1
|
Stamm CE, McFarland AP, Locke MN, Tabakh H, Tang Q, Thomason MK, Woodward JJ. RECON gene disruption enhances host resistance to enable genome-wide evaluation of intracellular pathogen fitness during infection. mBio 2024; 15:e0133224. [PMID: 38940553 PMCID: PMC11323731 DOI: 10.1128/mbio.01332-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Transposon sequencing (Tn-seq) is a powerful genome-wide technique to assess bacterial fitness under varying growth conditions. However, screening via Tn-seq in vivo is challenging. Dose limitations and host restrictions create bottlenecks that diminish the transposon mutant pool being screened. Here, we have developed a murine model with a disruption in Akr1c13 that renders the resulting RECON-/- mouse resistant to high-dose infection. We leveraged this model to perform a Tn-seq screen of the human pathogen Listeria monocytogenes in vivo. We identified 135 genes which were required for L. monocytogenes growth in mice including novel genes not previously identified for host survival. We identified organ-specific requirements for L. monocytogenes survival and investigated the role of the folate enzyme FolD in L. monocytogenes liver pathogenesis. A mutant lacking folD was impaired for growth in murine livers by 2.5-log10 compared to wild type and failed to spread cell-to-cell in fibroblasts. In contrast, a mutant in alsR, which encodes a transcription factor that represses an operon involved in D-allose catabolism, was attenuated in both livers and spleens of mice by 4-log10 and 3-log10, respectively, but showed modest phenotypes in in vitro models. We confirmed that dysregulation of the D-allose catabolism operon is responsible for the in vivo growth defect, as deletion of the operon in the ∆alsR background rescued virulence. By undertaking an unbiased, genome-wide screen in mice, we have identified novel fitness determinants for L. monocytogenes host infection, which highlights the utility of the RECON-/- mouse model for future screening efforts. IMPORTANCE Listeria monocytogenes is the gram-positive bacterium responsible for the food-borne disease listeriosis. Although infections with L. monocytogenes are limiting in healthy hosts, vulnerable populations, including pregnant and elderly people, can experience high rates of mortality. Thus, understanding the breadth of genetic requirements for L. monocytogenes in vivo survival will present new opportunities for treatment and prevention of listeriosis. We developed a murine model of infection using a RECON-/- mouse that is restrictive to systemic L. monocytogenes infection. We utilized this model to screen for L. monocytogenes genes required in vivo via transposon sequencing. We identified the liver-specific gene folD and a repressor, alsR, that only exhibits an in vivo growth defect. AlsR controls the expression of the D-allose operon which is a marker in diagnostic techniques to identify pathogenic Listeria. A better understanding of the role of the D-allose operon in human disease may further inform diagnostic and prevention measures.
Collapse
Affiliation(s)
- Chelsea E. Stamm
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Adelle P. McFarland
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Melissa N. Locke
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hannah Tabakh
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Qing Tang
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Maureen K. Thomason
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Joshua J. Woodward
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Mlynek KD, Toothman RG, Martinez EE, Qiu J, Richardson JB, Bozue JA. Mutation of wbtJ, a N-formyltransferase involved in O-antigen synthesis, results in biofilm formation, phase variation and attenuation in Francisella tularensis. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001437. [PMID: 38421161 PMCID: PMC10924466 DOI: 10.1099/mic.0.001437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Two clinically important subspecies, Francisella tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B) are responsible for most tularaemia cases, but these isolates typically form a weak biofilm under in vitro conditions. Phase variation of the F. tularensis lipopolysaccharide (LPS) has been reported in these subspecies, but the role of variation is unclear as LPS is crucial for virulence. We previously demonstrated that a subpopulation of LPS variants can constitutively form a robust biofilm in vitro, but it is unclear whether virulence was affected. In this study, we show that biofilm-forming variants of both fully virulent F. tularensis subspecies were highly attenuated in the murine tularaemia model by multiple challenge routes. Genomic sequencing was performed on these strains, which revealed that all biofilm-forming variants contained a lesion within the wbtJ gene, a formyltransferase involved in O-antigen synthesis. A ΔwbtJ deletion mutant recapitulated the biofilm, O-antigen and virulence phenotypes observed in natural variants and could be rescued through complementation with a functional wbtJ gene. Since the spontaneously derived biofilm-forming isolates in this study were a subpopulation of natural variants, reversion events to the wbtJ gene were detected that eliminated the phenotypes associated with biofilm variants and restored virulence. These results demonstrate a role for WbtJ in biofilm formation, LPS variation and virulence of F. tularensis.
Collapse
Affiliation(s)
- Kevin D. Mlynek
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Ronald G. Toothman
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Elsie E. Martinez
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Ju Qiu
- Regulated Research Administration Division, USAMRIID, Frederick, MD, USA
| | | | - Joel A. Bozue
- Bacteriology Division, US ARMY Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|
3
|
Feng Y, Chang SK, Portnoy DA. The major role of Listeria monocytogenes folic acid metabolism during infection is the generation of N-formylmethionine. mBio 2023; 14:e0107423. [PMID: 37695058 PMCID: PMC10653936 DOI: 10.1128/mbio.01074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/12/2023] Open
Abstract
IMPORTANCE Folic acid is an essential vitamin for bacteria, plants, and animals. The lack of folic acid leads to various consequences such as a shortage of amino acids and nucleotides that are fundamental building blocks for life. Though antifolate drugs are widely used for antimicrobial treatments, the underlying mechanism of bacterial folate deficiency during infection is unclear. This study compares the requirements of different folic acid end-products during the infection of Listeria monocytogenes, a facultative intracellular pathogen of animals and humans. The results reveal the critical importance of N-formylmethionine, the amino acid used by bacteria to initiate protein synthesis. This work extends the current understanding of folic acid metabolism in pathogens and potentially provides new insights into antifolate drug development in the future.
Collapse
Affiliation(s)
- Ying Feng
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Shannon K. Chang
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Strittmatter N, Kanvatirth P, Inglese P, Race AM, Nilsson A, Dannhorn A, Kudo H, Goldin RD, Ling S, Wong E, Seeliger F, Serra MP, Hoffmann S, Maglennon G, Hamm G, Atkinson J, Jones S, Bunch J, Andrén PE, Takats Z, Goodwin RJA, Mastroeni P. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2791-2802. [PMID: 34767352 DOI: 10.1021/jasms.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Panchali Kanvatirth
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Paolo Inglese
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Alan M Race
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Andreas Dannhorn
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Hiromi Kudo
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
| | - Robert D Goldin
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
- Department of Cellular Pathology, Charing Cross Hospital, London W6 8RF, U.K
| | - Stephanie Ling
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Maria Paola Serra
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Scott Hoffmann
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - James Atkinson
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Josephine Bunch
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| |
Collapse
|
6
|
Kassinger SJ, van Hoek ML. Genetic Determinants of Antibiotic Resistance in Francisella. Front Microbiol 2021; 12:644855. [PMID: 34054749 PMCID: PMC8149597 DOI: 10.3389/fmicb.2021.644855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Tularemia, caused by Francisella tularensis, is endemic to the northern hemisphere. This zoonotic organism has historically been developed into a biological weapon. For this Tier 1, Category A select agent, it is important to expand our understanding of its mechanisms of antibiotic resistance (AMR). Francisella is unlike many Gram-negative organisms in that it does not have significant plasmid mobility, and does not express AMR mechanisms on plasmids; thus plasmid-mediated resistance does not occur naturally. It is possible to artificially introduce plasmids with AMR markers for cloning and gene expression purposes. In this review, we survey both the experimental research on AMR in Francisella and bioinformatic databases which contain genomic and proteomic data. We explore both the genetic determinants of intrinsic AMR and naturally acquired or engineered antimicrobial resistance as well as phenotypic resistance in Francisella. Herein we survey resistance to beta-lactams, monobactams, carbapenems, aminoglycosides, tetracycline, polymyxins, macrolides, rifampin, fosmidomycin, and fluoroquinolones. We also highlight research about the phenotypic AMR difference between planktonic and biofilm Francisella. We discuss newly developed methods of testing antibiotics against Francisella which involve the intracellular nature of Francisella infection and may better reflect the eventual clinical outcomes for new antibiotic compounds. Understanding the genetically encoded determinants of AMR in Francisella is key to optimizing the treatment of patients and potentially developing new antimicrobials for this dangerous intracellular pathogen.
Collapse
Affiliation(s)
| | - Monique L. van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
7
|
Nguyen BN, Portnoy DA. An Inducible Cre- lox System to Analyze the Role of LLO in Listeria monocytogenes Pathogenesis. Toxins (Basel) 2020; 12:E38. [PMID: 31936068 PMCID: PMC7020405 DOI: 10.3390/toxins12010038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 11/16/2022] Open
Abstract
Listeriolysin O (LLO) is a pore-forming cytolysin that allows Listeria monocytogenes to escape from phagocytic vacuoles and enter the host cell cytosol. LLO is expressed continuously during infection, but it has been a challenge to evaluate the importance of LLO secreted in the host cell cytosol because deletion of the gene encoding LLO (hly) prevents localization of L. monocytogenes to the cytosol. Here, we describe a L. monocytogenes strain (hlyfl) in which hly is flanked by loxP sites and Cre recombinase is under the transcriptional control of the L. monocytogenesactA promoter, which is highly induced in the host cell cytosol. In less than 2 h after infection of bone marrow-derived macrophages (BMMs), bacteria were 100% non-hemolytic. hlyfl grew intracellularly to levels 10-fold greater than wildtype L. monocytogenes and was less cytotoxic. In an intravenous mouse model, 90% of bacteria were non-hemolytic within three hours in the spleen and eight hours in the liver. The loss of LLO led to a 2-log virulence defect in the spleen and a 4-log virulence defect in the liver compared to WT L. monocytogenes. Thus, the production of LLO in the cytosol has significant impact on the pathogenicity of L. monocytogenes.
Collapse
Affiliation(s)
- Brittney N. Nguyen
- Graduate Group in Microbiology, University of California, Berkeley, CA 94720, USA;
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Lai HH, Chiu CH, Kong MS, Chang CJ, Chen CC. Probiotic Lactobacillus casei: Effective for Managing Childhood Diarrhea by Altering Gut Microbiota and Attenuating Fecal Inflammatory Markers. Nutrients 2019; 11:nu11051150. [PMID: 31126062 PMCID: PMC6566348 DOI: 10.3390/nu11051150] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Acute diarrhea is a major cause of childhood morbidity and an economic burden for families. The aim of this study is to explore the effect of probiotics on clinical symptoms, intestinal microbiota, and inflammatory markers during childhood diarrhea. Methods: Children (n = 81) aged six months to six years (mean age 2.31 years) hospitalized for acute diarrhea were randomized to receive probiotics (Lactobacillus casei variety rhamnosus; n = 42) or no probiotics (n = 39) orally twice daily for seven days. Feces samples were also collected to evaluate microbial content using a traditional agar plate and next-generation sequencing. Immunoglobulin A (IgA), lactoferrin, and calprotectin were determined by enzyme-linked immunosorbent assay (ELISA) and compared in different groups. Other clinical symptoms or signs, including fever, vomiting, diarrhea, abdominal pain, bloated abdomen, daily intake, appetite, and body weight were also assessed. Results: Data were collected from 81 individuals across three different time points. Total fecal IgA levels in fecal extracts of the probiotics group were higher than those in the control group, reaching statistical significance (p < 0.05). Concentrations of fecal lactoferrin and calprotectin were significantly downregulated in patients with probiotic Lactobacillus casei variety rhamnosus (Lc) consumption compared to those of the control (p < 0.05). Probiotic Lc administration may be beneficial for gut-microbiota modulation, as shown by the data collected at one week after enrollment. Counts of Bifidobacteria and Lactobacillus species were elevated in stool culture of the probiotic group. Appetite and oral intake, body-weight gain, abdominal pain, bloating, as well as bowel habits (diarrhea) were much better in children receiving probiotics compared with those in the control group. Conclusion: Fecal IgA increased during acute diarrhea under Lc treatment; in contrast, fecal lactoferrin and calprotectin were downregulated during acute diarrhea under Lc treatment. Probiotic Lc may be a useful supplement for application in children during acute diarrhea to reduce clinical severity and intestinal inflammatory reaction.
Collapse
Affiliation(s)
- Hung-Hsiang Lai
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33303, Taiwan.
| | - Cheng-Hsun Chiu
- Division of Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33303, Taiwan.
| | - Man-Shan Kong
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33303, Taiwan.
| | - Chee-Jen Chang
- Graduate Institute of Clinical Medical Sciences, Clinical Informatics and Medical Statistics Research Center, Chang Gung University College of Medicine, Taoyuan 33303, Taiwan.
| | - Chien-Chang Chen
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33303, Taiwan.
| |
Collapse
|
9
|
García-Gil A, Lopez-Bailon LU, Ortiz-Navarrete V. Beyond the antibody: B cells as a target for bacterial infection. J Leukoc Biol 2019; 105:905-913. [PMID: 30657607 DOI: 10.1002/jlb.mr0618-225r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/15/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022] Open
Abstract
It is well established that B cells play an important role during infections beyond antibody production. B cells produce cytokines and are APCs for T cells. Recently, it has become clear that several pathogenic bacterial genera, such as Salmonella, Brucella, Mycobacterium, Listeria, Francisella, Moraxella, and Helicobacter, have evolved mechanisms such as micropinocytosis induction, inflammasome down-regulation, inhibitory molecule expression, apoptosis induction, and anti-inflammatory cytokine secretion to manipulate B cell functions influencing immune responses. In this review, we summarize our current understanding of B cells as targets of bacterial infection and the mechanisms by which B cells become a niche for bacterial survival and replication away from extracellular immune responses such as complement and antibodies.
Collapse
Affiliation(s)
- Abraham García-Gil
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Uriel Lopez-Bailon
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
10
|
RECON-Dependent Inflammation in Hepatocytes Enhances Listeria monocytogenes Cell-to-Cell Spread. mBio 2018; 9:mBio.00526-18. [PMID: 29764944 PMCID: PMC5954220 DOI: 10.1128/mbio.00526-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The oxidoreductase RECON is a high-affinity cytosolic sensor of bacterium-derived cyclic dinucleotides (CDNs). CDN binding inhibits RECON's enzymatic activity and subsequently promotes inflammation. In this study, we sought to characterize the effects of RECON on the infection cycle of the intracellular bacterium Listeria monocytogenes, which secretes cyclic di-AMP (c-di-AMP) into the cytosol of infected host cells. Here, we report that during infection of RECON-deficient hepatocytes, which exhibit hyperinflammatory responses, L. monocytogenes exhibits significantly enhanced cell-to-cell spread. Enhanced bacterial spread could not be attributed to alterations in PrfA or ActA, two virulence factors critical for intracellular motility and intercellular spread. Detailed microscopic analyses revealed that in the absence of RECON, L. monocytogenes actin tail lengths were significantly longer and there was a larger number of faster-moving bacteria. Complementation experiments demonstrated that the effects of RECON on L. monocytogenes spread and actin tail lengths were linked to its enzymatic activity. RECON enzyme activity suppresses NF-κB activation and is inhibited by c-di-AMP. Consistent with these previous findings, we found that augmented NF-κB activation in the absence of RECON caused enhanced L. monocytogenes cell-to-cell spread and that L. monocytogenes spread correlated with c-di-AMP secretion. Finally, we discovered that, remarkably, increased NF-κB-dependent inducible nitric oxide synthase expression and nitric oxide production were responsible for promoting L. monocytogenes cell-to-cell spread. The work presented here supports a model whereby L. monocytogenes secretion of c-di-AMP inhibits RECON's enzymatic activity, drives augmented NF-κB activation and nitric oxide production, and ultimately enhances intercellular spread.IMPORTANCE To date, bacterial CDNs in eukaryotes are solely appreciated for their capacity to activate cytosolic sensing pathways in innate immunity. However, it remains unclear whether pathogens that actively secrete CDNs benefit from this process. Here, we provide evidence that secretion of CDNs leads to enhancement of L. monocytogenes cell-to-cell spread. This is a heretofore-unknown role of these molecules and suggests L. monocytogenes may benefit from their secretion in certain contexts. Molecular characterization revealed that, surprisingly, nitric oxide was responsible for the enhanced spread. Pathogens act to prevent nitric oxide production or, like L. monocytogenes, they have evolved to resist its direct antimicrobial effects. This study provides evidence that intracellular bacterial pathogens not only tolerate nitric oxide, which is inevitably encountered during infection, but can also capitalize on the changes this pleiotropic molecule enacts on the host cell.
Collapse
|
11
|
Hoang KV, Rajaram MVS, Curry HM, Gavrilin MA, Wewers MD, Schlesinger LS. Complement Receptor 3-Mediated Inhibition of Inflammasome Priming by Ras GTPase-Activating Protein During Francisella tularensis Phagocytosis by Human Mononuclear Phagocytes. Front Immunol 2018; 9:561. [PMID: 29632532 PMCID: PMC5879101 DOI: 10.3389/fimmu.2018.00561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is a remarkably infectious facultative intracellular bacterium of macrophages that causes tularemia. Early evasion of host immune responses contributes to the success of F. tularensis as a pathogen. F. tularensis entry into human monocytes and macrophages is mediated by the major phagocytic receptor, complement receptor 3 (CR3, CD11b/CD18). We recently determined that despite a significant increase in macrophage uptake following C3 opsonization of the virulent Type A F. tularensis spp. tularensis Schu S4, this phagocytic pathway results in limited pro-inflammatory cytokine production. Notably, MAP kinase/ERK activation is suppressed immediately during C3-opsonized Schu S4-CR3 phagocytosis. A mathematical model of CR3-TLR2 crosstalk predicted early involvement of Ras GTPase-activating protein (RasGAP) in immune suppression by CR3. Here, we link CR3-mediated uptake of opsonized Schu S4 by human monocytes and macrophages with inhibition of early signal 1 inflammasome activation, evidenced by limited caspase-1 cleavage and IL-18 release. This inhibition is due to increased RasGAP activity, leading to a reduction in the Ras-ERK signaling cascade upstream of the early inflammasome activation event. Thus, our data uncover a novel signaling pathway mediated by CR3 following engagement of opsonized virulent F. tularensis to limit inflammasome activation in human phagocytic cells, thereby contributing to evasion of the host innate immune system.
Collapse
Affiliation(s)
- Ky V Hoang
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Murugesan V S Rajaram
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Heather Marie Curry
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Mikhail A Gavrilin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Mark D Wewers
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
12
|
Mambu J, Virlogeux-Payant I, Holbert S, Grépinet O, Velge P, Wiedemann A. An Updated View on the Rck Invasin of Salmonella: Still Much to Discover. Front Cell Infect Microbiol 2017; 7:500. [PMID: 29276700 PMCID: PMC5727353 DOI: 10.3389/fcimb.2017.00500] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022] Open
Abstract
Salmonella is a facultative intracellular Gram-negative bacterium, responsible for a wide range of food- and water-borne diseases ranging from gastroenteritis to typhoid fever depending on hosts and serotypes. Salmonella thus represents a major threat to public health. A key step in Salmonella pathogenesis is the invasion of phagocytic and non-phagocytic host cells. To trigger its own internalization into non-phagocytic cells, Salmonella has developed different mechanisms, involving several invasion factors. For decades, it was accepted that Salmonella could only enter cells through a type three secretion system, called T3SS-1. Recent research has shown that this bacterium expresses outer membrane proteins, such as the Rck protein, which is able to induce Salmonella entry mechanism. Rck mimics natural host cell ligands and triggers engulfment of the bacterium by interacting with the epidermal growth factor receptor. Salmonella is thus able to use multiple entry pathways during the Salmonella infection process. However, it is unclear how and when Salmonella exploits the T3SS-1 and Rck entry mechanisms. As a series of reviews have focused on the T3SS-1, this review aims to describe the current knowledge and the limitations of our understanding of the Rck outer membrane protein. The regulatory cascade which controls Rck expression and the molecular mechanisms underlying Rck-mediated invasion into cells are summarized. The potential role of Rck-mediated invasion in Salmonella pathogenesis and the intracellular behavior of the bacteria following a Salmonella Rck-dependent entry are discussed.
Collapse
Affiliation(s)
- Julien Mambu
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Sébastien Holbert
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Olivier Grépinet
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| |
Collapse
|
13
|
Bar-On L, Cohen H, Elia U, Rotem S, Bercovich-Kinori A, Bar-Haim E, Chitlaru T, Cohen O. Protection of vaccinated mice against pneumonic tularemia is associated with an early memory sentinel-response in the lung. Vaccine 2017; 35:7001-7009. [PMID: 29102170 DOI: 10.1016/j.vaccine.2017.10.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/03/2017] [Accepted: 10/18/2017] [Indexed: 01/06/2023]
Abstract
Francisella tularensis is the intracellular bacterial pathogen causing the respiratory life-threatening disease tularemia. Development of tularemia vaccines has been hampered by an incomplete understanding of the correlates of immunity. Moreover, the importance of lung cellular immunity in vaccine-mediated protection against tularemia is a controversial matter. Live attenuated vaccine strains of F. tularensis such as LVS (Live Vaccine Strain), elicit an immune response protecting mice against subsequent challenge with the virulent SchuS4 strain, yet the protective immunity against pulmonary challenge is limited in its efficacy and longevity. We established a murine intra-nasal immunization model which distinguishes between animals fully protected, challenged at 4 weeks post double-vaccination (200 inhalation Lethal Dose 50%, LD50, of SchuS4), and those which do not survive the lethal SchuS4 infection, challenged at 8 weeks post double vaccination. Early in the recall immune response in the lung (before day 3), disease progression and bacterial dissemination differed considerably between protected and non-protected immunized mice. Pre-challenge analysis, revealed that protected mice, exhibited significantly higher numbers of lung Ft-specific memory T cells compared to non-protected mice. Quantitative PCR analysis established that a higher magnitude, lung T cells response was activated in the lungs of the protected mice already at 24 h post-challenge. The data imply that an early memory response within the lung is strongly associated with protection against the lethal SchuS4 bacteria presumably by restricting the dissemination of the bacteria to internal organs. Thus, future prophylactic strategies to countermeasure F. tularensis infection may require modulation of the immune response within the lung.
Collapse
Affiliation(s)
- Liat Bar-On
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel.
| | - Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Adi Bercovich-Kinori
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel.
| |
Collapse
|
14
|
Skyberg JA, Lacey CA. Hematopoietic MyD88 and IL-18 are essential for IFN-γ-dependent restriction of type A Francisella tularensis infection. J Leukoc Biol 2017; 102:1441-1450. [PMID: 28951422 DOI: 10.1189/jlb.4a0517-179r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/03/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes the potentially fatal disease tularemia. We used mice with conditional MyD88 deficiencies to investigate cellular and molecular mechanisms by which MyD88 restricts type A F. tularensis infection. F. tularensis-induced weight loss was predominately dependent on MyD88 signaling in nonhematopoietic cells. In contrast, MyD88 signaling in hematopoietic cells, but not in myeloid and dendritic cells, was essential for control of F. tularensis infection in tissue. Myeloid and dendritic cell MyD88 deficiency also did not markedly impair cytokine production during infection. Although the production of IL-12 or -18 was not significantly reduced in hematopoietic MyD88-deficient mice, IFN-γ production was abolished in these animals. In addition, neutralization studies revealed that control of F. tularensis infection mediated by hematopoietic MyD88 was entirely dependent on IFN-γ. Although IL-18 production was not significantly affected by MyD88 deficiency, IL-18 was essential for IFN-γ production and restricted bacterial replication in an IFN-γ-dependent manner. Caspase-1 was also found to be partially necessary for the production of IL-18 and IFN-γ and for control of F. tularensis replication. Our collective data show that the response of leukocytes to caspase-1-dependent IL-18 via MyD88 is critical, whereas MyD88 signaling in myeloid and dendritic cells is dispensable for IFN-γ-dependent control of type A F. tularensis infection.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA; and .,Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Carolyn A Lacey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA; and.,Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
15
|
Limited Colonization Undermined by Inadequate Early Immune Responses Defines the Dynamics of Decidual Listeriosis. Infect Immun 2017; 85:IAI.00153-17. [PMID: 28507070 DOI: 10.1128/iai.00153-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
The bacterial pathogen Listeria monocytogenes causes foodborne systemic disease in pregnant women, which can lead to preterm labor, stillbirth, or severe neonatal disease. Colonization of the maternal decidua appears to be an initial step in the maternal component of the disease as well as bacterial transmission to the placenta and fetus. Host-pathogen interactions in the decidua during this early stage of infection remain poorly understood. Here, we assessed the dynamics of L. monocytogenes infection in primary human decidual organ cultures and in the murine decidua in vivo A high inoculum was necessary to infect both human and mouse deciduas, and the data support the existence of a barrier to initial colonization of the murine decidua. If successful, however, colonization in both species was followed by significant bacterial expansion associated with an inability of the decidua to mount appropriate innate cellular immune responses. The innate immune deficits included the failure of bacterial foci to attract macrophages and NK cells, cell types known to be important for early defenses against L. monocytogenes in the spleen, as well as a decrease in the tissue density of inflammatory Ly6Chi monocytes in vivo These results suggest that the infectivity of the decidua is not the result of an enhanced recruitment of L. monocytogenes to the gestational uterus but rather is due to compromised local innate cellular immune responses.
Collapse
|
16
|
Shi Z, Chapes SK, Ben-Arieh D, Wu CH. An Agent-Based Model of a Hepatic Inflammatory Response to Salmonella: A Computational Study under a Large Set of Experimental Data. PLoS One 2016; 11:e0161131. [PMID: 27556404 PMCID: PMC4996536 DOI: 10.1371/journal.pone.0161131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/29/2016] [Indexed: 01/04/2023] Open
Abstract
We present an agent-based model (ABM) to simulate a hepatic inflammatory response (HIR) in a mouse infected by Salmonella that sometimes progressed to problematic proportions, known as "sepsis". Based on over 200 published studies, this ABM describes interactions among 21 cells or cytokines and incorporates 226 experimental data sets and/or data estimates from those reports to simulate a mouse HIR in silico. Our simulated results reproduced dynamic patterns of HIR reported in the literature. As shown in vivo, our model also demonstrated that sepsis was highly related to the initial Salmonella dose and the presence of components of the adaptive immune system. We determined that high mobility group box-1, C-reactive protein, and the interleukin-10: tumor necrosis factor-α ratio, and CD4+ T cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, significantly correlated with outcomes of HIR. During therapy-directed silico simulations, our results demonstrated that anti-agent intervention impacted the survival rates of septic individuals in a time-dependent manner. By specifying the infected species, source of infection, and site of infection, this ABM enabled us to reproduce the kinetics of several essential indicators during a HIR, observe distinct dynamic patterns that are manifested during HIR, and allowed us to test proposed therapy-directed treatments. Although limitation still exists, this ABM is a step forward because it links underlying biological processes to computational simulation and was validated through a series of comparisons between the simulated results and experimental studies.
Collapse
Affiliation(s)
- Zhenzhen Shi
- Health Care Operations Resource Center, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephen K. Chapes
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - David Ben-Arieh
- Health Care Operations Resource Center, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas, United States of America
| | - Chih-Hang Wu
- Health Care Operations Resource Center, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
17
|
Propst CN, Pylypko SL, Blower RJ, Ahmad S, Mansoor M, van Hoek ML. Francisella philomiragia Infection and Lethality in Mammalian Tissue Culture Cell Models, Galleria mellonella, and BALB/c Mice. Front Microbiol 2016; 7:696. [PMID: 27252681 PMCID: PMC4877389 DOI: 10.3389/fmicb.2016.00696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
Francisella (F.) philomiragia is a Gram-negative bacterium with a preference for brackish environments that has been implicated in causing bacterial infections in near-drowning victims. The purpose of this study was to characterize the ability of F. philomiragia to infect cultured mammalian cells, a commonly used invertebrate model, and, finally, to characterize the ability of F. philomiragia to infect BALB/c mice via the pulmonary (intranasal) route of infection. This study shows that F. philomiragia infects J774A.1 murine macrophage cells, HepG2 cells and A549 human Type II alveolar epithelial cells. However, replication rates vary depending on strain at 24 h. F. philomiragia infection after 24 h was found to be cytotoxic in human U937 macrophage-like cells and J774A.1 cells. This is in contrast to the findings that F. philomiragia was non-cytotoxic to human hepatocellular carcinoma cells, HepG2 cells and A549 cells. Differential cytotoxicity is a point for further study. Here, it was demonstrated that F. philomiragia grown in host-adapted conditions (BHI, pH 6.8) is sensitive to levofloxacin but shows increased resistance to the human cathelicidin LL-37 and murine cathelicidin mCRAMP when compared to related the Francisella species, F. tularensis subsp. novicida and F. tularensis subsp. LVS. Previous findings that LL-37 is strongly upregulated in A549 cells following F. tularensis subsp. novicida infection suggest that the level of antimicrobial peptide expression is not sufficient in cells to eradicate the intracellular bacteria. Finally, this study demonstrates that F. philomiragia is lethal in two in vivo models; Galleria mellonella via hemocoel injection, with a LD50 of 1.8 × 103, and BALB/c mice by intranasal infection, with a LD50 of 3.45 × 103. In conclusion, F. philomiragia may be a useful model organism to study the genus Francisella, particularly for those researchers with interest in studying microbial ecology or environmental strains of Francisella. Additionally, the Biosafety level 2 status of F. philomiragia makes it an attractive model for virulence and pathogenesis studies.
Collapse
Affiliation(s)
- Crystal N Propst
- School of Systems Biology, George Mason University, Manassas, VA USA
| | | | - Ryan J Blower
- School of Systems Biology, George Mason University, Manassas, VA USA
| | - Saira Ahmad
- School of Systems Biology, George Mason University, Manassas, VA USA
| | | | - Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VAUSA; National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VAUSA
| |
Collapse
|
18
|
Origgi FC, Pilo P. Francisella Tularensis Clades B.FTN002-00 and B.13 Are Associated With Distinct Pathology in the European Brown Hare (Lepus europaeus). Vet Pathol 2016; 53:1220-1232. [PMID: 26933097 DOI: 10.1177/0300985816629718] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tularemia is a severe disease caused by Francisella tularensis This bacterium has a major pathogenic potential in countless animal species as well as in humans. Despite the relatively significant body of literature available on this microorganism, many questions are still open concerning its biological cycle in the environment, the pathology and pathogenesis of the disease, the possible routes of infection in animals, and the pathologic and ecological relevance of the distinct phylogenetic clusters of F. tularensis In order to address these questions, we have thoroughly characterized the pathology and microbiology of terminally ill European brown hares (Lepus europaeus) infected with F. tularensis subsp. holarctica, collected in Switzerland from 2012 to 2014. F tularensis isolates were typed by defining their phylogenetic clusters. We showed that the pathology associated with F. tularensis subsp. holarctica belonging to the clade B.FTNF002-00 is different from that previously reported to be associated with the clade B.13. In particular, strains of the clade B.FTNF002-00 were almost invariably associated with splenitis and hepatitis and not with the polyserositis affecting pleura, pericardium, and kidney reported in the literature for infections caused by the clade B.13. We describe findings suggesting that the ports of entry for the bacteria might be the respiratory and digestive routes.
Collapse
Affiliation(s)
- F C Origgi
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - P Pilo
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Rennert K, Otto P, Funke H, Huber O, Tomaso H, Mosig AS. A human macrophage-hepatocyte co-culture model for comparative studies of infection and replication of Francisella tularensis LVS strain and subspecies holarctica and mediasiatica. BMC Microbiol 2016; 16:2. [PMID: 26739172 PMCID: PMC4704405 DOI: 10.1186/s12866-015-0621-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Francisella tularensis, a gram-negative bacterium replicates intracellularly within macrophages and efficiently evades the innate immune response. It is able to infect and replicate within Kupffer cells, specialized tissue macrophages of the liver, and to modulate the immune response upon infection to its own advantage. Studies on Francisella tularensis liver infection were mostly performed in animal models and difficult to extrapolate to the human situation, since human infections and clinical observations are rare. RESULTS Using a human co-culture model of macrophages and hepatocytes we investigated the course of infection of three Francisella tularensis strains (subspecies holarctica--wildtype and live vaccine strain, and mediasiatica--wildtype) and analyzed the immune response triggered upon infection. We observed that hepatocytes support the intracellular replication of Franciscella species in macrophages accompanied by a specific immune response inducing TNFα, IL-1β, IL-6 and fractalkine (CX3CL1) secretion and the induction of apoptosis. CONCLUSIONS We could demonstrate that this human macrophage/hepatocyte co-culture model reflects strain-specific virulence of Francisella tularensis. We developed a suitable tool for more detailed in vitro studies on the immune response upon liver cell infection by F. tularensis.
Collapse
Affiliation(s)
- Knut Rennert
- Institute of Biochemistry II, Jena University Hospital, 07743, Jena, Germany.
| | - Peter Otto
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 07743, Jena, Germany.
| | - Harald Funke
- Molecular Hemostaseology, Jena University Hospital, 07743, Jena, Germany.
| | - Otmar Huber
- Institute of Biochemistry II, Jena University Hospital, 07743, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747, Germany.
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 07743, Jena, Germany.
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, 07743, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747, Germany.
| |
Collapse
|
20
|
Duman M, Gencpinar P, Biçmen M, Arslan N, Özden Ö, Üzüm Ö, Çelik D, Sayıner AA, Gülay Z. Fecal calprotectin: can be used to distinguish between bacterial and viral gastroenteritis in children? Am J Emerg Med 2015; 33:1436-9. [PMID: 26233616 DOI: 10.1016/j.ajem.2015.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Fecal calprotectin is used as a good indicator of intestinal mucosal inflammation. The aim of this study is to evaluate the diagnostic value of fecal calprotectin (f-CP) for the etiology of acute gastroenteritis in children. MATERIALS AND METHODS All patients presenting with acute diarrhea (<18 years) who had 3 or more soft or watery stools per day were enrolled in this study. Stool microscopic examination and cultures for bacteria and parasites were performed. Polymerase chain reaction test was also applied to stool samples for viruses (Rotavirus, Adenovirus, Norwalk, and Astrovirus). The level of f-CP was carried out by using enzyme-linked immunosorbent assay test. RESULTS Eighty-four patients with diarrhea were enrolled. The f-CP level was higher in patients with microscopic examination positive (n=17) (median with interquartile range, 1610.0 [908.8-2100] mg/L) than in patients with microscopic examination negative (n=67) (123.8 [25.0-406.3] mg/L) (P<.001). Concentrations of f-CP in patients with stool culture positive (1870.0 [822.5-2100] mg/L) were significantly elevated compared with the concentrations of the patient with virus detected in stool (95.0 [21.3-240.9] mg/L) (P<.001). In the diagnosis for bacterial acute gastroenteritis, the area under the receiver operating characteristic curve for f-CP was 0.867 (95% confidence interval, 0.763-0.971), sensitivity was 88.9%, and specificity was 76.0% if the threshold was taken as 710 mg/L. CONCLUSION We conclude that f-CP, which is useful, valuable, noninvasive, easily and rapidly measured laboratory test along with simple microscopic examination of stool, can be used as an indicator of intestinal inflammation and to distinguish the bacterial gastroenteritis from the viral gastroenteritis.
Collapse
Affiliation(s)
- Murat Duman
- Department of Pediatric Emergency Care, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey.
| | - Pinar Gencpinar
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Meral Biçmen
- Department of Medical Microbiology, Dokuz Eylul University, İzmir, Turkey
| | - Nur Arslan
- Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Ömer Özden
- Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Özlem Üzüm
- Department of Pediatrics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Durgül Çelik
- Department of Pediatric Emergency Care, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - A Arzu Sayıner
- Department of Medical Microbiology, Dokuz Eylul University, İzmir, Turkey
| | - Zeynep Gülay
- Department of Medical Microbiology, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
21
|
Kubelkova K, Macela A. Putting the Jigsaw Together - A Brief Insight Into the Tularemia. Open Life Sci 2015. [DOI: 10.1515/biol-2015-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractTularemia is a debilitating febrile and potentially fatal zoonotic disease of humans and other vertebrates caused by the Gram-negative bacterium Francisella tularensis. The natural reservoirs are small rodents, hares, and possibly amoebas in water. The etiological agent, Francisella tularensis, is a non-spore forming, encapsulated, facultative intracellular bacterium, a member of the γ-Proteobacteria class of Gram-negative bacteria. Francisella tularensis is capable of invading and replicating within phagocytic as well as non-phagocytic cells and modulate inflammatory response. Infection by the pulmonary, dermal, or oral routes, respectively, results in pneumonic, ulceroglandular, or oropharyngeal tularemia. The highest mortality rates are associated with the pneumonic form of this disease. All members of Francisella tularensis species cause more or less severe disease Due to their abilities to be transmitted to humans via multiple routes and to be disseminated via biological aerosol that can cause the disease after inhalation of even an extremely low infectious dose, Francisella tularensis has been classified as a Category A bioterrorism agent. The current standard of care for tularemia is treatment with antibiotics, as this therapy is highly effective if used soon after infection, although it is not, however, absolutely effective in all cases.
Collapse
|
22
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
Affiliation(s)
- Don J Steiner
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
23
|
Law HT, Sriram A, Fevang C, Nix EB, Nano FE, Guttman JA. IglC and PdpA are important for promoting Francisella invasion and intracellular growth in epithelial cells. PLoS One 2014; 9:e104881. [PMID: 25115488 PMCID: PMC4130613 DOI: 10.1371/journal.pone.0104881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/17/2014] [Indexed: 01/06/2023] Open
Abstract
The highly infectious bacteria, Francisella tularensis, colonize a variety of organs and replicate within both phagocytic as well as non-phagocytic cells, to cause the disease tularemia. These microbes contain a conserved cluster of important virulence genes referred to as the Francisella Pathogenicity Island (FPI). Two of the most characterized FPI genes, iglC and pdpA, play a central role in bacterial survival and proliferation within phagocytes, but do not influence bacterial internalization. Yet, their involvement in non-phagocytic epithelial cell infections remains unexplored. To examine the functions of IglC and PdpA on bacterial invasion and replication during epithelial cell infections, we infected liver and lung epithelial cells with F. novicida and F. tularensis 'Type B' Live Vaccine Strain (LVS) deletion mutants (ΔiglC and ΔpdpA) as well as their respective gene complements. We found that deletion of either gene significantly reduced their ability to invade and replicate in epithelial cells. Gene complementation of iglC and pdpA partially rescued bacterial invasion and intracellular growth. Additionally, substantial LAMP1-association with both deletion mutants was observed up to 12 h suggesting that the absence of IglC and PdpA caused deficiencies in their ability to dissociate from LAMP1-positive Francisella Containing Vacuoles (FCVs). This work provides the first evidence that IglC and PdpA are important pathogenic factors for invasion and intracellular growth of Francisella in epithelial cells, and further highlights the discrete mechanisms involved in Francisella infections between phagocytic and non-phagocytic cells.
Collapse
Affiliation(s)
- H. T. Law
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aarati Sriram
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Charlotte Fevang
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eli B. Nix
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Francis E. Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian Andrew Guttman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
24
|
Jones BD, Faron M, Rasmussen JA, Fletcher JR. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol 2014; 4:32. [PMID: 24639953 PMCID: PMC3945745 DOI: 10.3389/fcimb.2014.00032] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Over the last decade, studies on the virulence of the highly pathogenic intracellular bacterial pathogen Francisella tularensis have increased dramatically. The organism produces an inert LPS, a capsule, escapes the phagosome to grow in the cytosol (FPI genes mediate phagosomal escape) of a variety of host cell types that include epithelial, endothelial, dendritic, macrophage, and neutrophil. This review focuses on the work that has identified and characterized individual virulence factors of this organism and we hope to highlight how these factors collectively function to produce the pathogenic strategy of this pathogen. In addition, several recent studies have been published characterizing F. tularensis mutants that induce host immune responses not observed in wild type F. tularensis strains that can induce protection against challenge with virulent F. tularensis. As more detailed studies with attenuated strains are performed, it will be possible to see how host models develop acquired immunity to Francisella. Collectively, detailed insights into the mechanisms of virulence of this pathogen are emerging that will allow the design of anti-infective strategies.
Collapse
Affiliation(s)
- Bradley D Jones
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Disease Research, Washington University St. Louis, MO, USA
| | - Matthew Faron
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Jed A Rasmussen
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
25
|
Uda A, Sekizuka T, Tanabayashi K, Fujita O, Kuroda M, Hotta A, Sugiura N, Sharma N, Morikawa S, Yamada A. Role of pathogenicity determinant protein C (PdpC) in determining the virulence of the Francisella tularensis subspecies tularensis SCHU. PLoS One 2014; 9:e89075. [PMID: 24558472 PMCID: PMC3928404 DOI: 10.1371/journal.pone.0089075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 01/14/2014] [Indexed: 02/02/2023] Open
Abstract
Francisella tularensis subspecies tularensis, the etiological agent of tularemia, is highly pathogenic to humans and animals. However, the SCHU strain of F. tularensis SCHU P0 maintained by passaging in artificial media has been found to be attenuated. To better understand the molecular mechanisms behind the pathogenicity of F. tularensis SCHU, we attempted to isolate virulent bacteria by serial passages in mice. SCHU P5 obtained after 5th passages in mice remained avirulent, while SCHU P9 obtained after 9th passages was completely virulent in mice. Moreover, SCHU P9 grew more efficiently in J774.1 murine macrophages compared with that in the less pathogenic SCHU P0 and P5. Comparison of the nucleotide sequences of the whole genomes of SCHU P0, P5, and P9 revealed only 1 nucleotide difference among P0, P5 and P9 in 1 of the 2 copies of pathogenicity determinant protein C (pdpC) gene. An adenine residue deletion was observed in the pdpC1 gene of SCHU P0, P5, and P9 and in the pdpC2 gene of SCHU P0, and P5, while P9 was characterized by the wild type pdpC2 gene. Thus, SCHU P0 and P5 expressed only truncated forms of PdpC protein, while SCHU P9 expressed both wild type and truncated versions. To validate the pathogenicity of PdpC, both copies of the pdpC gene in SCHU P9 have been inactivated by Targetron mutagenesis. SCHU P9 mutants with inactivated pdpC gene showed low intracellular growth in J774.1 cells and did not induce severe disease in experimentally infected mice, while virulence of the mutants was restored by complementation with expression of the intact PdpC. These results demonstrate that PdpC is crucial in determining the virulence of F. tularensis SCHU.
Collapse
Affiliation(s)
- Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kiyoshi Tanabayashi
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Osamu Fujita
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akitoyo Hotta
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Naoko Sugiura
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Neekun Sharma
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akio Yamada
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
26
|
Francisella tularensis Schu S4 lipopolysaccharide core sugar and O-antigen mutants are attenuated in a mouse model of tularemia. Infect Immun 2014; 82:1523-39. [PMID: 24452684 DOI: 10.1128/iai.01640-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD50) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge.
Collapse
|
27
|
Abstract
Francisella tularensis is a facultative intracellular bacterial pathogen capable of causing a spectrum of human diseases collectively called tularemia. The pathogen is highly infectious and some strains can cause rapidly lethal infection especially when inhaled. The latter were developed as biological weapons in the past and nowadays cause concern as potential bioterrorism agents. A live attenuated strain of the pathogen was developed more that 40 years ago and remains the sole prophylactic measure against the pathogen. Research to develop better live and subunit vaccines is under way. The former will require an understanding of the virulence factors of F. tularensis and a facile means of mutating them and the latter will require identification of the protective antigens of the pathogen. The current vaccine and its potential replacements are the focus of this review.
Collapse
Affiliation(s)
- J Wayne Conlan
- National Research Council Canada, Institute for Biological Sciences, Ottawa, Ontario, K1A 0R6, Canada.
| |
Collapse
|
28
|
Brown MJ, Russo BC, O'Dee DM, Schmitt DM, Nau GJ. The contribution of the glycine cleavage system to the pathogenesis of Francisella tularensis. Microbes Infect 2013; 16:300-9. [PMID: 24374051 DOI: 10.1016/j.micinf.2013.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/04/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
Biosynthesis and acquisition of nutrients during infection are integral to pathogenesis. Members of a metabolic pathway, the glycine cleavage system, have been identified in virulence screens of the intracellular bacterium Francisella tularensis but their role in pathogenesis remains unknown. This system generates 5,10-methylenetetrahydrofolate, a precursor of amino acid and DNA synthesis, from glycine degradation. To characterize this pathway, deletion of the gcvT homolog, an essential member of this system, was performed in attenuated and virulent F. tularensis strains. Deletion mutants were auxotrophic for serine but behaved similar to wild-type strains with respect to host cell invasion, intracellular replication, and stimulation of TNF-α. Unexpectedly, the glycine cleavage system was required for the pathogenesis of virulent F. tularensis in a murine model. Deletion of the gcvT homolog delayed mortality and lowered bacterial burden, particularly in the liver and bloodstream. To reconcile differences between the cell culture model and animal model, minimal tissue culture media was employed to mimic the nutritionally limiting environment of the host. This reevaluation demonstrated that the glycine cleavage system contributes to the intracellular replication of virulent F. tularensis in serine limiting environments. Thus, the glycine cleavage system is the serine biosynthetic pathway of F. tularensis and contributes to pathogenesis in vivo.
Collapse
Affiliation(s)
- Matthew J Brown
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Brian C Russo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dawn M O'Dee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Deanna M Schmitt
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gerard J Nau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Medicine - Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
29
|
Russo BC, Brown MJ, Nau GJ. MyD88-dependent signaling prolongs survival and reduces bacterial burden during pulmonary infection with virulent Francisella tularensis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1223-1232. [PMID: 23920326 DOI: 10.1016/j.ajpath.2013.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 01/24/2023]
Abstract
Francisella tularensis is the causative agent of the debilitating febrile illness tularemia. The severe morbidity associated with F. tularensis infections is attributed to its ability to evade the host immune response. Innate immune activation is undetectable until more than 48 hours after infection. The ensuing inflammatory response is considered pathological, eliciting a septic-like state characterized by hypercytokinemia and cell death. To investigate potential pathological consequences of the innate immune response, mice deficient in a key innate immune signaling molecule, MyD88, were studied. MyD88 knockout (KO) mice were infected with the prototypical virulent F. tularensis strain, Schu S4. MyD88 KO mice succumbed to infection more rapidly than wild-type mice. The enhanced pathogenicity of Schu S4 in MyD88 KO mice was associated with greater bacterial burdens in lungs and distal organs, and the absence of IFN-γ in the lungs, spleens, and sera. Cellular infiltrates were not observed on histological evaluation of the lungs, livers, or spleens of MyD88 KO mice, the first KO mouse described with this phenotype to our knowledge. Despite the absence of cellular infiltration, there was more cell death in the lungs of MyD88 KO mice. Thus, the host proinflammatory response is beneficial, and MyD88 signaling is required to limit bacterial burden and prolong survival during pulmonary infection by virulent F. tularensis.
Collapse
Affiliation(s)
- Brian C Russo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew J Brown
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard J Nau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
30
|
Abstract
Francisella tularensis, the bacterial cause of tularemia, infects the liver and replicates in hepatocytes in vivo and in vitro. However, the factors that govern adaptation of F. tularensis to the intrahepatocytic niche have not been identified. Using cDNA microarrays, we determined the transcriptional profile of the live vaccine strain (LVS) of F. tularensis grown in the FL83B murine hepatocytic cell line compared to that of F. tularensis cultured in broth. The fslC gene of the fsl operon was the most highly upregulated. Deletion of fslC eliminated the ability of the LVS to produce siderophore, which is involved in uptake of ferric iron, but it did not impair its growth in hepatocytes, A549 epithelial cells, or macrophages. Therefore, we sought an alternative means by which F. tularensis might obtain iron. Deletion of feoB, which encodes a putative ferrous iron transporter, retarded replication of the LVS in iron-restricted media, reduced its growth in hepatocytic and epithelial cells, and impaired its acquisition of iron. Survival of mice infected intradermally with a lethal dose of the LVS was slightly improved by deletion of fslC but was not altered by loss of feoB. However, the ΔfeoB mutant showed diminished ability to colonize the lungs, liver, and spleen of mice that received sublethal inocula. Thus, FeoB represents a previously unidentified mechanism for uptake of iron by F. tularensis. Moreover, failure to produce a mutant strain lacking both feoB and fslC suggests that FeoB and the proteins of the fsl operon are the only major means by which F. tularensis acquires iron.
Collapse
|
31
|
Mohapatra NP, Soni S, Rajaram MVS, Strandberg KL, Gunn JS. Type A Francisella tularensis acid phosphatases contribute to pathogenesis. PLoS One 2013; 8:e56834. [PMID: 23457625 PMCID: PMC3574111 DOI: 10.1371/journal.pone.0056834] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 01/15/2013] [Indexed: 12/02/2022] Open
Abstract
Different Francisella spp. produce five or six predicted acid phosphatases (AcpA, AcpB, AcpC, AcpD, HapA and HapB). The genes encoding the histidine acid phosphatases (hapA, hapB) and acpD of F. tularensis subsp. Schu S4 strain are truncated or disrupted. However, deletion of HapA (FTT1064) in F. tularensis Schu S4 resulted in a 33% reduction in acid phosphatase activity and loss of the four functional acid phosphatases in F. tularensis Schu S4 (ΔABCH) resulted in a>99% reduction in acid phosphatase activity compared to the wild type strain. All single, double and triple mutants tested, demonstrated a moderate decrease in mouse virulence and survival and growth within human and murine phagocytes, whereas the ΔABCH mutant showed >3.5-fold decrease in intramacrophage survival and 100% attenuation of virulence in mouse. While the Schu S4 ΔABCH strain was attenuated in the mouse model, it showed only limited protection against wild type challenge. F. tularensis Schu S4 failed to stimulate reactive oxygen species production in phagocytes, whereas infection by the ΔABCH strain stimulated 5- and 56-fold increase in reactive oxygen species production in neutrophils and human monocyte-derived macrophages, respectively. The ΔABCH mutant but not the wild type strain strongly co-localized with p47phox and replicated in macrophages isolated from p47phox knockout mice. Thus, F. tularensis Schu S4 acid phosphatases, including the truncated HapA, play a major role in intramacrophage survival and virulence of this human pathogen.
Collapse
Affiliation(s)
- Nrusingh P. Mohapatra
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Shilpa Soni
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Kristi L. Strandberg
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - John S. Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
32
|
IKKβ in myeloid cells controls the host response to lethal and sublethal Francisella tularensis LVS infection. PLoS One 2013; 8:e54124. [PMID: 23349802 PMCID: PMC3551972 DOI: 10.1371/journal.pone.0054124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 12/10/2012] [Indexed: 11/26/2022] Open
Abstract
Background The NF-κB activating kinases, IKKα and IKKβ, are key regulators of inflammation and immunity in response to infection by a variety of pathogens. Both IKKα and IKKβ have been reported to modulate either pro- or anti- inflammatory programs, which may be specific to the infectious organism or the target tissue. Here, we analyzed the requirements for the IKKs in myeloid cells in vivo in response to Francisella tularensis Live Vaccine Strain (Ft. LVS) infection. Methods and Principal Findings In contrast to prior reports in which conditional deletion of IKKβ in the myeloid lineage promoted survival and conferred resistance to an in vivo group B streptococcus infection, we show that mice with a comparable conditional deletion (IKKβ cKO) succumb more rapidly to lethal Ft. LVS infection and are unable to control bacterial growth at sublethal doses. Flow cytometry analysis of hepatic non-parenchymal cells from infected mice reveals that IKKβ inhibits M1 classical macrophage activation two days post infection, which has the collateral effect of suppressing IFN-γ+ CD8+ T cells. Despite this early enhanced inflammation, IKKβ cKO mice are unable to control infection; and this coincides with a shift toward M2a polarized macrophages. In comparison, we find that myeloid IKKα is dispensable for survival and bacterial control. However, both IKKα and IKKβ have effects on hepatic granuloma development. IKKα cKO mice develop fewer, but well-contained granulomas that accumulate excess necrotic cells after 9 days of infection; while IKKβ cKO mice develop numerous micro-granulomas that are less well contained. Conclusions Taken together our findings reveal that unlike IKKα, IKKβ has multiple, contrasting roles in this bacterial infection model by acting in an anti-inflammatory capacity at early times towards sublethal Ft. LVS infection; but in spite of this, macrophage IKKβ is also a critical effector for host survival and efficient pathogen clearance.
Collapse
|
33
|
Fecal calprotectin as a correlative marker in clinical severity of infectious diarrhea and usefulness in evaluating bacterial or viral pathogens in children. J Pediatr Gastroenterol Nutr 2012; 55:541-7. [PMID: 22699836 DOI: 10.1097/mpg.0b013e318262a718] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Calprotectin is a marker associated with intestinal inflammation. The aim of this study is to explore the diagnostic value of fecal calprotectin in predicting bacterial/viral diarrhea and the application of fecal calprotectin in the clinical course of infectious diarrhea. METHODS Patients ages from 3 months to 10 years with infectious diarrhea were enrolled, and from each patient, 2 to 3 stool samples were collected. Fecal calprotectin levels were determined by enzyme-linked immunosorbent assay and compared by pathogen and disease activity. A univariate linear regression was used to determine the correlation between fecal calprotectin and the clinical parameters, and generalized estimating equations (GEEs) were used for the time course analyses. RESULTS The data include 451 evaluations for 153 individuals across 3 different time points. The fecal calprotectin level was higher in patients with Salmonella infection (median with range 765 [252-1246] μg/g) or Campylobacter infection (689 [307-1046] μg/g) compared with patients with rotavirus infection (89 [11-426] μg/g), norovirus infection (93 [25-405] μg/g), or adenovirus infection (95 [65-224] μg/g). Fecal calprotectin concentrations were elevated in patients with severe (843 [284-1246] μg/g) or moderate (402 [71-995] μg/g) disease activity compared with those with mild (87 [11-438] μg/g) disease activity (P < 0.05). GEE analysis suggests that fecal calprotectin is correlated with clinical severity (e.g., Vesikari score) and may provide information for disease management. CONCLUSIONS Fecal calprotectin levels increased during bacterial infection and as disease severity increased, and its levels on the initial evaluation and follow-up visit are correlated with clinical severity. Fecal calprotectin may be a useful marker for application in children during infectious diarrhea.
Collapse
|
34
|
Bueno SM, Riquelme S, Riedel CA, Kalergis AM. Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology 2012; 137:28-36. [PMID: 22703384 DOI: 10.1111/j.1365-2567.2012.03614.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Innate and adaptive immunity are inter-related by dendritic cells (DCs), which directly recognize bacteria through the binding of pathogen-associated molecular patterns (PAMPs) to specialized receptors on their surface. After capturing and degrading bacteria, DCs present their antigens as small peptides bound to MHC molecules and prime naive bacteria-specific T cells. In response to PAMP recognition DCs undergo maturation, which is a phenotypic change that increases their immunogenicity and promotes the activation of naive T cells. As a result, a specific immune response that targets bacteria-derived antigens is initiated. Therefore, the characterization of DC-bacteria interactions is important to understand the mechanisms used by virulent bacteria to avoid adaptive immunity. Furthermore, any impairment of DC function might contribute to bacterial survival and dissemination inside the host. An example of a bacterial pathogen capable of interfering with DC function is Salmonella enterica serovar Typhimurium (S. Typhimurium). Virulent strains of this bacterium are able to differentially modulate the entrance to DCs, avoid lysosomal degradation and prevent antigen presentation on MHC molecules. These features of virulent S. Typhimurium are controlled by virulence proteins, which are encoded by pathogenicity islands. Modulation of DC functions by these gene products is supported by several studies showing that pathogenesis might depend on this attribute of virulent S. Typhimurium. Here we discuss some of the recent data reported by the literature showing that several virulence proteins from Salmonella are required to modulate DC function and the activation of host adaptive immunity.
Collapse
Affiliation(s)
- Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genetica Molecular y Microbiologia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
35
|
Ramakrishnan G, Sen B, Johnson R. Paralogous outer membrane proteins mediate uptake of different forms of iron and synergistically govern virulence in Francisella tularensis tularensis. J Biol Chem 2012; 287:25191-202. [PMID: 22661710 DOI: 10.1074/jbc.m112.371856] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis subsp. tularensis is a highly infectious bacterium causing acute disease in mammalian hosts. Mechanisms for the acquisition of iron within the iron-limiting host environment are likely to be critical for survival of this intracellular pathogen. FslE (FTT0025) and FupA (FTT0918) are paralogous proteins that are predicted to form β-barrels in the outer membrane of virulent strain Schu S4 and are unique to Francisella species. Previous studies have implicated both FupA, initially identified as a virulence factor and FslE, encoded by the siderophore biosynthetic operon, in iron acquisition. Using single and double mutants, we demonstrated that these paralogs function in concert to promote growth under iron limitation. We used a (55)Fe transport assay to demonstrate that FslE is involved in siderophore-mediated ferric iron uptake, whereas FupA facilitates high affinity ferrous iron uptake. Optimal replication within J774A.1 macrophage-like cells required at least one of these uptake systems to be functional. In a mouse model of tularemia, the ΔfupA mutant was attenuated, but the ΔfslE ΔfupA mutant was significantly more attenuated, implying that the two systems of iron acquisition function synergistically to promote virulence. These studies highlight the importance of specific iron acquisition functions, particularly that of ferrous iron, for virulence of F. tularensis in the mammalian host.
Collapse
Affiliation(s)
- Girija Ramakrishnan
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia 22901, USA.
| | | | | |
Collapse
|
36
|
Phenotypic, morphological, and functional heterogeneity of splenic immature myeloid cells in the host response to tularemia. Infect Immun 2012; 80:2371-81. [PMID: 22526678 DOI: 10.1128/iai.00365-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have linked accumulation of the Gr-1⁺ CD11b⁺ cell phenotype with functional immunosuppression in diverse pathological conditions, including bacterial and parasitic infections and cancer. Gr-1⁺ CD11b⁺ cells were the largest population of cells present in the spleens of mice infected with sublethal doses of the Francisella tularensis live vaccine strain (LVS). In contrast, the number of T cells present in the spleens of these mice did not increase during early infection. There was a significant delay in the kinetics of accumulation of Gr-1⁺ CD11b⁺ cells in the spleens of B-cell-deficient mice, indicating that B cells play a role in recruitment and maintenance of this population in the spleens of mice infected with F. tularensis. The splenic Gr-1⁺ CD11b⁺ cells in tularemia were a heterogeneous population that could be further subdivided into monocytic (mononuclear) and granulocytic (polymorphonuclear) cells using the Ly6C and Ly6G markers and differentiated into antigen-presenting cells following ex vivo culture. Monocytic, CD11b⁺ Ly6C(hi) Ly6G⁻ cells but not granulocytic, CD11b⁺ Ly6C(int) Ly6G⁺ cells purified from the spleens of mice infected with F. tularensis suppressed polyclonal T-cell proliferation via a nitric oxide-dependent pathway. Although the monocytic, CD11b⁺ Ly6C(hi) Ly6G⁻ cells were able to suppress the proliferation of T cells, the large presence of Gr-1⁺ CD11b⁺ cells in mice that survived F. tularensis infection also suggests a potential role for these cells in the protective host response to tularemia.
Collapse
|
37
|
Belhocine K, Monack DM. Francisella infection triggers activation of the AIM2 inflammasome in murine dendritic cells. Cell Microbiol 2011; 14:71-80. [PMID: 21902795 DOI: 10.1111/j.1462-5822.2011.01700.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intracellular bacterium Francisella tularensis is the causative agent of tularemia, a potentially fatal disease. In macrophages, Francisella escapes the initial phagosome and replicates in the cytosol, where it is detected by the cytosolic DNA sensor AIM2 leading to activation of the AIM2 inflammasome. However, during aerosol infection, Francisella is also taken up by dendritic cells. In this study, we show that Francisella novicida escapes into the cytosol of bone marrow-derived dendritic cells (BMDC) where it undergoes rapid replication. We show that F. novicida activates the AIM2 inflammasome in BMDC, causing release of large amounts of IL-1β and rapid host cell death. The Francisella Pathogenicity Island is required for bacterial escape and replication and for inflammasome activation in dendritic cells. In addition, we show that bacterial DNA is bound by AIM2, which leads to inflammasome assembly in infected dendritic cells. IFN-β is upregulated in BMDC following Francisella infection, and the IFN-β signalling pathway is partially required for inflammasome activation in this cell type. Taken together, our results demonstrate that F. novicida induces inflammasome activation in dendritic cells. The resulting inflammatory cell death may be beneficial to remove the bacterial replicative niche and protect the host.
Collapse
Affiliation(s)
- Kamila Belhocine
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
38
|
Chen CC, Chang CJ, Lin TY, Lai MW, Chao HC, Kong MS. Usefulness of fecal lactoferrin in predicting and monitoring the clinical severity of infectious diarrhea. World J Gastroenterol 2011; 17:4218-24. [PMID: 22072854 PMCID: PMC3208367 DOI: 10.3748/wjg.v17.i37.4218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/11/2011] [Accepted: 07/18/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the value of fecal lactoferrin in predicting and monitoring the clinical severity of infectious diarrhea.
METHODS: Patients with acute infectious diarrhea ranging from 3 mo to 10 years in age were enrolled, and one to three stool samples from each subject were collected. Certain parameters, including white blood cells /differential count, C-reactive protein, fecal mucus, fecal pus cells, duration of fever, vomiting, diarrhea and severity (indicated by Clark and Vesikari scores), were recorded and analyzed. Fecal lactoferrin was determined by enzyme-linked immunosorbent assay and compared in different pathogen and disease activity. Generalized estimating equations (GEE) were also used for analysis.
RESULTS: Data included 226 evaluations for 117 individuals across three different time points. Fecal lactoferrin was higher in patients with Salmonella (11.17 μg/g ± 2.73 μg/g) or Campylobacter (10.32 μg/g ± 2.94 μg/g) infections and lower in patients with rotavirus (2.82 μg/g ± 1.27 μg/g) or norovirus (3.16 μg/g ± 1.18 μg/g) infections. Concentrations of fecal lactoferrin were significantly elevated in patients with severe (11.32 μg/g ± 3.29 μg/g) or moderate (3.77 μg/g ± 2.08 μg/g) disease activity compared with subjects with mild (1.51 μg/g ± 1.36 μg/g) disease activity (P < 0.05). GEE analysis suggests that this marker could be used to monitor the severity and course of gastrointestinal infections and may provide information for disease management.
CONCLUSION: Fecal lactoferrin increased during bacterial infection and with greater disease severity and may be a good marker for predicting and monitoring intestinal inflammation in children with infectious diarrhea.
Collapse
|
39
|
Qin A, Scott DW, Rabideau MM, Moore EA, Mann BJ. Requirement of the CXXC motif of novel Francisella infectivity potentiator protein B FipB, and FipA in virulence of F. tularensis subsp. tularensis. PLoS One 2011; 6:e24611. [PMID: 21931773 PMCID: PMC3169626 DOI: 10.1371/journal.pone.0024611] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/14/2011] [Indexed: 12/21/2022] Open
Abstract
The lipoprotein encoded by the Francisella tularensis subsp. tularensis locus FTT1103 is essential for virulence; an FTT1103 deletion mutant is defective in uptake and intracellular survival, and mice survive high dose challenges of greater than 108 bacteria. This protein has two conserved domains; one is found in a class of virulence proteins called macrophage infectivity potentiator (Mip) proteins, and the other in oxidoreductase Disulfide Bond formation protein A (DsbA)-related proteins. We have designated the protein encoded by FTT1103 as FipB for Francisellainfectivity potentiator protein B. The locus FTT1102 (fipA), which is upstream of fipB, also has similarity to same conserved Mip domain. Deletion and site-specific mutants of fipA and fipB were constructed in the Schu S4 strain, and characterized with respect to intracellular replication and in vivo virulence. A nonpolar fipA mutant demonstrated reduced survival in host cells, but was only slightly attenuated in vivo. Although FipB protein was present in a fipA mutant, the abundance of the three isoforms of FipB was altered, suggesting that FipA has a role in post-translational modification of FipB. Similar to many DsbA homologues, FipB contains a cysteine-any amino acid-any amino acid-cysteine (CXXC) motif. This motif was found to be important for FipB's role in virulence; a deletion mutant complemented with a gene encoding a FipB protein in which the first cysteine was changed to an alanine residue (AXXC) failed to restore intracellular survival or in vivo virulence. Complementation with a gene that encoded a CXXA containing FipB protein was significantly defective in intracellular growth; however, only slightly attenuated in vivo.
Collapse
Affiliation(s)
- Aiping Qin
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Office of Laboratory Management, Chinese Center for Disease Control and Prevention, Beijing, Peoples Republic of China
| | - David W. Scott
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Meaghan M. Rabideau
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Emily A. Moore
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Barbara J. Mann
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Proteomic expression profiles of virulent and avirulent strains of Listeria monocytogenes isolated from macrophages. J Proteomics 2011; 74:1906-17. [DOI: 10.1016/j.jprot.2011.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 11/20/2022]
|
41
|
|
42
|
A Francisella tularensis locus required for spermine responsiveness is necessary for virulence. Infect Immun 2011; 79:3665-76. [PMID: 21670171 DOI: 10.1128/iai.00135-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tularemia is a debilitating febrile illness caused by the category A biodefense agent Francisella tularensis. This pathogen infects over 250 different hosts, has a low infectious dose, and causes high morbidity and mortality. Our understanding of the mechanisms by which F. tularensis senses and adapts to host environments is incomplete. Polyamines, including spermine, regulate the interactions of F. tularensis with host cells. However, it is not known whether responsiveness to polyamines is necessary for the virulence of the organism. Through transposon mutagenesis of F. tularensis subsp. holarctica live vaccine strain (LVS), we identified FTL_0883 as a gene important for spermine responsiveness. In-frame deletion mutants of FTL_0883 and FTT_0615c, the homologue of FTL_0883 in F. tularensis subsp. tularensis Schu S4 (Schu S4), elicited higher levels of cytokines from human and murine macrophages compared to wild-type strains. Although deletion of FTL_0883 attenuated LVS replication within macrophages in vitro, the Schu S4 mutant with a deletion in FTT_0615c replicated similarly to wild-type Schu S4. Nevertheless, both the LVS and the Schu S4 mutants were significantly attenuated in vivo. Growth and dissemination of the Schu S4 mutant was severely reduced in the murine model of pneumonic tularemia. This attenuation depended on host responses to elevated levels of proinflammatory cytokines. These data associate responsiveness to polyamines with tularemia pathogenesis and define FTL_0883/FTT_0615c as an F. tularensis gene important for virulence and evasion of the host immune response.
Collapse
|
43
|
Nallaparaju KC, Yu JJ, Rodriguez SA, Zogaj X, Manam S, Guentzel MN, Seshu J, Murthy AK, Chambers JP, Klose KE, Arulanandam BP. Evasion of IFN-γ signaling by Francisella novicida is dependent upon Francisella outer membrane protein C. PLoS One 2011; 6:e18201. [PMID: 21483828 PMCID: PMC3069069 DOI: 10.1371/journal.pone.0018201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/24/2011] [Indexed: 12/12/2022] Open
Abstract
Background Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918) of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida) FTN_0444 (homolog of FTT0918) fopC mutant to study the virulence-associated mechanism(s) of FTT0918. Methods and Findings The ΔfopC strain phenotype was characterized using immunological and biochemical assays. Attenuated virulence via the pulmonary route in wildtype C57BL/6 and BALB/c mice, as well as in knockout (KO) mice, including MHC I, MHC II, and µmT (B cell deficient), but not in IFN-γ or IFN-γR KO mice was observed. Primary bone marrow derived macrophages (BMDM) prepared from C57BL/6 mice treated with rIFN-γ exhibited greater inhibition of intracellular ΔfopC than wildtype U112 strain replication; whereas, IFN-γR KO macrophages showed no IFN-γ-dependent inhibition of ΔfopC replication. Moreover, phosphorylation of STAT1 was downregulated by the wildtype strain, but not the fopC mutant, in rIFN-γ treated macrophages. Addition of NG-monomethyl-L-arginine, an NOS inhibitor, led to an increase of ΔfopC replication to that seen in the BMDM unstimulated with rIFN-γ. Enzymatic screening of ΔfopC revealed aberrant acid phosphatase activity and localization. Furthermore, a greater abundance of different proteins in the culture supernatants of ΔfopC than that in the wildtype U112 strain was observed. Conclusions F. novicida FopC protein facilitates evasion of IFN-γ-mediated immune defense(s) by down-regulation of STAT1 phosphorylation and nitric oxide production, thereby promoting virulence. Additionally, the FopC protein also may play a role in maintaining outer membrane stability (integrity) facilitating the activity and localization of acid phosphatases and other F. novicida cell components.
Collapse
Affiliation(s)
- Kalyan C. Nallaparaju
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Stephen A. Rodriguez
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Xhavit Zogaj
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Srikanth Manam
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Janakiram Seshu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Ashlesh K. Murthy
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Antibodies contribute to effective vaccination against respiratory infection by type A Francisella tularensis strains. Infect Immun 2011; 79:1770-8. [PMID: 21282410 DOI: 10.1128/iai.00605-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumonic tularemia is a life-threatening disease caused by inhalation of the highly infectious intracellular bacterium Francisella tularensis. The most serious form of the disease associated with the type A strains can be prevented in experimental animals through vaccination with the attenuated live vaccine strain (LVS). The protection is largely cell mediated, but the contribution of antibodies remains controversial. We addressed this issue in a series of passive immunization studies in Fischer 344 (F344) rats. Subcutaneous LVS vaccination induced a robust serum antibody response dominated by IgM, IgG2a, and IgG2b antibodies. Prophylactic administration of LVS immune serum or purified immune IgG reduced the severity and duration of disease in naïve rats challenged intratracheally with a lethal dose of the virulent type A strain SCHU S4. The level of resistance increased with the volume of immune serum given, but the maximum survivable SCHU S4 challenge dose was at least 100-fold lower than that shown for LVS-vaccinated rats. Protection correlated with reduced systemic bacterial growth, less severe histopathology in the liver and spleen during the early phase of infection, and bacterial clearance by a T cell-dependent mechanism. Our results suggest that treatment with immune serum limited the sequelae associated with infection, thereby enabling a sterilizing T cell response to develop and resolve the infection. Thus, antibodies induced by LVS vaccination may contribute to the defense of F344 rats against respiratory infection by type A strains of F. tularensis.
Collapse
|
45
|
Asare R, Kwaik YA. Exploitation of host cell biology and evasion of immunity by francisella tularensis. Front Microbiol 2011; 1:145. [PMID: 21687747 PMCID: PMC3109322 DOI: 10.3389/fmicb.2010.00145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 12/21/2010] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium that infects humans and many small mammals. During infection, F. tularensis replicates predominantly in macrophages but also proliferate in other cell types. Entry into host cells is mediate by various receptors. Complement-opsonized F. tularensis enters into macrophages by looping phagocytosis. Uptake is mediated in part by Syk, which may activate actin rearrangement in the phagocytic cup resulting in the engulfment of F. tularensis in a lipid raft rich phagosome. Inside the host cells, F. tularensis resides transiently in an acidified late endosome-like compartment before disruption of the phagosomal membrane and escape into the cytosol, where bacterial proliferation occurs. Modulation of phagosome biogenesis and escape into the cytosol is mediated by the Francisella pathogenicity island-encoded type VI-like secretion system. Whilst inside the phagosome, F. tularensis temporarily induce proinflammatory cytokines in PI3K/Akt-dependent manner, which is counteracted by the induction of SHIP that negatively regulates PI3K/Akt activation and promotes bacterial escape into the cytosol. Interestingly, F. tularensis subverts CD4 T cells-mediated killing by inhibiting antigen presentation by activated macrophages through ubiquitin-dependent degradation of MHC II molecules on activated macrophages. In the cytosol, F. tularensis is recognized by the host cell inflammasome, which is down-regulated by F. tularensis that also inhibits caspase-1 and ASC activity. During late stages of intracellular proliferation, caspase-3 is activated but apoptosis is delayed through activation of NF-κB and Ras, which ensures cell viability.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology and Immunology, School of Medicine, University of Louisville Louisville, KY, USA
| | | |
Collapse
|
46
|
|
47
|
Francisella tularensis Schu S4 O-antigen and capsule biosynthesis gene mutants induce early cell death in human macrophages. Infect Immun 2010; 79:581-94. [PMID: 21078861 DOI: 10.1128/iai.00863-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Francisella tularensis is capable of rampant intracellular growth and causes a potentially fatal disease in humans. Whereas many mutational studies have been performed with avirulent strains of Francisella, relatively little has been done with strains that cause human disease. We generated a near-saturating transposon library in the virulent strain Schu S4, which was subjected to high-throughput screening by transposon site hybridization through primary human macrophages, negatively selecting 202 genes. Of special note were genes in a locus of the Francisella chromosome, FTT1236, FTT1237, and FTT1238. Mutants with mutations in these genes demonstrated significant sensitivity to complement-mediated lysis compared with wild-type Schu S4 and exhibited marked defects in O-antigen and capsular polysaccharide biosynthesis. In the absence of complement, these mutants were phagocytosed more efficiently by macrophages than wild-type Schu S4 and were capable of phagosomal escape but exhibited reduced intracellular growth. Microscopic and quantitative analyses of macrophages infected with mutant bacteria revealed that these macrophages exhibited signs of cell death much earlier than those infected with Schu S4. These data suggest that FTT1236, FTT1237, and FTT1238 are important for polysaccharide biosynthesis and that the Francisella O antigen, capsule, or both are important for avoiding the early induction of macrophage death and the destruction of the replicative niche.
Collapse
|
48
|
Anderson RV, Crane DD, Bosio CM. Long lived protection against pneumonic tularemia is correlated with cellular immunity in peripheral, not pulmonary, organs. Vaccine 2010; 28:6562-72. [PMID: 20688042 PMCID: PMC2939155 DOI: 10.1016/j.vaccine.2010.07.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 12/28/2022]
Abstract
Protection against the intracellular bacterium Francisella tularensis within weeks of vaccination is thought to involve both cellular and humoral immune responses. However, the relative roles for cellular and humoral immunity in long lived protection against virulent F. tularensis are not well established. Here, we dissected the correlates of immunity to pulmonary infection with virulent F. tularensis strain SchuS4 in mice challenged 30 and 90 days after subcutaneous vaccination with LVS. Regardless of the time of challenge, LVS vaccination protected approximately 90% of SchuS4 infected animals. Surprisingly, control of bacterial replication in the lung during the first 7 days of infection was not required for survival of SchuS4 infection in vaccinated mice. Control and survival of virulent F. tularensis strain SchuS4 infection within 30 days of vaccination was associated with high titers of SchuS4 agglutinating antibodies, and IFN-γ production by multiple cell types in both the lung and spleen. In contrast, survival of SchuS4 infection 90 days after vaccination was correlated only with IFN-γ producing splenocytes and activated T cells in the spleen. Together these data demonstrate that functional agglutinating antibodies and strong mucosal immunity are correlated with early control of pulmonary infections with virulent F. tularensis. However, early mucosal immunity may not be required to survive F. tularensis infection. Instead, survival of SchuS4 infection at extended time points after immunization was only associated with production of IFN-γ and activation of T cells in peripheral organs.
Collapse
Affiliation(s)
- Rebecca V. Anderson
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Deborah D. Crane
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Catharine M. Bosio
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| |
Collapse
|
49
|
Perobelli S, Alves C, Rezende A, Farias R, Nunes S, Teixeira H. Splenic autotransplantation reverses interferon-gamma and nitric oxide production and resistance to Listeria monocytogenes in splenectomized mice. Transpl Infect Dis 2010; 13:154-60. [DOI: 10.1111/j.1399-3062.2010.00562.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Valdez Y, Ferreira RBR, Finlay BB. Molecular mechanisms of Salmonella virulence and host resistance. Curr Top Microbiol Immunol 2010; 337:93-127. [PMID: 19812981 DOI: 10.1007/978-3-642-01846-6_4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Salmonella species can cause typhoid fever and gastroenteritis in humans and pose a global threat to human health. In order to establish a successful infection, Salmonella utilize a large number of genes encoding a variety of virulence factors. Different animal models of infection have been used to better understand the mechanisms underlying each disease including cattle, rodents, and nematodes. To date, a number of different bacterial virulence factors have been identified using such animal models, most of which are secreted by two type three secretion systems (T3SS) encoded within Salmonella pathogenicity islands (SPI) 1 and 2. These proteins alter various host cell pathways, facilitating the invasion of epithelial cells during infection, as well as the survival and replication of Salmonella inside phagocytic cells. On the other hand, host genetics and resistance also play a role in the susceptibility to Salmonella infection. The natural resistance-associated macrophage protein 1 (Nramp1), for example, is critical for host defense, since mice lacking Nramp1 fail to control bacterial replication and succumb to low doses of S. Typhimurium. In this chapter, we analyze the different pathogen and host factors that play a role in the dynamic interaction between Salmonella and its host and their impact on disease.
Collapse
Affiliation(s)
- Yanet Valdez
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|