1
|
Zhou X, Song H, Pan F, Yuan C, Jia L, Wu B, Fan H, Ma Z. The dual M protein systems have diverse biological characteristics, but both contribute to M18-type Group A Streptococcus pathogenicity. Microbes Infect 2023:105209. [PMID: 37597608 DOI: 10.1016/j.micinf.2023.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
M protein is a key surface virulence factor in Group A Streptococcus (GAS), Group C Streptococcus (GCS), and other streptococcal species. GAS encodes M protein using the emm gene, while GCS employs the szm (or sem) gene. In M18-type GAS, dual M protein systems exist, comprising both GAS and GCS M proteins (encoded separately by emm18 and spa18). The spa18 gene in M18-type GAS shares a conserved region highly similar to GCS's szm gene. Our study reveals that spa18 exhibits higher transcription levels than emm18 in M18-type GAS strains. The dual M protein systems defective mutant (Δemm18Δspa18) displays a smooth surface, whereas wild-type and single M protein gene mutants remain rough. M18 and SPA18 proteins possess distinct characteristics, showing varied binding properties and cytotoxicity effects on macrophages (THP-1) and keratinocytes (HaCaT). Both emm18 and spa18 genes contribute to the skin pathogenicity of M18-type GAS. Transcriptome analysis suggests the potential involvement of the mga gene in spa18 transcription regulation, while SpyM18_2047 appears to be specific to spa18 regulation. In summary, this research offers a crucial understanding of the biological characteristics of dual M protein systems in M18-type GAS, highlighting their contributions to virulence and transcriptional regulation.
Collapse
Affiliation(s)
- Xiaorui Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Haoshuai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Fei Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Chen Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Lu Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Bing Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
2
|
Frost HR, Guglielmini J, Duchêne S, Lacey JA, Sanderson-Smith M, Steer AC, Walker MJ, Botteaux A, Davies MR, Smeesters PR. Promiscuous evolution of Group A Streptococcal M and M-like proteins. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001280. [PMID: 36748538 PMCID: PMC9993116 DOI: 10.1099/mic.0.001280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Group A Streptococcus (GAS) M and M-like proteins are essential virulence factors and represent the primary epidemiological marker of this pathogen. Protein sequences encoding 1054 M, Mrp and Enn proteins, from 1668 GAS genomes, were analysed by SplitsTree4, partitioning around medoids and co-occurrence. The splits network and groups-based analysis of all M and M-like proteins revealed four large protein groupings, with multiple evolutionary histories as represented by multiple edges for most splits, leading to 'M-family-groups' (FG) of protein sequences: FG I, Mrp; FG II, M protein and Protein H; FG III, Enn; and FG IV, M protein. M and Enn proteins formed two groups with nine sub-groups and Mrp proteins formed four groups with ten sub-groups. Discrete co-occurrence of M and M-like proteins were identified suggesting that while dynamic, evolution may be constrained by a combination of functional and virulence attributes. At a granular level, four distinct family-groups of M, Enn and Mrp proteins are observable, with Mrp representing the most genetically distinct of the family-group of proteins. While M and Enn protein families generally group into three distinct family-groups, horizontal and vertical gene flow between distinct GAS strains is ongoing.
Collapse
Affiliation(s)
- Hannah R Frost
- Molecular Bacteriology Laboratory, Université libre de Bruxelles, Brussels, Belgium.,Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| | - Julien Guglielmini
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Sebastian Duchêne
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université libre de Bruxelles, Brussels, Belgium.,Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia.,Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Analysis of Global Collection of Group A Streptococcus Genomes Reveals that the Majority Encode a Trio of M and M-Like Proteins. mSphere 2020; 5:5/1/e00806-19. [PMID: 31915226 PMCID: PMC6952200 DOI: 10.1128/msphere.00806-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While the GAS M protein has been the leading vaccine target for decades, the bacteria encode many other virulence factors of interest for vaccine development. In this work, we show that emm-like genes are encoded in a remarkable majority of GAS genomes and expressed at a level similar to that for the emm gene. In collaboration with the U.S. Centers for Disease Control, we developed molecular definitions of the different emm and emm-like gene families. This clarification should abrogate mistyping of strains, especially in the area of whole-genome typing. We have also updated the emm-typing collection by removing emm-like gene sequences and provided in-depth analysis of Mrp and Enn protein sequence structure and diversity. The core Mga (multiple gene activator) regulon of group A Streptococcus (GAS) contains genes encoding proteins involved in adhesion and immune evasion. While all GAS genomes contain genes for Mga and C5a peptidase, the intervening genes encoding M and M-like proteins vary between strains. The genetic make-up of the Mga regulon of GAS was characterized by utilizing a collection of 1,688 GAS genomes that are representative of the global GAS population. Sequence variations were examined with multiple alignments, and the expression of all core Mga regulon genes was examined by quantitative reverse transcription-PCR in a representative strain collection. In 85.2% of the sampled genomes, the Mga locus contained genes encoding Mga, Mrp, M, Enn, and C5a peptidase proteins. These isolates account for 53% of global infections. Only 9.1% of genomes did not contain either an mrp or an enn gene. The pairwise identity within Enn (68.6%) and Mrp (83.2%) protein sequences was higher than within M proteins (44.7%). Gene expression varied between strains tested, but high expression was recorded for all genes in at least one strain. Previous nomenclature issues were clarified with molecular gene definitions. Our findings support a shift in focus in the GAS research field to further consider the role of Mrp and Enn in virulence and vaccine development. IMPORTANCE While the GAS M protein has been the leading vaccine target for decades, the bacteria encode many other virulence factors of interest for vaccine development. In this work, we show that emm-like genes are encoded in a remarkable majority of GAS genomes and expressed at a level similar to that for the emm gene. In collaboration with the U.S. Centers for Disease Control, we developed molecular definitions of the different emm and emm-like gene families. This clarification should abrogate mistyping of strains, especially in the area of whole-genome typing. We have also updated the emm-typing collection by removing emm-like gene sequences and provided in-depth analysis of Mrp and Enn protein sequence structure and diversity.
Collapse
|
4
|
Fischetti VA. Surface Proteins on Gram-Positive Bacteria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0012-2018. [PMID: 31373270 PMCID: PMC6684298 DOI: 10.1128/microbiolspec.gpp3-0012-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Surface proteins are critical for the survival of gram-positive bacteria both in the environment and to establish an infection. Depending on the organism, their surface proteins are evolutionarily tailored to interact with specific ligands on their target surface, be it inanimate or animate. Most surface molecules on these organisms are covalently anchored to the peptidoglycan through an LPxTG motif found at the C-terminus. These surface molecules are generally modular with multiple binding or enzymatic domains designed for a specific survival function. For example, some molecules will bind serum proteins like fibronectin or fibrinogen in one domain and have a separate function in another domain. In addition, enzymes such as those responsible for the production of ATP may be generally found on some bacterial surfaces, but when or how they are used in the life of these bacteria is currently unknown. While surface proteins are required for pathogenicity but not viability, targeting the expression of these molecules on the bacterial surface would prevent infection but not death of the organism. Given that the number of different surface proteins could be in the range of two to three dozen, each with two or three separate functional domains (with hundreds to thousands of each protein on a given organism), exemplifies the complexity that exists on the bacterial surface. Because of their number, we could not adequately describe the characteristics of all surface proteins in this chapter. However, since the streptococcal M protein was one of the first gram-positive surface protein to be completely sequenced, and perhaps one of the best studied, we will use M protein as a model for surface proteins in general, pointing out differences with other surface molecules when necessary.
Collapse
Affiliation(s)
- Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, NY 10065
| |
Collapse
|
5
|
Frost HR, Sanderson-Smith M, Walker M, Botteaux A, Smeesters PR. Group A streptococcal M-like proteins: From pathogenesis to vaccine potential. FEMS Microbiol Rev 2018; 42:193-204. [PMID: 29228173 DOI: 10.1093/femsre/fux057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
M and M-like surface proteins from group A Streptococcus (GAS) act as virulence factors and have been used in multiple vaccine candidates. While the M protein has been extensively studied, the two genetically and functionally related M-like proteins, Mrp and Enn, although present in most streptococcal strains have been relatively less characterised. We compile the current state of knowledge for these two proteins, from discovery to recent studies on function and immunogenicity, using the M protein for comparison as a prototype of this family of proteins. We focus on the known interactions between M-like proteins and host ligand proteins, and analyse the genetic data supporting these interactions. We discuss known and possible functions of M-like proteins during GAS infections, and highlight knowledge gaps where further investigation is warranted.
Collapse
Affiliation(s)
- Hannah R Frost
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, 2522, NSW, Australia
| | - Mark Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia.,Department of Pediatrics, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels 1020, Belgium.,Centre for International Child Health, University of Melbourne, Melbourne 3052, VIC, Australia
| |
Collapse
|
6
|
DebRoy S, Li X, Kalia A, Galloway-Pena J, Shah BJ, Fowler VG, Flores AR, Shelburne SA. Identification of a chimeric emm gene and novel emm pattern in currently circulating strains of emm4 Group A Streptococcus. Microb Genom 2018; 4. [PMID: 30412460 PMCID: PMC6321872 DOI: 10.1099/mgen.0.000235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Group A Streptococcus (GAS) is classified on the basis of the sequence of the gene encoding the M protein (emm) and the patterns into which emm types are grouped. We discovered a novel emm pattern in emm4 GAS, historically considered pattern E, arising from a fusion event between emm and the adjacent enn gene. We identified the emm–enn fusion event in 51 out of 52 emm4 GAS strains isolated by national surveillance in 2015. GAS isolates with an emm–enn fusion event completely replaced pattern E emm4 strains over a 4-year span in Houston (2013–2017). The novel emm–enn gene fusion and new emm pattern has potential vaccine implications.
Collapse
Affiliation(s)
- Sruti DebRoy
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiqi Li
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica Galloway-Pena
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brittany J. Shah
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Vance G. Fowler
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Anthony R. Flores
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
- *Correspondence: Samuel A. Shelburne,
| |
Collapse
|
7
|
Abstract
Proteins capable of non-immune binding of immunoglobulins G (IgG) of various mammalian species, i.e. without the involvement of the antigen-binding sites of the immunoglobulins, are widespread in bacteria. These proteins are located on the surface of bacterial cells and help them to evade the host's immune response due to protection against the action of complement and to decrease in phagocytosis. This review summarizes data on the structure of immunoglobulin-binding proteins (IBP) and their complexes with IgG. Common and distinctive structural features of IBPs of gram-positive bacteria (staphylococci, streptococci, peptostreptococci) are discussed. Conditions for IBP expression by bacteria and their functional heterogeneity are considered. Data on IBPs of gram-negative bacteria are presented.
Collapse
Affiliation(s)
- E V Sidorin
- Pacific Institute of Bioorganic Chemistry, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok, Russia.
| | | |
Collapse
|
8
|
Schmitt R, Carlsson F, Mörgelin M, Tati R, Lindahl G, Karpman D. Tissue deposits of IgA-binding streptococcal M proteins in IgA nephropathy and Henoch-Schonlein purpura. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:608-18. [PMID: 20056836 DOI: 10.2353/ajpath.2010.090428] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
IgA nephropathy (IgAN) and Henoch-Schönlein purpura (HSP) are diseases characterized by IgA deposits in the kidney and/or skin. Both may arise after upper respiratory tract infections, but the pathogenic mechanisms governing these diseases remain unclear. Patients with IgAN (n = 16) and HSP (n = 17) were included in this study aimed at examining whether IgA-binding M proteins of group A streptococci could be involved. As M proteins vary in sequence, the study focused on the IgA-binding-region (IgA-BR) of three different M proteins: M4, M22, and M60. Renal tissue from IgAN and HSP patients and skin from HSP patients were examined for deposits of streptococcal IgA-BR by immunohistochemistry and electron microscopy using specific antibodies, and a skin sample from a HSP patient was examined by mass spectrometry. IgA-BR deposits were detected in 10/16 IgAN kidneys and 7/13 HSP kidneys. Electron microscopy demonstrated deposits of IgA-BRs in the mesangial matrix and glomerular basement membrane, which colocalized with IgA. Skin samples exhibited IgA-BR deposits in 4/5 biopsies, a result confirmed by mass spectrometry in one patient. IgA-BR deposits were not detected in normal kidney and skin samples. Taken together, these results demonstrate IgA-BR from streptococcal M proteins in patient tissues. IgA-BR, would on gaining access to the circulation, encounter circulatory IgA and form a complex with IgA-Fc that could deposit in tissues and contribute to the pathogenesis of IgAN and HSP.
Collapse
Affiliation(s)
- Roland Schmitt
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
9
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
10
|
|
11
|
Courtney HS, Hasty DL, Dale JB. Anti-phagocytic mechanisms of Streptococcus pyogenes: binding of fibrinogen to M-related protein. Mol Microbiol 2006; 59:936-47. [PMID: 16420362 DOI: 10.1111/j.1365-2958.2005.04977.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A key attribute of invasive Streptococcus pyogenes is their ability to resist phagocytosis and multiply in human blood. M-related protein (Mrp) is a major anti-phagocytic factor but the mechanism whereby it helps streptococci to evade phagocytosis has not been demonstrated. We investigated phagocytosis resistance in a strain of serotype M4 by inactivating the mrp gene and also the emm, enn, sof and sfbX genes and by analysing the effect on streptococcal growth in blood and on complement deposition on the bacterial surface. Inactivation of enn4 and sfbX4 had little impact on growth in blood, but ablation of mrp4, emm4 or sof4 reduced streptococcal growth in human blood, confirming that Mrp and Emm are required for optimal resistance to phagocytosis and providing the first indication that Sof may be an anti-phagocytic factor. Moreover, antisera against Mrp4, Emm4 and Sof4 promoted the killing of S. pyogenes, but anti-SfbX serum had no effect. Growth of S. pyogenes in blood was dependent on the presence of fibrinogen and in the absence of fibrinogen there was a twofold increase in complement deposition. Inactivation of mrp4 resulted in a loss of fibrinogen-binding and caused a twofold increase in the binding of C3b that was inhibited by Mg-EGTA. Mrp contained two fibrinogen-binding sites, one of which is within a highly conserved region. These findings indicate that Mrp-fibrinogen interactions prevent surface deposition of complement via the classical pathway, thereby contributing to the ability of these streptococci to resist phagocytosis. This may be a common mechanism for evasion of phagocytosis because Mrp is expressed by approximately half of the clinical isolates of S. pyogenes.
Collapse
Affiliation(s)
- Harry S Courtney
- Veterans Affairs Medical Center, University of Tennessee Health Science Center, Memphis, TN 38104, USA.
| | | | | |
Collapse
|
12
|
Svensson MD, Sjöbring U, Luo F, Bessen DE. Roles of the plasminogen activator streptokinase and the plasminogen-associated M protein in an experimental model for streptococcal impetigo. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3933-3945. [PMID: 12480897 DOI: 10.1099/00221287-148-12-3933] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Primary infection by group A streptococci (GAS) takes place at either the throat or skin of the human host, often leading to pharyngitis or impetigo, respectively. Many GAS strains differ in their preference for throat and skin tissue sites. Previous epidemiological findings show that many of the strains displaying strong tropism for the skin have a high-affinity binding site for plasminogen, located within M protein (PAM), a prominent surface fibril. Plasminogen bound by PAM interacts with streptokinase, a plasminogen activator secreted by GAS, to yield bacterial-bound plasmin activity. In this study, PAM and streptokinase were tested for their roles in infection using an experimental model that closely mimics human impetigo. Inactivation of genes encoding either PAM or streptokinase led to a partial, but significant, loss of virulence in vivo, as measured by net growth of the bacteria and pathological alterations. The relative loss in virulence in vivo was greater for the streptokinase mutant than for the PAM mutant. However, the PAM mutant, but not the streptokinase mutant, displayed a partial loss in resistance to phagocytosis in vitro. The combined experimental and epidemiological data provide evidence that PAM and streptokinase play a key role in mediating skin-specific infection by GAS. In addition, secreted cysteine proteinase activity due to SpeB leads to degradation of streptokinase in stationary phase broth cultures. Since SpeB is also a determinant of tissue-specific GAS infection at the skin, direct interactions between these two proteolytic pathways may constitute an important pathogenic mechanism. An integrated model for superficial infection at the skin is presented.
Collapse
Affiliation(s)
| | - Ulf Sjöbring
- Department of Laboratory Medicine, Lund University, Lund, Sweden1
| | - Feng Luo
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT, USA2
| | - Debra E Bessen
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT, USA2
| |
Collapse
|
13
|
Bolken TC, Franke CA, Jones KF, Bell RH, Swanson RM, King DS, Fischetti VA, Hruby DE. Analysis of factors affecting surface expression and immunogenicity of recombinant proteins expressed by gram-positive commensal vectors. Infect Immun 2002; 70:2487-91. [PMID: 11953386 PMCID: PMC127933 DOI: 10.1128/iai.70.5.2487-2491.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several key protein structural attributes were altered in an effort to optimize expression and immunogenicity of a foreign protein (M protein from Streptococcus pyogenes) exposed on the surface of Streptococcus gordonii commensal bacterial vectors: (i) a shorter N-terminal region, (ii) the addition of a 94-amino-acid spacer, and (iii) the addition of extra C-repeat regions (CRR) from the M6 protein. A decrease in the amount of cell surface M6 was observed upon deletion of 10 or more amino acid residues at the N terminus. On the other hand, reactivity of monoclonal antibody to surface M6 increased with the addition of the spacer adjacent to the proline- and glycine-rich region, and an increase in epitope dosage was obtained by adding another CRR immediately downstream of the original CRR. The results obtained should facilitate the design of improved vaccine candidates using this antigen delivery technology.
Collapse
Affiliation(s)
- Tové C Bolken
- SIGA Technologies Inc., Corvallis, Oregon 97333, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Facklam RF, Martin DR, Lovgren M, Johnson DR, Efstratiou A, Thompson TA, Gowan S, Kriz P, Tyrrell GJ, Kaplan E, Beall B. Extension of the Lancefield classification for group A streptococci by addition of 22 new M protein gene sequence types from clinical isolates: emm103 to emm124. Clin Infect Dis 2002; 34:28-38. [PMID: 11731942 DOI: 10.1086/324621] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2001] [Revised: 07/24/2001] [Indexed: 11/03/2022] Open
Abstract
Classic M protein serotyping has been invaluable during the past 60 years for the determination of relationships between different group A streptococci (GAS) strains and the varied clinical manifestations inflicted by these organisms worldwide. Nonetheless, during the past 20 years, the difficulties of continued expansion of the serology-based Lancefield classification scheme for GAS have become increasingly apparent. By use of a less demanding sequence-based methodology that closely adheres to previously established strain criteria while being predictive of known M protein serotypes, we recently added types emm94-emm102 to the Lancefield scheme. Continued expansion by the addition of types emm103 to emm124 are now proposed. As with types emm94-emm102, each of these new emm types was represented by multiple independent isolates recovered from serious disease manifestations, each was M protein nontypeable with all typing sera stocks available to international GAS reference laboratories, and each demonstrated antiphagocytic properties in vitro by multiplying in normal human blood.
Collapse
Affiliation(s)
- Richard F Facklam
- Centers for Disease Control and Prevention, World Health Organization (WHO) Collaborating Center for Streptococci, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Morfeldt E, Berggård K, Persson J, Drakenberg T, Johnsson E, Lindahl E, Linse S, Lindahl G. Isolated hypervariable regions derived from streptococcal M proteins specifically bind human C4b-binding protein: implications for antigenic variation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3870-7. [PMID: 11564804 DOI: 10.4049/jimmunol.167.7.3870] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antigenic variation in microbial surface proteins represents an apparent paradox, because the variable region must retain an important function, while exhibiting extensive immunological variability. We studied this problem for a group of streptococcal M proteins in which the approximately 50-residue hypervariable regions (HVRs) show essentially no residue identity but nevertheless bind the same ligand, the human complement regulator C4b-binding protein (C4BP). Synthetic peptides derived from different HVRs were found to retain the ability to bind C4BP, implying that the HVR corresponds to a distinct ligand-binding domain that can be studied in isolated form. This finding allowed direct characterization of the ligand-binding properties of isolated HVRs and permitted comparisons between different HVRs in the absence of conserved parts of the M proteins. Affinity chromatography of human serum on immobilized peptides showed that they bound C4BP with high specificity and inhibition experiments indicated that different peptides bound to the same site in C4BP. Different C4BP-binding peptides did not exhibit any immunological cross-reactivity, but structural analysis suggested that they have similar folds. These data show that the HVR of streptococcal M protein can exhibit extreme variability in sequence and immunological properties while retaining a highly specific ligand-binding function.
Collapse
Affiliation(s)
- E Morfeldt
- Department of Medical Microbiology, Dermatology, and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Berggård K, Johnsson E, Morfeldt E, Persson J, Stålhammar-Carlemalm M, Lindahl G. Binding of human C4BP to the hypervariable region of M protein: a molecular mechanism of phagocytosis resistance in Streptococcus pyogenes. Mol Microbiol 2001; 42:539-51. [PMID: 11703674 DOI: 10.1046/j.1365-2958.2001.02664.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The amino-terminal hypervariable region (HVR) of streptococcal M protein is required for the ability of this virulence factor to confer phagocytosis resistance. The function of the HVR has remained unknown, but the finding that many HVRs with extremely divergent sequences bind the human complement regulator C4b-binding protein (C4BP) has suggested that this ligand may play a role in phagocytosis resistance. We used the M22 system to study the function of bound C4BP and provide several lines of evidence that C4BP indeed contributes to phagocytosis resistance. First, the ability of anti-HVR antibodies to cause opsonization correlated with their ability to inhibit binding of C4BP. Secondly, a short deletion in the HVR eliminated C4BP binding and also reduced the ability of M22 to confer phagocytosis resistance. Thirdly, the addition of an excess of pure C4BP to a phagocytosis system almost completely blocked the effect of opsonizing anti-HVR antibodies. Together, our data indicate that binding of C4BP to the HVR of M22 plays an important role in phagocytosis resistance, but other properties of M22 also contribute. This study provides the first molecular insight into the mechanisms by which the HVR of an M protein confers phagocytosis resistance.
Collapse
Affiliation(s)
- K Berggård
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Sölvegatan 23, SE-223 62 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Limbago B, McIver KS, Penumalli V, Weinrick B, Scott JR. Restoration of Mga function to a Streptococcus pyogenes strain (M Type 50) that is virulent in mice. Infect Immun 2001; 69:1215-20. [PMID: 11160026 PMCID: PMC98010 DOI: 10.1128/iai.69.2.1215-1220.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mga protein in B514Sm, a Streptococcus pyogenes strain isolated as a mouse pathogen, contains amino acid substitutions at conserved sites that render the protein defective. Replacement of mga50 with the functional homolog mga4.1 restored full expression of Mga-regulated proteins. Restoration of Mga function did not affect fibrinogen binding, nor did it affect virulence in several mouse models of group A streptococcus infection.
Collapse
Affiliation(s)
- B Limbago
- Department of Microbiology and Immunology, Emory University Health Sciences Center, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
18
|
Frick IM, Mörgelin M, Björck L. Virulent aggregates of Streptococcus pyogenes are generated by homophilic protein-protein interactions. Mol Microbiol 2000; 37:1232-47. [PMID: 10972839 DOI: 10.1046/j.1365-2958.2000.02084.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many strains of the important human pathogen Streptococcus pyogenes form aggregates when grown in vitro in liquid medium. The present studies demonstrate that this property is crucial for the adherence, the resistance to phagocytosis and the virulence of S. pyogenes. A conserved sequence of 19 amino acid residues (designated AHP) was identified in surface proteins of common S. pyogenes serotypes. This sequence was found to promote bacterial aggregation through homophilic protein-protein interactions between AHP-containing surface proteins of neighbouring bacteria. A synthetic AHP peptide inhibited S. pyogenes aggregation, reduced the survival of S. pyogenes in human blood and attenuated its virulence in mice. In contrast, mutant bacteria devoid of surface proteins containing AHP-related sequences did not aggregate or adhere to epithelial cells. These bacteria are also rapidly killed in human blood and show reduced virulence in mice, underlining the pathogenic significance of the AHP sequence and S. pyogenes aggregation.
Collapse
Affiliation(s)
- I M Frick
- Department of Cell and Molecular Biology, Sections for Molecular Pathogenesis and Connective Tissue Biology, Lund University, PO Box 94, S-221 00 Lund, Sweden.
| | | | | |
Collapse
|
19
|
Abstract
Group A streptococci are model extracellular gram-positive pathogens responsible for pharyngitis, impetigo, rheumatic fever, and acute glomerulonephritis. A resurgence of invasive streptococcal diseases and rheumatic fever has appeared in outbreaks over the past 10 years, with a predominant M1 serotype as well as others identified with the outbreaks. emm (M protein) gene sequencing has changed serotyping, and new virulence genes and new virulence regulatory networks have been defined. The emm gene superfamily has expanded to include antiphagocytic molecules and immunoglobulin-binding proteins with common structural features. At least nine superantigens have been characterized, all of which may contribute to toxic streptococcal syndrome. An emerging theme is the dichotomy between skin and throat strains in their epidemiology and genetic makeup. Eleven adhesins have been reported, and surface plasmin-binding proteins have been defined. The strong resistance of the group A streptococcus to phagocytosis is related to factor H and fibrinogen binding by M protein and to disarming complement component C5a by the C5a peptidase. Molecular mimicry appears to play a role in autoimmune mechanisms involved in rheumatic fever, while nephritis strain-associated proteins may lead to immune-mediated acute glomerulonephritis. Vaccine strategies have focused on recombinant M protein and C5a peptidase vaccines, and mucosal vaccine delivery systems are under investigation.
Collapse
Affiliation(s)
- M W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
20
|
Nordstrand A, Norgren M, Holm SE. Pathogenic mechanism of acute post-streptococcal glomerulonephritis. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2000; 31:523-37. [PMID: 10680980 DOI: 10.1080/00365549950164382] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Considerable knowledge has been accumulated regarding the characteristics of acute post-streptococcal glomerulonephritis (APSGN), and many attempts have been made to identify a streptococcal factor or factors responsible for triggering this disease. However, the pathogenic mechanism behind APSGN remains largely unknown. As glomerular deposition of C3 is generally demonstrated before that of IgG in the disease process, it is likely that the inflammatory response is initiated by renal deposition of a streptococcal product, rather than by deposition of antibodies or pre-formed immune complexes. During recent years, a number of streptococcal products have been suggested to be involved in the pathogenic process. In this review, possible roles of these factors are discussed in the context of the clinical and renal findings most often demonstrated in patients with APSGN. Streptokinase was observed to be required in order to induce signs of APSGN in mice, and a number of findings suggest that the initiation of the disease may occur as a result of renal binding by certain nephritis-associated variants of this protein. However, additional factors may be required for the development of the disease.
Collapse
Affiliation(s)
- A Nordstrand
- Department of Clinical Bacteriology, Umeå university, Sweden
| | | | | |
Collapse
|
21
|
Raeder R, Harokopakis E, Hollingshead S, Boyle MD. Absence of SpeB production in virulent large capsular forms of group A streptococcal strain 64. Infect Immun 2000; 68:744-51. [PMID: 10639442 PMCID: PMC97201 DOI: 10.1128/iai.68.2.744-751.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Passage in human blood of group A streptococcal isolate 64p was previously shown to result in the enhanced expression of M and M-related proteins. Similarly, when this isolate was injected into mice via an air sac model for skin infection, organisms recovered from the spleens showed both increased expression of M and M-related proteins and increased skin-invasive potential. We show that these phenotypic changes were not solely the result of increased transcription of the mRNAs encoding the M and M-related gene products. Rather, the altered expression was associated with posttranslational modifications of the M and M-related proteins that occur in this strain, based on the presence or absence of another virulence protein, the streptococcal cysteine protease SpeB. The phenotypic variability also correlates with colony size variation. Large colonies selected by both regimens expressed more hyaluronic acid, which may explain differences in colony morphology. All large-colony variants were SpeB negative and expressed three distinct immunoglobulin G (IgG)-binding proteins in the M and M-related protein family. Small-colony variants were SpeB positive and bound little IgG through their M and M-related proteins because these proteins, although made, were degraded or altered in profile by the SpeB protease. We conclude that passage in either human blood or a mouse selects for a stable, phase-varied strain of group A streptococci which is altered in many virulence properties.
Collapse
Affiliation(s)
- R Raeder
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43613-5806, USA
| | | | | | | |
Collapse
|
22
|
Johnsson E, Areschoug T, Mestecky J, Lindahl G. An IgA-binding peptide derived from a streptococcal surface protein. J Biol Chem 1999; 274:14521-4. [PMID: 10329638 DOI: 10.1074/jbc.274.21.14521] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surface proteins that bind to the Fc part of human IgA are expressed by many strains of Streptococcus pyogenes, a major human pathogen. Studies of these proteins have been complicated by their size and by their ability to bind human plasma proteins other than IgA. Here, we describe a synthetic 50-residue peptide, derived from streptococcal protein Sir22, that binds human IgA but not any of the other plasma proteins known to bind to Sir22. The peptide binds serum IgA and secretory IgA and binds IgA of both subclasses. Evidence is presented that the peptide folds correctly both in solution and when it is immobilized and that it readily renatures after denaturation. Together, these data indicate that the peptide corresponds to a protein domain that binds IgA with high specificity. This is the first report of an IgA-binding domain that retains its properties in isolated form.
Collapse
Affiliation(s)
- E Johnsson
- Department of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | | | | | | |
Collapse
|
23
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 925] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
24
|
Gardiner DL, Goodfellow AM, Martin DR, Sriprakash KS. Group A streptococcal Vir types are M-protein gene (emm) sequence type specific. J Clin Microbiol 1998; 36:902-7. [PMID: 9542906 PMCID: PMC104658 DOI: 10.1128/jcm.36.4.902-907.1998] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The M-protein genes (emm genes) of 103 separate impetiginous Streptococcus pyogenes isolates were sequenced and the sequence types were compared to the types obtained by Vir typing. Vir typing is based on restriction fragment length polymorphism (RFLP) analysis of a 4- to 7-kb pathogenicity island encoding emm and other virulence genes. By using both HaeIII and HinfI to generate RFLP profiles, complete concordance between Vir type and emm sequence type was found. Comparison of the emm sequences with those in GenBank revealed new sequence types sharing less than 90% identity with known types. Diversity in the emm sequence was generated by corrected frameshift mutations, point mutations, and small in-frame mutations.
Collapse
Affiliation(s)
- D L Gardiner
- Menzies School of Health Research, Darwin, Australia.
| | | | | | | |
Collapse
|
25
|
Thern A, Wästfelt M, Lindahl G. Expression of Two Different Antiphagocytic M Proteins by Streptococcus pyogenes of the OF+ Lineage. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.2.860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
All clinical isolates of Streptococcus pyogenes (group A streptococcus) share the ability to resist phagocytosis and grow in human blood. In many strains, this property is due to the expression of a single antiphagocytic M protein, while other strains express more than one M-like molecule, of which the role in phagocytosis resistance is unclear. In particular, all S. pyogenes strains of the OF+ lineage, representing approximately half of all isolates, express two M-like proteins, Mrp and Emm, which are immunologically unrelated. These two proteins bind different ligands that have been implicated in phagocytosis resistance: Mrp binds fibrinogen and Emm binds the complement inhibitor C4BP. Using a clinical isolate of the common serotype 22, we created mutants affected in the mrp and emm genes and characterized them in phagocytosis experiments and by electron microscopy. A double mutant mrp−emm− showed strongly decreased resistance to phagocytosis, while mrp− and emm− single mutants grew well in blood. However, optimal growth required the expression of both Mrp and Emm. Experiments in which coagulation was inhibited using the specific thrombin inhibitor, hirudin, rather than heparin, indicated that Emm is more important than Mrp for resistance to phagocytosis. Tuftlike surface structures typical for S. pyogenes were still present in the mrp−emm− double mutant, but not in a mutant affected in the regulatory gene mga, indicating that the presence of these surface structures is not directly correlated to phagocytosis resistance. Our data imply that OF+ strains of S. pyogenes express two antiphagocytic M proteins with different ligand-binding properties.
Collapse
Affiliation(s)
- Anette Thern
- Department of Medical Microbiology, Lund University, Lund, Sweden
| | - Maria Wästfelt
- Department of Medical Microbiology, Lund University, Lund, Sweden
| | - Gunnar Lindahl
- Department of Medical Microbiology, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Bessen DE, Fiorentino TR, Hollingshead SK. Molecular markers for throat and skin isolates of group A streptococci. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 418:537-43. [PMID: 9331709 DOI: 10.1007/978-1-4899-1825-3_125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In summary, the emm chromosomal patterns distinguish between the two principal tissue site reservoirs of group A streptococci--the nasopharyngeal mucosa and impetigo lesion. Strains derived from normally sterile tissue sites are probably transmitted to new hosts by respiratory droplets, at least in the Connecticut population. The speA gene provides an example of how genetic exchange between different strains of group A streptococci may be limited to a single tissue site or to a subset of emm chromosomal patterns.
Collapse
Affiliation(s)
- D E Bessen
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
27
|
Bessen DE, Izzo MW, McCabe EJ, Sotir CM. Two-domain motif for IgG-binding activity by group A streptococcal emm gene products. Gene 1997; 196:75-82. [PMID: 9322743 DOI: 10.1016/s0378-1119(97)00201-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A biological role for the non-immune binding of human IgG by group A streptococci is evidenced by its strong association with a subpopulation of strains giving rise to tissue-specific infection. IgG-binding activity lies within many of the M and M-like surface proteins (encoded by emm genes), and several structurally distinct IgG-binding sites are known to exist. In this report, two adjacent IgG-binding domains, differing in their specificity for human IgG subclasses, are localized within the M-like protein, protein H. The putative coding regions for the two IgG-binding domains were mapped for 82 epidemiologically unrelated strains. Both coding regions are associated with phylogenetically distant emm genes, supporting a role for horizontal transfer and intergenomic recombination in the evolution of emm genes. In most instances, the two coding regions are tightly linked, suggesting that there exist strong selective pressures to maintain a two-domain binding motif. Both coding regions are found among all strains bearing emm gene markers associated with impetigo lesions as the principal tissue reservoir, but are absent from most strains that exhibit markers for a predominant nasopharyngeal reservoir. The data support the hypothesis that the pathogenic potential of an isolate is dictated, at least in part, by its unique array of multifunctional emm gene products.
Collapse
Affiliation(s)
- D E Bessen
- Yale University School of Medicine, Department of Epidemiology and Public Health (Microbiology Section), New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
28
|
Mori K, Ito Y, Kamikawaji N, Sasazuki T. Elevated IgG titer against the C region of streptococcal M protein and its immunodeterminants in patients with poststreptococcal acute glomerulonephritis. J Pediatr 1997; 131:293-9. [PMID: 9290619 DOI: 10.1016/s0022-3476(97)70169-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To determine the immune responses to the streptococcal M protein in patients with poststreptococcal acute glomerulonephritis (PSAGN). STUDY DESIGN The gene coding type 12 M protein of group A streptococcus (M12), a known PSAGN-associated serotype, was cloned and expressed in Escherichia coli to investigate the specific immune responses to the M12 protein in patients with PSAGN. Recombinant M proteins for the variable N-terminal half (AB region) and conserved C-terminal half (C region) were produced separately. IgG titers against each region were measured by enzyme-linked immunosorbent assay in patients with PSAGN (n = 51), uncomplicated streptococcal pharyngitis (n = 26), chronic glomerulonephritis (n = 10), and in healthy control subjects (n = 51). Immunodominant domains within the M protein in PSAGN were further investigated by use of overlapping synthetic peptides. RESULTS IgG titers against the C region, but not the AB region, were markedly higher in the PSAGN group than in other groups (p < 0.01), and these titers were maintained for at least several months after antistreptolysin O or antistreptokinase levels had returned to normal. Studies with overlapping synthetic peptides demonstrated that increased IgG reactivity was observed against the C repeat blocks. CONCLUSION IgG titers against the C region are significantly elevated in patients with PSAGN, and it may be a diagnostic marker for PSAGN.
Collapse
Affiliation(s)
- K Mori
- Department of Pediatrics, Kouchi Red-Cross Hospital, Japan
| | | | | | | |
Collapse
|
29
|
Jenkinson HF, Lamont RJ. Streptococcal adhesion and colonization. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1997; 8:175-200. [PMID: 9167092 DOI: 10.1177/10454411970080020601] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Streptococci express arrays of adhesins on their cell surfaces that facilitate adherence to substrates present in their natural environment within the mammalian host. A consequence of such promiscuous binding ability is that streptococcal cells may adhere simultaneously to a spectrum of substrates, including salivary glycoproteins, extracellular matrix and serum components, host cells, and other microbial cells. The multiplicity of streptococcal adherence interactions accounts, at least in part, for their success in colonizing the oral and epithelial surfaces of humans. Adhesion facilitates colonization and may be a precursor to tissue invasion and immune modulation, events that presage the development of disease. Many of the streptococcal adhesins and virulence-related factors are cell-wall-associated proteins containing repeated sequence blocks of amino acids. Linear sequences, both within the blocks and within non-repetitive regions of the proteins, have been implicated in substrate binding. Sequences and functions of these proteins among the streptococci have become assorted through gene duplication and horizontal transfer between bacterial populations. Several adhesins identified and characterized through in vitro binding assays have been analyzed for in vivo expression and function by means of animal models used for colonization and virulence. Information on the molecular structure of adhesins as related to their in vivo function will allow for the rational design of novel acellular vaccines, recombinant antibodies, and adhesion agonists for the future control or prevention of streptococcal colonization and streptococcal diseases.
Collapse
Affiliation(s)
- H F Jenkinson
- Department of Oral Biology and Oral Pathology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
30
|
|
31
|
Abstract
One of the major obstacles to the development of group A streptococcal M protein vaccines is the multiplicity of M serotypes expressed by these organisms. In this study, we have constructed a recombinant, hybrid M protein that contains type-specific aminoterminal fragments of eight different M proteins. We show that the purified hybrid recombinant protein is immunogenic in rabbits and evokes antibodies that react with native M proteins from the respective streptococcal serotypes. In addition, the immune sera evoked by the octavalent protein opsonized six of the eight serotypes of streptococci, indicating that the majority of the M protein fragments contained protective epitopes that retained their native conformations in the hybrid protein. None of the antisera raised against the octavalent protein crossreacted with human heart tissue. These studies indicate that multivalent, hybrid M proteins may be used to elicit broadly protective immune responses against multiple serotypes of group A streptococci.
Collapse
Affiliation(s)
- J B Dale
- VA Medical Center (11A), Memphis, TN 38104, USA
| | | | | | | |
Collapse
|
32
|
Yung DL, Hollingshead SK. DNA sequencing and gene expression of the emm gene cluster in an M50 group A streptococcus strain virulent for mice. Infect Immun 1996; 64:2193-200. [PMID: 8675326 PMCID: PMC174055 DOI: 10.1128/iai.64.6.2193-2200.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The strain B514, an M serotype 50 strain, is capable of causing a natural upper respiratory infection leading to death in mice, as reported by Hook et al. in 1960 (E. W. Hook, R. R. Wagner, and R. C. Lancefield, Am. J. Hyg. 72:111-119, 1960). Thus, this strain was of interest for use in developing an animal model for group A streptococcal colonization and disease. The emm gene cluster for this strain was examined by PCR mapping and found to contain three emm family genes and cluster pattern 5. PCR-generated fragments corresponding to the SF4 (mrp50), SF2 (emmL50), and SF3 (enn50) genes were cloned and the entire gene cluster was sequenced. The gene cluster has greater than 97% DNA identity to previously sequenced regions of the gene cluster of the M2 strain T2/44/RB4 if two small divergent regions that encode the mature amino terminus of the SF-2 and SF-3 gene products are not included. If expressed, the genes encode proteins which bind human immunoglobulin G (Mrp50 and EmmL50) or immunoglobulin A (Enn50). However, in isolates taken directly after passage in mice, the surface proteins arising from these genes were barely detectable. The transcription of each gene in the B514 strain was investigated by Northern (RNA) hybridization, and mRNA transcripts were detected and quantitated relative to those of the recA gene, a housekeeping gene. Transcription of all three emm family genes was found to be over 30-fold attenuated relative to transcription of the same genes in strain T2/44/RB4. This suggests that the positive regulator, Mga, either is not expressed in this strain or has a different requirement for activation; it also suggests that the capsule may be sufficient to inhibit phagocytosis under these circumstances.
Collapse
Affiliation(s)
- D L Yung
- Department of Microbiology, University of Alabama at Birmingham, USA
| | | |
Collapse
|
33
|
Pack TD, Podbielski A, Boyle MD. Identification of an amino acid signature sequence predictive of protein G-inhibitable IgG3-binding activity in group-A streptococcal IgG-binding proteins. Gene 1996; 171:65-70. [PMID: 8675032 DOI: 10.1016/0378-1119(96)00102-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sequence comparison of six known group-A streptococcal IgG-binding proteins, sharing the common property of protein G-inhibitable IgG3-binding-activity, identified a highly conserved 35-amino-acid (aa) sequence (74-100% similarity) within an EQ-rich central conserved core region of each protein. A search of aa sequence databases identified four additional proteins with > 50% similarity to this consensus sequence. All of these proteins demonstrated protein G-inhibitable IgG3-binding activity. Taken together, these results identify a signature sequence that predicts the presence of a protein G-inhibitable IgG3-binding domain(s) in group-A streptococcal IgG-binding proteins.
Collapse
Affiliation(s)
- T D Pack
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008, USA
| | | | | |
Collapse
|
34
|
Pack TD, Boyle MD. Characterization of a type II'o group A streptococcal immunoglobulin-binding protein. Mol Immunol 1995; 32:1235-43. [PMID: 8559148 DOI: 10.1016/0161-5890(95)00074-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The opacity factor positive M type 2 group A streptococcal isolate, A207, expresses a unique functional type II'o IgG-binding protein which reacts with all four human IgG subclasses and rabbit IgG. In order to determine the gene product or products responsible for this activity, three genes of the vir regulon from this isolate were cloned, expressed and analysed. The fcr A2 gene coded for a protein binding hyman IgG1, IgG2 and IgG4 but not IgG3. The enn2 gene coded for a protein reacting exclusively with human IgA, while the emmL2 gene product bound IgG1, IgG2, IgG3 and IgG4 as well as rabbit but not horse or pig IgG. The IgG3-binding activity of the EmmL2 protein was functionally indistinguishable from the Form 1 IgG3-binding activity present in heat extracts of group A isolate A207.
Collapse
Affiliation(s)
- T D Pack
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008, USA
| | | |
Collapse
|
35
|
McIver KS, Heath AS, Green BD, Scott JR. Specific binding of the activator Mga to promoter sequences of the emm and scpA genes in the group A streptococcus. J Bacteriol 1995; 177:6619-24. [PMID: 7592441 PMCID: PMC177516 DOI: 10.1128/jb.177.22.6619-6624.1995] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcription of the surface-associated virulence factors of the group A streptococcus (GAS) Streptococcus pyogenes, M protein (emm) and the C5a peptidase (scpA), is activated by a protein called Mga (formerly Mry or VirR). To determine whether Mga binds directly to the promoters of the genes it regulates, a protein resulting from the fusion of Mga to the C-terminal end of maltose-binding protein was purified from Escherichia coli. Specific binding to the promoter regions of the scpA and emm alleles of the type M6 GAS strain JRS4 was demonstrated by electrophoresis of the DNA-protein complex. Competition studies showed that the region upstream of scpA bound MBP-Mga with a slightly higher affinity than did the region upstream of emm. DNase I protection experiments identified a single 45-bp binding site immediately upstream of and overlapping the -35 region of both promoters. Sequences homologous to the protected regions were found in the promoters of many emm, scp, and emm-like genes from strains of different serotypes of GAS, and a consensus Mga binding site was deduced.
Collapse
Affiliation(s)
- K S McIver
- Department of Microbiology and Immunology, Rollins Research Center, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
36
|
Raeder R, Boyle MD. Analysis of immunoglobulin G-binding-protein expression by invasive isolates of Streptococcus pyogenes. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1995; 2:484-6. [PMID: 7583929 PMCID: PMC170184 DOI: 10.1128/cdli.2.4.484-486.1995] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Invasive group A streptococcal isolates collected as part of a Centers for Disease Control and Prevention surveillance study were analyzed for expression of immunoglobulin G (IgG)-binding proteins. Two IgG-binding phenotypes of group A isolates of the M1 serotype were identified. The first group expressed a surface protein that bound all four human IgG subclasses (type IIo) and was recognized by rabbit anti-serotype M1-specific antiserum but not by normal rabbit serum. The second group expressed an IgG-binding protein that was also recognized by the anti-serotype M1 antiserum but demonstrated significant nonimmune reactivity only with human IgG3 (type IIb). Analysis of extracts of the isolates for reactivity with human IgA, fibrinogen, and albumin was also performed. The importance of the binding of human plasma proteins to pathogenic group A streptococci remains to be established.
Collapse
Affiliation(s)
- R Raeder
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008, USA
| | | |
Collapse
|
37
|
Boyle MD, Weber-Heynemann J, Raeder R, Podbielski A. Characterization of a gene coding for a type IIo bacterial IgG-binding protein. Mol Immunol 1995; 32:669-78. [PMID: 7643859 DOI: 10.1016/0161-5890(95)00022-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two antigenic classes of non-immune IgG-binding proteins can be expressed by group A streptococci. One antigenic group of proteins is recognized by an antibody prepared against the product of a cloned fcrA gene (anti-FcRA). In this study, the immunogen used to prepare the antibody that defines the second antigenic class was shown to be the product of the emm-like (emmL) gene of M serotype 55 group A isolate, A928. The emmL55 gene expressed in E. coli produced an M(r) approximately 58,000 molecule which bound human IgG1, IgG2, IgG3 and IgG4, as well as horse, rabbit and pig IgG in a non-immune fashion. These properties are characteristic of the previously described type IIo IgG-binding protein isolated from this strain. In addition, the recombinant protein was reactive with human serum albumin and fibrinogen. The emmL 55 gene sequence was analysed and found to have the organization and sequence characteristics of a typical class I emm-like gene.
Collapse
Affiliation(s)
- M D Boyle
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008, USA
| | | | | | | |
Collapse
|
38
|
Berge A, Björck L. Streptococcal cysteine proteinase releases biologically active fragments of streptococcal surface proteins. J Biol Chem 1995; 270:9862-7. [PMID: 7730368 DOI: 10.1074/jbc.270.17.9862] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Streptococcus pyogenes are important pathogenic bacteria which produce an extracellular cysteine proteinase contributing to their virulence and pathogenicity. S. pyogenes also express surface molecules, M proteins, that are major virulence determinants due to their antiphagocytic property. In the present work live S. pyogenes bacteria of the M1 serotype were incubated with purified cysteine proteinase. Several peptides were solubilized, and analysis of their protein-binding properties and amino acid sequences revealed two internal fibrinogen-binding fragments of M1 protein (17 and 21 kDa, respectively), and a 36-kDa IgG-binding NH2-terminal fragment of protein H, an IgGFc-binding surface molecule. M protein also plays a role in streptococcal adherence, and removal of this and other surface proteins could promote bacterial dissemination, whereas the generation of soluble complexes between immunoglobulins and immunoglobulin-binding streptococcal surface proteins could be an etiological factor in the development of glomerulonephritis and rheumatic fever. Thus, in these serious complications to S. pyogenes infections immune complexes are found in affected organs. The cysteine proteinase also solubilized a 116-kDa internal fragment of C5a peptidase, another streptococcal surface protein. Activation of the complement system generates C5a, a peptide stimulating leukocyte chemotaxis. C5a-mediated granulocyte migration was blocked by the 116-kDa fragment. This mechanism, by which phagocytes could be prevented from reaching the site of infection, may also contribute to the pathogenicity and virulence of S. pyogenes.
Collapse
Affiliation(s)
- A Berge
- Department of Cell and Molecular Biology, Lund University, Sweden
| | | |
Collapse
|
39
|
Timoney JF, Walker J, Zhou M, Ding J. Cloning and sequence analysis of a protective M-like protein gene from Streptococcus equi subsp. zooepidemicus. Infect Immun 1995; 63:1440-5. [PMID: 7890407 PMCID: PMC173172 DOI: 10.1128/iai.63.4.1440-1445.1995] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Streptococcus equi subsp. zooepidemicus, a Lancefield group C streptococcus, is a frequently isolated opportunist pathogen from a variety of animal hosts, including the horse. Previous studies have indicated that equine strains carry antigens with characteristics of the antiphagocytic M proteins on the Lancefield groups A and G streptococci. We have cloned a protective M-like protein gene (SzPW60) of an equine strain of S. equi subsp. zooepidemicus W60 and determined its sequence. This gene encodes a protein with a molecular weight of 40,123 which protects mice against subsp. zooepidemicus but not subsp. equi, stimulates antibodies which opsonize subsp. zooepidemicus but not equi, and reacts with antiserum to the protein of the parent strain. The predicted amino acid structure shows significant homology with the carboxy termini of groups A and G M proteins but no other homology. The M-like protein, although showing an extensive region of alpha helix, lacks the A, B, and C repeats found in group A M proteins and has a shorter signal sequence. A proline-rich region upstream from the LPSTGE motif contains 20 repeats of the tetrapeptide PEPK. The presence of this repeat region may account for the slow migration of the M-like protein in sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- J F Timoney
- Gluck Equine Research Center, University of Kentucky, Lexington 40546-0099
| | | | | | | |
Collapse
|
40
|
Whatmore AM, Kapur V, Musser JM, Kehoe MA. Molecular population genetic analysis of the enn subdivision of group A streptococcal emm-like genes: horizontal gene transfer and restricted variation among enn genes. Mol Microbiol 1995; 15:1039-48. [PMID: 7623660 DOI: 10.1111/j.1365-2958.1995.tb02279.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The group A streptococcal emm-like genes, which encode the cell-surface M and M-like proteins, are divided into distinct mrp, emm and enn subdivisions and are clustered together in a region of the chromosome called the vir regulon. In order to understand the mechanisms involved in the evolution of emm-like genes, a 180 bp fragment of the 5' variable region of the enn gene was characterized in 31 strains for which emm sequences and multilocus enzyme electrophoretic profiles have been previously determined. The results demonstrate that nucleotide polymorphisms at the enn locus are generated predominantly by point mutations and short deletions or insertions, and that variation among enn and emm genes has arisen by similar mechanisms. However, diversity at the enn locus is restricted in comparison to the emm locus. Moreover, there is strong evidence for intragenic recombination at the enn locus and the pattern of distribution of emm and enn alleles among strains suggests that these genes may be independently acquired by horizontal transfer and recombination from distinct donor strains, thereby generating a mosaic structure for the vir regulon. The results add to a growing body of evidence that horizontal gene transfer has played a major role in the evolution of Streptococcus pyogenes vir regulons.
Collapse
Affiliation(s)
- A M Whatmore
- Department of Microbiology, University of Newcastle upon Tyne, Medical School, UK
| | | | | | | |
Collapse
|
41
|
Schnitzler N, Podbielski A, Baumgarten G, Mignon M, Kaufhold A. M or M-like protein gene polymorphisms in human group G streptococci. J Clin Microbiol 1995; 33:356-63. [PMID: 7714192 PMCID: PMC227948 DOI: 10.1128/jcm.33.2.356-363.1995] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many group G streptococci (GGS) isolated from infected humans (but not from animal sources) express M or M-like proteins with biological, immunochemical, and genetic features similar to those of group A streptococci (GAS). To further elucidate the recently proposed M-like protein gene (emmL gene) polymorphisms in GGS, Southern blots of genomic DNAs from 38 epidemiologically unrelated GGS strains isolated from human specimens and 12 GGS strains recovered from animal sources were hybridized with oligonucleotide probes designed to specifically detect GAS M class I and M class II M protein (emm) genes. All human-associated GGS strains showed DNA homology to the GAS M class I emm gene probe, whereas no hybridization was found with DNA from any of the animal-associated strains. The emmL genes from all human isolates were amplified by PCR, and the complete sequence of the emmL gene of the Rebecca Lancefield grouping strain D166B was determined. Again, this gene exhibited the structural features typical for emm genes of M class I GAS. The 5' regions of the PCR-amplified emmL genes of the remaining 37 human GGS strains were sequenced. This region showed a sequence diversity similar to that known for GAS emm genes. When strains whose N-terminal emmL gene sequences showed a homology of > 95% were defined as belonging to one genetic type, 30 strains were segregated into six distinct genetic types, whereas the remaining 8 strains each exhibited a unique emmL gene sequence. A high degree of homology between the N-terminal emmL gene segments of six GGS strains and the corresponding regions of either the emm12 or the emm57 gene of GAS was found, suggesting a horizontal gene transfer between strains of these species of beta-hemolytic streptococci. Besides a further understanding of the evolution of GGS emmL genes, the observed emmL gene polymorphisms in GGS could provide the basis for a molecular subspecies delineation of strains and offers the potential of typing GGS for epidemiological purposes.
Collapse
Affiliation(s)
- N Schnitzler
- Institute of Medical Microbiology, Technical University RWTH Aachen, Germany
| | | | | | | | | |
Collapse
|
42
|
Rakonjac JV, Robbins JC, Fischetti VA. DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect Immun 1995; 63:622-31. [PMID: 7822031 PMCID: PMC173041 DOI: 10.1128/iai.63.2.622-631.1995] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The serum opacity factor (SOF) is a group A streptococcal protein that induces opacity of mammalian serum. The serum opacity factor 22 gene (sof22) from an M type 22 strain was cloned from an EMBL4 library by screening for plaques exhibiting serum opacity activity. DNA sequencing yielded an open reading frame of 3,075 bp. Its deduced amino acid sequence predicts a protein of 1,025 residues with a molecular weight of 112,735, a size that approximates that of the SOF22 protein isolated from both the original streptococcal strain and Escherichia coli harboring the cloned sof22 gene. The molecule is composed of three domains: an N-terminal domain responsible for the opacity reaction (opacity domain), a repeat domain with fibronectin-binding (Fn-binding) activity, and a C-terminal cell attachment domain. The C-terminal end of SOF22 is characterized by a hexameric LPXTGX motif, an adjacent hydrophobic region, and a charged C terminus, which are the hallmarks of cell-bound surface proteins found on nearly all gram-positive bacteria. Immediately upstream of this cell anchor region, SOF22 contains four tandem repeat sequence blocks, flanked by prolinerich segments. The repeats share up to 50% identity with a repeated motif found in other group A streptococcal Fn-binding proteins and exhibit Fn-binding activity, as shown by subcloning experiments. According to deletion analysis, the opacity domain is confined to the region N terminal to the repeat segment. Thus, SOF22 is unique among the known Fn-binding proteins from gram-positive bacteria in containing an independent module with a defined function in its N-terminal portion. Southern blot analysis with a probe from this N-terminal region indicates that the opacity domain of SOF varies extensively among different SOF-producing M types.
Collapse
Affiliation(s)
- J V Rakonjac
- Laboratory of Bacterial pathogenesis and Immunology, Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|
43
|
Husmann LK, Scott JR, Lindahl G, Stenberg L. Expression of the Arp protein, a member of the M protein family, is not sufficient to inhibit phagocytosis of Streptococcus pyogenes. Infect Immun 1995; 63:345-8. [PMID: 7806375 PMCID: PMC172998 DOI: 10.1128/iai.63.1.345-348.1995] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Many Streptococcus pyogenes immunoglobulin-binding proteins have structural similarities to the antiphagocytic M protein, including the well-known C repeats. One of these molecules is the immunoglobulin A-binding protein Arp, which is expressed by a serotype 4 strain for which no antiphagocytic M protein has yet been described. We expressed Arp4 in an S. pyogenes strain from which the structural gene for the M protein has been deleted and found that Arp4 is not sufficient to inhibit phagocytosis.
Collapse
Affiliation(s)
- L K Husmann
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322
| | | | | | | |
Collapse
|
44
|
Podbielski A, Flosdorff A, Weber-Heynemann J. The group A streptococcal virR49 gene controls expression of four structural vir regulon genes. Infect Immun 1995; 63:9-20. [PMID: 7806389 PMCID: PMC172951 DOI: 10.1128/iai.63.1.9-20.1995] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Within a genomic locus termed the vir regulon, virR genes of opacity factor-nonproducing (OF-) group A streptococci (GAS) are known to control the expression of the genes encoding M protein (emm) and C5a peptidase (scpA) and of virR itself. Within the corresponding genomic locus, opacity factor-producing (OF+) GAS harbor additional emm-related genes encoding immunoglobulin G- and immunoglobulin A-binding proteins (fcrA and enn, respectively). The virR gene region of the OF+ GAS M-type 49 strain CS101 was amplified by PCR, and 2,650 bp were directly sequenced. An open reading frame of 1,599 bp exhibited 76% overall homology to published virR sequences. By utilizing mRNA analysis, the 5' ends of two specific transcripts were mapped 370 and 174 bp upstream of the start codon of this open reading frame. The deduced sequences of the corresponding promoters and their locations differed from those of previously reported virR promoters. Transcripts from wild-type fcrA49, emm49, enn49, and scpA49 genes located downstream of virR49 were characterized as being monocistronic. The transcripts were quantified and mapped for their 5' ends. Subsequently, the virR49 gene was inactivated by specific insertion of a nonreplicative pSF152 vector containing recombinant virR49 sequences. The RNA from the resulting vir-mut strain did not contain transcripts of virR49, fcrA49, emm49, or enn49 and contained reduced amounts of the scpA49 transcript when compared with wild-type RNA. The mRNA control from the streptokinase gene was demonstrated not to be affected. When strain vir-mut was rotated in human blood, it was found to be fully sensitive to phagocytosis by human leukocytes. Thus, the present study provides evidence that virR genes in OF+ GAS could be involved in the control of up to five vir regulon genes, and their unaffected regulatory activity is associated with features postulated as crucial for GAS virulence.
Collapse
Affiliation(s)
- A Podbielski
- Institute of Medical Microbiology, Technical University (RWTH), Aachen, Germany
| | | | | |
Collapse
|
45
|
Whatmore AM, Kapur V, Sullivan DJ, Musser JM, Kehoe MA. Non-congruent relationships between variation in emm gene sequences and the population genetic structure of group A streptococci. Mol Microbiol 1994; 14:619-31. [PMID: 7891551 DOI: 10.1111/j.1365-2958.1994.tb01301.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To examine the molecular population genetics of the M protein family of Streptococcus pyogenes (group A Streptococcus), the 5' regions of polymerase chain reaction-amplified emm products from 79 M serotypes were sequenced and the phylogeny was compared to estimates of overall genetic relationships among strains determined by multilocus enzyme electrophoresis. Although the 5' emm sequences from several strains designated as distinct M types were identical or almost identical, the overall pattern is characterized by very extensive variation. The composition of distinct emm sequence clusters generally parallels the ability of strains to express serum opacity factor and in some cases historical associations of certain M types with acute rheumatic fever, but not with M types classified as nephritogenic. For many strains there is a lack of congruency between variation in 5' emm sequences and estimates of overall chromosomal relationships, which is undoubtedly due to horizontal transfer and recombination of emm sequences. The results of these studies provide insights into the nature and extent of emm sequence variation and describe how this variation 'maps' onto the population genetic structure of extant S. pyogenes lineages. The complexity of emm sequence and streptococcal cell lineage relationships revealed by this analysis has significant implications for understanding evolutionary events generating strain diversity and the epidemiology of S. pyogenes diseases.
Collapse
Affiliation(s)
- A M Whatmore
- Department of Microbiology, University of Newcastle upon Tyne, Medical School, UK
| | | | | | | | | |
Collapse
|
46
|
Katerov V, Schalén C, Totolian AA. Sequencing of genes within the vir regulon of Streptococcus pyogenes type M15--an opacity factor-positive serotype with low opacity factor expression. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:78-85. [PMID: 7845360 DOI: 10.1007/bf00279753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Major virulence determinants of group A streptococci, such as M-protein, immunoglobulin Fc-receptors (FcRA, EmmL) and C5a peptidase, appear to be genetically co-regulated, their genes being located within a vir regulon. We studied the organization of these genes in a group A, type M15 strain of Streptococcus pyogenes, previously defined as OF-, by hybridization analysis of chromosomal DNA and of an S. pyogenes gene library in Escherichia coli, and by gene sequencing. Within the vir regulon, in addition to the virR and scpA genes, three so-called emm-related genes were found: fcrA, emmL and enn. Whereas IgG Fc-binding proteins were encoded by fcrA and emmL, the product of enn was not identified. The presence of three emm-related genes in this region is reminescent of vir regulon organization in OF+ rather than OF- strains as earlier defined by others. Furthermore, analysis of the deduced product of the emmL gene showed deletions and amino acid substitutions within the PGTS-rich domain and membrane anchor, which thus resembles corresponding products of OF+ rather than OF- strains. In view of these findings, the opacity factor (OF) activity of the strain was tested using growth supernatant, with negative outcome. However, a concentrated SDS cell extract revealed definite OF activity. One of two other type M15 reference strains also showed definite OF activity in SDS extracts. We therefore propose that type M15 strains belong to the OF+ category but often show low levels of expression of OF.
Collapse
Affiliation(s)
- V Katerov
- Institute of Experimental Medicine, Academy of the Medical Sciences, St. Petersburg, Russia
| | | | | |
Collapse
|
47
|
Katerov V, Schalén C, Totolian AA. M-like, immunoglobulin-binding protein of Streptococcus pyogenes type M15. Curr Microbiol 1994; 29:31-6. [PMID: 7764985 DOI: 10.1007/bf01570188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An M-like protein from Streptococcus pyogenes type M15 strain EF1949 (EMML15) was cloned in Escherichia coli and sequenced. Recombinant EMML15 protein revealed a unique binding pattern for human IgG subclasses not described previously. Comparative analysis of the EMML15 amino acid sequence with those of other M-like proteins of opacity factor positive (OF+) serotypes and protein H, and IgG receptor from OF- serotype M1, showed that IgG-binding proteins with common binding of IgG3 were closely related and distinct from streptococcal IgG receptors not binding IgG3. Thus, the Ig-binding proteins from S. pyogenes were subdivided into two main categories according to binding pattern, protein structure, and gene location.
Collapse
Affiliation(s)
- V Katerov
- Institute of Experimental Medicine, Academy of the Medical Sciences, St. Petersburg, Russia
| | | | | |
Collapse
|
48
|
Akesson P, Schmidt KH, Cooney J, Björck L. M1 protein and protein H: IgGFc- and albumin-binding streptococcal surface proteins encoded by adjacent genes. Biochem J 1994; 300 ( Pt 3):877-86. [PMID: 8010973 PMCID: PMC1138247 DOI: 10.1042/bj3000877] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
M1 protein and Protein H are surface proteins simultaneously present at the surface of certain strains of Streptococcus pyogenes, important pathogenic bacteria in humans. The present study concerns the structure, protein-binding properties and relationship between these two molecules. The gene encoding M1 protein (emm1) was found immediately upstream of the Protein H gene (sph). Both genes were preceded by a promoter region. Comparison of the sequences revealed a high degree of similarity in the signal peptides, the C repeats located in the central parts of the molecules and in the C-terminal cell-wall-attached regions, whereas the N-terminal sequences showed no significant similarity. Protein H has affinity for the Fc region of IgG antibodies. Also M1 protein, isolated from streptococcal culture supernatants or from Escherichia coli expressing emm1, was found to bind human IgGFc. When tested against polyclonal IgG from eight other mammalian species, M1 protein and Protein H both showed affinity for baboon, rabbit and pig IgG. M1 protein also reacted with guinea-pig IgG, whereas both streptococcal proteins were negative in binding experiments with rat, mouse, bovine and horse IgG. The two proteins were also tested against other members of the immunoglobulin super family: human IgM, IgA, IgD, IgE, beta 2-microglobulin, and major histocompatibility complex (MHC) class-I and class-II antigens. M1 protein showed no affinity for any of these molecules whereas Protein H reacted with MHC class-II antigens. M1 protein is known to bind albumin and fibrinogen also. The binding sites for these two plasma proteins and for IgGFc were mapped to different sites on M1 protein. Thus albumin bound to the C repeats and IgGFc to a region (S) immediately N-terminal of the C repeats. Finally, fibrinogen bound further towards the N-terminus but close to the IgGFc-binding site. On the fibrinogen molecule, fragment D was found to mediate binding to M1 protein. The IgGFc-binding region of M1 protein showed no similarity to that of Protein H. Still, competitive binding experiments demonstrated that the two streptococcal proteins bound to overlapping sites on IgGFc.
Collapse
Affiliation(s)
- P Akesson
- Department of Medical and Physiological Chemistry, Lund University, Sweden
| | | | | | | |
Collapse
|
49
|
Podbielski A, Krebs B, Kaufhold A. Genetic variability of the emm-related gene of the large vir regulon of group A streptococci: potential intra- and intergenomic recombination events. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:691-8. [PMID: 8028586 DOI: 10.1007/bf00279579] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the most prevalent genetic lineages of group A streptococci (GAS) harbors a genomic locus termed the large vir regulon, which contains an emm gene encoding the antiphagocytic M protein, and structurally related fcrA and enn (emm-related) genes encoding immunoglobulin-binding proteins. In the present study more than 100 large vir regulons from 42 different GAS serotypes were analyzed by PCR and partial DNA sequencing. On comparing these data to published sequences, sites of mutational and putative recombinational events were identified and ordered with respect to their intra/intergenic or intra/intergenomic nature. The emm-related genes were found to display small intragenic deletions or insertions, were completely deleted from, or newly inserted into the genome, or were fused to adjacent genes. Intergenomic exchanges of complete emm-related genes, or segments thereof, between different vir regulons were detected. Most of these processes seem to involve short flanking direct repeats. Occasionally, the structural changes could be correlated with changes in the functions of the encoded proteins.
Collapse
Affiliation(s)
- A Podbielski
- Institute of Medical Microbiology, Technical University (RWTH), Aachen, Germany
| | | | | |
Collapse
|
50
|
Retnoningrum DS, Cleary PP. M12 protein from Streptococcus pyogenes is a receptor for immunoglobulin G3 and human albumin. Infect Immun 1994; 62:2387-94. [PMID: 8188363 PMCID: PMC186523 DOI: 10.1128/iai.62.6.2387-2394.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We previously showed that M12 protein from opacity factor-negative Streptococcus pyogenes (group A streptococci) CS24 is responsible for immunoglobulin G3 (IgG3) binding activity. Here, we report that this M protein binds human serum albumin (HSA). Deletion analysis showed that the C repeats are sufficient for binding HSA, although upstream regions may be required for optimal binding. Like protein G, IgG3 and HSA bind to independent domains in the M protein. Experiments showed that bound IgG3 did not inhibit HSA binding to the M protein. The interaction between M12 protein and HSA is specific. M12 protein does not bind chicken egg and bovine serum albumins. Alignments of C1 and C2 repeats of M12 protein to sequences at the carboxy termini of other M proteins and Ig receptors revealed highly homologous sequences in the FcRV, M5, M6, ML2.1, and M57 proteins, suggesting that all could bind HSA. As predicted from the alignment, M5 protein and M6+ streptococci bound HSA, whereas an isogenic M6- mutant did not bind HSA. Furthermore, M2 protein from an opacity factor-positive strain also bound HSA.
Collapse
Affiliation(s)
- D S Retnoningrum
- Department of Microbiology, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|