1
|
LaRock DL, Johnson AF, Wilde S, Sands JS, Monteiro MP, LaRock CN. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature 2022; 605:527-531. [PMID: 35545676 DOI: 10.1038/s41586-022-04717-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 04/01/2022] [Indexed: 12/21/2022]
Abstract
Gasdermins (GSDMs) are a family of pore-forming effectors that permeabilize the cell membrane during the cell death program pyroptosis1. GSDMs are activated by proteolytic removal of autoinhibitory carboxy-terminal domains, typically by caspase regulators1-9. However, no activator is known for one member of this family, GSDMA. Here we show that the major human pathogen group A Streptococcus (GAS) secretes a protease virulence factor, SpeB, that induces GSDMA-dependent pyroptosis. SpeB cleavage of GSDMA releases an active amino-terminal fragment that can insert into membranes to form lytic pores. GSDMA is primarily expressed in the skin10, and keratinocytes infected with SpeB-expressing GAS die of GSDMA-dependent pyroptosis. Mice have three homologues of human GSDMA, and triple-knockout mice are more susceptible to invasive infection by a pandemic hypervirulent M1T1 clone of GAS. These results indicate that GSDMA is critical in the immune defence against invasive skin infections by GAS. Furthermore, they show that GSDMs can act independently of host regulators as direct sensors of exogenous proteases. As SpeB is essential for tissue invasion and survival within skin cells, these results suggest that GSDMA can act akin to a guard protein that directly detects concerning virulence activities of microorganisms that present a severe infectious threat.
Collapse
Affiliation(s)
- Doris L LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Anders F Johnson
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Shyra Wilde
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Jenna S Sands
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Marcos P Monteiro
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA. .,Department of Medicine, Division of Infectious Diseases, Emory School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Indraratna AD, Everest-Dass A, Skropeta D, Sanderson-Smith M. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6519265. [PMID: 35104861 PMCID: PMC9075583 DOI: 10.1093/femsre/fuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Host carbohydrates, or glycans, have been implicated in the pathogenesis of many bacterial infections. Group A Streptococcus (GAS) is a Gram-positive bacterium that readily colonises the skin and oropharynx, and is a significant cause of mortality in humans. While the glycointeractions orchestrated by many other pathogens are increasingly well-described, the understanding of the role of human glycans in GAS disease remains incomplete. Although basic investigation into the mechanisms of GAS disease is ongoing, several glycointeractions have been identified and are examined herein. The majority of research in this context has focussed on bacterial adherence, however, glycointeractions have also been implicated in carbohydrate metabolism; evasion of host immunity; biofilm adaptations; and toxin-mediated haemolysis. The involvement of human glycans in these diverse avenues of pathogenesis highlights the clinical value of understanding glycointeractions in combatting GAS disease.
Collapse
Affiliation(s)
- Anuk D Indraratna
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland, 4215, Australia
| | - Danielle Skropeta
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Martina Sanderson-Smith
- Corresponding author: Illawarra Health and Medical Research Institute, Bld 32, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia. Tel: +61 2 42981935; E-mail:
| |
Collapse
|
3
|
Kuo CF, Tsao N, Hsieh IC, Lin YS, Wu JJ, Hung YT. Immunization with a streptococcal multiple-epitope recombinant protein protects mice against invasive group A streptococcal infection. PLoS One 2017; 12:e0174464. [PMID: 28355251 PMCID: PMC5371370 DOI: 10.1371/journal.pone.0174464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) causes clinical diseases, including pharyngitis, scarlet fever, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. A number of group A streptococcus vaccine candidates have been developed, but only one 26-valent recombinant M protein vaccine has entered clinical trials. Differing from the design of a 26-valent recombinant M protein vaccine, we provide here a vaccination using the polyvalence epitope recombinant FSBM protein (rFSBM), which contains four different epitopes, including the fibronectin-binding repeats domain of streptococcal fibronectin binding protein Sfb1, the C-terminal immunogenic segment of streptolysin S, the C3-binding motif of streptococcal pyrogenic exotoxin B, and the C-terminal conserved segment of M protein. Vaccination with the rFSBM protein successfully prevented mortality and skin lesions caused by several emm strains of GAS infection. Anti-FSBM antibodies collected from the rFSBM-immunized mice were able to opsonize at least six emm strains and can neutralize the hemolytic activity of streptolysin S. Furthermore, the internalization of GAS into nonphagocytic cells is also reduced by anti-FSBM serum. These findings suggest that rFSBM can be applied as a vaccine candidate to prevent different emm strains of GAS infection.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Nina Tsao
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - I-Chen Hsieh
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Hung
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Blood Group Antigen Recognition via the Group A Streptococcal M Protein Mediates Host Colonization. mBio 2017; 8:mBio.02237-16. [PMID: 28119471 PMCID: PMC5263248 DOI: 10.1128/mbio.02237-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus [GAS]) is responsible for over 500,000 deaths worldwide each year. The highly virulent M1T1 GAS clone is one of the most frequently isolated serotypes from streptococcal pharyngitis and invasive disease. The oral epithelial tract is a niche highly abundant in glycosylated structures, particularly those of the ABO(H) blood group antigen family. Using a high-throughput approach, we determined that a strain representative of the globally disseminated M1T1 GAS clone 5448 interacts with numerous, structurally diverse glycans. Preeminent among GAS virulence factors is the surface-expressed M protein. M1 protein showed high affinity for several terminal galactose blood group antigen structures. Deletion mutagenesis shows that M1 protein mediates glycan binding via its B repeat domains. Association of M1T1 GAS with oral epithelial cells varied significantly as a result of phenotypic differences in blood group antigen expression, with significantly higher adherence to those cells expressing H antigen structures compared to cells expressing A, B, or AB antigen structures. These data suggest a novel mechanism for GAS attachment to host cells and propose a link between host blood group antigen expression and M1T1 GAS colonization. IMPORTANCE There has been a resurgence in group A streptococcal (GAS) invasive disease, which has been paralleled by the emergence of the highly virulent M1T1 GAS clone. Intensive research has focused on mechanisms that contribute to the invasive nature of this serotype, while the mechanisms that contribute to host susceptibility to disease and bacterial colonization and persistence are still poorly understood. The M1T1 GAS clone is frequently isolated from the throat, an environment highly abundant in blood group antigen structures. This work examined the interaction of the M1 protein, the preeminent GAS surface protein, against a wide range of host-expressed glycan structures. Our data suggest that susceptibility to infection by GAS in the oral tract may correlate with phenotypic differences in host blood group antigen expression. Thus, variations in host blood group antigen expression may serve as a selective pressure contributing to the dissemination and overrepresentation of M1T1 GAS.
Collapse
|
5
|
Greco R, von Hunolstein C, Orefici G, Donnarumma G, Polidoro M, Modica F, Nicoletti M, Valenti P. Protein M and Fibronectin-Binding Proteins are Not Sufficient to Promote Internalization of Group a Streptococci into Hela Cells. Int J Immunopathol Pharmacol 2016. [DOI: 10.1177/039463209801100306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Infection by group A streptococci is often associated with highly invasive diseases resulting in sepsis and shock. Recently, this species has renewed interest in the mechanism by which some strains are better able to invade mucosal epithelia and to penetrate into the bloodstream than are others. In this work we have evaluated the invasive ability of eight group A Streptococcus pyogenes strains isolated either from patients with severe invasive diseases, or with pharyngitis, or from healthy carrier. Five out of the eight strains studied were efficiently internalized within HeLa cells and, of these, four produced the M6 protein. A recombinant S.gordonii strain constitutively expressing the M6 protein failed to invade HeLa cell monolayers, suggesting that the expression of the M6 protein is not sufficient to allow the non-invasive S.gordonii to be internalized within Hela cells. As fibronectin-binding proteins have been implicated as primary adhesins in host-parasite interactions, we assayed the adhesiveness and the invasiveness of five invasive GAS strains in competition experiments where HeLa cells were infected with bacteria in the presence of purified fibronectin. The results obtained indicated that fibronectin moderately inhibits bacterial adhesion, while it does not affect internalization. These results indicate that other factors, together with fibronectin-binding proteins, participate in the adhesion of streptococci, and that fibronectin-mediated adhesion does not seem to be important in the internalization process of streptococci within HeLa cells.
Collapse
Affiliation(s)
- R. Greco
- Istituto di Microbiologia, II Università di Napoli 80138 Naples
| | - C. von Hunolstein
- Istituto Superiore di Sanità, laboratorio di Batteriologia e Micologia Medica, 00185 Rome
| | - G. Orefici
- Istituto Superiore di Sanità, laboratorio di Batteriologia e Micologia Medica, 00185 Rome
| | - G. Donnarumma
- Istituto di Microbiologia, II Università di Napoli 80138 Naples
| | - M. Polidoro
- Istituto di Microbiologia, Università “La Sapienza”, 00185 Rome
| | - F. Modica
- Istituto di Microbiologia, Università “La Sapienza”, 00185 Rome
| | - M. Nicoletti
- Dipartimento di Scienze Biomediche, Università “G.D'Annunzio”, 66100 Chieti; Italy
| | - P. Valenti
- Istituto di Microbiologia, II Università di Napoli 80138 Naples
| |
Collapse
|
6
|
Lannergård J, Kristensen BM, Gustafsson MCU, Persson JJ, Norrby-Teglund A, Stålhammar-Carlemalm M, Lindahl G. Sequence variability is correlated with weak immunogenicity in Streptococcus pyogenes M protein. Microbiologyopen 2015; 4:774-89. [PMID: 26175306 PMCID: PMC4618610 DOI: 10.1002/mbo3.278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
The M protein of Streptococcus pyogenes, a major bacterial virulence factor, has an amino-terminal hypervariable region (HVR) that is a target for type-specific protective antibodies. Intriguingly, the HVR elicits a weak antibody response, indicating that it escapes host immunity by two mechanisms, sequence variability and weak immunogenicity. However, the properties influencing the immunogenicity of regions in an M protein remain poorly understood. Here, we studied the antibody response to different regions of the classical M1 and M5 proteins, in which not only the HVR but also the adjacent fibrinogen-binding B repeat region exhibits extensive sequence divergence. Analysis of antisera from S. pyogenes-infected patients, infected mice, and immunized mice showed that both the HVR and the B repeat region elicited weak antibody responses, while the conserved carboxy-terminal part was immunodominant. Thus, we identified a correlation between sequence variability and weak immunogenicity for M protein regions. A potential explanation for the weak immunogenicity was provided by the demonstration that protease digestion selectively eliminated the HVR-B part from whole M protein-expressing bacteria. These data support a coherent model, in which the entire variable HVR-B part evades antibody attack, not only by sequence variability but also by weak immunogenicity resulting from protease attack.
Collapse
Affiliation(s)
- Jonas Lannergård
- Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | - Jenny J Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | | - Gunnar Lindahl
- Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
7
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
8
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 582] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
9
|
Sjöholm K, Karlsson C, Linder A, Malmström J. A comprehensive analysis of the Streptococcus pyogenes and human plasma protein interaction network. MOLECULAR BIOSYSTEMS 2014; 10:1698-708. [PMID: 24525632 DOI: 10.1039/c3mb70555b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Streptococcus pyogenes is a major human bacterial pathogen responsible for severe and invasive disease associated with high mortality rates. The bacterium interacts with several human blood plasma proteins and clarifying these interactions and their biological consequences will help to explain the progression from mild to severe infections. In this study, we used a combination of mass spectrometry (MS) based techniques to comprehensively quantify the components of the S. pyogenes-plasma protein interaction network. From an initial list of 181 interacting human plasma proteins defined using liquid chromatography (LC)-MS/MS analysis we further subdivided the interacting protein list using selected reaction monitoring (SRM) depending on the level of enrichment and protein concentration on the bacterial surface. The combination of MS methods revealed several previously characterized interactions between the S. pyogenes surface and human plasma along with many more, so far uncharacterised, possible plasma protein interactions with S. pyogenes. In follow-up experiments, the combination of MS techniques was applied to study differences in protein binding to a S. pyogenes wild type strain and an isogenic mutant lacking several important virulence factors, and a unique pair of invasive and non-invasive S. pyogenes isolates from the same patient. Comparing the plasma protein-binding properties of the wild type and the mutant and the invasive and non-invasive S. pyogenes bacteria revealed considerable differences, underlining the significance of these protein interactions. The results also demonstrate the power of the developed mass spectrometry method to investigate host-microbial relationships with a large proteomics depth and high quantitative accuracy.
Collapse
Affiliation(s)
- Kristoffer Sjöholm
- Department of Immunotechnology, Faculty of Engineering, Lund University, Sweden
| | | | | | | |
Collapse
|
10
|
Anderson EL, Cole JN, Olson J, Ryba B, Ghosh P, Nizet V. The fibrinogen-binding M1 protein reduces pharyngeal cell adherence and colonization phenotypes of M1T1 group A Streptococcus. J Biol Chem 2013; 289:3539-46. [PMID: 24356958 DOI: 10.1074/jbc.m113.529537] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis ("strep throat") to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.
Collapse
|
11
|
Coiled-coil irregularities of the M1 protein structure promote M1-fibrinogen interaction and influence group A Streptococcus host cell interactions and virulence. J Mol Med (Berl) 2013; 91:861-9. [PMID: 23443671 PMCID: PMC3695690 DOI: 10.1007/s00109-013-1012-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 12/18/2022]
Abstract
Group A Streptococcus (GAS) is a human pathogen causing a wide range of mild to severe and life-threatening diseases. The GAS M1 protein is a major virulence factor promoting GAS invasiveness and resistance to host innate immune clearance. M1 displays an irregular coiled-coil structure, including the B-repeats that bind fibrinogen. Previously, we found that B-repeat stabilisation generates an idealised version of M1 (M1) characterised by decreased fibrinogen binding in vitro. To extend these findings based on a soluble truncated version of M1, we now studied the importance of the B-repeat coiled-coil irregularities in full length M1 and M1 expressed in live GAS and tested whether the modulation of M1-fibrinogen interactions would open up novel therapeutic approaches. We found that altering either the M1 structure on the GAS cell surface or removing its target host protein fibrinogen blunted GAS virulence. GAS expressing M1 showed an impaired ability to adhere to and to invade human endothelial cells, was more readily killed by whole blood or neutrophils and most importantly was less virulent in a murine necrotising fasciitis model. M1-mediated virulence of wild-type GAS was strictly dependent on the presence and concentration of fibrinogen complementing our finding that M1-fibrinogen interactions are crucial for GAS virulence. Consistently blocking M1-fibrinogen interactions by fragment D reduced GAS virulence in vitro and in vivo. This supports our conclusion that M1-fibrinogen interactions are crucial for GAS virulence and that interference may open up novel complementary treatment options for GAS infections caused by the leading invasive GAS strain M1.
Collapse
|
12
|
Cole JN, Henningham A, Gillen CM, Ramachandran V, Walker MJ. Human pathogenic streptococcal proteomics and vaccine development. Proteomics Clin Appl 2012; 2:387-410. [PMID: 21136841 DOI: 10.1002/prca.200780048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|
13
|
Oehmcke S, Shannon O, Mörgelin M, Herwald H. Streptococcal M proteins and their role as virulence determinants. Clin Chim Acta 2010; 411:1172-80. [PMID: 20452338 DOI: 10.1016/j.cca.2010.04.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/30/2010] [Indexed: 01/08/2023]
Abstract
Group A streptococci (GAS, Streptococcus pyogenes) are exclusive human pathogens that have been extensively studied for many decades. The spectrum of diseases caused by these bacteria ranges from uncomplicated and superficial to severe and invasive infections. In order to give rise to these complications, GAS have evolved a number of surface-bound and secreted virulence factors, of which the M proteins are probably the best characterized. Evidence has emerged that M proteins are multifunctional pathogenic determinants, and over the years many interactions between M proteins and the human host have been reported. The present review article aims to present a state-of-the-art overview of the most important virulence mechanisms employed by M proteins to trigger disease.
Collapse
Affiliation(s)
- Sonja Oehmcke
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden.
| | | | | | | |
Collapse
|
14
|
Olive C, Schulze K, Sun HK, Ebensen T, Horváth A, Toth I, Guzman CA. Enhanced protection against Streptococcus pyogenes infection by intranasal vaccination with a dual antigen component M protein/SfbI lipid core peptide vaccine formulation. Vaccine 2006; 25:1789-97. [PMID: 17229503 DOI: 10.1016/j.vaccine.2006.11.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 10/26/2006] [Accepted: 11/13/2006] [Indexed: 11/23/2022]
Abstract
We investigated the efficacy of a synthetic Streptococcus pyogenes vaccine targeting two virulence factors using the Lipid Core Peptide (LCP) delivery system. BALB/c mice were immunised intranasally with LCPs containing peptides encompassing T-cell and B-cell epitopes of the conserved C-repeat region of the M protein (J8) or the fibronectin-binding repeats region (FNBR) of SfbI, or a combination formulation containing peptides representing both antigens. LCPs were co-administered with the TLR2/6 agonist MALP-2 as mucosal adjuvant. Humoral and cellular immune responses stimulated at systemic and mucosal levels were strongest in mice immunised with the dual antigen formulation. Mice were completely protected following a respiratory challenge with a lethal dose of a heterologous S. pyogenes strain, whereas there was 70% and 90% survival in mice immunised with LCP-J8 and LCP-FNBR, respectively. This is the first report demonstrating the elicitation of better protective immunity by a dual antigen component S. pyogenes vaccine.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Disease Models, Animal
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Leukocytes, Mononuclear/immunology
- Lipopeptides
- Mice
- Mice, Inbred BALB C
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
- Streptococcal Infections/immunology
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/immunology
- Streptococcus pyogenes/genetics
- Streptococcus pyogenes/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- C Olive
- Cooperative Research Centre for Vaccine Technology, Division of Infectious Diseases and Immunology, The Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Timmer AM, Kristian SA, Datta V, Jeng A, Gillen CM, Walker MJ, Beall B, Nizet V. Serum opacity factor promotes group A streptococcal epithelial cell invasion and virulence. Mol Microbiol 2006; 62:15-25. [PMID: 16942605 DOI: 10.1111/j.1365-2958.2006.05337.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serum opacity factor (SOF) is a bifunctional cell surface protein expressed by 40-50% of group A streptococcal (GAS) strains comprised of a C-terminal domain that binds fibronectin and an N-terminal domain that mediates opacification of mammalian sera. The sof gene was recently discovered to be cotranscribed in a two-gene operon with a gene encoding another fibronectin-binding protein, sfbX. We compared the ability of a SOF(+) wild-type serotype M49 GAS strain and isogenic mutants lacking SOF or SfbX to invade cultured HEp-2 human pharyngeal epithelial cells. Elimination of SOF led to a significant decrease in HEp-2 intracellular invasion while loss of SfbX had minimal effect. The hypoinvasive phenotype of the SOF(-) mutant could be restored upon complementation with the sof gene on a plasmid vector, and heterologous expression of sof49 in M1 GAS or Lactococcus lactis conferred marked increases in HEp-2 cell invasion. Studies using a mutant sof49 gene lacking the fibronectin-binding domain indicated that the N-terminal opacification domain of SOF contributes to HEp-2 invasion independent of the C-terminal fibronectin binding domain, findings corroborated by observations that a purified SOF N-terminal peptide could promote latex bead adherence to HEp-2 cells and inhibit GAS invasion of HEp-2 cells in a dose-dependent manner. Finally, the first in vivo studies to employ a single gene allelic replacement mutant of SOF demonstrate that this protein contributes to GAS virulence in a murine model of necrotizing skin infection.
Collapse
Affiliation(s)
- Anjuli M Timmer
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee SG, Fischetti VA. Purification and characterization of LPXTGase from Staphylococcus aureus: the amino acid composition mirrors that found in the peptidoglycan. J Bacteriol 2006; 188:389-98. [PMID: 16385028 PMCID: PMC1347305 DOI: 10.1128/jb.188.2.389-398.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacterial surface proteins are important molecules in the infectivity and survival of pathogens. Surface proteins on gram-positive bacteria have been shown to attach via a transpeptidase, termed sortase, that cleaves an LPXTG sequence found close to the C termini of nearly all surface proteins on these bacteria. We previously identified a unique enzyme (LPXTGase) from Streptococcus pyogenes that also cleaves the LPXTG motif with a catalytic activity higher than that of sortase, suggesting that it plays an important role in the attachment process. We have now purified and characterized an LPXTGase from Staphylococcus aureus and found that it has both similar and unique features compared to the S. pyogenes enzyme. The S. aureus enzyme is glycosylated and contains unusual amino acids, like its streptococcal counterpart. Like the streptococcal enzyme, staphylococcal LPXTGase has an overrepresentation of amino acids found in the peptidoglycan, i.e., glutamine/glutamic acid, glycine, alanine, and lysine, and furthermore, we find that these amino acids are present in the enzyme at precisely the same ratio at which they are found in the peptidoglycan for the respective organism. This suggests that enzymes responsible for wall assembly may also play a role in the construction of LPXTGase.
Collapse
Affiliation(s)
- Sung G Lee
- Laboratory of Bacterial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
17
|
Courtney HS, Ofek I, Hasty DL. M protein mediated adhesion of M type 24 Streptococcus pyogenes stimulates release of interleukin-6 by HEp-2 tissue culture cells. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb10395.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
18
|
Eyal O, Jadoun J, Bitler A, Skutelski E, Sela S. Role of M3 protein in the adherence and internalization of an invasiveStreptococcus pyogenesstrain by epithelial cells. ACTA ACUST UNITED AC 2003; 38:205-13. [PMID: 14522456 DOI: 10.1016/s0928-8244(03)00150-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus pyogenes utilizes multiple mechanisms for adherence to and internalization by epithelial cells. One of the molecules suggested of being involved in adherence and internalization is the M protein. Although strains of the M3 serotype form the second largest group isolated from patients with severe invasive diseases and fatal infections, not much information is known regarding the interactions of M3 protein with mammalian cells. In this study we have constructed an emm3 mutant of an invasive M3 serotype (SP268), and demonstrated that the M3 protein is involved in both adherence to and internalization by HEp-2 cells. Fibronectin promoted both adherence and internalization of SP268 in an M3-independent pathway. Utilizing speB and speB/emm3 double mutants, it was found that M3 protein is not essential for the maturation of SpeB, as was reported for the M1 protein. Increased internalization efficiency observed in both the speB and emm3/speB mutants suggested that inhibition of S. pyogenes internalization by SpeB is not related to the presence of an intact M3 protein. Thus, other proteins in SP268, which serve as targets for SpeB activity, have a prominent role in the internalization process.
Collapse
Affiliation(s)
- Osnat Eyal
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
19
|
Frick IM, Schmidtchen A, Sjöbring U. Interactions between M proteins of Streptococcus pyogenes and glycosaminoglycans promote bacterial adhesion to host cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2303-11. [PMID: 12752450 DOI: 10.1046/j.1432-1033.2003.03600.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several microbial pathogens have been reported to interact with glycosaminoglycans (GAGs) on cell surfaces and in the extracellular matrix. Here we demonstrate that M protein, a major surface-expressed virulence factor of the human bacterial pathogen, Streptococcus pyogenes, mediates binding to various forms of GAGs. Hence, S. pyogenes strains expressing a large number of different types of M proteins bound to dermatan sulfate (DS), highly sulfated fractions of heparan sulfate (HS) and heparin, whereas strains deficient in M protein surface expression failed to interact with these GAGs. Soluble M protein bound DS directly and could also inhibit the interaction between DS and S. pyogenes. Experiments with M protein fragments and with streptococci expressing deletion constructs of M protein, showed that determinants located in the NH2-terminal part as well as in the C-repeat region of the streptococcal proteins are required for full binding to GAGs. Treatment with ABC-chondroitinase and HS lyase that specifically remove DS and HS chains from cell surfaces, resulted in significantly reduced adhesion of S. pyogenes bacteria to human epithelial cells and skin fibroblasts. Together with the finding that exogenous DS and HS could inhibit streptococcal adhesion, these data suggest that GAGs function as receptors in M protein-mediated adhesion of S. pyogenes.
Collapse
Affiliation(s)
- Inga-Maria Frick
- Department of Cell and Molecular Biology, Section for Molecular Pathogenesis, Lund University, Sweden.
| | | | | |
Collapse
|
20
|
Bisno AL, Brito MO, Collins CM. Molecular basis of group A streptococcal virulence. THE LANCET. INFECTIOUS DISEASES 2003; 3:191-200. [PMID: 12679262 DOI: 10.1016/s1473-3099(03)00576-0] [Citation(s) in RCA: 319] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The group A streptococcus (GAS) (Streptococcus pyogenes) is among the most common and versatile of human pathogens. It is responsible for a wide spectrum of human diseases, ranging from trivial to lethal. The advent of modern techniques of molecular biology has taught much about the organism's virulence, and the genomes of several GAS types have now been deciphered. Surface structures of GAS including a family of M proteins, the hyaluronic acid capsule, and fibronectin-binding proteins, allow the organism to adhere to, colonise, and invade human skin and mucus membranes under varying environmental conditions. M protein binds to complement control factors and other host proteins to prevent activation of the alternate complement pathway and thus evade phagocytosis and killing by polymorphonuclear leucocytes. Extracellular toxins, including superantigenic streptococcal pyrogenic exotoxins, contribute to tissue invasion and initiate the cytokine storm felt responsible for illnesses such as necrotising fasciitis and the highly lethal streptococcal toxic shock syndrome. Progress has been made in understanding the molecular epidemiology of acute rheumatic fever but less is understood about its basic pathogenesis. The improved understanding of GAS genetic regulation, structure, and function has opened exciting possibilities for developing safe and effective GAS vaccines. Studies directed towards achieving this long-sought goal are being aggressively pursued.
Collapse
Affiliation(s)
- A L Bisno
- Miami Veterans Affairs Medical Center, and the University of Miami School of Medicine, Miami, FL 33125, USA
| | | | | |
Collapse
|
21
|
Lee SG, Pancholi V, Fischetti VA. Characterization of a unique glycosylated anchor endopeptidase that cleaves the LPXTG sequence motif of cell surface proteins of Gram-positive bacteria. J Biol Chem 2002; 277:46912-22. [PMID: 12370182 DOI: 10.1074/jbc.m208660200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The precursors of most surface proteins on Gram-positive bacteria have a C-terminal hydrophobic domain and charged tail, preceded by a conserved LPXTG motif that signals the anchoring process. This motif is the substrate for an enzyme, termed sortase, which has transpeptidation activity resulting in the cleavage of the LPXTG sequence and ultimate attachment of the protein to the peptidoglycan. While screening a group A streptococcal membrane extract for cleavage activity of the LPXTG motif, we identified an enzyme (which we term "LPXTGase") that differs significantly from sortase but also cleaves this motif. The enzyme is heavily glycosylated, which is required for its activity. Amino acid composition and sequence analysis revealed that LPXTGase differs from other enzymes, in that the molecule, which is about 14 kDa in size, has no aromatic amino acids, is rich in alanine, and is 30% composed of uncommon amino acids, suggesting a nonribosomal construction. A similar enzyme found in the membrane extract of Staphylococcus aureus, indicates that this unusual molecule may be common among Gram-positive bacteria. Whereas peptide antibiotics have been reported from bacillus species that also contain unusual amino acids and are synthesized non-ribosomally on amino acid-activating polyenzyme templates, this would be the first reported enzyme that may be similarly synthesized.
Collapse
Affiliation(s)
- Sung G Lee
- Laboratory of Bacterial Pathogenesis Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
22
|
Cue D, Lam H, Cleary PP. Genetic dissection of the Streptococcus pyogenes M1 protein: regions involved in fibronectin binding and intracellular invasion. Microb Pathog 2001; 31:231-42. [PMID: 11710843 DOI: 10.1006/mpat.2001.0467] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Entry of serotype M1 Streptococcus pyogenes into host cells depends on binding of the host glycoprotein fibronectin (Fn) by the bacterial M1 protein. The present study was undertaken to localize the Fn binding region in M1 and assess other potential functions of M1. A set of recombinant M1 protein fragments were assayed for their capacities to bind Fn and inhibit ingestion of streptococci by epithelial cells. M1 protein, M6 protein and internally-deleted derivatives of M1 were expressed on the surface of Lactococcus lactis. Lactococci that expressed M1 or M6 protein bound Fn and were efficiently taken up by epithelial cells. Deletion of both the N-terminal A and B repeats regions of M1 abrogated Fn binding and intracellular invasion. Deletion of either the A domain (M1DeltaA) or B repeats (M1DeltaB) significantly reduced, but did not completely eliminate, Fn binding indicating that M1 protein may possess two independent Fn binding sites. Fn binding by the M1DeltaA or M1DeltaB proteins was insufficient for efficient invasion, however, suggesting that M protein binding alters the structure of Fn that, in turn, affects the interaction between Fn and epithelial cells. Although expression of M1, M6 or M1DeltaB proteins led to aggregation of lactococcal cells, aggregation did not significantly contribute to invasion efficiency.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Minnesota, Minneapolis, MN, U.S.A
| | | | | |
Collapse
|
23
|
Ozeri V, Rosenshine I, Ben-Ze'Ev A, Bokoch GM, Jou TS, Hanski E. De novo formation of focal complex-like structures in host cells by invading Streptococci. Mol Microbiol 2001; 41:561-73. [PMID: 11532125 DOI: 10.1046/j.1365-2958.2001.02535.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Group A streptococcus (GAS) induces its own entry into eukaryotic cells in vitro and in vivo. Fibronectin (Fn) bound to protein F1, a GAS surface protein, acts as a bridge connecting the bacterium to host cell integrins. This triggers clustering of integrins, which acquire a polar pattern of distribution similar to that of protein F1 on the GAS surface. A unique and transient adhesion complex is formed at the site of GAS entry, which does not contain alpha-actinin. Vinculin is recruited to the site of GAS entry but is not required for uptake. The invading GAS recruits focal adhesion kinase (FAK), which is required for uptake and is tyrosine phosphorylated. The Src kinases, Src, Yes and Fyn, enhance the efficiency of GAS uptake but are not absolutely required for GAS entry. In addition, Rac and Cdc42, but not Rho, are required for the entry process. We suggest a model in which integrin engagement by Fn-occupied protein F1 triggers two independent signalling pathways. One is initiated by FAK recruitment and tyrosine phosphorylation, whereas the other is initiated by the recruitment and activation of Rac. The two pathways subsequently converge to trigger actin rearrangement leading to bacterial uptake.
Collapse
Affiliation(s)
- V Ozeri
- Department of Clinical Microbiology, The Hebrew University-Hadassah Medical School, Jerusalem 91010, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Waligora AJ, Hennequin C, Mullany P, Bourlioux P, Collignon A, Karjalainen T. Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect Immun 2001; 69:2144-53. [PMID: 11254569 PMCID: PMC98141 DOI: 10.1128/iai.69.4.2144-2153.2001] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our laboratory has previously shown that Clostridium difficile adherence to cultured cells is enhanced after heat shock at 60 degrees C and that it is mediated by a proteinaceous surface component. The present study was undertaken to identify the surface molecules of this bacterium that could play a role in its adherence to the intestine. The cwp66 gene, encoding a cell surface-associated protein of C. difficile 79-685, was isolated by immunoscreening of a C. difficile gene library with polyclonal antibodies against C. difficile heated at 60 degrees C. The Cwp66 protein (66 kDa) contains two domains, each carrying three imperfect repeats and one presenting homologies to the autolysin CwlB of Bacillus subtilis. A survey of 36 strains of C. difficile representing 11 serogroups showed that the 3' portion of the cwp66 gene is variable; this was confirmed by sequencing of cwp66 from another strain, C-253. Two recombinant protein fragments corresponding to the two domains of Cwp66 were expressed in fusion with glutathione S-transferase in Escherichia coli and purified by affinity chromatography using gluthatione-Sepharose 4B. Antibodies raised against the two domains recognized Cwp66 in bacterial surface extracts. By immunoelectron microscopy, the C-terminal domain was found to be cell surface exposed. When used as inhibitors in cell binding studies, the antibodies and protein fragments partially inhibited adherence of C. difficile to cultured cells, confirming that Cwp66 is an adhesin, the first to be identified in clostridia.
Collapse
Affiliation(s)
- A J Waligora
- Université de Paris-Sud, Faculté de Pharmacie, Département de Microbiologie, F-92296 Châtenay-Malabry cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Hytönen J, Haataja S, Gerlach D, Podbielski A, Finne J. The SpeB virulence factor of Streptococcus pyogenes, a multifunctional secreted and cell surface molecule with strepadhesin, laminin-binding and cysteine protease activity. Mol Microbiol 2001; 39:512-9. [PMID: 11136470 DOI: 10.1046/j.1365-2958.2001.02269.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interactions between pathogenic bacteria and the host need to be resolved at the molecular level in order to develop novel vaccines and drugs. We have previously identified strepadhesin, a novel glycoprotein-binding activity in Streptococcus pyogenes, which is regulated by Mga, a regulator of streptococcal virulence factors. We have now identified the protein responsible for the strepadhesin activity and find that (i) strepadhesin activity is carried by SpeB, streptococcal pyrogenic exotoxin with cysteine protease activity; (ii) SpeB carries laminin-binding activity of the bacteria; and (iii) SpeB is not only a secreted molecule but also occurs unexpectedly tightly bound to the bacterial cell surface. Thus, in contrast to the previous view of SpeB as mainly an extracellular protease, it is also present as a streptococcal surface molecule with binding activity to laminin and other glycoproteins.
Collapse
Affiliation(s)
- J Hytönen
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
26
|
Sela S, Marouni MJ, Perry R, Barzilai A. Effect of lipoteichoic acid on the uptake of Streptococcus pyogenes by HEp-2 cells. FEMS Microbiol Lett 2000; 193:187-93. [PMID: 11111022 DOI: 10.1111/j.1574-6968.2000.tb09422.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lipoteichoic acid (LTA) is thought to play a role in the interactions between Streptococcus pyogenes and host cells. We have examined the effect of exogenous LTA on the adherence and entry of S. pyogenes JRS4 strain into HEp-2 epithelial cells. LTA markedly inhibited bacterial entry in a concentration-dependent manner, up to 250 microg ml(-1). In contrast, LTA had only a slight inhibitory effect on adherence. LTA also inhibited the entry but not adherence of Salmonella typhimurium strain into HEp-2 cells. Binding experiments showed a dose-dependent binding of LTA to cells up to 10 microg ml(-1). Confocal laser microscopy imaging and analysis revealed that LTA was internalized by the epithelial cells and colocalized with F-actin. These results might imply that, following binding, exogenous LTA enters HEp-2 cells and exerts a cytotoxic effect that interferes with bacterial internalization. A possible target for LTA activity might be the actin cytoskeleton, which is known to be essential for bacterial uptake.
Collapse
Affiliation(s)
- S Sela
- Department of Human Microbiology, Sackler school of Medicine, Tel-Aviv University, Ramat Aviv, Israel.
| | | | | | | |
Collapse
|
27
|
Frick IM, Mörgelin M, Björck L. Virulent aggregates of Streptococcus pyogenes are generated by homophilic protein-protein interactions. Mol Microbiol 2000; 37:1232-47. [PMID: 10972839 DOI: 10.1046/j.1365-2958.2000.02084.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many strains of the important human pathogen Streptococcus pyogenes form aggregates when grown in vitro in liquid medium. The present studies demonstrate that this property is crucial for the adherence, the resistance to phagocytosis and the virulence of S. pyogenes. A conserved sequence of 19 amino acid residues (designated AHP) was identified in surface proteins of common S. pyogenes serotypes. This sequence was found to promote bacterial aggregation through homophilic protein-protein interactions between AHP-containing surface proteins of neighbouring bacteria. A synthetic AHP peptide inhibited S. pyogenes aggregation, reduced the survival of S. pyogenes in human blood and attenuated its virulence in mice. In contrast, mutant bacteria devoid of surface proteins containing AHP-related sequences did not aggregate or adhere to epithelial cells. These bacteria are also rapidly killed in human blood and show reduced virulence in mice, underlining the pathogenic significance of the AHP sequence and S. pyogenes aggregation.
Collapse
Affiliation(s)
- I M Frick
- Department of Cell and Molecular Biology, Sections for Molecular Pathogenesis and Connective Tissue Biology, Lund University, PO Box 94, S-221 00 Lund, Sweden.
| | | | | |
Collapse
|
28
|
Abstract
Group A streptococci are model extracellular gram-positive pathogens responsible for pharyngitis, impetigo, rheumatic fever, and acute glomerulonephritis. A resurgence of invasive streptococcal diseases and rheumatic fever has appeared in outbreaks over the past 10 years, with a predominant M1 serotype as well as others identified with the outbreaks. emm (M protein) gene sequencing has changed serotyping, and new virulence genes and new virulence regulatory networks have been defined. The emm gene superfamily has expanded to include antiphagocytic molecules and immunoglobulin-binding proteins with common structural features. At least nine superantigens have been characterized, all of which may contribute to toxic streptococcal syndrome. An emerging theme is the dichotomy between skin and throat strains in their epidemiology and genetic makeup. Eleven adhesins have been reported, and surface plasmin-binding proteins have been defined. The strong resistance of the group A streptococcus to phagocytosis is related to factor H and fibrinogen binding by M protein and to disarming complement component C5a by the C5a peptidase. Molecular mimicry appears to play a role in autoimmune mechanisms involved in rheumatic fever, while nephritis strain-associated proteins may lead to immune-mediated acute glomerulonephritis. Vaccine strategies have focused on recombinant M protein and C5a peptidase vaccines, and mucosal vaccine delivery systems are under investigation.
Collapse
Affiliation(s)
- M W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
29
|
Darmstadt GL, Mentele L, Podbielski A, Rubens CE. Role of group A streptococcal virulence factors in adherence to keratinocytes. Infect Immun 2000; 68:1215-21. [PMID: 10678929 PMCID: PMC97270 DOI: 10.1128/iai.68.3.1215-1221.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the role of putative group A streptococcal virulence factors in the initiation of skin infections, we compared the adherence of a wild-type M49-protein skin-associated strain to that of a series of 16 isogenic mutants created by insertional inactivation of virulence genes. None of the mutants, including the M-protein-deficient (emm mutant) strain, displayed reduced adherence to early-passage cultured human keratinocytes, but adherence of the mutant lacking hyaluronic acid capsule expression (has mutant) was increased 13-fold. In contrast, elimination of capsule expression in M2-, M3-, and M18-protein has mutants increased adherence only slightly (1.3- to 2.3-fold) compared to their respective wild-type strains. A mutant with inactivation of both emm and has displayed high-level adherence (34.9 +/- 4.1%) equal to that of the has mutant strain (40.7 + 8.0%), confirming the lack of involvement of M49 protein in attachment. Moreover, adherence of the M49-protein-deficient (emm mutant) and wild-type strains was increased to the same level (57 and 55%, respectively) following enzymatic digestion of their hyaluronic acid capsule. Adherence of mutants lacking oligopeptide permease (Opp) expression was increased 3.8- to 5.5-fold, in association with decreased cell-associated hyaluronic acid capsule. Finally, soluble CD46 failed to inhibit adherence of M49- and M52-serotype skin strains. We conclude that (i) bacterial M protein and keratinocyte CD46 do not mediate adherence of M49 skin-associated Streptococcus pyogenes to epidermal keratinocytes, (ii) hyaluronic acid capsule impedes the interaction of bacterial adhesins with keratinocyte receptors, (iii) modulation of capsule expression may be important in the pathogenesis of skin infections, and (iv) the molecular interactions in attachment of skin strains of S. pyogenes to keratinocytes are unique and remain unidentified.
Collapse
Affiliation(s)
- G L Darmstadt
- Departments of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98105, USA
| | | | | | | |
Collapse
|
30
|
Hytönen J, Haataja S, Isomäki P, Finne J. Identification of a novel glycoprotein-binding activity in Streptococcus pyogenes regulated by the mga gene. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 1):31-39. [PMID: 10658649 DOI: 10.1099/00221287-146-1-31] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The interaction between Streptococcus pyogenes and the host cell surface is not completely understood. Characterization of the adhesion mechanisms of the bacterium to the host cell surface is needed in order to develop new vaccines and anti-adhesion drugs. The presence of glycoprotein-binding activities among streptococcal strains was investigated. An activity binding to thyroglobulin, fetuin, asialofetuin and mucin but not non-glycosylated proteins was found to be present in the majority of the S. pyogenes strains studied. Cross-inhibition experiments suggested that the glycoproteins share a common structure recognized by the bacteria. The glycoprotein-binding activity was found to be proteinaceous, tightly attached to the bacterial surface and it also mediated the adherence of bacteria to solid surfaces coated with glycoproteins. The activity was found by transposon mutagenesis and complementation to be regulated by the multiple-gene regulator Mga, which has been implicated as a regulator of S. pyogenes virulence factors.
Collapse
Affiliation(s)
- Jukka Hytönen
- Department of Medical Biochemistry, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland1
| | - Sauli Haataja
- Department of Medical Biochemistry, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland1
| | - Pia Isomäki
- Department of Medical Biochemistry, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland1
| | - Jukka Finne
- Department of Medical Biochemistry, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland1
| |
Collapse
|
31
|
Kawabata S, Kuwata H, Nakagawa I, Morimatsu S, Sano K, Hamada S. Capsular hyaluronic acid of group A streptococci hampers their invasion into human pharyngeal epithelial cells. Microb Pathog 1999; 27:71-80. [PMID: 10458918 DOI: 10.1006/mpat.1999.0283] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group A streptococci (GAS) cause various diseases, from uncomplicated noninvasive, to severe invasive infections. Capsular hyaluronic acid (HA) is known to resist phagocytosis, however, interaction between HA and epithelial cells have not been clearly understood. In this study, both HA-producing wild strains and HA-nonproducing mutants were employed to examine their invasiveness into confluent cultures of HEp-2, a nonphagocytic human epithelial cell line. Invasion of HEp-2 cells by GAS strains increased over time. The hasA gene encoding hyaluronate synthase of GAS strains was inactivated by allelic replacement. It was found that hasA-inactivated mutants were internalized into HEp-2 cells more efficiently than their parent strains under various conditions in terms of incubation time and inoculum size. Taken together, these findings indicate that GAS can be internalized into HEp-2 cells with considerably high frequencies and that the presence of HA of GAS decreased the invasion efficiency.
Collapse
Affiliation(s)
- S Kawabata
- Department of Oral Microbiology, Osaka University Faculty of Dentistry, Suita-Osaka, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Stålhammar-Carlemalm M, Areschoug T, Larsson C, Lindahl G. The R28 protein of Streptococcus pyogenes is related to several group B streptococcal surface proteins, confers protective immunity and promotes binding to human epithelial cells. Mol Microbiol 1999; 33:208-19. [PMID: 10411737 DOI: 10.1046/j.1365-2958.1999.01470.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The R28 protein is a surface molecule expressed by some strains of Streptococcus pyogenes (group A streptococcus). Here, we present evidence that R28 may play an important role in virulence. Sequence analysis demonstrated that R28 has an extremely repetitive sequence and can be viewed as a chimera derived from the three surface proteins Rib, alpha and beta of the group B streptococcus (GBS). Thus, the gene encoding R28 may have originated in GBS. The R28 protein promotes adhesion to human epithelial cells, as shown by experiments with an R28-negative mutant and by the demonstration that antibodies to highly purified R28 inhibited adhesion. In a mouse model of lethal intraperitoneal S. pyogenes infection, antibodies to R28 conferred protective immunity. However, the virulence of an R28-negative mutant was similar to that of the parental strain in the intraperitoneal infection model. Together, these data indicate that R28 represents a novel type of adhesin expressed by S. pyogenes and that R28 may also act as a target for protective antibodies at later stages of an infection. We consider the hypothesis that R28 played a pathogenetic role in the well-known epidemics of childbed fever (puerperal fever), which were caused by S. pyogenes. A role for R28 in these epidemics is suggested by epidemiological data.
Collapse
|
33
|
Shiono A, Ike Y. Isolation of Enterococcus faecalis clinical isolates that efficiently adhere to human bladder carcinoma T24 cells and inhibition of adhesion by fibronectin and trypsin treatment. Infect Immun 1999; 67:1585-92. [PMID: 10084990 PMCID: PMC96500 DOI: 10.1128/iai.67.4.1585-1592.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adherence of Enterococcus faecalis strains to human T24 cells was examined by scanning electron microscopy. Five highly adhesive strains were identified from 30 strains isolated from the urine of patients with urinary tract infections. No efficiently adhesive strains were found among the 30 strains isolated from the feces of healthy students. The five isolated strains also adhered efficiently to human bladder epithelial cells. Analysis of restriction endonuclease-digested plasmid DNAs and chromosome DNAs showed that the five strains were different strains isolated from different patients. The adhesiveness of these strains was inhibited by treatment with fibronectin or trypsin, implying that a specific protein (adhesin) on the bacterial cell surface mediates adherence to fibronectin on the host cell surfaces, and the adhesin differs from the reported adhesins.
Collapse
Affiliation(s)
- A Shiono
- Department of Microbiology and Laboratory of Bacterial Drug Resistance, Gunma University School of Medicine, Maebashi, Gunma, Japan
| | | |
Collapse
|
34
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 935] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
35
|
Berkower C, Ravins M, Moses AE, Hanski E. Expression of different group A streptococcal M proteins in an isogenic background demonstrates diversity in adherence to and invasion of eukaryotic cells. Mol Microbiol 1999; 31:1463-75. [PMID: 10200965 DOI: 10.1046/j.1365-2958.1999.01289.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The M protein of group A streptococcus (GAS) is considered to be a major virulence factor because it renders GAS resistant to phagocytosis and allows bacterial growth in human blood. There are more than 80 known serotypes of M proteins, and protective opsonic antibodies produced during disease in humans are serotype specific. M proteins also mediate bacterial adherence to epithelial cells of skin and pharynx. GAS strains vary in the genomic organization of the mga regulon, which contains the genes encoding M and M-like proteins and other virulence factors. This diversity of organization makes it difficult to assess virulence of M proteins of different serotypes, unless they can be expressed in an isogenic background. Here, we express M proteins of different serotypes in the M protein- and protein F1-deficient GAS strain, SAM2, which also lacks M-like proteins. Genes encoding M proteins of different serotypes (emmXs) have been integrated into the SAM2 chromosome in frame with the emm6.1 promoter and its mga regulon, resulting in similar levels of emmX expression. Although SAM2 exhibits a very low level of adherence to and invasion of HEp-2 and HaCaT cells, a SAM2-derived strain expressing M6 protein adheres to and invades both cell types. In contrast, the isogenic strain expressing M18 protein adheres to both cell types, but invades with a very low efficiency. A strain expressing M3 protein adheres to both types of cells, but its invasion of HEp-2 cells is serum dependent. A GAS strain expressing M6 protein does not compete with the isogenic strain expressing M18 protein for adherence to or invasion of HaCaT cells. We conclude that M proteins of different serotypes recognize different repertoires of receptors on the surfaces of eukaryotic cells.
Collapse
Affiliation(s)
- C Berkower
- Department of Clinical Microbiology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
36
|
Okada N, Tatsuno L, Hanski E, Caparon M, Sasakawa C. Streptococcus pyogenes protein F promotes invasion of HeLa cells. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):3079-3086. [PMID: 9846743 DOI: 10.1099/00221287-144-11-3079] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although the Gram-positive bacterium Streptococcus pyogenes (group A streptococcus) has been considered an extracellular pathogen which adheres to human mucosal epithelium, the streptococcus possesses invasive capacity for cultured human epithelial cells. This study provides genetic and functional evidence supporting the conclusion that protein F is capable of mediating entry of S. pyogenes into HeLa cells. Using Tn916 insertion mutagenesis or an isogenic S. pyogenes strain with a defined mutation in the gene encoding protein F (prtF), it was observed that the invasive capacity was affected by the levels of surface-exposed protein F, but not by those of M protein. In addition, heterologous expression of protein F on Enterococcus faecalis conferred upon the bacteria an efficient invasive phenotype. Several assays demonstrated that both the fibronectin-binding domains of protein F, UR and RD2, were involved in host-cell invasion. In addition, coinfection experiments of HeLa cells with S. pyogenes and an Escherichia coli K-12 strain expressing an afimbrial adhesin AFA-I showed that the uptake of S. pyogenes did not permit internalization of the E. coli cells.
Collapse
Affiliation(s)
- Nobuhiko Okada
- Department of Bacteriology, Institute of Medical Science, University of Tokyo, Tokyo 1 08, Japan
| | - Lchiro Tatsuno
- Department of Bacteriology, Institute of Medical Science, University of Tokyo, Tokyo 1 08, Japan
| | - Emanuel Hanski
- Department of Clinical Microbiology, The Hebrew University Hadassah Medical School, Jerusalem 91010, Israel
| | - Michael Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, S t Louis, MO 63110, USA
| | - Chihiro Sasakawa
- Department of Bacteriology, Institute of Medical Science, University of Tokyo, Tokyo 1 08, Japan
| |
Collapse
|
37
|
Mammen M, Choi SK, Whitesides GM. Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19981016)110:20<2908::aid-ange2908>3.0.co;2-2] [Citation(s) in RCA: 522] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Lilja M, Räisänen S, Stenfors LE. Initial events in the pathogenesis of acute tonsillitis caused by Streptococcus pyogenes. Int J Pediatr Otorhinolaryngol 1998; 45:15-20. [PMID: 9804015 PMCID: PMC7173150 DOI: 10.1016/s0165-5876(98)00071-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial and epithelial cell samples were obtained, within 24 h of onset of pharyngeal symptoms, from the palatine tonsils of nine patients (four female and five male; age range 10-40 years, median age 23) with acute tonsillitis, culture-positive for Streptococcus pyogenes. The specimens were examined using fluorescein isothiocyanate- (FITC) and gold-labelled antiserum to S. pyogenes and fluorescence, scanning electron and transmission electron microscopy. S. pyogenes could be identified both in the mucous layer covering the tonsils and attached to the surface epithelial cells. Long chains of coccus-shaped bacteria could be seen encroaching on the epithelial cell borders. S. pyogenes can apparently penetrate the mucous barrier, attach to the epithelial cells, spread from cell to cell and possibly penetrate into the outermost layer of the epithelial cells. These events in turn provoke cytokine production and/or complement activation, which induce inflammatory reaction in the tonsillar tissue.
Collapse
Affiliation(s)
- Markus Lilja
- Departments of Otolaryngology, University of Tromsø, Box 5, Breivika, N-9038 Tromsø, Norway
| | - Simo Räisänen
- Clinical Microbiology, Central Hospital, Kokkola, Finland
| | - Lars-Eric Stenfors
- Departments of Otolaryngology, University of Tromsø, Box 5, Breivika, N-9038 Tromsø, Norway
- Corresponding author. Tel.: +47 776 27390; fax: +47 776 27369; e-mail:
| |
Collapse
|
39
|
Cleary PP, McLandsborough L, Ikeda L, Cue D, Krawczak J, Lam H. High-frequency intracellular infection and erythrogenic toxin A expression undergo phase variation in M1 group A streptococci. Mol Microbiol 1998; 28:157-67. [PMID: 9593304 DOI: 10.1046/j.1365-2958.1998.00786.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A clonal variant of serotype M1 group A streptococcus, strain 90-131, disseminated to several continents, where it was associated with severe systemic infections and toxic shock. Although this strain harbours the speA gene and is efficiently internalized by human epithelial cells, clinical isolates often fail to express the erythrogenic toxin under laboratory growth conditions. Cultures of strain 90-131 were observed to phase vary between small, dry, compact and larger, more mucoid colonies. The former were shown to be poorly internalized by epithelial cells. Analysis of RNA by Northern hybridization demonstrated that the emml, hasA and speA genes were weakly transcribed in cultures derived from the small colonies and highly transcribed in those derived from the large colonies. An insertion mutation in mga (the multigene activator) downregulated the invasion of epithelial cells and the transcription of emm1 and hasA, but had little impact on the transcription of speA. These are the first data to suggest the existence of a common regulatory circuit linking intracellular invasion, M protein, hyaluronic acid capsule and erythrogenic toxin expression by group A streptococcus. Moreover, the genetic instability of toxin expression exhibited by this serotype may impact on laboratory studies that attempt to associate toxin production with toxic shock.
Collapse
Affiliation(s)
- P P Cleary
- Department of Microbiology, University of Minnesota, Minneapolis 55126, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Tsai PJ, Kuo CF, Lin KY, Lin YS, Lei HY, Chen FF, Wang JR, Wu JJ. Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect Immun 1998; 66:1460-6. [PMID: 9529068 PMCID: PMC108075 DOI: 10.1128/iai.66.4.1460-1466.1998] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cysteine protease of group A streptococci (GAS) is considered an important virulence factor. However, its role in invasiveness of GAS has not been investigated. We demonstrated in this study that two strains of protease-producing GAS had the ability to invade A-549 human respiratory epithelial cells. Isogenic protease mutants were constructed by using integrational plasmids to disrupt the speB gene and confirmed by Southern hybridization and Western immunoblot analyses. No extracellular protease activity was produced by the mutants. The mutants had growth rates similar to those of the wild-type strains and produced normal levels of other extracellular proteins. When invading A-549 cells, the mutants had a two- to threefold decrease in activity compared to that of the wild-type strains. The invasion activity increased when the A-549 cells were incubated with purified cysteine protease and the mutant. However, blockage of the cysteine protease with a specific cysteine protease inhibitor, E-64, decreased the invasion activity of GAS. Intracellular growth of GAS was not found in A-549 cells. The presence or absence of protease activity did not affect the adhesive ability of GAS. These results suggested that streptococcal cysteine protease can enhance the invasion ability of GAS in human respiratory epithelial cells.
Collapse
Affiliation(s)
- P J Tsai
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fluckiger U, Jones KF, Fischetti VA. Immunoglobulins to group A streptococcal surface molecules decrease adherence to and invasion of human pharyngeal cells. Infect Immun 1998; 66:974-9. [PMID: 9488384 PMCID: PMC108004 DOI: 10.1128/iai.66.3.974-979.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The M protein is one of the most important virulence factors of group A streptococci (Streptococcus pyogenes) and may play an important role in the first steps of streptococcal infection. Since acute pharyngitis is a frequently occurring infectious disease caused by these bacteria, we wished to know whether antibodies to the M protein or other surface components inhibit adherence and internalization of streptococci to pharyngeal cells. We investigated the role of whole human secretory immunoglobulin A (sIgA), M6 protein-specific sIgA, and M6 protein-specific serum IgG in the inhibition of streptococcal adherence and internalization to cultured human pharyngeal cells. S. pyogenes D471, which produces a type 6 M protein (M+), and its isogenic M-negative (M-) derivative JRS75 were tested. Purified whole sIgA, M protein-specific sIgA, and sIgA preabsorbed with M protein were able to decrease significantly the adherence of streptococci to pharyngeal cells. Purified IgG against the M6 protein did not diminish the attachment of streptococci to the pharyngeal cells but did reduce internalization. Thus, our data suggest that secretory IgA may play a key role in preventing streptococcal infection at mucosal surfaces by blocking adherence while affinity-purified anti-M protein-specific IgG blocks epitopes responsible for invasion.
Collapse
Affiliation(s)
- U Fluckiger
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
42
|
Frisk A, Ison CA, Lagergård T. GroEL heat shock protein of Haemophilus ducreyi: association with cell surface and capacity to bind to eukaryotic cells. Infect Immun 1998; 66:1252-7. [PMID: 9488422 PMCID: PMC108042 DOI: 10.1128/iai.66.3.1252-1257.1998] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1997] [Accepted: 12/30/1997] [Indexed: 02/06/2023] Open
Abstract
The Haemophilus ducreyi homolog of GroEL, a 58.5-kDa heat shock protein (Hsp), is a dominant protein produced not only in response to heat stress but also under in vitro growth conditions. Extracellular localization of the 58.5-kDa Hsp was investigated by whole-cell enzyme-linked immunosorbent assay (ELISA) and immunoelectron microscopy and in supernatants of washed bacteria by immunoblotting with a Haemophilus ducreyi GroEL-specific mouse monoclonal antibody (BB11). To investigate binding of the Hsp to eukaryotic cells, the 58.5-kDa Hsp was purified by ion-exchange and size exclusion chromatography; incubated with HEp-2 cells, HeLa cells, and human fibroblasts; and then analyzed by immunoblotting. Direct involvement of the 58.5-kDa Hsp in the adherence of H. ducreyi to HEp-2 cells was investigated by using an inhibition assay. An epitope of the 58.5-kDa Hsp was detected by whole-cell ELISA on all of the strains tested, suggesting that it is associated with the cell surface. This was also supported by immunoelectron microscopy results. In supernatants of washed bacteria, the 58.5-kDa Hsp was detected by immunoblotting after 10 h of cultivation. The 58.5-kDa Hsp bound to the eukaryotic cells tested but exerted only limited (about 20%) inhibition of H. ducreyi adherence to HEp-2 cells. These results demonstrate that the 58.5-kDa Hsp of H. ducreyi is associated with the bacterial surface, binds to eukaryotic cells, and partially influences H. ducreyi adherence to HEp-2 cells, indicating possible involvement of the 58.5-kDa Hsp in the attachment of bacteria to host cells and to each other.
Collapse
Affiliation(s)
- A Frisk
- Department of Medical Microbiology and Immunology, University of Gothenburg, Sweden
| | | | | |
Collapse
|
43
|
Smith LM, Laganas V, Pistole TG. Attachment of group B streptococci to macrophages is mediated by a 21-kDa protein. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 20:89-97. [PMID: 9544775 DOI: 10.1111/j.1574-695x.1998.tb01114.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Group B Streptococcus (GBS) is able to bind to human macrophages in vitro in the absence of exogenous opsonins. The exact mechanisms that mediate this attachment are unclear. This study was undertaken to determine what protein adhesins are present on the surface of GBS that mediate attachment to macrophages. We have identified a 21-kDa protein from the envelope of GBS type III that directly binds to macrophages as determined by Western blot analysis. Antiserum against this protein was able to inhibit binding of GBS to macrophages by greater than 80% as measured by flow cytometry. Antiserum against the 21-kDa protein cross-reacted with 21-kDa proteins from GBS type Ib, type II, type III (COH31 and MR732) and type IV, as well as Staphyloccus epidermidis, but not GBS type Ia, Listeria monocytogenes or Enterococcus faecalis. This protein may be important in mediating the attachment of GBS to macrophages in an opsonin-poor environment.
Collapse
Affiliation(s)
- L M Smith
- Department of Microbiology, University of New Hampshire, Durham 03824-2617, USA.
| | | | | |
Collapse
|
44
|
Stinson MW, McLaughlin R, Choi SH, Juarez ZE, Barnard J. Streptococcal histone-like protein: primary structure of hlpA and protein binding to lipoteichoic acid and epithelial cells. Infect Immun 1998; 66:259-65. [PMID: 9423866 PMCID: PMC107885 DOI: 10.1128/iai.66.1.259-265.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In addition to its role in the nucleoid, the histone-like protein (HlpA) of Streptococcus pyogenes is believed to act as a fortuitous virulence factor in delayed sequelae by binding to heparan sulfate-proteoglycans in the extracellular matrix of target organs and acting as a nidus for in situ immune complex formation. To further characterize this protein, the hlpA genes were cloned from S. pyogenes, S. gordonii, S. mutans, and S. sobrinus, using PCR amplification, and sequenced. The encoded HlpA protein of S. pyogenes has 91 amino acids, a predicted molecular mass of 9,647 Da, an isoelectric point of 9.81, and 90% to 95% sequence identity with HlpA of several oral streptococci. The consensus sequence of streptococcal HlpA has 69% identity with the consensus sequence of the histone-like HB protein of Bacillus species. Oral viridans group streptococci, growing in chemically defined medium at pH 6.8, released HlpA into the milieu during stationary phase as a result of limited cell lysis. HlpA was not released by these bacteria when grown at pH 6.0 or below. S. pyogenes did not release HlpA during growth in vitro; however, analyses of sera from 155 pharyngitis patients revealed a strong correlation (P < 0.0017) between the production of antibodies to HlpA and antibodies to streptolysin O, indicating that the histone-like protein is released by group A streptococci growing in vivo. Extracellular HlpA formed soluble complexes with lipoteichoic acid in vitro and bound readily to heparan sulfate on HEp-2 cell surfaces. These results support a potential role for HlpA in the pathogenesis of streptococcus-induced tissue inflammation.
Collapse
Affiliation(s)
- M W Stinson
- Department of Microbiology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, USA.
| | | | | | | | | |
Collapse
|
45
|
FRISK ANDERS, LAGERGÅRD TERESA. Characterization of mechanisms involved in adherence ofHaemophilus ducreyito eukaryotic cells. APMIS 1998. [DOI: 10.1111/j.1699-0463.1998.tb01382.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Jadoun J, Burstein E, Hanski E, Sela S. Proteins M6 and F1 are required for efficient invasion of group A streptococci into cultured epithelial cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 418:511-5. [PMID: 9331705 DOI: 10.1007/978-1-4899-1825-3_121] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Group A streptococci were recently shown to be capable of invading human epithelial cell monolayers. Cell invasion might be an important virulence trait of streptococci that enable the pathogen to gain entry into deeper tissues after initial binding to host cells. Nothing is known concerning the nature of streptococcal components that mediate invasion. Using isogenic mutants of strain JRS4 that are defective in the expression of either M6 protein or protein F1, or both proteins, it was demonstrated that both adhesins are required for efficient invasion. Further more, expression of protein F1 on the surface of a non-invasive strain rendered the latter invasive, suggesting that protein F1 is directly involved in the invasion process.
Collapse
Affiliation(s)
- J Jadoun
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
47
|
Courtney HS, Liu S, Dale JB, Hasty DL. Conversion of M serotype 24 of Streptococcus pyogenes to M serotypes 5 and 18: effect on resistance to phagocytosis and adhesion to host cells. Infect Immun 1997; 65:2472-4. [PMID: 9169794 PMCID: PMC175346 DOI: 10.1128/iai.65.6.2472-2474.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, we utilized recombinant strains expressing the M5 and M18 proteins and M- mutants of group A streptococci to compare the abilities of these M proteins to confer resistance to phagocytosis and to mediate adhesion to host cells. The data indicate that the M5 and M18 proteins can confer resistance to phagocytosis, that fibrinogen is required for this resistance, and that these M proteins can mediate adhesion to HEp-2 cells.
Collapse
Affiliation(s)
- H S Courtney
- Department of Veterans Affairs Medical Center and Department of Medicine, University of Tennessee, Memphis 38104, USA.
| | | | | | | |
Collapse
|
48
|
Musser JM. Streptococcal superantigen, mitogenic factor, and pyrogenic exotoxin B expressed by Streptococcus pyogenes. Structure and function. Prep Biochem Biotechnol 1997; 27:143-72. [PMID: 9292924 DOI: 10.1080/10826069708000074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J M Musser
- Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
49
|
Molinari G, Talay SR, Valentin-Weigand P, Rohde M, Chhatwal GS. The fibronectin-binding protein of Streptococcus pyogenes, SfbI, is involved in the internalization of group A streptococci by epithelial cells. Infect Immun 1997; 65:1357-63. [PMID: 9119474 PMCID: PMC175140 DOI: 10.1128/iai.65.4.1357-1363.1997] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pyogenes organisms (group A streptococci) are considered to be highly adhesive extracellular pathogens. However, it has recently been reported that S. pyogenes has the capacity to efficiently invade eukaryotic cells. In this study, we demonstrate that the interaction of S. pyogenes fibronectin-binding protein (SfbI) with fibronectin on nonphagocytic HEp-2 cells triggers bacterial internalization. Blocking of the SfbI adhesin by either antibodies against the whole protein or antibodies against the fibronectin-binding domains of SfbI, as well as pretreatment of HEp-2 cells with purified SfbI protein, prevents both S. pyogenes attachment and internalization. Inert latex beads precoated with the purified SfbI protein are ingested by eukaryotic cells, demonstrating that SfbI is per se enough to trigger the internalization process. Experiments performed with a recombinant SfbI domain encompassing the two fibronectin-binding regions of the SfbI molecule demonstrated that these binding regions are essential and sufficient to activate uptake by HEp-2 cells. These results demonstrate that the fibronectin-binding protein SfbI is involved in both S. pyogenes' attachment to and ingestion by HEp-2 cells and contribute to elucidation of the underlying molecular events leading to eukaryotic cell invasion by S. pyogenes.
Collapse
Affiliation(s)
- G Molinari
- Division of Microbiology, Technical University/GBF-National Research Centre for Biotechnology, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
50
|
Courtney HS, Dale JB, Hasty DI. Differential effects of the streptococcal fibronectin-binding protein, FBP54, on adhesion of group A streptococci to human buccal cells and HEp-2 tissue culture cells. Infect Immun 1996; 64:2415-9. [PMID: 8698460 PMCID: PMC174091 DOI: 10.1128/iai.64.7.2415-2419.1996] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have previously demonstrated that fibronectin mediates streptococcal adhesion to host cells and that streptococci interact primarily with the N-terminal domain of fibronectin. FBP54 is a 54-kDa protein from group A streptococci that binds fibronectin. In this report, we show that the N-terminal domain of fibronectin reacts with FBP54 and preferentially blocks streptococcal adhesion to buccal epithelial cells. FBP54 blocked adhesion to human buccal epithelial cells by 80% in a dose-related fashion. In contrast, FBP54 had little effect on adhesion of group A streptococci to HEp-2 tissue culture cells. The fibronectin-binding domain of FBP54 has been localized to the first 89 N-terminal residues of the protein. Experiments using affinity-purified antibodies to this region indicated that the N terminus of FBP54 is exposed on the surface of streptococci in a manner that can interact with immobilized receptors. Analysis of sera from patients with post-streptococcal glomerulonephritis and acute rheumatic fever indicated that FBP54 is expressed in vivo and is immunogenic in the human host. These data indicate that FBP54 is a streptococcal adhesin that is expressed in the human host and that preferentially mediates adhesion to certain types of human cells.
Collapse
Affiliation(s)
- H S Courtney
- Veterans Affairs Medical Center, Memphis, Tennessee 38104, USA
| | | | | |
Collapse
|