1
|
Xi Y, Li X, Liu L, Xiu F, Yi X, Chen H, You X. Sneaky tactics: Ingenious immune evasion mechanisms of Bartonella. Virulence 2024; 15:2322961. [PMID: 38443331 PMCID: PMC10936683 DOI: 10.1080/21505594.2024.2322961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.
Collapse
Affiliation(s)
- Yixuan Xi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinchao Yi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongliang Chen
- Chenzhou NO.1 People’s Hospital, The Affiliated Chenzhou Hospital, Hengyang Medical College, University of South China, ChenZhou, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Solis Cayo L, Hammerbauerová I, Sommer J, Nemati Z, Ballhorn W, Tsukayama P, Dichter A, Votýpka J, Kempf VAJ. Genome sequences of three Bartonella schoenbuchensis strains from Czechia. Microbiol Resour Announc 2024; 13:e0039724. [PMID: 38953338 PMCID: PMC11320913 DOI: 10.1128/mra.00397-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Bartonella schoenbuchensis causes bacteremia in ruminants and is transmitted by deer keds. Here, we report the complete genome sequences of three B. schoenbuchensis strains (L2, L19, and L24) recently isolated from deer keds (Lipoptena fortisetosa) in Czechia.
Collapse
Affiliation(s)
- Luis Solis Cayo
- Laboratorio de Microbiología Molecular y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Laboratorio de Genómica Microbiana, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt,” Universidad Peruana Cayetano Heredia, Lima, Peru
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Iva Hammerbauerová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Julian Sommer
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Zahra Nemati
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Wibke Ballhorn
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Pablo Tsukayama
- Laboratorio de Genómica Microbiana, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alexander Dichter
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
3
|
Beliavskaia A, Tan KK, Sinha A, Husin NA, Lim FS, Loong SK, Bell-Sakyi L, Carlow CKS, AbuBakar S, Darby AC, Makepeace BL, Khoo JJ. Metagenomics of culture isolates and insect tissue illuminate the evolution of Wolbachia, Rickettsia and Bartonella symbionts in Ctenocephalides spp. fleas. Microb Genom 2023; 9:mgen001045. [PMID: 37399133 PMCID: PMC10438800 DOI: 10.1099/mgen.0.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
While fleas are often perceived simply as a biting nuisance and a cause of allergic dermatitis, they represent important disease vectors worldwide, especially for bacterial zoonoses such as plague (transmitted by rodent fleas) and some of the rickettsioses and bartonelloses. The cosmopolitan cat (Ctenocephalides felis ) and dog (Ctenocephalides canis ) fleas, as well as Ctenocephalides orientis (restricted to tropical and subtropical Asia), breed in human dwellings and are vectors of cat-scratch fever (caused by Bartonella spp.) and Rickettsia spp., including Rickettsia felis (agent of flea-borne spotted fever) and Rickettsia asembonensis , a suspected pathogen. These Rickettsia spp. are members of a phylogenetic clade known as the ‘transitional group’, which includes both human pathogens and arthropod-specific endosymbionts. The relatively depauperate flea microbiome can also contain other endosymbionts, including a diverse range of Wolbachia strains. Here, we present circularized genome assemblies for two C. orientis -derived pathogens (Bartonella clarridgeiae and R. asembonensis ) from Malaysia, a novel Wolbachia strain (w Cori), and the C. orientis mitochondrion; all were obtained by direct metagenomic sequencing of flea tissues. Moreover, we isolated two Wolbachia strains from Malaysian C. felis into tick cell culture and recovered circularized genome assemblies for both, one of which (w CfeF) is newly sequenced. We demonstrate that the three Wolbachia strains are representatives of different major clades (‘supergroups’), two of which appear to be flea-specific. These Wolbachia genomes exhibit unique combinations of features associated with reproductive parasitism or mutualism, including prophage WO, cytoplasmic incompatibility factors and the biotin operon of obligate intracellular microbes. The first circularized assembly for R. asembonensis includes a plasmid with a markedly different structure and gene content compared to the published plasmid; moreover, this novel plasmid was also detected in cat flea metagenomes from the USA. Analysis of loci under positive selection in the transitional group revealed genes involved in host–pathogen interactions that may facilitate host switching. Finally, the first B. clarridgeiae genome from Asia exhibited large-scale genome stability compared to isolates from other continents, except for SNPs in regions predicted to mediate interactions with the vertebrate host. These findings highlight the paucity of data on the genomic diversity of Ctenocephalides -associated bacteria and raise questions regarding how interactions between members of the flea microbiome might influence vector competence.
Collapse
Affiliation(s)
- Alexandra Beliavskaia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Amit Sinha
- New England Biolabs, Ipswich, Massachusetts, 01938, USA
| | - Nurul Aini Husin
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fang Shiang Lim
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | | | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Alistair C. Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Jing Jing Khoo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| |
Collapse
|
4
|
Orsini M, Ianni A, Zinzula L. Brucella ceti and Brucella pinnipedialis genome characterization unveils genetic features that highlight their zoonotic potential. Microbiologyopen 2022; 11:e1329. [PMID: 36314752 PMCID: PMC9597259 DOI: 10.1002/mbo3.1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The Gram-negative bacteria Brucella ceti and Brucella pinnipedialis circulate in marine environments primarily infecting marine mammals, where they cause an often-fatal disease named brucellosis. The increase of brucellosis among several species of cetaceans and pinnipeds, together with the report of sporadic human infections, raises concerns about the zoonotic potential of these pathogens on a large scale and may pose a threat to coastal communities worldwide. Therefore, the characterization of the B. ceti and B. pinnipedialis genetic features is a priority to better understand the pathological factors that may impact global health. Moreover, an in-depth functional analysis of the B. ceti and B. pinnipedialis genome in the context of virulence and pathogenesis was not undertaken so far. Within this picture, here we present the comparative whole-genome characterization of all B. ceti and B. pinnipedialis genomes available in public resources, uncovering a collection of genetic tools possessed by these aquatic bacterial species compared to their zoonotic terrestrial relatives. We show that B. ceti and B. pinnipedialis genomes display a wide host-range infection capability and a polyphyletic phylogeny within the genus, showing a genomic structure that fits the canonical definition of closeness. Functional genome annotation led to identifying genes related to several pathways involved in mechanisms of infection, others conferring pan-susceptibility to antimicrobials and a set of virulence genes that highlight the similarity of B. ceti and B. pinnipedialis genotypes to those of Brucella spp. displaying human-infecting phenotypes.
Collapse
Affiliation(s)
- Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale delle Venezie, Laboratory of Microbial Ecology and GenomicsLegnaroItaly
| | - Andrea Ianni
- Research Unit in Hygiene, Statistics and Public HealthCampus Bio‐Medico di Roma UniversityRomeItaly
| | - Luca Zinzula
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Centro di Educazione Ambientale e alla Sostenibilità (CEAS) Laguna di NoraPulaItaly
| |
Collapse
|
5
|
Identification of the Bartonella autotransporter CFA as a protective antigen and hypervariable target of neutralizing antibodies in mice. Proc Natl Acad Sci U S A 2022; 119:e2202059119. [PMID: 35714289 PMCID: PMC9231624 DOI: 10.1073/pnas.2202059119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bartonella infections represent a significant burden to human health and are difficult to cure. Protective Bartonella vaccines are not available. Acquired immunity to Bartonella infection could provide a blueprint for vaccine design but remains incompletely defined. Moreover, bacterial immune evasion mechanisms have the potential to thwart vaccination efforts. Our study in a model of a natural Bartonella–host relationship revealed that antibody-mediated prevention of bacterial attachment to erythrocytes is sufficient for protection. We identified the bacterial surface determinant CFA (CAMP-like factor autotransporter) as a target of protective antibodies. While immunization with CFA protected against challenge with the homologous Bartonella isolate, extensive variability of CFA already at the strain level revealed bacterial immune evasion mechanisms with implications for Bartonella vaccine design. The bacterial genus Bartonella comprises numerous emerging pathogens that cause a broad spectrum of disease manifestations in humans. The targets and mechanisms of the anti-Bartonella immune defense are ill-defined and bacterial immune evasion strategies remain elusive. We found that experimentally infected mice resolved Bartonella infection by mounting antibody responses that neutralized the bacteria, preventing their attachment to erythrocytes and suppressing bacteremia independent of complement or Fc receptors. Bartonella-neutralizing antibody responses were rapidly induced and depended on CD40 signaling but not on affinity maturation. We cloned neutralizing monoclonal antibodies (mAbs) and by mass spectrometry identified the bacterial autotransporter CFA (CAMP-like factor autotransporter) as a neutralizing antibody target. Vaccination against CFA suppressed Bartonella bacteremia, validating CFA as a protective antigen. We mapped Bartonella-neutralizing mAb binding to a domain in CFA that we found is hypervariable in both human and mouse pathogenic strains, indicating mutational antibody evasion at the Bartonella subspecies level. These insights into Bartonella immunity and immune evasion provide a conceptual framework for vaccine development, identifying important challenges in this endeavor.
Collapse
|
6
|
Wachter S, Hicks LD, Raghavan R, Minnick MF. Novel small RNAs expressed by Bartonella bacilliformis under multiple conditions reveal potential mechanisms for persistence in the sand fly vector and human host. PLoS Negl Trop Dis 2020; 14:e0008671. [PMID: 33216745 PMCID: PMC7717549 DOI: 10.1371/journal.pntd.0008671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/04/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
Bartonella bacilliformis, the etiological agent of Carrión’s disease, is a Gram-negative, facultative intracellular alphaproteobacterium. Carrión’s disease is an emerging but neglected tropical illness endemic to Peru, Colombia, and Ecuador. B. bacilliformis is spread between humans through the bite of female phlebotomine sand flies. As a result, the pathogen encounters significant and repeated environmental shifts during its life cycle, including changes in pH and temperature. In most bacteria, small non-coding RNAs (sRNAs) serve as effectors that may post-transcriptionally regulate the stress response to such changes. However, sRNAs have not been characterized in B. bacilliformis, to date. We therefore performed total RNA-sequencing analyses on B. bacilliformis grown in vitro then shifted to one of ten distinct conditions that simulate various environments encountered by the pathogen during its life cycle. From this, we identified 160 sRNAs significantly expressed under at least one of the conditions tested. sRNAs included the highly-conserved tmRNA, 6S RNA, RNase P RNA component, SRP RNA component, ffH leader RNA, and the alphaproteobacterial sRNAs αr45 and speF leader RNA. In addition, 153 other potential sRNAs of unknown function were discovered. Northern blot analysis was used to confirm the expression of eight novel sRNAs. We also characterized a Bartonellabacilliformisgroup I intron (BbgpI) that disrupts an un-annotated tRNACCUArg gene and determined that the intron splices in vivo and self-splices in vitro. Furthermore, we demonstrated the molecular targeting of Bartonellabacilliformissmall RNA 9 (BbsR9) to transcripts of the ftsH, nuoF, and gcvT genes, in vitro. B. bacilliformis is a bacterial pathogen that is transmitted between humans by phlebotomine sand flies. Bacteria often express sRNAs to fine-tune the production of proteins involved in a wide array of biological processes. We cultured B. bacilliformis in vitro under standard conditions then shifted the pathogen for a period of time to ten distinct environments, including multiple temperatures, pH levels, and infections of human blood and human vascular endothelial cells. After RNA-sequencing, a manual transcriptome search identified 160 putative sRNAs, including seven highly-conserved sRNAs and 153 novel potential sRNAs. We then characterized two of the novel sRNAs, BbgpI and BbsR9. BbgpI is a group I intron (ribozyme) that self-splices and disrupts an unannotated gene coding for a transfer RNA (tRNACCUArg). BbsR9 is an intergenic sRNA expressed under conditions that simulate the sand fly. We found that BbsR9 targets transcripts of the ftsH, nuoF, and gcvT genes. Furthermore, we determined the specific sRNA-mRNA interactions responsible for BbsR9 binding to its target mRNAs through in vitro mutagenesis and binding assays.
Collapse
Affiliation(s)
- Shaun Wachter
- Program in Cellular, Molecular & Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Linda D. Hicks
- Program in Cellular, Molecular & Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, Oregon, United States of America
| | - Michael F. Minnick
- Program in Cellular, Molecular & Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
7
|
Thibau A, Dichter AA, Vaca DJ, Linke D, Goldman A, Kempf VAJ. Immunogenicity of trimeric autotransporter adhesins and their potential as vaccine targets. Med Microbiol Immunol 2020; 209:243-263. [PMID: 31788746 PMCID: PMC7247748 DOI: 10.1007/s00430-019-00649-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
The current problem of increasing antibiotic resistance and the resurgence of numerous infections indicate the need for novel vaccination strategies more than ever. In vaccine development, the search for and the selection of adequate vaccine antigens is the first important step. In recent years, bacterial outer membrane proteins have become of major interest, as they are the main proteins interacting with the extracellular environment. Trimeric autotransporter adhesins (TAAs) are important virulence factors in many Gram-negative bacteria, are localised on the bacterial surface, and mediate the first adherence to host cells in the course of infection. One example is the Neisseria adhesin A (NadA), which is currently used as a subunit in a licensed vaccine against Neisseria meningitidis. Other TAAs that seem promising vaccine candidates are the Acinetobacter trimeric autotransporter (Ata), the Haemophilus influenzae adhesin (Hia), and TAAs of the genus Bartonella. Here, we review the suitability of various TAAs as vaccine candidates.
Collapse
Affiliation(s)
- Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Alexander A. Dichter
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, UK
- Molecular and Integrative Biosciences Program, University of Helsinki, Helsinki, Finland
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Vaca DJ, Thibau A, Schütz M, Kraiczy P, Happonen L, Malmström J, Kempf VAJ. Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria. Med Microbiol Immunol 2019; 209:277-299. [PMID: 31784893 PMCID: PMC7248048 DOI: 10.1007/s00430-019-00644-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
The capacity of pathogenic microorganisms to adhere to host cells and avoid clearance by the host immune system is the initial and most decisive step leading to infections. Bacteria have developed different strategies to attach to diverse host surface structures. One important strategy is the adhesion to extracellular matrix (ECM) proteins (e.g., collagen, fibronectin, laminin) that are highly abundant in connective tissue and basement membranes. Gram-negative bacteria express variable outer membrane proteins (adhesins) to attach to the host and to initiate the process of infection. Understanding the underlying molecular mechanisms of bacterial adhesion is a prerequisite for targeting this interaction by “anti-ligands” to prevent colonization or infection of the host. Future development of such “anti-ligands” (specifically interfering with bacteria-host matrix interactions) might result in the development of a new class of anti-infective drugs for the therapy of infections caused by multidrug-resistant Gram-negative bacteria. This review summarizes our current knowledge about the manifold interactions of adhesins expressed by Gram-negative bacteria with ECM proteins and the use of this information for the generation of novel therapeutic antivirulence strategies.
Collapse
Affiliation(s)
- Diana J Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Monika Schütz
- Institute for Medical Microbiology and Infection Control, University Hospital, Eberhard Karls-University, Tübingen, Germany
| | - Peter Kraiczy
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany.
| |
Collapse
|
9
|
Wagner A, Tittes C, Dehio C. Versatility of the BID Domain: Conserved Function as Type-IV-Secretion-Signal and Secondarily Evolved Effector Functions Within Bartonella-Infected Host Cells. Front Microbiol 2019; 10:921. [PMID: 31130928 PMCID: PMC6509941 DOI: 10.3389/fmicb.2019.00921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
Bartonella spp. are facultative intracellular pathogens that infect a wide range of mammalian hosts including humans. In order to subvert cellular functions and the innate immune response of their hosts, these pathogens utilize a VirB/VirD4 type-IV-secretion (T4S) system to translocate Bartonella effector proteins (Beps) into host cells. Crucial for this process is the Bep intracellular delivery (BID) domain that together with a C-terminal stretch of positively charged residues constitutes a bipartite T4S signal. This function in T4S is evolutionarily conserved with BID domains present in bacterial toxins and relaxases. Strikingly, some BID domains of Beps have evolved secondary functions to modulate host cell and innate immune pathways in favor of Bartonella infection. For instance, BID domains mediate F-actin-dependent bacterial internalization, inhibition of apoptosis, or modulate cell migration. Recently, crystal structures of three BID domains from different Beps have been solved, revealing a conserved fold formed by a four-helix bundle topped with a hook. While the conserved BID domain fold might preserve its genuine role in T4S, the highly variable surfaces characteristic for BID domains may facilitate secondary functions. In this review, we summarize our current knowledge on evolutionary and structural traits as well as functional aspects of the BID domain with regard to T4S and pathogenesis.
Collapse
Affiliation(s)
| | - Colin Tittes
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
10
|
Garcia-Quintanilla M, Dichter AA, Guerra H, Kempf VAJ. Carrion's disease: more than a neglected disease. Parasit Vectors 2019; 12:141. [PMID: 30909982 PMCID: PMC6434794 DOI: 10.1186/s13071-019-3390-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 01/30/2023] Open
Abstract
Infections with Bartonella bacilliformis result in Carrion's disease in humans. In the first phase of infection, the pathogen causes a hemolytic fever ("Oroya fever") with case-fatality rates as high as ~90% in untreated patients, followed by a chronical phase resulting in angiogenic skin lesions ("verruga peruana"). Bartonella bacilliformis is endemic to South American Andean valleys and is transmitted via sand flies (Lutzomyia spp.). Humans are the only known reservoir for this old disease and therefore no animal infection model is available. In the present review, we provide the current knowledge on B. bacilliformis and its pathogenicity factors, vectors, possible unknown reservoirs, established and potential infection models and immunological aspects of the disease.
Collapse
Affiliation(s)
- Meritxell Garcia-Quintanilla
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Alexander A Dichter
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Humberto Guerra
- Universidad Peruana Cayetano Heredia and the Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - Volkhard A J Kempf
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Wagner A, Dehio C. Role of distinct type-IV-secretion systems and secreted effector sets in host adaptation by pathogenic Bartonella species. Cell Microbiol 2019; 21:e13004. [PMID: 30644157 PMCID: PMC6519360 DOI: 10.1111/cmi.13004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022]
Abstract
The α‐proteobacterial genus Bartonella comprises a large number of facultative intracellular pathogens that share a common lifestyle hallmarked by hemotrophic infection and arthropod transmission. Speciation in the four deep‐branching lineages (L1–L4) occurred by host adaptation facilitating the establishment of long lasting bacteraemia in specific mammalian reservoir host(s). Two distinct type‐IV‐secretion systems (T4SSs) acquired horizontally by different Bartonella lineages mediate essential host interactions during infection and represent key innovations for host adaptation. The Trw‐T4SS confined to the species‐rich L4 mediates host‐specific erythrocyte infection and likely has functionally replaced flagella as ancestral virulence factors implicated in erythrocyte colonisation by bartonellae of the other lineages. The VirB/VirD4‐T4SS translocates Bartonella effector proteins (Bep) into various host cell types to modulate diverse cellular and innate immune functions involved in systemic spreading of bacteria following intradermal inoculation. Independent acquisition of the virB/virD4/bep locus by L1, L3, and L4 was likely driven by arthropod vectors associated with intradermal inoculation of bacteria rather than facilitating direct access to blood. Subsequently, adaptation to colonise specific niches in the new host has shaped the evolution of complex species‐specific Bep repertoires. This diversification of the virulence factor repertoire of Bartonella spp. represents a remarkable example for parallel evolution of host adaptation.
Collapse
Affiliation(s)
- Alexander Wagner
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Deng H, Pang Q, Zhao B, Vayssier-Taussat M. Molecular Mechanisms of Bartonella and Mammalian Erythrocyte Interactions: A Review. Front Cell Infect Microbiol 2018; 8:431. [PMID: 30619777 PMCID: PMC6299047 DOI: 10.3389/fcimb.2018.00431] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Bartonellosis is an infectious disease caused by Bartonella species that are distributed worldwide with animal and public health impact varying according to Bartonella species, infection phase, immunological characteristics, and geographical region. Bartonella is widely present in various mammals including cats, rodents, ruminants, and humans. At least 13 Bartonella species or subspecies are zoonotic. Each species has few reservoir animals in which it is often asymptomatic. Bartonella infection may lead to various clinical symptoms in humans. As described in the B.tribocorum-rat model, when Bartonella was seeded into the blood stream, they could escape immunity, adhered to and invaded host erythrocytes. They then replicated and persisted in the infected erythrocytes for several weeks. This review summarizes the current knowledge of how Bartonella prevent phagocytosis and complement activation, what pathogenesis factors are involved in erythrocyte adhesion and invasion, and how Bartonella could replicate and persist in mammalian erythrocytes. Current advances in research will help us to decipher molecular mechanisms of interactions between Bartonella and mammalian erythrocytes and may help in the development of biological strategies for the prevention and control of bartonellosis.
Collapse
Affiliation(s)
- Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Muriel Vayssier-Taussat
- UMR BIPAR, INRA, ANSES, École Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil Val-de-Marne, Maisons-Alfort, France
| |
Collapse
|
13
|
Poncin K, Gillet S, De Bolle X. Learning from the master: targets and functions of the CtrA response regulator in Brucella abortus and other alpha-proteobacteria. FEMS Microbiol Rev 2018; 42:500-513. [PMID: 29733367 DOI: 10.1093/femsre/fuy019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
The α-proteobacteria are a fascinating group of free-living, symbiotic and pathogenic organisms, including the Brucella genus, which is responsible for a worldwide zoonosis. One common feature of α-proteobacteria is the presence of a conserved response regulator called CtrA, first described in the model bacterium Caulobacter crescentus, where it controls gene expression at different stages of the cell cycle. Here, we focus on Brucella abortus and other intracellular α-proteobacteria in order to better assess the potential role of CtrA in the infectious context. Comparative genomic analyses of the CtrA control pathway revealed the conservation of specific modules, as well as the acquisition of new factors during evolution. The comparison of CtrA regulons also suggests that specific clades of α-proteobacteria acquired distinct functions under its control, depending on the essentiality of the transcription factor. Other CtrA-controlled functions, for instance motility and DNA repair, are proposed to be more ancestral. Altogether, these analyses provide an interesting example of the plasticity of a regulation network, subject to the constraints of inherent imperatives such as cell division and the adaptations to diversified environmental niches.
Collapse
Affiliation(s)
- Katy Poncin
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Sébastien Gillet
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Xavier De Bolle
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| |
Collapse
|
14
|
Tay ST, Kho KL, Lye SF, Ngeow YF. Phylogeny and putative virulence gene analysis of Bartonella bovis. J Vet Med Sci 2018; 80:653-661. [PMID: 29311425 PMCID: PMC5938196 DOI: 10.1292/jvms.17-0448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bartonella bovis is a small Gram-negative bacterium recognized as an
etiological agent for bacteremia and endocarditis in cattle. As few reports are available
on the taxonomic position of B. bovis and its mechanism of virulence,
this study aims to resolve the phylogeny of B. bovis and investigate
putative virulence genes based on whole genome sequence analysis. Genome-wide comparisons
based on single nucleotide polymorphisms (SNP) and orthologous genes were performed in
this study for phylogenetic inference of 27 Bartonella species. Rapid
Annotation using Subsystem Technology (RAST) analysis was used for annotation of putative
virulence genes. The phylogenetic tree generated from the genome-wide comparison of
orthologous genes exhibited a topology almost similar to that of the tree generated from
SNP-based comparison, indicating a high concordance in the nucleotide and amino acid
sequences of Bartonella spp. The analyses show consistent grouping of
B. bovis in a cluster related to ruminant-associated species, including
Bartonella australis, Bartonella melophagi and
Bartonella schoenbuchensis. RAST analysis revealed genes encoding
flagellar components, in corroboration with the observation of flagella-like structure of
BbUM strain under negative straining. Genes associated with virulence, disease and
defence, prophages, membrane transport, iron acquisition, motility and chemotaxis are
annotated in B. bovis genome. The flagellin (flaA) gene
of B. bovis is closely related to Bartonella
bacilliformis and Bartonella clarridgeiae but distinct from
other Gram-negative bacteria. The absence of type IV secretion systems, the bona
fide pathogenicity factors of bartonellae, in B. bovis
suggests that it may have a different mechanism of pathogenicity.
Collapse
Affiliation(s)
- Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kai Ling Kho
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siew Fen Lye
- BioEasy Sdn Bhd. Setia Avenue, 33A-3, Jalan Setia Prima S, U13/S, Setia Alam, Seksyen U13, 40170 Shah Alam, Selangor, Malaysia
| | - Yun Fong Ngeow
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor DE, Malaysia
| |
Collapse
|
15
|
Mullins KE, Hang J, Clifford RJ, Onmus-Leone F, Yang Y, Jiang J, Leguia M, Kasper MR, Maguina C, Lesho EP, Jarman RG, Richards A, Blazes D. Whole-Genome Analysis of Bartonella ancashensis, a Novel Pathogen Causing Verruga Peruana, Rural Ancash Region, Peru. Emerg Infect Dis 2018; 23:430-438. [PMID: 28221130 PMCID: PMC5382735 DOI: 10.3201/eid2303.161476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genus Bartonella contains >40 species, and an increasing number of these Bartonella species are being implicated in human disease. One such pathogen is Bartonella ancashensis, which was isolated in blood samples from 2 patients living in Caraz, Peru, during a clinical trial of treatment for bartonellosis. Three B. ancashensis strains were analyzed by using whole-genome restriction mapping and high-throughput pyrosequencing. Genome-wide comparative analysis of Bartonella species showed that B. ancashensis has features seen in modern and ancient lineages of Bartonella species and is more related to B. bacilliformis. The divergence between B. ancashensis and B. bacilliformis is much greater than what is seen between known Bartonella genetic lineages. In addition, B. ancashensis contains type IV secretion system proteins, which are not present in B. bacilliformis. Whole-genome analysis indicates that B. ancashensis might represent a distinct Bartonella lineage phylogenetically related to B. bacilliformis.
Collapse
|
16
|
Abstract
Carrion's disease (CD) is a neglected biphasic vector-borne illness related to Bartonella bacilliformis. It is found in the Andean valleys and is transmitted mainly by members of the Lutzomyia genus but also by blood transfusions and from mother to child. The acute phase, Oroya fever, presents severe anemia and fever. The lethality is high in the absence of adequate treatment, despite the organism being susceptible to most antibiotics. Partial immunity is developed after infection by B. bacilliformis, resulting in high numbers of asymptomatic carriers. Following infection there is the chronic phase, Peruvian warts, involving abnormal proliferation of the endothelial cells. Despite potentially being eradicable, CD has been expanded due to human migration and geographical expansion of the vector. Moreover, in vitro studies have demonstrated the risk of the development of antimicrobial resistance. These findings, together with the description of new Bartonella species producing CD-like infections, the presence of undescribed potential vectors in new areas, the lack of adequate diagnostic tools and knowledge of the immunology and bacterial pathogenesis of CD, and poor international visibility, have led to the risk of increasing the potential expansion of resistant strains which will challenge current treatment schemes as well as the possible appearance of CD in areas where it is not endemic.
Collapse
Affiliation(s)
- Cláudia Gomes
- Institute for Global Health, Barcelona Centre for International Health Research, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Ruiz
- Institute for Global Health, Barcelona Centre for International Health Research, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Abstract
Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana. We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella-mediated endocarditis and represents a potential reservoir for persistence by these bacteria.
Collapse
|
18
|
Complete Genome Sequence of Bartonella ancashensis Strain 20.00, Isolated from the Blood of a Patient with Verruga Peruana. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01217-15. [PMID: 26543106 PMCID: PMC4645191 DOI: 10.1128/genomea.01217-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here we present the complete genome sequence of Bartonella ancashensis strain 20.00, isolated from the blood of a Peruvian patient with verruga peruana, known as Carrion’s disease. Bartonella ancashensis is a Gram-negative bacillus, phylogenetically most similar to Bartonella bacilliformis, the causative agent of Oroya fever and verruga peruana.
Collapse
|
19
|
Proteins of Bartonella bacilliformis: Candidates for Vaccine Development. INTERNATIONAL JOURNAL OF PEPTIDES 2015; 2015:702784. [PMID: 26413097 PMCID: PMC4568041 DOI: 10.1155/2015/702784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/02/2015] [Accepted: 08/06/2015] [Indexed: 01/17/2023]
Abstract
Bartonella bacilliformis is the etiologic agent of Carrión's disease or Oroya fever. B. bacilliformis infection represents an interesting model of human host specificity. The notable differences in clinical presentations of Carrión's disease suggest complex adaptations by the bacterium to the human host, with the overall objectives of persistence, maintenance of a reservoir state for vectorial transmission, and immune evasion. These events include a multitude of biochemical and genetic mechanisms involving both bacterial and host proteins. This review focuses on proteins involved in interactions between B. bacilliformis and the human host. Some of them (e.g., flagellin, Brps, IalB, FtsZ, Hbp/Pap31, and other outer membrane proteins) are potential protein antigen candidates for a synthetic vaccine.
Collapse
|
20
|
Abstract
Brucella spp. are facultative intracellular Gram-negative coccobacilli responsible for brucellosis, a worldwide zoonosis. We observed that Brucella melitensis is able to persist for several weeks in the blood of intraperitoneally infected mice and that transferred blood at any time point tested is able to induce infection in naive recipient mice. Bacterial persistence in the blood is dramatically impaired by specific antibodies induced following Brucella vaccination. In contrast to Bartonella, the type IV secretion system and flagellar expression are not critically required for the persistence of Brucella in blood. ImageStream analysis of blood cells showed that following a brief extracellular phase, Brucella is associated mainly with the erythrocytes. Examination by confocal microscopy and transmission electron microscopy formally demonstrated that B. melitensis is able to invade erythrocytes in vivo. The bacteria do not seem to multiply in erythrocytes and are found free in the cytoplasm. Our results open up new areas for investigation and should serve in the development of novel strategies for the treatment or prophylaxis of brucellosis. Invasion of erythrocytes could potentially protect the bacterial cells from the host's immune response and hamper antibiotic treatment and suggests possible Brucella transmission by bloodsucking insects in nature.
Collapse
|
21
|
Minnick MF, Anderson BE, Lima A, Battisti JM, Lawyer PG, Birtles RJ. Oroya fever and verruga peruana: bartonelloses unique to South America. PLoS Negl Trop Dis 2014; 8:e2919. [PMID: 25032975 PMCID: PMC4102455 DOI: 10.1371/journal.pntd.0002919] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bartonella bacilliformis is the bacterial agent of Carrión's disease and is presumed to be transmitted between humans by phlebotomine sand flies. Carrión's disease is endemic to high-altitude valleys of the South American Andes, and the first reported outbreak (1871) resulted in over 4,000 casualties. Since then, numerous outbreaks have been documented in endemic regions, and over the last two decades, outbreaks have occurred at atypical elevations, strongly suggesting that the area of endemicity is expanding. Approximately 1.7 million South Americans are estimated to be at risk in an area covering roughly 145,000 km2 of Ecuador, Colombia, and Peru. Although disease manifestations vary, two disparate syndromes can occur independently or sequentially. The first, Oroya fever, occurs approximately 60 days following the bite of an infected sand fly, in which infection of nearly all erythrocytes results in an acute hemolytic anemia with attendant symptoms of fever, jaundice, and myalgia. This phase of Carrión's disease often includes secondary infections and is fatal in up to 88% of patients without antimicrobial intervention. The second syndrome, referred to as verruga peruana, describes the endothelial cell-derived, blood-filled tumors that develop on the surface of the skin. Verrugae are rarely fatal, but can bleed and scar the patient. Moreover, these persistently infected humans provide a reservoir for infecting sand flies and thus maintaining B. bacilliformis in nature. Here, we discuss the current state of knowledge regarding this life-threatening, neglected bacterial pathogen and review its host-cell parasitism, molecular pathogenesis, phylogeny, sand fly vectors, diagnostics, and prospects for control.
Collapse
Affiliation(s)
- Michael F. Minnick
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Burt E. Anderson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Amorce Lima
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - James M. Battisti
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Phillip G. Lawyer
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Birtles
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| |
Collapse
|
22
|
Identification of Bartonella Trw host-specific receptor on erythrocytes. PLoS One 2012; 7:e41447. [PMID: 22848496 PMCID: PMC3406051 DOI: 10.1371/journal.pone.0041447] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 06/27/2012] [Indexed: 01/22/2023] Open
Abstract
Each Bartonella species appears to be highly adapted to one or a limited number of reservoir hosts, in which it establishes long-lasting intraerythrocytic bacteremia as the hallmark of infection. Recently, we identified Trw as the bacterial system involved in recognition of erythrocytes according to their animal origin. The T4SS Trw is characterized by a multiprotein complex that spans the inner and outer bacterial membranes, and possesses a hypothetical pilus structure. TrwJ, I, H and trwL are present in variable copy numbers in different species and the multiple copies of trwL and trwJ in the Bartonella trw locus are considered to encode variant forms of surface-exposed pilus components. We therefore aimed to identify which of the candidate Trw pilus components were located on the bacterial surface and involved in adhesion to erythrocytes, together with their erythrocytic receptor. Using different technologies (electron microscopy, phage display, invasion inhibition assay, far western blot), we found that only TrwJ1 and TrwJ2 were expressed and localized at the cell surface of B. birtlesii and had the ability to bind to mouse erythrocytes, and that their receptor was band3, one of the major outer-membrane glycoproteins of erythrocytes, (anion exchanger). According to these results, we propose that the interaction between TrwJ1, TrwJ2 and band 3 leads to the critical host-specific adherence of Bartonella to its host cells, erythrocytes.
Collapse
|
23
|
Liu M, Boulouis HJ, Biville F. Heme degrading protein HemS is involved in oxidative stress response of Bartonella henselae. PLoS One 2012; 7:e37630. [PMID: 22701524 PMCID: PMC3365110 DOI: 10.1371/journal.pone.0037630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/26/2012] [Indexed: 01/24/2023] Open
Abstract
Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe3+uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H2O2 induced oxidative stress.
Collapse
Affiliation(s)
- MaFeng Liu
- Université Paris-Est, Ecole nationale vétérinaire d'Alfort, UMR BIPAR INRA-Anses-UPEC-ENVA, Maisons-Alfort, France
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | - Henri-Jean Boulouis
- Université Paris-Est, Ecole nationale vétérinaire d'Alfort, UMR BIPAR INRA-Anses-UPEC-ENVA, Maisons-Alfort, France
| | - Francis Biville
- Université Paris-Est, Ecole nationale vétérinaire d'Alfort, UMR BIPAR INRA-Anses-UPEC-ENVA, Maisons-Alfort, France
- Département de Microbiologie, Pasteur Institute, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Eicher SC, Dehio C. Bartonellaentry mechanisms into mammalian host cells. Cell Microbiol 2012; 14:1166-73. [DOI: 10.1111/j.1462-5822.2012.01806.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/11/2012] [Accepted: 04/17/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Simone C. Eicher
- Research Area Infection BiologyBiozentrum of the University of Basel Klingelbergstrasse 70 CH‐4056 Basel Switzerland
| | - Christoph Dehio
- Research Area Infection BiologyBiozentrum of the University of Basel Klingelbergstrasse 70 CH‐4056 Basel Switzerland
| |
Collapse
|
25
|
Caffrey BE, Williams TA, Jiang X, Toft C, Hokamp K, Fares MA. Proteome-wide analysis of functional divergence in bacteria: exploring a host of ecological adaptations. PLoS One 2012; 7:e35659. [PMID: 22563391 PMCID: PMC3338524 DOI: 10.1371/journal.pone.0035659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/21/2012] [Indexed: 12/31/2022] Open
Abstract
Functional divergence is the process by which new genes and functions originate through the modification of existing ones. Both genetic and environmental factors influence the evolution of new functions, including gene duplication or changes in the ecological requirements of an organism. Novel functions emerge at the expense of ancestral ones and are generally accompanied by changes in the selective forces at constrained protein regions. We present software capable of analyzing whole proteomes, identifying putative amino acid replacements leading to functional change in each protein and performing statistical tests on all tabulated data. We apply this method to 750 complete bacterial proteomes to identify high-level patterns of functional divergence and link these patterns to ecological adaptations. Proteome-wide analyses of functional divergence in bacteria with different ecologies reveal a separation between proteins involved in information processing (Ribosome biogenesis etc.) and those which are dependent on the environment (energy metabolism, defense etc.). We show that the evolution of pathogenic and symbiotic bacteria is constrained by their association with the host, and also identify unusual events of functional divergence even in well-studied bacteria such as Escherichia coli. We present a description of the roles of phylogeny and ecology in functional divergence at the level of entire proteomes in bacteria.
Collapse
Affiliation(s)
- Brian E. Caffrey
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Tom A. Williams
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Xiaowei Jiang
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Christina Toft
- Department of Molecular Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Karsten Hokamp
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Mario A. Fares
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
- Integrative Systems Biology Group, Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia (UPV), Valencia, Spain
- * E-mail:
| |
Collapse
|
26
|
Deng H, Le Rhun D, Buffet JPR, Cotté V, Read A, Birtles RJ, Vayssier-Taussat M. Strategies of exploitation of mammalian reservoirs by Bartonella species. Vet Res 2012; 43:15. [PMID: 22369683 PMCID: PMC3430587 DOI: 10.1186/1297-9716-43-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/17/2012] [Indexed: 11/16/2022] Open
Abstract
Numerous mammal species, including domestic and wild animals such as ruminants, dogs, cats and rodents, as well as humans, serve as reservoir hosts for various Bartonella species. Some of those species that exploit non-human mammals as reservoir hosts have zoonotic potential. Our understanding of interactions between bartonellae and reservoir hosts has been greatly improved by the development of animal models for infection and the use of molecular tools allowing large scale mutagenesis of Bartonella species. By reviewing and combining the results of these and other approaches we can obtain a comprehensive insight into the molecular interactions that underlie the exploitation of reservoir hosts by Bartonella species, particularly the well-studied interactions with vascular endothelial cells and erythrocytes.
Collapse
Affiliation(s)
- Hongkuan Deng
- USC INRA Bartonella et Tiques, ANSES, 23 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| | | | | | | | | | | | | |
Collapse
|
27
|
Pulliainen AT, Dehio C. Persistence of Bartonella spp. stealth pathogens: from subclinical infections to vasoproliferative tumor formation. FEMS Microbiol Rev 2012; 36:563-99. [PMID: 22229763 DOI: 10.1111/j.1574-6976.2012.00324.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 01/11/2023] Open
Abstract
Bartonella spp. are facultative intracellular bacteria that typically cause a long-lasting intraerythrocytic bacteremia in their mammalian reservoir hosts, thereby favoring transmission by blood-sucking arthropods. In most cases, natural reservoir host infections are subclinical and the relapsing intraerythrocytic bacteremia may last weeks, months, or even years. In this review, we will follow the infection cycle of Bartonella spp. in a reservoir host, which typically starts with an intradermal inoculation of bacteria that are superficially scratched into the skin from arthropod feces and terminates with the pathogen exit by the blood-sucking arthropod. The current knowledge of bacterial countermeasures against mammalian immune response will be presented for each critical step of the pathogenesis. The prevailing models of the still-enigmatic primary niche and the anatomical location where bacteria reside, persist, and are periodically seeded into the bloodstream to cause the typical relapsing Bartonella spp. bacteremia will also be critically discussed. The review will end up with a discussion of the ability of Bartonella spp., namely Bartonella henselae, Bartonella quintana, and Bartonella bacilliformis, to induce tumor-like vascular deformations in humans having compromised immune response such as in patients with AIDS.
Collapse
|
28
|
Abstract
Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
29
|
Vayssier-Taussat M, Le Rhun D, Deng HK, Biville F, Cescau S, Danchin A, Marignac G, Lenaour E, Boulouis HJ, Mavris M, Arnaud L, Yang H, Wang J, Quebatte M, Engel P, Saenz H, Dehio C. The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes. PLoS Pathog 2010; 6:e1000946. [PMID: 20548954 PMCID: PMC2883598 DOI: 10.1371/journal.ppat.1000946] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 05/10/2010] [Indexed: 12/04/2022] Open
Abstract
Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The α-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals. Pathogens are—as the result of adaptive evolution in their principal host(s)—typically limited in the range of hosts that they can infect successfully. However, infrequently such host-restricted pathogens may undergo a spontaneous host switch, which can lead to the evolution of pathogens with altered host specificity. Most human pathogens evolved this way, and animal-specific pathogens have thus to be considered as an important reservoir for the emergence of novel human pathogens. Despite host-specificity representing a common feature of pathogens, the underlying molecular mechanisms are largely unknown. In this study we have used bacterial pathogens of the genus Bartonella to identify bacterial factors involved in the determination of host specificity. The bartonellae represent an excellent model to study host-specificity as each species is adapted to cause an intracellular infection of erythrocytes exclusively in its respective reservoir host(s). Using a genetic approach in combination with erythrocyte infection models in vitro and in vivo we demonstrate that a surface-located bacterial nanomachine—a so-called type IV secretion system—determines host specificity of erythrocyte infection. Our work sheds light on the molecular basis of host specificity and establishes an experimental model for studying the evolutionary processes facilitating spontaneous host shifts.
Collapse
|
30
|
Schueller C, Quinn FD, Haas A. The Afipia toolbox and its use to isolate flagellar mutants. FEMS Microbiol Lett 2009; 302:203-10. [PMID: 19961544 DOI: 10.1111/j.1574-6968.2009.01858.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Afipia felis, a Gram-negative alphaproteobacterium, has been implicated as one of the causative agents of cat scratch disease. To identify and begin to examine the virulence traits of this organism, we developed and tested a highly efficient transposon delivery system and a stable plasmid vector expressing green fluorescent protein. The transposome system is based on a Tn5-derived transposon and a phage restriction endonuclease type I inhibitor. Electroporation of this construct produced a library of >2600 mutants, which were screened for flagella biosynthesis mutants using a monoclonal antibody to Afipia flagellin. Insertion loci for two selected mutants were located in the genes for flagellin and flagellin biosynthesis FlhA, confirming the validity of the approach.
Collapse
Affiliation(s)
- Christian Schueller
- Institute of Cell Biology and Bonner Forum Biomedizin, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
31
|
Minnick MF, Battisti JM. Pestilence, persistence and pathogenicity: infection strategies of Bartonella. Future Microbiol 2009; 4:743-58. [PMID: 19659429 DOI: 10.2217/fmb.09.41] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
It has been nearly two decades since the discovery of Bartonella as an agent of bacillary angiomatosis in AIDS patients and persistent bacteremia and 'nonculturable' endocarditis in homeless people. Since that time, the number of Bartonella species identified has increased from one to 24, and 10 of these bacteria are associated with human disease. Although Bartonella is the only genus that infects human erythrocytes and triggers pathological angiogenesis in the vascular bed, the group remains understudied compared with most other bacterial pathogens. Numerous questions regarding Bartonella's molecular pathogenesis and epidemiology remain unanswered. Virtually every mammal harbors one or more Bartonella species and their transmission typically involves a hematophagous arthropod vector. However, many details regarding epidemiology and the public health threat imposed by these animal reservoirs is unclear. A handful of studies have shown that bartonellae are highly-adapted pathogens whose parasitic strategy has evolved to cause persistent infections of the host. To this end, virulence attributes of Bartonella include the subversion of host cells with effector molecules delivered via a type IV secretion system, induction of pathological angiogenesis through various means, including inhibition of apoptosis and activation of hypoxia-inducing factor 1, use of afimbrial adhesins that are orthologs of Yersinia adhesin A, incorporation of lipopolysaccharides with low endotoxic potency in the outer membrane, and several other virulence factors that help Bartonella infect and persist in erythrocytes and endothelial cells of the host circulatory system.
Collapse
Affiliation(s)
- Michael F Minnick
- The University of Montana, Division of Biological Sciences, Missoula, MT 59812, USA.
| | | |
Collapse
|
32
|
Parrow NL, Abbott J, Lockwood AR, Battisti JM, Minnick MF. Function, regulation, and transcriptional organization of the hemin utilization locus of Bartonella quintana. Infect Immun 2009; 77:307-16. [PMID: 18981245 PMCID: PMC2612243 DOI: 10.1128/iai.01194-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 01/03/2023] Open
Abstract
Bartonella quintana is a gram-negative agent of trench fever, chronic bacteremia, endocarditis, and bacillary angiomatosis in humans. B. quintana has the highest known hemin requirement among bacteria, but the mechanisms of hemin acquisition are poorly defined. Genomic analyses revealed a potential locus dedicated to hemin utilization (hut) encoding a putative hemin receptor, HutA; a TonB-like energy transducer; an ABC transport system comprised of three proteins, HutB, HutC, and HmuV; and a hemin degradation/storage enzyme, HemS. Complementation analyses with Escherichia coli hemA show that HutA functions as a hemin receptor, and complementation analyses with E. coli hemA tonB indicate that HutA is TonB dependent. Quantitative reverse transcriptase PCR analyses show that hut locus transcription is subject to hemin-responsive regulation, which is mediated primarily by the iron response regulator (Irr). Irr functions as a transcriptional repressor of the hut locus at all hemin concentrations tested. Overexpression of the ferric uptake regulator (fur) represses transcription of tonB in the presence of excess hemin, whereas overexpression of the rhizobial iron regulator (rirA) has no effect on hut locus transcription. Reverse transcriptase PCR analyses show that hutA and tonB are divergently transcribed and that the remaining hut genes are expressed as a polycistronic mRNA. Examination of the promoter regions of hutA, tonB, and hemS reveals consensus sequence promoters that encompass an H-box element previously shown to interact with B. quintana Irr.
Collapse
Affiliation(s)
- Nermi L Parrow
- Division of Biological Sciences, The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | | | | | | | | |
Collapse
|
33
|
Boonjakuakul JK, Gerns HL, Chen YT, Hicks LD, Minnick MF, Dixon SE, Hall SC, Koehler JE. Proteomic and immunoblot analyses of Bartonella quintana total membrane proteins identify antigens recognized by sera from infected patients. Infect Immun 2007; 75:2548-61. [PMID: 17307937 PMCID: PMC1865797 DOI: 10.1128/iai.01974-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bartonella quintana is a fastidious, gram-negative, rod-shaped bacterium that causes prolonged bacteremia in immunocompetent humans and severe infections in immunocompromised individuals. We sought to define the outer membrane subproteome of B. quintana in order to obtain insight into the biology and pathogenesis of this emerging pathogen and to identify the predominant B. quintana antigens targeted by the human immune system during infection. We isolated the total membrane proteins of B. quintana and identified 60 proteins by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and peptide mass fingerprinting. Using the newly constructed proteome map, we then utilized two-dimensional immunoblotting with sera from 21 B. quintana-infected patients to identify 24 consistently recognized, immunoreactive B. quintana antigens that have potential relevance for pathogenesis and diagnosis. Among the outer membrane proteins, the variably expressed outer membrane protein adhesins (VompA and VompB), peptidyl-prolyl cis-trans-isomerase (PpI), and hemin-binding protein E (HbpE) were recognized most frequently by sera from patients, which is consistent with surface expression of these virulence factors during human infection.
Collapse
Affiliation(s)
- Jenni K Boonjakuakul
- Division of Infectious Diseases, 521 Parnassus Ave., Room C-443, University of California at San Francisco, San Francisco, CA 94143-0654, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Molofsky AB, Shetron-Rama LM, Swanson MS. Components of the Legionella pneumophila flagellar regulon contribute to multiple virulence traits, including lysosome avoidance and macrophage death. Infect Immun 2005; 73:5720-34. [PMID: 16113289 PMCID: PMC1231111 DOI: 10.1128/iai.73.9.5720-5734.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is a motile intracellular pathogen of macrophages and amoebae. When nutrients become scarce, the bacterium induces expression of transmission traits, some of which are dependent on the flagellar sigma factor FliA (sigma(28)). To test how particular components of the L. pneumophila flagellar regulon contribute to virulence, we compared a fliA mutant with strains whose flagellar construction is disrupted at various stages. We find that L. pneumophila requires FliA to avoid lysosomal degradation in murine bone marrow-derived macrophages (BMM), to regulate production of a melanin-like pigment, and to regulate binding to the dye crystal violet, whereas motility, flagellar secretion, and external flagella or flagellin are dispensable for these activities. Thus, in addition to flagellar genes, the FliA sigma factor regulates an effector(s) or regulator(s) that contributes to other transmissive traits, notably inhibition of phagosome maturation. Whether or not the microbes produced flagellin, all nonmotile L. pneumophila mutants bound BMM less efficiently than the wild type, resulting in poor infectivity and a loss of contact-dependent death of BMM. Therefore, bacterial motility increases contact with host cells during infection, but flagellin is not an adhesin. When BMM contact by each nonmotile strain was promoted by centrifugation, all the mutants bound BMM similarly, but only those microbes that synthesized flagellin induced BMM death. Thus, the flagellar regulon equips the aquatic pathogen L. pneumophila to coordinate motility with multiple traits vital to virulence.
Collapse
Affiliation(s)
- A B Molofsky
- Department of Microbiology and Immunology, University of Michigan Medical School, 6734 Medical Sciences Building II, Ann Arbor, MI 48109-0620, USA
| | | | | |
Collapse
|
35
|
Andersen-Nissen E, Smith KD, Strobe KL, Barrett SLR, Cookson BT, Logan SM, Aderem A. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A 2005; 102:9247-52. [PMID: 15956202 PMCID: PMC1166605 DOI: 10.1073/pnas.0502040102] [Citation(s) in RCA: 458] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptor 5 (TLR5) recognizes an evolutionarily conserved site on bacterial flagellin that is required for flagellar filament assembly and motility. The alpha and epsilon Proteobacteria, including the important human pathogens Campylobacter jejuni, Helicobacter pylori, and Bartonella bacilliformis, require flagellar motility to efficiently infect mammalian hosts. In this study, we demonstrate that these bacteria make flagellin molecules that are not recognized by TLR5. We map the site responsible for TLR5 evasion to amino acids 89-96 of the N-terminal D1 domain, which is centrally positioned within the previously defined TLR5 recognition site. Salmonella flagellin is strongly recognized by TLR5, but mutating residues 89-96 to the corresponding H. pylori flaA sequence abolishes TLR5 recognition and also destroys bacterial motility. To preserve bacterial motility, alpha and epsilon Proteobacteria possess compensatory amino acid changes in other regions of the flagellin molecule, and we engineer a mutant form of Salmonella flagellin that evades TLR5 but retains motility. These results suggest that TLR5 evasion is critical for the survival of this subset of bacteria at mucosal sites in animals and raise the intriguing possibility that flagellin receptors provided the selective force to drive the evolution of these unique subclasses of bacterial flagellins.
Collapse
|
36
|
Gilmore RD, Bellville TM, Sviat SL, Frace M. The Bartonella vinsonii subsp. arupensis immunodominant surface antigen BrpA gene, encoding a 382-kilodalton protein composed of repetitive sequences, is a member of a multigene family conserved among bartonella species. Infect Immun 2005; 73:3128-36. [PMID: 15845521 PMCID: PMC1087387 DOI: 10.1128/iai.73.5.3128-3136.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bartonella proteins that elicit an antibody response during an infection are poorly defined; therefore, to characterize antigens recognized by the host, a Bartonella genomic expression library was screened with serum from an infected mouse. This process led to the discovery of a Bartonella vinsonii subsp. arupensis gene encoding a 382-kDa protein, part of a gene family encoding large proteins, each containing multiple regions of repetitive segments. The genes were termed brpA to -C (bartonella repeat protein) and bore significant similarity to genes encoding the BadA adhesin protein and members of the variably expressed outer membrane protein family of proteins from Bartonella henselae and Bartonella quintana, respectively.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Bartonella/chemistry
- Bartonella/genetics
- Bartonella/immunology
- Bartonella/metabolism
- Bartonella Infections/immunology
- Bartonella Infections/microbiology
- Base Sequence
- Blotting, Western
- Conserved Sequence
- Fluorescent Antibody Technique
- Humans
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Mice
- Molecular Sequence Data
- Multigene Family
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Robert D Gilmore
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, P.O. Box 2087, Foothills Campus, Fort Collins, CO 80521, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
The genus Bartonella comprises several important human pathogens that cause a wide range of clinical manifestations: cat-scratch disease, trench fever, Carrion's disease, bacteremia with fever, bacillary angiomatosis and peliosis, endocarditis, and neuroretinitis. Common features of bartonellae include transmission by blood-sucking arthropods and the specific interaction with endothelial cells and erythrocytes of their mammalian hosts. For each Bartonella species, the invasion and persistent intracellular colonization of erythrocytes are limited to a specific human or animal reservoir host. In contrast, endothelial cells are target host cells in probably all mammals, including humans. Bartonellae subvert multiple cellular functions of human endothelial cells, resulting in cell invasion, proinflammatory activation, suppression of apoptosis, and stimulation of proliferation, which may cumulate in vasoproliferative tumor growth. This review summarizes our understanding of Bartonella-host cell interactions and the molecular mechanisms of bacterial virulence and persistence. In addition, current controversies and unanswered questions in this area are highlighted.
Collapse
Affiliation(s)
- Christoph Dehio
- Division of Molecular Microbiology, Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
38
|
Minnick MF, Smitherman LS, Samuels DS. Mitogenic effect of Bartonella bacilliformis on human vascular endothelial cells and involvement of GroEL. Infect Immun 2004; 71:6933-42. [PMID: 14638782 PMCID: PMC308913 DOI: 10.1128/iai.71.12.6933-6942.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bartonellae are bacterial pathogens for a wide variety of mammals. In humans, bartonellosis can result in angioproliferative lesions that are potentially life threatening to the patient, including bacillary angiomatosis, bacillary peliosis, and verruga peruana. The results of this study show that Bartonella bacilliformis, the agent of Oroya fever and verruga peruana, produces a proteinaceous mitogen for human vascular endothelial cells (HUVECs) that acts in a dose-dependent fashion in vitro with maximal activity at >or=72 h of exposure and results in a 6- to 20-fold increase in cell numbers relative to controls. The mitogen increases bromodeoxyuridine (BrdU) incorporation into HUVECs by almost twofold relative to controls. The mitogen is sensitive to heat and trypsin but is not affected by the lipopolysaccharide inhibitor polymyxin B. The mitogen does not affect caspase 3 activity in HUVECs undergoing serum starvation-induced apoptosis. The Bartonella mitogen was found in bacterial culture supernatants, the soluble cell lysate fraction, and, to a lesser degree, in insoluble cell fractions of the bacterium. In contrast, soluble cell lysate fractions from closely related B. henselae, although possessing significant mitogenicity for HUVECs, resulted in only about a twofold increase in cell numbers. Biochemical and immunological analyses identified GroEL as a participant in the observed HUVEC mitogenicity. A B. bacilliformis strain containing the intact groES-groEL operon on a multicopy plasmid was generated and used to demonstrate a correlation between HUVEC mitogenicity and GroEL levels in the lysate (r(2) = 0.85). Antiserum to GroEL significantly inhibited mitogenicity of the lysate. Data also show that GroEL is located in the soluble and insoluble fractions (including inner and outer membranes) of the cell and is actively secreted by B. bacilliformis.
Collapse
Affiliation(s)
- Michael F Minnick
- Division of Biological Sciences, The University of Montana, Missoula, Montana 59812-4824, USA.
| | | | | |
Collapse
|
39
|
Rolain JM, Novelli S, Ventosilla P, Maguina C, Guerra H, Raoult D. Immunofluorescence detection of Bartonella bacilliformis flagella in vitro and in vivo in human red blood cells as viewed by laser confocal microscopy. Ann N Y Acad Sci 2003; 990:581-4. [PMID: 12860693 DOI: 10.1111/j.1749-6632.2003.tb07430.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J M Rolain
- Unité des Rickettsies CNRS UMR-A 6020, IFR 48, Faculté de Médecine, Université de la Méditerranée, 13385 Marseille Cedex 05, France
| | | | | | | | | | | |
Collapse
|
40
|
Minnick MF, Sappington KN, Smitherman LS, Andersson SGE, Karlberg O, Carroll JA. Five-member gene family of Bartonella quintana. Infect Immun 2003; 71:814-21. [PMID: 12540561 PMCID: PMC145397 DOI: 10.1128/iai.71.2.814-821.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bartonella quintana, the agent of trench fever and an etiologic agent of bacillary angiomatosis, has an extraordinarily high hemin requirement for growth compared to other bacterial pathogens. We previously identified the major hemin receptor of the pathogen as a 30-kDa surface protein, termed HbpA. This report describes four additional homologues that share approximately 48% amino acid sequence identity with hbpA. Three of the genes form a paralagous cluster, termed hbpCAB, whereas the other members, hbpD and hbpE, are unlinked. Secondary structure predictions and other evidence suggest that Hbp family members are beta-barrels located in the outer membrane and contain eight transmembrane domains plus four extracellular loops. Homologs from a variety of gram-negative pathogens were identified, including Bartonella henselae Pap31, Brucella Omp31, Agrobacterium tumefaciens Omp25, and neisserial opacity proteins (Opa). Family members expressed in vitro-synthesized proteins ranging from ca. 26.5 to 35.1 kDa, with the exception of HbpB, an approximately 55.9-kDa protein whose respective gene has been disrupted by a approximately 510 GC-rich element containing variable-number tandem repeats. Transcription analysis by quantitative reverse transcriptase-PCR (RT-PCR) indicates that all family members are expressed under normal culture conditions, with hbpD and hbpB transcripts being the most abundant and the rarest, respectively. Mutagenesis of hbpA by allelic exchange produced a strain that exhibited an enhanced hemin-binding phenotype relative to the parental strain, and analysis by quantitative RT-PCR showed elevated transcript levels for the other hbp family members, suggesting that compensatory expression occurs.
Collapse
Affiliation(s)
- Michael F Minnick
- Division of Biological Sciences, The University of Montana, Missoula 59812, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Gilbert Greub
- Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Didier Raoult
- Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| |
Collapse
|
42
|
Jones JS, Thomas JS, Bahr A, Phalen DN. Presumed Immune-Mediated Hemolytic Anemia in a Blue-Crowned Conure (Aratinga acuticaudata). J Avian Med Surg 2002. [DOI: 10.1647/1082-6742(2002)016[0223:pimhai]2.0.co;2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Maguina C, Garcia PJ, Gotuzzo E, Cordero L, Spach DH. Bartonellosis (Carrión's disease) in the modern era. Clin Infect Dis 2001; 33:772-9. [PMID: 11512081 DOI: 10.1086/322614] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2000] [Revised: 01/24/2001] [Indexed: 11/03/2022] Open
Abstract
Bartonellosis remains a major problem in Peru, but many contemporary aspects of this disease have not been adequately described. We examined the cases of 145 symptomatic patients in Lima, Peru, in whom bartonellosis was diagnosed from 1969 through 1992, including 68 patients in the acute (hematic) phase and 77 patients in the eruptive (verruga) phase. In modern Peru, symptomatic patients who have acute-phase bartonellosis typically present with a febrile illness and systemic symptoms caused by profound anemia; most patients respond successfully to treatment with chloramphenicol. Patients who have eruptive-phase bartonellosis most often present with cutaneous verrugas but may have less specific symptoms, such as fever and arthralgias; diagnosis can be confirmed in such patients by Western immunoblotting, and most patients appear to respond to treatment with rifampin.
Collapse
Affiliation(s)
- C Maguina
- Alexander von Humboldt Institute of Tropical Medicine, Universidad Peruana Cayetano, Heredia, Lima, Peru
| | | | | | | | | |
Collapse
|
44
|
Coleman SA, Minnick MF. Establishing a direct role for the Bartonella bacilliformis invasion-associated locus B (IalB) protein in human erythrocyte parasitism. Infect Immun 2001; 69:4373-81. [PMID: 11401976 PMCID: PMC98509 DOI: 10.1128/iai.69.7.4373-4381.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2001] [Accepted: 04/10/2001] [Indexed: 11/20/2022] Open
Abstract
The invasion-associated locus A and B genes (ialAB) of Bartonella bacilliformis were previously shown to confer an erythrocyte-invasive phenotype upon Escherichia coli, indirectly implicating their role in virulence. We report the first direct demonstration of a role for ialB as a virulence factor in B. bacilliformis. The presence of a secretory signal sequence and amino acid sequence similarity to two known outer membrane proteins involved in virulence suggested that IalB was an outer membrane protein. To develop an antiserum for protein localization, the ialB gene was cloned in frame into an expression vector with a six-histidine tag and under control of the lacZ promoter. The IalB fusion protein was purified by nickel affinity chromatography and used to raise polyclonal antibodies. IalB was initially localized to the bacterial membrane fraction. To further localize IalB, B. bacilliformis inner and outer membranes were fractionated by sucrose density gradient centrifugation and identified by appearance, buoyant density (rho), and cytochrome b content. Inner and outer membrane proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and IalB was positively identified by Western blot. Contrary to expectations, IalB was localized to the inner membrane of the pathogen. To directly demonstrate a role for IalB in erythrocyte parasitism, the B. bacilliformis ialB gene was disrupted by insertional mutagenesis. The resulting ialB mutant strain was complemented in trans with a replicative plasmid encoding the full-length ialB gene. PCR and high-stringency DNA hybridization confirmed mutagenesis and transcomplementation events. Abrogation and restoration of ialB expression was verified by SDS-PAGE and immunoblotting. In vitro virulence assays showed that mutagenesis of ialB decreased bacterial association and invasion of human erythrocytes by 47 to 53% relative to controls. Transcomplementation of ialB restored erythrocyte association and invasion rates to levels observed in the parental strain. These data provide direct evidence for IalB's role in erythrocyte parasitism and represent the first demonstration of molecular Koch's postulates for a Bartonella species.
Collapse
Affiliation(s)
- S A Coleman
- Division of Biological Sciences, The University of Montana, Missoula, Montana 59812, USA
| | | |
Collapse
|
45
|
Abstract
Bartonella species are emerging human pathogens responsible for a wide range of clinical manifestations, including Carrion's disease, trench fever, cat-scratch disease, bacillary angiomatosis-peliosis, endocarditis and bacteraemia. During infection of their human or animal reservoir host(s), these arthropod-borne pathogens typically invade and persistently colonize mature erythrocytes. However, in both reservoir and incidentally infected hosts, endothelial cells are target cells for bartonellae. Endothelial interactions involve a unique mode of cellular invasion, the activation of a proinflammatory phenotype and the formation of vasoproliferative tumours. Based on the establishment of bacterial genetics and appropriate infection models, recent work has begun to elucidate the cell and molecular biology of these unusual pathogen-host cell interactions.
Collapse
Affiliation(s)
- C Dehio
- Dept of Molecular Microbiology, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| |
Collapse
|
46
|
Abstract
Bartonella species have been recognized as important human pathogens only recently. Until the early 1990s, this genus was represented by one species, Bartonella bacilliformis. The recent identification of other Bartonella species as the agents of cat-scratch disease and bacillary angiomatosis has left little doubt of their emerging importance as opportunistic human pathogens. Over the last decade, extensive research has been performed on Bartonella species, resulting in an explosion in our knowledge of the genetic diversity of this genus. Unusual aspects of disease sequelae have fueled worldwide interest in defining the natural history, pathology, and molecular biology of Bartonella species. While much information about these interests has been presented, the advancement of immunological knowledge regarding Bartonella species has been slow. This review discusses immunological data on Bartonella species, focusing on the three primary human pathogens of this genus: B. bacilliformis, B. quintana, and B. henselae.
Collapse
Affiliation(s)
- K L Karem
- Viral and Rickettsial Zoonoses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Ser
| |
Collapse
|
47
|
Carroll JA, Coleman SA, Smitherman LS, Minnick MF. Hemin-binding surface protein from Bartonella quintana. Infect Immun 2000; 68:6750-7. [PMID: 11083791 PMCID: PMC97776 DOI: 10.1128/iai.68.12.6750-6757.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2000] [Accepted: 09/06/2000] [Indexed: 11/20/2022] Open
Abstract
Bartonella quintana, the agent of trench fever and a cause of endocarditis and bacillary angiomatosis in humans, has the highest reported in vitro hemin requirement for any bacterium. We determined that eight membrane-associated proteins from B. quintana bind hemin and that a approximately 25-kDa protein (HbpA) was the dominant hemin-binding protein. Like many outer membrane proteins, HbpA partitions to the detergent phase of a Triton X-114 extract of the cell and is heat modifiable, displaying an apparent molecular mass shift from approximately 25 to 30 kDa when solubilized at 100 degrees C. Immunoblots of purified outer and inner membranes and immunoelectron microscopy with whole cells show that HbpA is strictly located in the outer membrane and surface exposed, respectively. The N-terminal sequence of mature HbpA was determined and used to clone the HbpA-encoding gene (hbpA) from a lambda genomic library. The hbpA gene is 816 bp in length, encoding a predicted immature protein of approximately 29.3 kDa and a mature protein of 27.1 kDa. A Fur box homolog with 53% identity to the Escherichia coli Fur consensus is located upstream of hbpA and may be involved in regulating expression. BLAST searches indicate that the closest homologs to HbpA include the Bartonella henselae phage-associated membrane protein, Pap31 (58.4% identity), and the OMP31 porin from Brucella melitensis (31.7% identity). High-stringency Southern blots indicate that all five pathogenic Bartonella spp. possess hbpA homologs. Recombinant HbpA can bind hemin in vitro; however, it does not confer a hemin-binding phenotype upon E. coli. Intact B. quintana treated with purified anti-HbpA Fab fragments show a significant (P < 0.004) dose-dependent decrease in hemin binding relative to controls, suggesting that HbpA plays an active role in hemin acquisition and therefore pathogenesis. HbpA is the first potential virulence determinant characterized from B. quintana.
Collapse
Affiliation(s)
- J A Carroll
- Microscopy Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | | | |
Collapse
|
48
|
Buckles EL, McGinnis Hill E. Interaction of Bartonella bacilliformis with human erythrocyte membrane proteins. Microb Pathog 2000; 29:165-74. [PMID: 10968948 DOI: 10.1006/mpat.2000.0381] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular invasion is an important aspect of Carrión's disease caused by Bartonella bacilliformis. Both the hematic and tissue phases of the disease involve the initial attachment of the organism to erythrocytes and endothelial cells, respectively. Using two different approaches, preliminary evidence is provided that B. bacilliformis interacts with multiple surface-exposed proteins on human erythrocytes. Utilizing Western blot analysis, it was demonstrated that the organism binds several biotinylated erythrocyte proteins with approximate molecular masses of 230, 210, 100, 83 and 44 kDa. There was enhanced Bartonella binding to the 44 kDa protein and binding to a 25 kDa protein following exposure of intact red cells to trypsin. Moreover, there was a complete abrogation of binding to these proteins following exposure of erythrocytes to sodium metaperiodate oxidation, indicating the significance of carbohydrate moieties in the interactions of Bartonella with the erythrocyte. In a second approach, similar binding proteins or putative receptors were identified when Bartonella was co-incubated with isolated membrane proteins from red cell ghosts. A comparison of the molecular weights of these putative receptors with known erythrocyte proteins and their immunoreactivity to specific antisera suggested that the 230 and 210 kDa proteins are the alpha and beta subunits of spectrin; the 100 and 83 kDa proteins are band 3 protein and glycophorin A, respectively; and the 44 and 25 kDa proteins are the respective dimeric and monomeric forms of glycophorin B. Consistent with this notion was the binding of Bartonella to purified preparations of alpha and beta spectrin and glycophorin A/B.
Collapse
Affiliation(s)
- E L Buckles
- Department of Microbiology, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA
| | | |
Collapse
|
49
|
Karem KL, Paddock CD, Regnery RL. Bartonella henselae, B. quintana, and B. bacilliformis: historical pathogens of emerging significance. Microbes Infect 2000; 2:1193-205. [PMID: 11008109 DOI: 10.1016/s1286-4579(00)01273-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bartonella species were virtually unrecognized as modern pathogens of humans until the last decade. However, identification of Bartonella species as the agents of cat-scratch disease, bacillary angiomatosis, urban trench fever, and possible novel presentations of Carrion's disease has left little doubt of the emerging medical importance of this genus of organisms. The three primary human pathogenic bartonellae, Bartonella bacilliformis (Carrion's disease), B. henselae (cat-scratch disease), and B. quintana (trench fever), present noteworthy comparisons in the epidemiology, natural history, pathology, and host-microbe interaction that this review will briefly explore.
Collapse
Affiliation(s)
- K L Karem
- Viral and Rickettsial Zoonoses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, Georgia 30333, USA
| | | | | |
Collapse
|
50
|
Sander A, Zagrosek A, Bredt W, Schiltz E, Piémont Y, Lanz C, Dehio C. Characterization of Bartonella clarridgeiae flagellin (FlaA) and detection of antiflagellin antibodies in patients with lymphadenopathy. J Clin Microbiol 2000; 38:2943-8. [PMID: 10921956 PMCID: PMC87154 DOI: 10.1128/jcm.38.8.2943-2948.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/1999] [Accepted: 05/29/2000] [Indexed: 11/20/2022] Open
Abstract
Cat scratch disease (CSD) is a frequent clinical outcome of Bartonella henselae infection in humans. Recently, two case reports indicated Bartonella clarridgeiae as an additional causative agent of CSD. Both pathogens have been isolated from domestic cats, which are considered to be their natural reservoir. B. clarridgeiae and B. henselae can be distinguished phenotypically by the presence or absence of flagella, respectively. Separation of the protein content of purified flagella of B. clarridgeiae by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis indicated that the flagellar filament is mainly composed of a polypeptide with a mass of 41 kDa. N-terminal sequencing of 20 amino acids of this protein revealed a perfect match to the N-terminal sequence of flagellin (FlaA) as deduced from the sequence of the flaA gene cloned from B. clarridgeiae. The flagellin of B. clarridgeiae is closely related to flagellins of Bartonella bacilliformis and several Bartonella-related bacteria. Since flagellar proteins are often immunodominant antigens, we investigated whether antibodies specific for the FlaA protein of B. clarridgeiae are found in patients with CSD or lymphadenopathy. Immunoblotting with 724 sera of patients suffering from lymphadenopathy and 100 healthy controls indicated specific FlaA antibodies in 3.9% of the patients' sera but in none of the controls. B. clarridgeiae FlaA is thus antigenic and expressed in vivo, providing a valuable tool for serological testing. Our results further indicate that B. clarridgeiae might be a possible etiologic agent of CSD or lymphadenopathy. However, it remains to be clarified whether antibodies to the FlaA protein of B. clarridgeiae are a useful indicator of acute infection.
Collapse
Affiliation(s)
- A Sander
- Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|