, Swords WE, Alexander-Miller MA. A Novel Function for the Streptococcus pneumoniae Aminopeptidase N: Inhibition of T Cell Effector Function through Regulation of TCR Signaling. Front Immunol 2017; 8:1610. [PMID: 29230212 PMCID: PMC5711787 DOI: 10.3389/fimmu.2017.01610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (Spn) causes a variety of disease states including fatal bacterial pneumonia. Our previous finding that introduction of Spn into an animal with ongoing influenza virus infection resulted in a CD8+ T cell population with reduced effector function gave rise to the possibility of direct regulation by pneumococcal components. Here, we show that treatment of effector T cells with lysate derived from Spn resulted in inhibition of IFNγ and tumor necrosis factor α production as well as of cytolytic granule release. Spn aminopeptidase N (PepN) was identified as the inhibitory bacterial component and surprisingly, this property was independent of the peptidase activity found in this family of proteins. Inhibitory activity was associated with reduced activation of ZAP-70, ERK1/2, c-Jun N-terminal kinase, and p38, demonstrating the ability of PepN to negatively regulate TCR signaling at multiple points in the cascade. These results reveal a novel immune regulatory function for a bacterial aminopeptidase.
Collapse
Affiliation(s)
- Lance K Blevins
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Melissa B Oliver
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Elizabeth Domzalski
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
44
|
Moorthy AN, Rai P, Jiao H, Wang S, Tan KB, Qin L, Watanabe H, Zhang Y, Teluguakula N, Chow VTK. Capsules of virulent pneumococcal serotypes enhance formation of neutrophil extracellular traps during in vivo pathogenesis of pneumonia. Oncotarget 2017; 7:19327-40. [PMID: 27034012 PMCID: PMC4991386 DOI: 10.18632/oncotarget.8451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/18/2016] [Indexed: 11/25/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are released by activated neutrophils to ensnare and kill microorganisms. NETs have been implicated in tissue injury since they carry cytotoxic components of the activated neutrophils. We have previously demonstrated the generation of NETs in infected murine lungs during both primary pneumococcal pneumonia and secondary pneumococcal pneumonia after primary influenza. In this study, we assessed the correlation of pneumococcal capsule size with pulmonary NETs formation and disease severity. We compared NETs formation in the lungs of mice infected with three pneumococcal strains of varying virulence namely serotypes 3, 4 and 19F, as well as a capsule-deficient mutant of serotype 4. In primary pneumonia, NETs generation was strongly associated with the pneumococcal capsule thickness, and was proportional to the disease severity. Interestingly, during secondary pneumonia after primary influenza infection, intense pulmonary NETs generation together with elevated myeloperoxidase activity and cytokine dysregulation determined the disease severity. These findings highlight the crucial role played by the size of pneumococcal capsule in determining the extent of innate immune responses such as NETs formation that may contribute to the severity of pneumonia.
Collapse
Affiliation(s)
- Anandi Narayana Moorthy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Prashant Rai
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Infectious Diseases Interdisciplinary Research Group, Singapore-Massachusetts Institute of Technology Alliance in Research and Technology, Singapore
| | - Huipeng Jiao
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, Singapore
| | - Kong Bing Tan
- Department of Pathology, National University Hospital, Singapore
| | - Liang Qin
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, Japan
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, Japan
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | | | - Vincent Tak Kwong Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Infectious Diseases Interdisciplinary Research Group, Singapore-Massachusetts Institute of Technology Alliance in Research and Technology, Singapore
| |
Collapse
|
45
|
Mostowy RJ, Croucher NJ, De Maio N, Chewapreecha C, Salter SJ, Turner P, Aanensen DM, Bentley SD, Didelot X, Fraser C. Pneumococcal Capsule Synthesis Locus cps as Evolutionary Hotspot with Potential to Generate Novel Serotypes by Recombination. Mol Biol Evol 2017; 34:2537-2554. [PMID: 28595308 PMCID: PMC5850285 DOI: 10.1093/molbev/msx173] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Diversity of the polysaccharide capsule in Streptococcus pneumoniae-main surface antigen and the target of the currently used pneumococcal vaccines-constitutes a major obstacle in eliminating pneumococcal disease. Such diversity is genetically encoded by almost 100 variants of the capsule biosynthesis locus, cps. However, the evolutionary dynamics of the capsule remains not fully understood. Here, using genetic data from 4,519 bacterial isolates, we found cps to be an evolutionary hotspot with elevated substitution and recombination rates. These rates were a consequence of relaxed purifying selection and positive, diversifying selection acting at this locus, supporting the hypothesis that the capsule has an increased potential to generate novel diversity compared with the rest of the genome. Diversifying selection was particularly evident in the region of wzd/wze genes, which are known to regulate capsule expression and hence the bacterium's ability to cause disease. Using a novel, capsule-centered approach, we analyzed the evolutionary history of 12 major serogroups. Such analysis revealed their complex diversification scenarios, which were principally driven by recombination with other serogroups and other streptococci. Patterns of recombinational exchanges between serogroups could not be explained by serotype frequency alone, thus pointing to nonrandom associations between co-colonizing serotypes. Finally, we discovered a previously unobserved mosaic serotype 39X, which was confirmed to carry a viable and structurally novel capsule. Adding to previous discoveries of other mosaic capsules in densely sampled collections, these results emphasize the strong adaptive potential of the bacterium by its ability to generate novel antigenic diversity by recombination.
Collapse
Affiliation(s)
- Rafał J. Mostowy
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Nicola De Maio
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute for Emerging Infections, Oxford Martin School, Oxford, United Kingdom
| | - Claire Chewapreecha
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Susannah J. Salter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul Turner
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - David M. Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen D. Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Oxford Big Data Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
Brown LR, Caulkins RC, Schartel TE, Rosch JW, Honsa ES, Schultz-Cherry S, Meliopoulos VA, Cherry S, Thornton JA. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae. Front Cell Infect Microbiol 2017. [PMID: 28638805 PMCID: PMC5461340 DOI: 10.3389/fcimb.2017.00233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H2O2. Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.
Collapse
Affiliation(s)
- Lindsey R Brown
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| | - Rachel C Caulkins
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| | - Tyler E Schartel
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Erin S Honsa
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children's Research HospitalMemphis, TN, United States
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State UniversityStarkville, MS, United States
| |
Collapse
|
47
|
Grayson KM, Blevins LK, Oliver MB, Ornelles DA, Swords WE, Alexander-Miller MA. Activation-dependent modulation of Streptococcus pneumoniae-mediated death in human lymphocytes. Pathog Dis 2017; 75:2966467. [PMID: 28158464 DOI: 10.1093/femspd/ftx008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/30/2017] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a leading cause of community-acquired pneumonia, with infants and the elderly exhibiting significant susceptibility to the development of severe disease. A growing body of evidence supports the ability of Spn to negatively regulate the host response to infection, e.g. the capacity to induce death in numerous cell types. However, our understanding of the ability of Spn to directly impact lymphocytes remains limited. In this study, we tested the hypothesis that lymphocyte type and activation state influences the susceptibility to pneumococcus-mediated death. We show that in the resting state, CD4+ T cells exhibit a modestly increased susceptibility to Spn-induced death compared to CD8+ T cells or NK cells. In the presence of activating stimuli, the situation most reflective of what would occur in vivo during infection, all subsets demonstrated a significant increase in sensitivity to Spn-mediated death. Importantly, the activated subsets diverged dramatically in susceptibility with natural killer cells exhibiting an 8.6-fold greater sensitivity to pneumococcal components compared to the T-cell subsets. These results significantly expand our understanding of the capacity for pneumococcus to negatively regulate lymphocytes.
Collapse
|
48
|
Pneumococcal Neuraminidase A (NanA) Promotes Biofilm Formation and Synergizes with Influenza A Virus in Nasal Colonization and Middle Ear Infection. Infect Immun 2017; 85:IAI.01044-16. [PMID: 28096183 DOI: 10.1128/iai.01044-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023] Open
Abstract
Even in the vaccine era, Streptococcus pneumoniae (the pneumococcus) remains a leading cause of otitis media, a significant public health burden, in large part because of the high prevalence of nasal colonization with the pneumococcus in children. The primary pneumococcal neuraminidase, NanA, which is a sialidase that catalyzes the cleavage of terminal sialic acids from host glycoconjugates, is involved in both of these processes. Coinfection with influenza A virus, which also expresses a neuraminidase, exacerbates nasal colonization and disease by S. pneumoniae, in part via the synergistic contributions of the viral neuraminidase. The specific role of its pneumococcal counterpart, NanA, in this interaction, however, is less well understood. We demonstrate in a mouse model that NanA-deficient pneumococci are impaired in their ability to cause both nasal colonization and middle ear infection. Coinfection with neuraminidase-expressing influenza virus and S. pneumoniae potentiates both colonization and infection but not to wild-type levels, suggesting an intrinsic role of NanA. Using in vitro models, we show that while NanA contributes to both epithelial adherence and biofilm viability, its effect on the latter is actually independent of its sialidase activity. These data indicate that NanA contributes both enzymatically and nonenzymatically to pneumococcal pathogenesis and, as such, suggest that it is not a redundant bystander during coinfection with influenza A virus. Rather, its expression is required for the full synergism between these two pathogens.
Collapse
|
49
|
Polonskaya Z, Deng S, Sarkar A, Kain L, Comellas-Aragones M, McKay CS, Kaczanowska K, Holt M, McBride R, Palomo V, Self KM, Taylor S, Irimia A, Mehta SR, Dan JM, Brigger M, Crotty S, Schoenberger SP, Paulson JC, Wilson IA, Savage PB, Finn MG, Teyton L. T cells control the generation of nanomolar-affinity anti-glycan antibodies. J Clin Invest 2017; 127:1491-1504. [PMID: 28287405 DOI: 10.1172/jci91192] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/19/2017] [Indexed: 12/27/2022] Open
Abstract
Vaccines targeting glycan structures at the surface of pathogenic microbes must overcome the inherent T cell-independent nature of immune responses against glycans. Carbohydrate conjugate vaccines achieve this by coupling bacterial polysaccharides to a carrier protein that recruits heterologous CD4 T cells to help B cell maturation. Yet they most often produce low- to medium-affinity immune responses of limited duration in immunologically fit individuals and disappointing results in the elderly and immunocompromised patients. Here, we hypothesized that these limitations result from suboptimal T cell help. To produce the next generation of more efficacious conjugate vaccines, we have explored a synthetic design aimed at focusing both B cell and T cell recognition to a single short glycan displayed at the surface of a virus-like particle. We tested and established the proof of concept of this approach for 2 serotypes of Streptococcus pneumoniae. In both cases, these vaccines elicited serotype-specific, protective, and long-lasting IgG antibodies of nanomolar affinity against the target glycans in mice. We further identified a requirement for CD4 T cells in the anti-glycan antibody response. Our findings establish the design principles for improved glycan conjugate vaccines. We surmise that the same approach can be used for any microbial glycan of interest.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/chemistry
- Antibody Affinity
- B-Lymphocytes/immunology
- Bacterial Proteins/immunology
- CD4-Positive T-Lymphocytes/immunology
- Child
- Crystallography, X-Ray
- Female
- Glycopeptides/immunology
- Humans
- Hybridomas
- Immunoglobulin G/blood
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Models, Molecular
- Pneumococcal Infections/immunology
- Pneumococcal Infections/prevention & control
- Pneumococcal Vaccines/chemistry
- Pneumococcal Vaccines/immunology
- Polysaccharides, Bacterial/chemistry
- Polysaccharides, Bacterial/immunology
- Protein Binding
- Streptococcus pneumoniae/immunology
- Vaccination
- Vaccine Potency
Collapse
|
50
|
Kim GL, Choi SY, Seon SH, Lee S, Park SS, Song JY, Briles DE, Rhee DK. Pneumococcal pep27 mutant immunization stimulates cytokine secretion and confers long-term immunity with a wide range of protection, including against non-typeable strains. Vaccine 2016; 34:6481-6492. [DOI: 10.1016/j.vaccine.2016.10.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022]
|