1
|
Kumari K, Dey J, Mahapatra SR, Ma Y, Sharma PK, Misra N, Singh RP. Protein profiling and immunoinformatic analysis of the secretome of a metal-resistant environmental isolate Pseudomonas aeruginosa S-8. Folia Microbiol (Praha) 2024; 69:1095-1122. [PMID: 38457114 DOI: 10.1007/s12223-024-01152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
The bacterial secretome represents a comprehensive catalog of proteins released extracellularly that have multiple important roles in virulence and intercellular communication. This study aimed to characterize the secretome of an environmental isolate Pseudomonas aeruginosa S-8 by analyzing trypsin-digested culture supernatant proteins using nano-LC-MS/MS tool. Using a combined approach of bioinformatics and mass spectrometry, 1088 proteins in the secretome were analyzed by PREDLIPO, SecretomeP 2.0, SignalP 4.1, and PSORTb tool for their subcellular localization and further categorization of secretome proteins according to signal peptides. Using the gene ontology tool, secretome proteins were categorized into different functional categories. KEGG pathway analysis identified the secreted proteins into different metabolic functional pathways. Moreover, our LC-MS/MS data revealed the secretion of various CAZymes into the extracellular milieu, which suggests its strong biotechnological applications to breakdown complex carbohydrate polymers. The identified immunodominant epitopes from the secretome of P. aeruginosa showed the characteristic of being non-allergenic, highly antigenic, nontoxic, and having a low risk of triggering autoimmune responses, which highlights their potential as successful vaccine targets. Overall, the identification of secreted proteins of P. aeruginosa could be important for both diagnostic purposes and the development of an effective candidate vaccine.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, 835215, India
| | - Jyotirmayee Dey
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Namrata Misra
- School of Biotechnology, Deemed to Be University, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India.
| |
Collapse
|
2
|
AlSaleh A, Shahid M, Farid E, Bindayna K. The Effect of Ascorbic Acid and Nicotinamide on Panton-Valentine Leukocidin Cytotoxicity: An Ex Vivo Study. Toxins (Basel) 2023; 15:38. [PMID: 36668859 PMCID: PMC9865643 DOI: 10.3390/toxins15010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Panton−Valentine Leukocidin sustains a strong cytotoxic activity, targeting immune cells and, consequently, perforating the plasma membrane and inducing cell death. The present study is aimed to examine the individual effect of ascorbic acid and nicotinamide on PVL cytotoxicity ex vivo, as well as their effect on granulocytes viability when treated with PVL. Materials and Methods: The PVL cytotoxicity assay was performed in triplicates using the commercial Cytotoxicity Detection Kit PLUS (LDH). LDH release was measured to determine cell damage and cell viability was measured via flow cytometry. Results and discussion: A clear reduction in PVL cytotoxicity was demonstrated (p < 0.001). Treatment with ascorbic acid at 5 mg/mL has shown a 3-fold reduction in PVL cytotoxicity; likewise, nicotinamide illustrated a 4-fold reduction in PVL cytotoxicity. Moreover, granulocytes’ viability after PVL treatment was maintained when incubated with 5 mg/mL of ascorbic acid and nicotinamide. Conclusions: our findings illustrated that ascorbic acid and nicotinamide exhibit an inhibitory effect on PVL cytotoxicity and promote cell viability, as the cytotoxic effect of the toxin is postulated to be neutralized by antioxidant incubation. Further investigations are needed to assess whether these antioxidants may be viable options in PVL cytotoxicity attenuation in PVL-associated diseases.
Collapse
Affiliation(s)
- Abdullah AlSaleh
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | | | | | | |
Collapse
|
3
|
Viering B, Cunningham T, King A, Blackledge MS, Miller HB. Brominated Carbazole with Antibiotic Adjuvant Activity Displays Pleiotropic Effects in MRSA's Transcriptome. ACS Chem Biol 2022; 17:1239-1248. [PMID: 35467845 PMCID: PMC9498981 DOI: 10.1021/acschembio.2c00168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major threat to human health, as the US mortality rate outweighs those from HIV, tuberculosis, and viral hepatitis combined. In the wake of the COVID-19 pandemic, antibiotic-resistant bacterial infections acquired during hospital stays have increased. Antibiotic adjuvants are a key strategy to combat these bacteria. We have evaluated several small molecule antibiotic adjuvants that have strong potentiation with β-lactam antibiotics and are likely inhibiting a master regulatory kinase, Stk1. Here, we investigated how the lead adjuvant (compound 8) exerts its effects in a more comprehensive manner. We hypothesized that the expression levels of key resistance genes would decrease once cotreated with oxacillin and the adjuvant. Furthermore, bioinformatic analyses would reveal biochemical pathways enriched in differentially expressed genes. RNA-seq analysis showed 176 and 233 genes significantly up- and downregulated, respectively, in response to cotreatment. Gene ontology categories and biochemical pathways that were significantly enriched with downregulated genes involved carbohydrate utilization, such as the citrate cycle and the phosphotransferase system. One of the most populated pathways was S. aureus infection. Results from an interaction network constructed with affected gene products supported the hypothesis that Stk1 is a target of compound 8. This study revealed a dramatic impact of our lead adjuvant on the transcriptome that is consistent with a pleiotropic effect due to Stk1 inhibition. These results point to this antibiotic adjuvant having potential broad therapeutic use in combatting MRSA.
Collapse
Affiliation(s)
- Brianna Viering
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Taylor Cunningham
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Ashley King
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Meghan S Blackledge
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Heather B Miller
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| |
Collapse
|
4
|
Addis MF, Pisanu S, Monistero V, Gazzola A, Penati M, Filipe J, Di Mauro S, Cremonesi P, Castiglioni B, Moroni P, Pagnozzi D, Tola S, Piccinini R. Comparative secretome analysis of Staphylococcus aureus strains with different within-herd intramammary infection prevalence. Virulence 2022; 13:174-190. [PMID: 35030987 PMCID: PMC8765078 DOI: 10.1080/21505594.2021.2024014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a major pathogen causing intramammary infection and mastitis in dairy cows. S. aureus genotypes (GT) can differ significantly in their ability to diffuse and persist in the herd; while the association of virulence gene carriage with epidemiological behavior remains unclear, a role for secreted proteins has been postulated. We characterized the secretome of six S. aureus strains belonging to two genotypes with opposite within-herd prevalence, GTB (high) and GTS (low), corresponding to sequence types (ST) 8 and 398, by high-resolution tandem mass spectrometry and differential analysis with Proteome Discoverer. Data are available via ProteomeXchange with identifier PXD029571. Out of 720 identified proteins, 98 were unique or more abundant in GTB/ST8 and 68 in GTS/ST398. GTB/ST8 released more immunoglobulin-binding proteins, complement and antimicrobial peptide inhibitors, enterotoxins, and metabolic enzymes, while GTS/ST398 released more leukocidins, hemolysins, lipases, and peptidases. Furthermore, GTB/ST8 released the von Willebrand factor protein, staphylokinase, and clumping factor B, while GTS released the staphylococcal coagulase and clumping factor A. Hence, GTB/ST8 secretomes indicated a higher propensity for immune evasion and chronicity and GTS/ST398 secretomes for cellular damage and inflammation, consistent with their epidemiological characteristics. Accordingly, GTS/ST398 secretions were significantly more cytotoxic against bovine PBMCs in vitro. Our findings confirm the crucial role of extracellular virulence factors in S. aureus pathogenesis and highlight the need to investigate their differential release adding to gene carriage for a better understanding of the relationship of S. aureus genotypes with epidemiological behavior and, possibly, disease severity.
Collapse
Affiliation(s)
- M Filippa Addis
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | | | - Valentina Monistero
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Alessandra Gazzola
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Martina Penati
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Joel Filipe
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Susanna Di Mauro
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi, Italy
| | - Paolo Moroni
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy.,Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, USA
| | | | - Sebastiana Tola
- Istituto Zooprofilattico Sperimentale Della Sardegna "G. Pegreffi", Sassari, Italy
| | - Renata Piccinini
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Milano, Lodi, Italy
| |
Collapse
|
5
|
Staali L, Colin DA. Bi-component HlgC/HlgB and HlgA/HlgB γ-hemolysins from S. aureus: Modulation of Ca 2+ channels activity through a differential mechanism. Toxicon 2021; 201:74-85. [PMID: 34411591 DOI: 10.1016/j.toxicon.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Staphylococcal bi-component leukotoxins known as *pore-forming toxins* induce upon a specific binding to membrane receptors, two independent cellular events in human neutrophils. First, they provoke the opening of pre-existing specific ionic channels including Ca2+ channels. Then, they form membrane pores specific to monovalent cations leading to immune cells death. Among these leukotoxins, HlgC/HlgB and HlgA/HlgB γ-hemolysins do act in synergy to induce the opening of different types of Ca2+ channels in the absence as in the presence of extracellular Ca2+. Here, we investigate the mechanism underlying the modulation of Ca2+-independent Ca2+ channels in response to both active leukotoxins in human neutrophils. In the absence of extracellular Ca2+, the Mn2+ has been used as a Ca2+ surrogate to determine the activity of Ca2+-independent Ca2+ channels. Our findings provide new insights about different mechanisms involved in the staphylococcal γ-hemolysins activity to regulate three different types of Ca2+-independent Ca2+ channels. We conclude that (i) HlgC/HlgB stimulates the opening of La3+-sensitive Ca2+ channels, through a cholera toxin-sensitive G protein, (ii) HlgA/HlgB stimulates the opening of Ca2+ channels not sensitive to La3+, through a G protein-independent process, and (iii) unlike HlgA/HlgB, HlgC/HlgB toxins prevent the opening of a new type of Ca2+ channels by phosphorylation/de-phosphorylation-dependent mechanisms.
Collapse
Affiliation(s)
- Leila Staali
- Bacteriology Institute of Medical Faculty, Louis Pasteur University, 3 rue Koeberlé, F-67000, Strasbourg, France.
| | - Didier A Colin
- Bacteriology Institute of Medical Faculty, Louis Pasteur University, 3 rue Koeberlé, F-67000, Strasbourg, France
| |
Collapse
|
6
|
Butrico CE, Cassat JE. Quorum Sensing and Toxin Production in Staphylococcus aureus Osteomyelitis: Pathogenesis and Paradox. Toxins (Basel) 2020; 12:toxins12080516. [PMID: 32806558 PMCID: PMC7471978 DOI: 10.3390/toxins12080516] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen capable of infecting nearly every vertebrate organ. Among these tissues, invasive infection of bone (osteomyelitis) is particularly common and induces high morbidity. Treatment of osteomyelitis is notoriously difficult and often requires debridement of diseased bone in conjunction with prolonged antibiotic treatment to resolve infection. During osteomyelitis, S. aureus forms characteristic multicellular microcolonies in distinct niches within bone. Virulence and metabolic responses within these multicellular microcolonies are coordinated, in part, by quorum sensing via the accessory gene regulator (agr) locus, which allows staphylococcal populations to produce toxins and adapt in response to bacterial density. During osteomyelitis, the Agr system significantly contributes to dysregulation of skeletal homeostasis and disease severity but may also paradoxically inhibit persistence in the host. Moreover, the Agr system is subject to complex crosstalk with other S. aureus regulatory systems, including SaeRS and SrrAB, which can significantly impact the progression of osteomyelitis. The objective of this review is to highlight Agr regulation, its implications on toxin production, factors that affect Agr activation, and the potential paradoxical influences of Agr regulation on disease progression during osteomyelitis.
Collapse
Affiliation(s)
- Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-936-6494
| |
Collapse
|
7
|
Tromp AT, van Strijp JAG. Studying Staphylococcal Leukocidins: A Challenging Endeavor. Front Microbiol 2020; 11:611. [PMID: 32351474 PMCID: PMC7174503 DOI: 10.3389/fmicb.2020.00611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is a well-known colonizer of the human skin and nose, but also a human pathogen that causes a wide spectrum of diseases. It is well established that S. aureus secretes an arsenal of virulence factors that have evolved to circumvent the human immune system. A major group of S. aureus virulence factors is the bi-component β-barrel pore-forming toxins, also known as leukocidins. These pore-forming toxins target specific cells of the innate and adaptive immune system by interacting with specific receptors expressed on the cell membrane. Even though still heavily debated, clinical and epidemiological studies suggest the involvement of one of the bi-component toxin, Panton-Valentine Leukocidin (PVL), as an important factor contributing to the epidemic spread and increased virulence of CA-MRSA strains. However, the host- and cell-specificity of PVL and other leukocidins, and the lack of adequate in vivo models, fuels the controversy and impairs the appropriate assessment of their role in S. aureus pathophysiology. Currently, the mechanisms of pore-formation and the contribution of PVL and other leukocidins to S. aureus pathophysiology are incompletely understood. This review summarizes our current understanding of leukocidin pore-formation, knowledge gaps, and highlights recent findings identifying novel host-factors involved in the toxin-host interface. As a result, this review furthers emphasizes the complexity behind S. aureus leukocidin cytotoxicity and the challenges associated in the quest to study and understand these major virulence factors.
Collapse
Affiliation(s)
- Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
8
|
Haapasalo K, Wollman AJM, de Haas CJC, van Kessel KPM, van Strijp JAG, Leake MC. Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration. FASEB J 2019; 33:3807-3824. [PMID: 30509126 PMCID: PMC6404581 DOI: 10.1096/fj.201801910r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/29/2018] [Indexed: 11/11/2022]
Abstract
Staphylococcus aureus Panton-Valentine leukocidin is a pore-forming toxin targeting the human C5a receptor (hC5aR), enabling this pathogen to battle the immune response by destroying phagocytes through targeted lysis. The mechanisms that contribute to rapid cell lysis are largely unexplored. Here, we show that cell lysis may be enabled by a process of toxins targeting receptor clusters and present indirect evidence for receptor "recycling" that allows multiple toxin pores to be formed close together. With the use of live cell single-molecule super-resolution imaging, Förster resonance energy transfer and nanoscale total internal reflection fluorescence colocalization microscopy, we visualized toxin pore formation in the presence of its natural docking ligand. We demonstrate disassociation of hC5aR from toxin complexes and simultaneous binding of new ligands. This effect may free mobile receptors to amplify hyperinflammatory reactions in early stages of microbial infections and have implications for several other similar bicomponent toxins and the design of new antibiotics.-Haapasalo, K., Wollman, A. J. M., de Haas, C. J. C., van Kessel, K. P. M., van Strijp, J. A. G., Leake, M. C. Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration.
Collapse
Affiliation(s)
- Karita Haapasalo
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Adam J. M. Wollman
- Department of Biology, Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kok P. M. van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mark C. Leake
- Department of Biology, Biological Physical Sciences Institute, University of York, York, United Kingdom
- Department of Physics, Biological Physical Sciences Institute, University of York, York, United Kingdom
| |
Collapse
|
9
|
Buchan KD, Foster SJ, Renshaw SA. Staphylococcus aureus: setting its sights on the human innate immune system. MICROBIOLOGY-SGM 2019; 165:367-385. [PMID: 30625113 DOI: 10.1099/mic.0.000759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus has colonized humans for at least 10 000 years, and today inhabits roughly a third of the population. In addition, S. aureus is a major pathogen that is responsible for a significant disease burden, ranging in severity from mild skin and soft-tissue infections to life-threatening endocarditis and necrotizing pneumonia, with treatment often hampered by resistance to commonly available antibiotics. Underpinning its versatility as a pathogen is its ability to evade the innate immune system. S. aureus specifically targets innate immunity to establish and sustain infection, utilizing a large repertoire of virulence factors to do so. Using these factors, S. aureus can resist phagosomal killing, impair complement activity, disrupt cytokine signalling and target phagocytes directly using proteolytic enzymes and cytolytic toxins. Although most of these virulence factors are well characterized, their importance during infection is less clear, as many display species-specific activity against humans or against animal hosts, including cows, horses and chickens. Several staphylococcal virulence factors display species specificity for components of the human innate immune system, with as few as two amino acid changes reducing binding affinity by as much as 100-fold. This represents a major issue for studying their roles during infection, which cannot be examined without the use of humanized infection models. This review summarizes the major factors S. aureus uses to impair the innate immune system, and provides an in-depth look into the host specificity of S. aureus and how this problem is being approached.
Collapse
Affiliation(s)
- Kyle D Buchan
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Simon J Foster
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Stephen A Renshaw
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
10
|
Divyakolu S, Chikkala R, Ratnakar KS, Sritharan V. Hemolysins of <i>Staphylococcus aureus</i>—An Update on Their Biology, Role in Pathogenesis and as Targets for Anti-Virulence Therapy. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/aid.2019.92007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Jing C, Liu C, Liu F, Gao Y, Liu Y, Guan Z, Xuan B, Yu Y, Yang G. Novel human monoclonal antibodies targeting the F subunit of leukocidins reduce disease progression and mortality caused by Staphylococcus aureus. BMC Microbiol 2018; 18:181. [PMID: 30419818 PMCID: PMC6233355 DOI: 10.1186/s12866-018-1312-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 10/11/2018] [Indexed: 01/17/2023] Open
Abstract
Background Staphylococcus aureus is a leading cause of Gram-positive bacterial infections worldwide; however, the treatment of S. aureus infection has become increasingly difficult due to the prevalence of methicillin-resistant S. aureus strains, highlighting the urgent need for the development of novel strategies. The complexity of S. aureus pathogenesis relies on virulence factors. Recent studies have demonstrated that leukocidins expressed by the majority of clinical isolates play important roles in the pathogenesis of S. aureus. Results In this study, we developed three human monoclonal antibodies against all F-components of leukocidins HlgABC, LukSF, and LukED with high affinity. These antibodies were found to be capable of blocking leukocidin-mediated cell lysis in vitro. Furthermore, the antibodies dramatically reduced disease progression and mortality after S. aureus infection in vivo. Conclusions Our findings revealed that neutralizing bicomponent leukocidins may be a promising strategy to combat infections caused by S. aureus. Electronic supplementary material The online version of this article (10.1186/s12866-018-1312-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chendi Jing
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Chenghua Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Fangjie Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhangchun Guan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Bo Xuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China.
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China. .,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| |
Collapse
|
12
|
Akil N, Muhlebach MS. Biology and management of methicillin resistant Staphylococcus aureus in cystic fibrosis. Pediatr Pulmonol 2018; 53:S64-S74. [PMID: 30073802 DOI: 10.1002/ppul.24139] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus is one of the earliest bacteria isolated from the respiratory tract in people with cystic fibrosis (CF). Its methicillin resistant form, MRSA, has gained attention due to the rapid increase in the last decades and worse outcomes with chronic infection. In the United States, prevalence of MRSA in CF is around 27%, but is much lower (3-18%) in most other countries. Methicillin is typically genetically encoded by the mecA gene, which encodes for an alternative penicillin binding protein (PRBa). This PRBa has low affinity to β-lactams, thereby enabling growth of S. aureus in the presence of penicillinase resistant penicillins and most other β-lactams. Non-mecA positive strains of MRSA, so-called borderline resistant (BORSA) have also been described. In addition to production of toxins, the virulence of S. aureus is conferred by its adaptability allowing persistence in face of antibiotic therapies and host defense. These adaptive growth mechanisms include small colony variants, biofilms, and growth under anaerobic conditions. Several reports have described successful eradication of MRSA, yet only two randomized trials of eradication during early infection have been conducted. A list of MRSA specific antibiotics with dosing relevant to CF patients is presented here. Many of these require special dosing in people with CF. Novel antibiotics are in trials for skin and soft tissue infections and it is unclear if and when those might be available for lung infections. Thus the best strategies for MRSA would be primary prevention.
Collapse
Affiliation(s)
- Nour Akil
- Division of Pulmonology, Department of Pediatrics, University of NC at Chapel Hill, Chapel Hill, North Carolina
| | - Marianne S Muhlebach
- Division of Pulmonology, Department of Pediatrics, University of NC at Chapel Hill, Chapel Hill, North Carolina.,Marisco Lung Institute, University of NC at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Kane TL, Carothers KE, Lee SW. Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics. Curr Drug Targets 2018; 19:111-127. [PMID: 27894236 PMCID: PMC5957279 DOI: 10.2174/1389450117666161128123536] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Staphylococcus aureus is a major bacterial pathogen capable of causing a range of infections in humans from gastrointestinal disease, skin and soft tissue infections, to severe outcomes such as sepsis. Staphylococcal infections in humans can be frequent and recurring, with treatments becoming less effective due to the growing persistence of antibiotic resistant S. aureus strains. Due to the prevalence of antibiotic resistance, and the current limitations on antibiotic development, an active and highly promising avenue of research has been to develop strategies to specifically inhibit the activity of virulence factors produced S. aureus as an alternative means to treat disease. OBJECTIVE In this review we specifically highlight several major virulence factors produced by S. aureus for which recent advances in antivirulence approaches may hold promise as an alternative means to treating diseases caused by this pathogen. Strategies to inhibit virulence factors can range from small molecule inhibitors, to antibodies, to mutant and toxoid forms of the virulence proteins. CONCLUSION The major prevalence of antibiotic resistant strains of S. aureus combined with the lack of new antibiotic discoveries highlight the need for vigorous research into alternative strategies to combat diseases caused by this highly successful pathogen. Current efforts to develop specific antivirulence strategies, vaccine approaches, and alternative therapies for treating severe disease caused by S. aureus have the potential to stem the tide against the limitations that we face in the post-antibiotic era.
Collapse
Affiliation(s)
- Trevor L. Kane
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn E. Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Bakthavatchalam YD, Nabarro LEB, Ralph R, Veeraraghavan B. Diagnosis and management of Panton-Valentine leukocidin toxin associated Staphylococcus aureus infection: an update. Virulence 2017:0. [PMID: 28783418 DOI: 10.1080/21505594.2017.1362532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The incidence of invasive Staphylococcus aureus (SA) infection has increased in the past decade and is associated with poor outcomes and high mortality rates. Of all the virulence factors, Panton-Valentine Leukocidin (PVL) has received the greatest attention. PVL producing SA strains are more likely to produce severe skin and soft tissue infections (SSTIs) and necrotizing pneumonia. This review focuses on the current evidence on PVL-SA virulence, epidemiology, clinical disease and treatment with relevance to healthcare in India.
Collapse
Affiliation(s)
| | - Laura E B Nabarro
- a Department of Clinical Microbiology , Christian Medical College , Vellore - 632004 , India
| | - Ravikar Ralph
- b Department of Medicine (unit II) , Christian Medical College , Vellore - 632004 , India
| | - Balaji Veeraraghavan
- a Department of Clinical Microbiology , Christian Medical College , Vellore - 632004 , India
| |
Collapse
|
15
|
Havaei SA, Poursina F, Ahmadpour M, Havaei SR, Ruzbahani M. Detection of Panton-valentine Leukocidin Gene Isoforms of Staphylococcus aureus Isolates in Al-Zahra Hospital, Isfahan-Iran. Adv Biomed Res 2017; 6:93. [PMID: 28828344 PMCID: PMC5549547 DOI: 10.4103/2277-9175.211798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Panton-Valentine leukocidin (PVL) is a gamma-toxin produced by Staphylococcus aureus encoded by genes lukS/lukF-PV with several single-nucleotide polymorphisms. A mutation at nucleotide position 527 results in substitution of histidine (H) to arginine (R) at amino acid 176. The groups defined based on the amino acid change, the “R isoform” group and the “H isoform” group. The purpose of this study was to determine the frequency of PVL gene isoforms in S. aureus strains isolated from patients at Al-Zahra Hospital Isfahan and molecular characterization of PVL-positive methicillin-resistant S. aureus (MRSA) strains including the detection of mecA gene and staphylococcal chromosomal cassette mec (SCCmec) typing. Materials and Methods: In this study, 130 isolates of S. aureus were collected from Al-Zahra Hospital. The PVL gene identified using polymerase chain reaction (PCR); PCR products were sequenced to identify the type of isoform. The molecular characterization of isolates of PVL-positive MRSA including detection of mecA gene by PCR and also SCCmec typing was performed by multiplex PCR. Results: Out of 130 isolates, 23% were positive for the presence of PVL genes. The PVL positive isolates were comprised 37% (11/30) of methicillin-resistant isolates and 63% (19/30) of methicillin-susceptible S. aureus (MSSA) isolates. The results showed that 17 isolated carrying isoform H and 13 isolated carrying the R isoform. Conclusion: The PVL gene was predominantly found in MSSA isolates. There was no relation between PVL isoforms and the presence of mecA and SCCmec types.
Collapse
Affiliation(s)
- Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farkhondeh Poursina
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Ahmadpour
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Roholla Havaei
- Department of Endodontics, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Meisam Ruzbahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Spaan AN, van Strijp JAG, Torres VJ. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 2017; 15:435-447. [PMID: 28420883 DOI: 10.1038/nrmicro.2017.27] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is a major bacterial pathogen that causes disease worldwide. The emergence of strains that are resistant to commonly used antibiotics and the failure of vaccine development have resulted in a renewed interest in the pathophysiology of this bacterium. Staphylococcal leukocidins are a family of bi-component pore-forming toxins that are important virulence factors. During the past five years, cellular receptors have been identified for all of the bi-component leukocidins. The identification of the leukocidin receptors explains the cellular tropism and species specificity that is exhibited by these toxins, which has important biological consequences. In this Review, we summarize the recent discoveries that have reignited interest in these toxins and provide an outlook for future research.
Collapse
Affiliation(s)
- András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, 430 East 29th Street, 10016 New York, USA
| |
Collapse
|
17
|
Is LukS-PV a novel experimental therapy for leukemia? Gene 2016; 600:44-47. [PMID: 27916717 DOI: 10.1016/j.gene.2016.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/17/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022]
Abstract
Although the studies on the pathogenesis and prognosis of leukemia have made revolutionary progress, the long-term survival remains unsatisfactory. Alternative techniques are being developed to target leukemia. Several decades after researchers' work, a variety of bacteria toxins are being explored as potential anti-leukemia agents, either to provide direct effects or to deliver therapeutic proteins to leukemia. LukS-PV, a component of Panton-Valentine Leukocidin secreted by S. aureus, has been tested in acute myeloid leukemia as a novel experimental strategy. Further researches about the targeting mechanisms of LukS-PV are required to make it a complete therapeutic approach for leukemia treatment. The function of this article is to provide clinicians and experimentalists with a chronological and comprehensive appraisal of use of LukS-PV as an experimental strategy for leukemia therapy.
Collapse
|
18
|
Badarau A, Rouha H, Malafa S, Battles MB, Walker L, Nielson N, Dolezilkova I, Teubenbacher A, Banerjee S, Maierhofer B, Weber S, Stulik L, Logan DT, Welin M, Mirkina I, Pleban C, Zauner G, Gross K, Jägerhofer M, Magyarics Z, Nagy E. Context matters: The importance of dimerization-induced conformation of the LukGH leukocidin of Staphylococcus aureus for the generation of neutralizing antibodies. MAbs 2016; 8:1347-1360. [PMID: 27467113 PMCID: PMC5058624 DOI: 10.1080/19420862.2016.1215791] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
LukGH (LukAB) is a potent leukocidin of Staphylococcus aureus that lyses human phagocytic cells and is thought to contribute to immune evasion. Unlike the other bi-component leukocidins of S. aureus, LukGH forms a heterodimer before binding to its receptor, CD11b expressed on professional phagocytic cells, and displays significant sequence variation. We employed a high diversity human IgG1 library presented on yeast cells to discover monoclonal antibodies (mAbs) neutralizing the cytolytic activity of LukGH. Recombinant LukG and LukH monomers or a LukGH dimer were used as capture antigens in the library selections. We found that mAbs identified with LukG or LukH as bait had no or very low toxin neutralization potency. In contrast, LukGH dimer-selected antibodies proved to be highly potent, and several mAbs were able to neutralize even the most divergent LukGH variants. Based on biolayer interferometry and mesoscale discovery, the high affinity antibody binding site on the LukGH complex was absent on the individual monomers, suggesting that it was generated upon formation of the LukG-LukH dimer. X-ray crystallography analysis of the complex between the LukGH dimer and the antigen-binding fragment of a very potent mAb (PDB code 5K59) indicated that the epitope is located in the predicted cell binding region (rim domain) of LukGH. The corresponding IgG inhibited the binding of LukGH dimer to target cells. Our data suggest that knowledge of the native conformation of target molecules is essential to generate high affinity and functional mAbs.
Collapse
Affiliation(s)
- Adriana Badarau
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| | - Harald Rouha
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| | - Stefan Malafa
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| | | | | | | | | | | | - Srijib Banerjee
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| | | | - Susanne Weber
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| | - Lukas Stulik
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| | - Derek T Logan
- c SARomics Biostructures AB , Medicon Village, Lund , Sweden
| | - Martin Welin
- c SARomics Biostructures AB , Medicon Village, Lund , Sweden
| | - Irina Mirkina
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| | - Clara Pleban
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| | - Gerhild Zauner
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| | - Karin Gross
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| | | | - Zoltán Magyarics
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| | - Eszter Nagy
- a Arsanis Biosciences , Campus Vienna Biocenter, Vienna , Austria
| |
Collapse
|
19
|
Reyes-Robles T, Torres VJ. Staphylococcus aureus Pore-Forming Toxins. Curr Top Microbiol Immunol 2016; 409:121-144. [PMID: 27406190 DOI: 10.1007/82_2016_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a formidable foe equipped with an armamentarium of virulence factors to thwart host defenses and establish a successful infection. Among these virulence factors, S. aureus produces several potent secreted proteins that act as cytotoxins, predominant among them the beta-barrel pore-forming toxins. These toxins play several roles in pathogenesis, including disruption of cellular adherens junctions at epithelial barriers, alteration of intracellular signaling events, modulation of host immune responses, and killing of eukaryotic immune and non-immune cells. This chapter provides an updated overview on the S. aureus beta-barrel pore-forming cytotoxins, the identification of toxin receptors on host cells, and their roles in pathogenesis.
Collapse
Affiliation(s)
- Tamara Reyes-Robles
- Department of Microbiology, Microbial Pathogenesis Program, New York University School of Medicine, 522 First Avenue, Smilow Research Building, Room 1010, New York, NY, 10016, USA
| | - Victor J Torres
- Department of Microbiology, Microbial Pathogenesis Program, New York University School of Medicine, 522 First Avenue, Smilow Research Building, Room 1010, New York, NY, 10016, USA.
| |
Collapse
|
20
|
Flannagan RS, Heit B, Heinrichs DE. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens 2015; 4:826-68. [PMID: 26633519 PMCID: PMC4693167 DOI: 10.3390/pathogens4040826] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Bryan Heit
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David E Heinrichs
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
21
|
Yoong P, Torres VJ. Counter inhibition between leukotoxins attenuates Staphylococcus aureus virulence. Nat Commun 2015; 6:8125. [PMID: 26330208 PMCID: PMC4562310 DOI: 10.1038/ncomms9125] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/21/2015] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus subverts host defences by producing a collection of virulence factors including bi-component pore-forming leukotoxins. Despite extensive sequence conservation, each leukotoxin has unique properties, including disparate cellular receptors and species specificities. How these toxins collectively influence S. aureus pathogenesis is unknown. Here we demonstrate that the leukotoxins LukSF-PV and LukED antagonize each other's cytolytic activities on leukocytes and erythrocytes by forming inactive hybrid complexes. Remarkably, LukSF-PV inhibition of LukED haemolytic activity on both human and murine erythrocytes prevents the release of nutrients required for in vitro bacterial growth. Using in vivo murine models of infection, we show that LukSF-PV negatively influences S. aureus virulence and colonization by inhibiting LukED. Thus, while S. aureus leukotoxins can certainly injure immune cells, the discovery of leukotoxin antagonism suggests that they may also play a role in reducing S. aureus virulence and maintaining infection without killing the host. Staphylococcus aureus strains produce a family of highly related toxins that puncture the cytoplasmic membrane of susceptible cells. Here, Yoong and Torres show that the toxins can counteract each other in a cell type-dependent manner by forming inactive hybrid complexes, thus modulating S. aureus virulence.
Collapse
Affiliation(s)
- Pauline Yoong
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
22
|
Spaan AN, Schiepers A, de Haas CJC, van Hooijdonk DDJJ, Badiou C, Contamin H, Vandenesch F, Lina G, Gerard NP, Gerard C, van Kessel KPM, Henry T, van Strijp JAG. Differential Interaction of the Staphylococcal Toxins Panton-Valentine Leukocidin and γ-Hemolysin CB with Human C5a Receptors. THE JOURNAL OF IMMUNOLOGY 2015; 195:1034-43. [PMID: 26091719 DOI: 10.4049/jimmunol.1500604] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/22/2015] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is well adapted to the human host. Evasion of the host phagocyte response is critical for successful infection. The staphylococcal bicomponent pore-forming toxins Panton-Valentine leukocidin LukSF-PV (PVL) and γ-hemolysin CB (HlgCB) target human phagocytes through interaction with the complement receptors C5aR1 and C5aR2. Currently, the apparent redundancy of both toxins cannot be adequately addressed in experimental models of infection because mice are resistant to PVL and HlgCB. The molecular basis for species specificity of the two toxins in animal models is not completely understood. We show that PVL and HlgCB feature distinct activity toward neutrophils of different mammalian species, where activity of PVL is found to be restricted to fewer species than that of HlgCB. Overexpression of various mammalian C5a receptors in HEK cells confirms that cytotoxicity toward neutrophils is driven by species-specific interactions of the toxins with C5aR1. By taking advantage of the species-specific engagement of the toxins with their receptors, we demonstrate that PVL and HlgCB differentially interact with human C5aR1 and C5aR2. In addition, binding studies illustrate that different parts of the receptor are involved in the initial binding of the toxin and the subsequent formation of lytic pores. These findings allow a better understanding of the molecular mechanism of pore formation. Finally, we show that the toxicity of PVL, but not of HlgCB, is neutralized by various C5aR1 antagonists. This study offers directions for the development of improved preclinical models for infection, as well as for the design of drugs antagonizing leukocidin toxicity.
Collapse
Affiliation(s)
- András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Centre International de Recherche en Infectiologie, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Inserm, Unité 1111, 69007 Lyon, France
| | - Ariën Schiepers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Davy D J J van Hooijdonk
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Cédric Badiou
- Centre International de Recherche en Infectiologie, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Inserm, Unité 1111, 69007 Lyon, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, 69007 Lyon, France
| | | | - François Vandenesch
- Centre International de Recherche en Infectiologie, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Inserm, Unité 1111, 69007 Lyon, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, 69007 Lyon, France; Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, 69007 Lyon, France
| | - Gérard Lina
- Centre International de Recherche en Infectiologie, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Inserm, Unité 1111, 69007 Lyon, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, 69007 Lyon, France; Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, 69007 Lyon, France
| | - Norma P Gerard
- Ina Sue Perlmutter Laboratory, Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115; and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Craig Gerard
- Ina Sue Perlmutter Laboratory, Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115; and
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Thomas Henry
- Centre International de Recherche en Infectiologie, Université Lyon 1 and Ecole Normale Supérieure de Lyon, 69007 Lyon, France; Inserm, Unité 1111, 69007 Lyon, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5308, 69007 Lyon, France
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands;
| |
Collapse
|
23
|
The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 2015; 78:199-230. [PMID: 24847020 DOI: 10.1128/mmbr.00055-13] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to produce water-soluble proteins with the capacity to oligomerize and form pores within cellular lipid bilayers is a trait conserved among nearly all forms of life, including humans, single-celled eukaryotes, and numerous bacterial species. In bacteria, some of the most notable pore-forming molecules are protein toxins that interact with mammalian cell membranes to promote lysis, deliver effectors, and modulate cellular homeostasis. Of the bacterial species capable of producing pore-forming toxic molecules, the Gram-positive pathogen Staphylococcus aureus is one of the most notorious. S. aureus can produce seven different pore-forming protein toxins, all of which are believed to play a unique role in promoting the ability of the organism to cause disease in humans and other mammals. The most diverse of these pore-forming toxins, in terms of both functional activity and global representation within S. aureus clinical isolates, are the bicomponent leucocidins. From the first description of their activity on host immune cells over 100 years ago to the detailed investigations of their biochemical function today, the leucocidins remain at the forefront of S. aureus pathogenesis research initiatives. Study of their mode of action is of immediate interest in the realm of therapeutic agent design as well as for studies of bacterial pathogenesis. This review provides an updated perspective on our understanding of the S. aureus leucocidins and their function, specificity, and potential as therapeutic targets.
Collapse
|
24
|
Shan W, Bu S, Zhang C, Zhang S, Ding B, Chang W, Dai Y, Shen J, Ma X. LukS-PV, a component of Panton-Valentine leukocidin, exerts potent activity against acute myeloid leukemia in vitro and in vivo. Int J Biochem Cell Biol 2015; 61:20-8. [DOI: 10.1016/j.biocel.2015.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/01/2014] [Accepted: 01/09/2015] [Indexed: 12/25/2022]
|
25
|
Tawk MY, Zimmermann K, Bossu J, Potrich C, Bourcier T, Dalla Serra M, Poulain B, Prévost G, Jover E. Internalization of staphylococcal leukotoxins that bind and divert the
C
5a receptor is required for intracellular
Ca
2+
mobilization by human neutrophils. Cell Microbiol 2015; 17:1241-57. [DOI: 10.1111/cmi.12434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/26/2015] [Accepted: 03/01/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Mira Y. Tawk
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Kiran Zimmermann
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Jean‐Louis Bossu
- INCI – UPR‐CNRS 3212 Physiologie des réseaux de neurones Strasbourg France
| | - Cristina Potrich
- National Research Council of Italy Institute of Biophysics and Bruno Kessler Foundation Trento Italy
| | - Tristan Bourcier
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Mauro Dalla Serra
- National Research Council of Italy Institute of Biophysics and Bruno Kessler Foundation Trento Italy
| | - Bernard Poulain
- INCI – UPR‐CNRS 3212 Physiologie des réseaux de neurones Strasbourg France
| | - Gilles Prévost
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Emmanuel Jover
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| |
Collapse
|
26
|
Bhan U, Podsiad AB, Kovach MA, Ballinger MN, Keshamouni V, Standiford TJ. Linezolid has unique immunomodulatory effects in post-influenza community acquired MRSA pneumonia. PLoS One 2015; 10:e0114574. [PMID: 25635685 PMCID: PMC4312022 DOI: 10.1371/journal.pone.0114574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/11/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Post influenza pneumonia is a leading cause of mortality and morbidity, with mortality rates approaching 60% when bacterial infections are secondary to multi-drug resistant (MDR) pathogens. Staphylococcus aureus, in particular community acquired MRSA (cMRSA), has emerged as a leading cause of post influenza pneumonia. Hypothesis Linezolid (LZD) prevents acute lung injury in murine model of post influenza bacterial pneumonia Methods Mice were infected with HINI strain of influenza and then challenged with cMRSA at day 7, treated with antibiotics (LZD or Vanco) or vehicle 6 hours post bacterial challenge and lungs and bronchoalveolar lavage fluid (BAL) harvested at 24 hours for bacterial clearance, inflammatory cell influx, cytokine/chemokine analysis and assessment of lung injury. Results Mice treated with LZD or Vanco had lower bacterial burden in the lung and no systemic dissemination, as compared to the control (no antibiotic) group at 24 hours post bacterial challenge. As compared to animals receiving Vanco, LZD group had significantly lower numbers of neutrophils in the BAL (9×103 vs. 2.3×104, p < 0.01), which was associated with reduced levels of chemotactic chemokines and inflammatory cytokines KC, MIP-2, IFN-γ, TNF-α and IL-1β in the BAL. Interestingly, LZD treatment also protected mice from lung injury, as assessed by albumin concentration in the BAL post treatment with H1N1 and cMRSA when compared to vanco treatment. Moreover, treatment with LZD was associated with significantly lower levels of PVL toxin in lungs. Conclusion Linezolid has unique immunomodulatory effects on host inflammatory response and lung injury in a murine model of post-viral cMRSA pneumonia.
Collapse
Affiliation(s)
- Urvashi Bhan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Amy B. Podsiad
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Melissa A. Kovach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Megan N. Ballinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Venkateshwar Keshamouni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| |
Collapse
|
27
|
Badarau A, Rouha H, Malafa S, Logan DT, Håkansson M, Stulik L, Dolezilkova I, Teubenbacher A, Gross K, Maierhofer B, Weber S, Jägerhofer M, Hoffman D, Nagy E. Structure-function analysis of heterodimer formation, oligomerization, and receptor binding of the Staphylococcus aureus bi-component toxin LukGH. J Biol Chem 2014; 290:142-56. [PMID: 25371205 DOI: 10.1074/jbc.m114.598110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The bi-component leukocidins of Staphylococcus aureus are important virulence factors that lyse human phagocytic cells and contribute to immune evasion. The γ-hemolysins (HlgAB and HlgCB) and Panton-Valentine leukocidin (PVL or LukSF) were shown to assemble from soluble subunits into membrane-bound oligomers on the surface of target cells, creating barrel-like pore structures that lead to cell lysis. LukGH is the most distantly related member of this toxin family, sharing only 30-40% amino acid sequence identity with the others. We observed that, unlike other leukocidin subunits, recombinant LukH and LukG had low solubility and were unable to bind to target cells, unless both components were present. Using biolayer interferometry and intrinsic tryptophan fluorescence we detected binding of LukH to LukG in solution with an affinity in the low nanomolar range and dynamic light scattering measurements confirmed formation of a heterodimer. We elucidated the structure of LukGH by x-ray crystallography at 2.8-Å resolution. This revealed an octameric structure that strongly resembles that reported for HlgAB, but with important structural differences. Structure guided mutagenesis studies demonstrated that three salt bridges, not found in other bi-component leukocidins, are essential for dimer formation in solution and receptor binding. We detected weak binding of LukH, but not LukG, to the cellular receptor CD11b by biolayer interferometry, suggesting that in common with other members of this toxin family, the S-component has the primary contact role with the receptor. These new insights provide the basis for novel strategies to counteract this powerful toxin and Staphylococcus aureus pathogenesis.
Collapse
Affiliation(s)
- Adriana Badarau
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Harald Rouha
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Stefan Malafa
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Derek T Logan
- SARomics Biostructures AB, Medicon Village, S-223 81 Lund, Sweden
| | - Maria Håkansson
- SARomics Biostructures AB, Medicon Village, S-223 81 Lund, Sweden
| | - Lukas Stulik
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Ivana Dolezilkova
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Astrid Teubenbacher
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Karin Gross
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Barbara Maierhofer
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Susanne Weber
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Michaela Jägerhofer
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - David Hoffman
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| | - Eszter Nagy
- From Arsanis Biosciences, Vienna Biocenter Campus, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria and
| |
Collapse
|
28
|
Residues essential for Panton-Valentine leukocidin S component binding to its cell receptor suggest both plasticity and adaptability in its interaction surface. PLoS One 2014; 9:e92094. [PMID: 24643034 PMCID: PMC3958440 DOI: 10.1371/journal.pone.0092094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/18/2014] [Indexed: 01/01/2023] Open
Abstract
Panton-Valentine leukocidin (PVL), a bicomponent staphylococcal leukotoxin, is involved in the poor prognosis of necrotizing pneumonia. The present study aimed to elucidate the binding mechanism of PVL and in particular its cell-binding domain. The class S component of PVL, LukS-PV, is known to ensure cell targeting and exhibits the highest affinity for the neutrophil membrane (Kd∼10−10 M) compared to the class F component of PVL, LukF-PV (Kd∼10−9 M). Alanine scanning mutagenesis was used to identify the residues involved in LukS-PV binding to the neutrophil surface. Nineteen single alanine mutations were performed in the rim domain previously described as implicated in cell membrane interactions. Positions were chosen in order to replace polar or exposed charged residues and according to conservation between leukotoxin class S components. Characterization studies enabled to identify a cluster of residues essential for LukS-PV binding, localized on two loops of the rim domain. The mutations R73A, Y184A, T244A, H245A and Y250A led to dramatically reduced binding affinities for both human leukocytes and undifferentiated U937 cells expressing the C5a receptor. The three-dimensional structure of five of the mutants was determined using X-ray crystallography. Structure analysis identified residues Y184 and Y250 as crucial in providing structural flexibility in the receptor-binding domain of LukS-PV.
Collapse
|
29
|
Aman MJ, Adhikari RP. Staphylococcal bicomponent pore-forming toxins: targets for prophylaxis and immunotherapy. Toxins (Basel) 2014; 6:950-72. [PMID: 24599233 PMCID: PMC3968370 DOI: 10.3390/toxins6030950] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/22/2014] [Accepted: 02/26/2014] [Indexed: 01/09/2023] Open
Abstract
Staphylococccus aureus represents one of the most challenging human pathogens as well as a common colonizer of human skin and mucosal surfaces. S. aureus causes a wide range of diseases from skin and soft tissue infection (SSTI) to debilitating and life-threatening conditions such as osteomyelitis, endocarditis, and necrotizing pneumonia. The range of diseases reflects the remarkable diversity of the virulence factors produced by this pathogen, including surface antigens involved in the establishment of infection and a large number of toxins that mediate a vast array of cellular responses. The staphylococcal toxins are generally believed to have evolved to disarm the innate immune system, the first line of defense against this pathogen. This review focuses on recent advances on elucidating the biological functions of S. aureus bicomponent pore-forming toxins (BCPFTs) and their utility as targets for preventive and therapeutic intervention. These toxins are cytolytic to a variety of immune cells, primarily neutrophils, as well as cells with a critical barrier function. The lytic activity of BCPFTs towards immune cells implies a critical role in immune evasion, and a number of epidemiological studies and animal experiments relate these toxins to clinical disease, particularly SSTI and necrotizing pneumonia. Antibody-mediated neutralization of this lytic activity may provide a strategy for development of toxoid-based vaccines or immunotherapeutics for prevention or mitigation of clinical diseases. However, certain BCPFTs have been proposed to act as danger signals that may alert the immune system through an inflammatory response. The utility of a neutralizing vaccination strategy must be weighed against such immune-activating potential.
Collapse
Affiliation(s)
- M Javad Aman
- Integrated BioTherapeutics Inc., 21 Firstfield Rd., Gaithersburg, MD 20878, USA.
| | - Rajan P Adhikari
- Integrated BioTherapeutics Inc., 21 Firstfield Rd., Gaithersburg, MD 20878, USA.
| |
Collapse
|
30
|
Yanai M, Rocha MA, Matolek AZ, Chintalacharuvu A, Taira Y, Chintalacharuvu K, Beenhouwer DO. Separately or combined, LukG/LukH is functionally unique compared to other staphylococcal bicomponent leukotoxins. PLoS One 2014; 9:e89308. [PMID: 24586678 PMCID: PMC3930693 DOI: 10.1371/journal.pone.0089308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that elaborates several exotoxins. Among these are the bicomponent leukotoxins (BCLs), which include γ-hemolysin, Panton-Valentine leukocidin (PVL), and LukDE. The toxin components are classified as either F or S proteins, which are secreted individually and assemble on cell surfaces to form hetero-oligomeric pores resulting in lysis of PMNs and/or erythrocytes. F and S proteins of γ-hemolysin, PVL and LukDE have ∼ 70% sequence homology within the same class and several heterologous combinations of F and S members from these three bicomponent toxin groups are functional. Recently, an additional BCL pair, LukGH (also called LukAB) that has only 30% homology to γ-hemolysin, PVL and LukDE, has been characterized from S. aureus. Our results showed that LukGH was more cytotoxic to human PMNs than PVL. However, LukGH-induced calcium ion influx in PMNs was markedly attenuated and slower than that induced by PVL and other staphylococcal BCLs. In contrast to other heterologous BCL combinations, LukG in combination with heterologous S components, and LukH in combination with heterologous F components did not induce calcium ion entry or cell lysis in human PMNs or rabbit erythrocytes. Like PVL, LukGH induced IL-8 production by PMNs. While individual components LukG and LukH had no cytolytic or calcium influx activity, they each induced high levels of IL-8 transcription and secretion. IL-8 production induced by LukG or LukH was dependent on NF-κB. Therefore, our results indicate LukGH differs functionally from other staphylococcal BCLs.
Collapse
Affiliation(s)
- Machi Yanai
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Emergency and Critical Care, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Miguel A. Rocha
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Anthony Z. Matolek
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Archana Chintalacharuvu
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Yasuhiko Taira
- Emergency and Critical Care, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Koteswara Chintalacharuvu
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - David O. Beenhouwer
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Identification of a crucial residue required for Staphylococcus aureus LukAB cytotoxicity and receptor recognition. Infect Immun 2013; 82:1268-76. [PMID: 24379286 DOI: 10.1128/iai.01444-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The bicomponent leukotoxins produced by Staphylococcus aureus kill host immune cells through osmotic lysis by forming β-barrel pores in the host plasma membrane. The current model for bicomponent pore formation proposes that octameric pores, comprised of two separate secreted polypeptides (S and F subunits), are assembled from water-soluble monomers in the extracellular milieu and multimerize on target cell membranes. However, it has yet to be determined if all staphylococcal bicomponent leukotoxin family members exhibit these properties. In this study, we report that leukocidin A/B (LukAB), the most divergent member of the leukotoxin family, exists as a heterodimer in solution rather than two separate monomeric subunits. Notably, this property was found to be associated with enhanced toxin activity. LukAB also differs from the other bicomponent leukotoxins in that the S subunit (LukA) contains 33- and 10-amino-acid extensions at the N and C termini, respectively. Truncation mutagenesis revealed that deletion of the N terminus resulted in a modest increase in LukAB cytotoxicity, whereas the deletion of the C terminus rendered the toxin inactive. Within the C terminus of LukA, we identified a glutamic acid at position 323 that is critical for LukAB cytotoxicity. Furthermore, we discovered that this residue is conserved and required for the interaction between LukAB and its cellular target CD11b. Altogether, these findings provide an in-depth analysis of how LukAB targets neutrophils and identify novel targets suitable for the rational design of anti-LukAB inhibitors.
Collapse
|
32
|
Spaan AN, Henry T, van Rooijen WJM, Perret M, Badiou C, Aerts PC, Kemmink J, de Haas CJC, van Kessel KPM, Vandenesch F, Lina G, van Strijp JAG. The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe 2013; 13:584-594. [PMID: 23684309 DOI: 10.1016/j.chom.2013.04.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/15/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
Abstract
Panton-Valentine Leukocidin (PVL) is a staphylococcal bicomponent pore-forming toxin linked to severe invasive infections. Target-cell and species specificity of PVL are poorly understood, and the mechanism of action of this toxin in Staphylococcus aureus virulence is controversial. Here, we identify the human complement receptors C5aR and C5L2 as host targets of PVL, mediating both toxin binding and cytotoxicity. Expression and interspecies variations of the C5aR determine cell and species specificity of PVL. The C5aR binding PVL component, LukS-PV, is a potent inhibitor of C5a-induced immune cell activation. These findings provide insight into leukocidin function and staphylococcal virulence and offer directions for future investigations into individual susceptibility to severe staphylococcal disease.
Collapse
Affiliation(s)
- András N Spaan
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Thomas Henry
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | | | - Magali Perret
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | - Cédric Badiou
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Johan Kemmink
- Medicinal Chemistry and Chemical Biology, Utrecht University, 3584CX Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - François Vandenesch
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France; Hospices Civils de Lyon, 69007 Lyon, France
| | - Gérard Lina
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France; Hospices Civils de Lyon, 69007 Lyon, France
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
33
|
DuMont AL, Torres VJ. Cell targeting by the Staphylococcus aureus pore-forming toxins: it's not just about lipids. Trends Microbiol 2013; 22:21-7. [PMID: 24231517 DOI: 10.1016/j.tim.2013.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 01/12/2023]
Abstract
Staphylococcus aureus employs numerous pore-forming cytotoxins to injure host immune cells and promote infection. Until recently, it was unclear how these cytotoxins targeted specific cell types for lysis. Membrane lipids were initially postulated to be cytotoxin receptor candidates. However, the cell-type specificity and species-dependent targeting of these toxins did not support lipids as sole receptors. The recent identification of proteinaceous receptors for several S. aureus cytotoxins now provides an explanation for the observed tropism. These findings also have important implications for the implementation of animal models to study S. aureus pathogenesis, and for the development of novel therapeutics.
Collapse
Affiliation(s)
- Ashley L DuMont
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
34
|
Malachowa N, Kobayashi SD, Freedman B, Dorward DW, DeLeo FR. Staphylococcus aureus leukotoxin GH promotes formation of neutrophil extracellular traps. THE JOURNAL OF IMMUNOLOGY 2013; 191:6022-9. [PMID: 24190656 DOI: 10.4049/jimmunol.1301821] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus secretes numerous virulence factors that facilitate evasion of the host immune system. Among these molecules are pore-forming cytolytic toxins, including Panton-Valentine leukocidin (PVL), leukotoxin GH (LukGH; also known as LukAB), leukotoxin DE, and γ-hemolysin. PVL and LukGH have potent cytolytic activity in vitro, and both toxins are proinflammatory in vivo. Although progress has been made toward elucidating the role of these toxins in S. aureus virulence, our understanding of the mechanisms that underlie the proinflammatory capacity of these toxins, as well as the associated host response toward them, is incomplete. To address this deficiency in knowledge, we assessed the ability of LukGH to prime human PMNs for enhanced bactericidal activity and further investigated the impact of the toxin on neutrophil function. We found that, unlike PVL, LukGH did not prime human neutrophils for increased production of reactive oxygen species nor did it enhance binding and/or uptake of S. aureus. Unexpectedly, LukGH promoted the release of neutrophil extracellular traps (NETs), which, in turn, ensnared but did not kill S. aureus. Furthermore, we found that electropermeabilization of human neutrophils, used as a separate means to create pores in the neutrophil plasma membrane, similarly induced formation of NETs, a finding consistent with the notion that NETs can form during nonspecific cytolysis. We propose that the ability of LukGH to promote formation of NETs contributes to the inflammatory response and host defense against S. aureus infection.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | | | | | | | | |
Collapse
|
35
|
Yoong P, Torres VJ. The effects of Staphylococcus aureus leukotoxins on the host: cell lysis and beyond. Curr Opin Microbiol 2013; 16:63-9. [PMID: 23466211 DOI: 10.1016/j.mib.2013.01.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/03/2012] [Accepted: 01/28/2013] [Indexed: 12/24/2022]
Abstract
The success of Staphylococcus aureus as a leading cause of deadly hospital-acquired and community-acquired infections is attributed to its high-level resistance to most antibiotics, and the multitude of virulence factors it elaborates. Most clinical isolates produce up to four bi-component pore-forming toxins capable of lysing cells of the immune system. Subtle differences in activity and target range of each leukotoxin suggest that these toxins are not redundant, but instead may have specialized functions in attacking and/or evading host defenses. In turn, the host has developed countermeasures recognizing sublytic levels of leukotoxins as signals to activate protective immune defenses. The opposing cytotoxic and immune-activating effects of leukotoxins on host cells make for a complex dynamic between S. aureus and the host.
Collapse
Affiliation(s)
- Pauline Yoong
- Department of Microbiology, New York University School of Medicine, United States
| | | |
Collapse
|
36
|
Aslam R, Laventie BJ, Marban C, Prévost G, Keller D, Strub JM, Dorsselaer AV, Haikel Y, Taddei C, Metz-Boutigue MH. Activation of Neutrophils by the Two-Component Leukotoxin LukE/D from Staphylococcus aureus: Proteomic Analysis of the Secretions. J Proteome Res 2013; 12:3667-78. [DOI: 10.1021/pr400199x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rizwan Aslam
- Inserm UMR 1121, Université de Strasbourg, Strasbourg, F-67000,
France
| | - Benoît-Joseph Laventie
- EA 7290 Virulence bactérienne
précoce, Fédération de Médecine Translationnelle
de Strasbourg, Université de Strasbourg - CHRU Strasbourg, Institut de Bactériologie, F-67000
Strasbourg, France
| | - Céline Marban
- Inserm UMR 1121, Université de Strasbourg, Strasbourg, F-67000,
France
| | - Gilles Prévost
- EA 7290 Virulence bactérienne
précoce, Fédération de Médecine Translationnelle
de Strasbourg, Université de Strasbourg - CHRU Strasbourg, Institut de Bactériologie, F-67000
Strasbourg, France
| | - Daniel Keller
- EA 7290 Virulence bactérienne
précoce, Fédération de Médecine Translationnelle
de Strasbourg, Université de Strasbourg - CHRU Strasbourg, Institut de Bactériologie, F-67000
Strasbourg, France
| | - Jean-Marc Strub
- CNRS UMR 7178, Université de Strasbourg, Strasbourg, F-67000, France
| | | | - Youssef Haikel
- Inserm UMR 1121, Université de Strasbourg, Strasbourg, F-67000,
France
- Faculté d’Odontologie, Université de Strasbourg, Strasbourg, F-67000,
France
| | - Corinne Taddei
- Faculté d’Odontologie, Université de Strasbourg, Strasbourg, F-67000,
France
| | | |
Collapse
|
37
|
LukS-PV induces mitochondrial-mediated apoptosis and G0/G1 cell cycle arrest in human acute myeloid leukemia THP-1 cells. Int J Biochem Cell Biol 2013; 45:1531-7. [PMID: 23702031 DOI: 10.1016/j.biocel.2013.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 11/20/2022]
Abstract
The S component (LukS-PV) is one of the two components of Panton-Valentine leukocidin (PVL), which is a pore-forming cytotoxin secreted by Staphylococcus aureus, with the ability to lyse leukocytes. In this study, LukS-PV had the ability to induce apoptosis in the human acute myeloid leukemia (AML) cell line THP-1. Therefore, we investigated the mechanisms of LukS-PV-induced apoptosis in THP-1 cells. THP-1 cells treated with LukS-PV, resulted in a significant inhibition of proliferation in a dose- and time-dependent manner, and induced G0/G1 arrest associated with an inhibition of cell cycle arrest regulatory protein (cyclin D1) in a dose- and time-dependent manner, as measured by flow cytometry (FCM). After 12h exposure to LukS-PV (1.00 μM), annexin V-EGFP/propidium iodide (PI) FCM revealed that 19.5±3.6% of THP-1 cells were apoptotic, and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining also revealed THP-1 cells were apoptotic. Chip analysis of 84 apoptosis-related genes demonstrated that 9 genes were up-regulated at least 2-fold and that 5 genes were down-regulated at least 2-fold in the treatment group when compared with levels in the control group. Western blotting reveled that the expression of caspase-8 increased significantly (approximately 4-fold). The levels of caspase-9, -3 and Bax increased significantly, and levels of Bcl-2 decreased rapidly with LukS-PV treatment. These data suggest that LukS-PV acts as an anti-leukemia agent and activates AML cell apoptosis via the mitochondrial pathway. Therefore, LukS-PV may be a multi-targeting drug candidate for the prevention and therapy of AML.
Collapse
|
38
|
p-Sulfonato-calix[n]arenes inhibit staphylococcal bicomponent leukotoxins by supramolecular interactions. Biochem J 2013; 450:559-71. [PMID: 23282185 DOI: 10.1042/bj20121628] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PVL (Panton-Valentine leukocidin) and other Staphylococcus aureus β-stranded pore-forming toxins are important virulence factors involved in various pathologies that are often necrotizing. The present study characterized leukotoxin inhibition by selected SCns (p-sulfonato-calix[n]arenes): SC4, SC6 and SC8. These chemicals have no toxic effects on human erythrocytes or neutrophils, and some are able to inhibit both the activity of and the cell lysis by leukotoxins in a dose-dependent manner. Depending on the type of leukotoxins and SCns, flow cytometry revealed IC50 values of 6-22 μM for Ca2+ activation and of 2-50 μM for cell lysis. SCns were observed to affect membrane binding of class S proteins responsible for cell specificity. Electrospray MS and surface plasmon resonance established supramolecular interactions (1:1 stoichiometry) between SCns and class S proteins in solution, but not class F proteins. The membrane-binding affinity of S proteins was Kd=0.07-6.2 nM. The binding ability was completely abolished by SCns at different concentrations according to the number of benzenes (30-300 μM; SC8>SC6≫SC4). The inhibitory properties of SCns were also observed in vivo in a rabbit model of PVL-induced endophthalmitis. These calixarenes may represent new therapeutic avenues aimed at minimizing inflammatory reactions and necrosis due to certain virulence factors.
Collapse
|
39
|
Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ, Duncan JA, Broglie PM, Marketon K, Austermann J, Vogl T, Foell D, Niemann S, Peters G, Roth J, Löffler B. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol 2012; 92:1069-81. [PMID: 22892107 DOI: 10.1189/jlb.0112014] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Staphylococcus aureus pore-forming toxin PVL is most likely causative for life-threatening necrotizing infections, which are characterized by massive tissue inflammation and necrosis. Whereas the cytotoxic action of PVL on human neutrophils is already well established, the PVL effects on other sensitive cell types, such as monocytes and macrophages, are less clear. In this study, we used different types of human leukocytes (neutrophils, monocytes, macrophages, lymphocytes) to investigate cell-specific binding of PVL subunits and subsequent proinflammatory and cytotoxic effects. In all PVL-sensitive cells, we identified the binding of the subunit LukS-PV as the critical factor for PVL-induced cytotoxicity, which was followed by binding of LukF-PV. LukS-PV binds to monocytes, macrophages, and neutrophils but not to lymphocytes. Additionally, we showed that PVL binding to monocytes and macrophages leads to release of caspase-1-dependent proinflammatory cytokines IL-1β and IL-18. PVL activates the NLRP3 inflammasome, a signaling complex of myeloid cells that is involved in caspase-1-dependent IL-1β processing in response to pathogens and endogenous danger signals. Specific inhibition of this pathway at several steps significantly reduced inflammasome activation and subsequent pyronecrosis. Furthermore, we found that PAMPs and DAMPs derived from dying neutrophils can dramatically enhance this response by up-regulating pro-IL-1β in monocytes/macrophages. This study analyzes a specific host signaling pathway that mediates PVL-induced inflammation and cytotoxicity, which has high relevance for CA-MRSA-associated and PVL-mediated pathogenic processes, such as necrotizing infections.
Collapse
Affiliation(s)
- Dirk Holzinger
- Institute of Immunology, Department of General Pediatrics, University Children’s Hospital Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Graves SF, Kobayashi SD, Braughton KR, Whitney AR, Sturdevant DE, Rasmussen DL, Kirpotina LN, Quinn MT, DeLeo FR. Sublytic concentrations of Staphylococcus aureus Panton-Valentine leukocidin alter human PMN gene expression and enhance bactericidal capacity. J Leukoc Biol 2012; 92:361-74. [PMID: 22581932 DOI: 10.1189/jlb.1111575] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
CA-MRSA infections are often caused by strains encoding PVL, which can cause lysis of PMNs and other myeloid cells in vitro, a function considered widely as the primary means by which PVL might contribute to disease. However, at sublytic concentrations, PVL can function as a PMN agonist. To better understand this phenomenon, we investigated the ability of PVL to alter human PMN function. PMNs exposed to PVL had enhanced capacity to produce O(2)(-) in response to fMLF, but unlike priming by LPS, this response did not require TLR signal transduction. On the other hand, there was subcellular redistribution of NADPH oxidase components in PMNs following exposure of these cells to PVL--a finding consistent with priming. Importantly, PMNs primed with PVL had an enhanced ability to bind/ingest and kill Staphylococcus aureus. Priming of PMNs with other agonists, such as IL-8 or GM-CSF, altered the ability of PVL to cause formation of pores in the plasma membranes of these cells. Microarray analysis revealed significant changes in the human PMN transcriptome following exposure to PVL, including up-regulation of molecules that regulate the inflammatory response. Consistent with the microarray data, mediators of the inflammatory response were released from PMNs after stimulation with PVL. We conclude that exposure of human PMNs to sublytic concentrations of PVL elicits a proinflammatory response that is regulated in part at the level of gene expression. We propose that PVL-mediated priming of PMNs enhances the host innate immune response.
Collapse
Affiliation(s)
- Shawna F Graves
- Laboratory of Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rigby KM, DeLeo FR. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 2011; 34:237-59. [PMID: 22080185 PMCID: PMC3271231 DOI: 10.1007/s00281-011-0295-3] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/14/2011] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus has been an important human pathogen throughout history and is currently a leading cause of bacterial infections worldwide. S. aureus has the unique ability to cause a continuum of diseases, ranging from minor skin infections to fatal necrotizing pneumonia. Moreover, the emergence of highly virulent, drug-resistant strains such as methicillin-resistant S. aureus in both healthcare and community settings is a major therapeutic concern. Neutrophils are the most prominent cellular component of the innate immune system and provide an essential primary defense against bacterial pathogens such as S. aureus. Neutrophils are rapidly recruited to sites of infection where they bind and ingest invading S. aureus, and this process triggers potent oxidative and non-oxidative antimicrobial killing mechanisms that serve to limit pathogen survival and dissemination. S. aureus has evolved numerous mechanisms to evade host defense strategies employed by neutrophils, including the ability to modulate normal neutrophil turnover, a process critical to the resolution of acute inflammation. Here we provide an overview of the role of neutrophils in host defense against bacterial pathogens and discuss strategies employed by S. aureus to circumvent neutrophil function.
Collapse
Affiliation(s)
- Kevin M Rigby
- Laboratory of Human Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
42
|
Bien J, Sokolova O, Bozko P. Characterization of Virulence Factors of Staphylococcus aureus: Novel Function of Known Virulence Factors That Are Implicated in Activation of Airway Epithelial Proinflammatory Response. J Pathog 2011; 2011:601905. [PMID: 22567334 PMCID: PMC3335658 DOI: 10.4061/2011/601905] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/23/2011] [Accepted: 07/15/2011] [Indexed: 12/04/2022] Open
Abstract
Airway epithelial cells play a major role in initiating inflammation in response to bacterial pathogens. S. aureus is an important pathogen associated with activation of diverse types of infection characterized by inflammation dominated by polymorphonuclear leukocytes. This bacterium frequently causes lung infection, which is attributed to virulence factors. Many of virulence determinants associated with S. aureus-mediated lung infection have been known for several years. In this paper, we discuss recent advances in our understanding of known virulence factors implicated in pneumonia. We anticipate that better understanding of novel functions of known virulence factors could open the way to regulate inflammatory reactions of the epithelium and to develop effective strategies to treat S. aureus-induced airway diseases.
Collapse
Affiliation(s)
- Justyna Bien
- Witold Stefanski Institute of Parasitology of the Polish Academy of Sciences, Twarda Street 51/55, 00-818 Warsaw, Poland
| | | | | |
Collapse
|
43
|
El Choueiry E, Cuzon G, Dugelay F, Chevret L, Durand P, Bergounioux J. [Necrotizing community-acquired Staphylococcus aureus pneumonia]. Arch Pediatr 2011; 18:767-71. [PMID: 21565474 DOI: 10.1016/j.arcped.2011.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/27/2010] [Accepted: 04/03/2011] [Indexed: 11/28/2022]
Abstract
Acute necrotizing pneumonia due to Panton-Valentine secreting Staphylococcus aureus was identified as a clinical entity by Gilet et al., in 2002. This severe acute necrotizing pneumonia occurring in previously healthy children and adolescents can lead to a rapid fatal outcome even if quickly diagnosed and treated. We report the case of a healthy 10-year-old girl presenting with hemorrhagic necrotizing pneumonia and septic shock. Bacteriological cultures yielded methicillin-susceptible Staphylococcus aureus. The course of the disease was characterized by recurrent uncontrolled hemoptysia leading to refractory hypoxemia. The details of the hospital stay are presented. We discuss the clinical features of the disease and describe recent epidemiologic data and Panton-Valentine toxin research results as well as primary hospital care and treatment.
Collapse
Affiliation(s)
- E El Choueiry
- Service de réanimation pédiatrique polyvalente, hôpital de Bicêtre, 63, avenue Gabriel-Péri, 94270 Le-Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
44
|
Lo WT, Wang CC. Panton-Valentine leukocidin in the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Pediatr Neonatol 2011; 52:59-65. [PMID: 21524624 DOI: 10.1016/j.pedneo.2011.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/17/2010] [Accepted: 06/22/2010] [Indexed: 11/19/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen that causes serious infectious diseases and was endemic in hospitals by the late 1960s. Beginning with its first report in the late 1990s, the rapid emergence of community-associated MRSA (CA-MRSA) worldwide responsible for a wide spectrum of diseases ranging from minor skin infections to fatal necrotizing pneumonia has been found in previously healthy individuals without established risk factors for MRSA acquisition. Recently, various virulence determinants unique to CA-MRSA have been uncovered, which explain how the pathogen spreads easily and causes severe CA-MRSA infections among humans. However, the role of Panton-Valentine leukocidin (PVL) in the pathogenesis of CA-MRSA infection is currently a matter of much debate because of conflicting data from epidemiologic studies of CA-MRSA infections and various murine disease models. Identifying specialized pathogenic traits of CA-MRSA and the concerted regulation of these factors remains a challenge that will foster development of vaccines and therapies designed to control CA-MRSA infections. This review focuses on the current status of molecular epidemiology associated with CA-MRSA in Taiwan and progresses toward understanding the enhanced virulence properties of CA-MRSA, with an emphasis on the role of Panton-Valentine leukocidin.
Collapse
Affiliation(s)
- Wen-Tsung Lo
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | |
Collapse
|
45
|
Zivkovic A, Sharif O, Stich K, Doninger B, Biaggio M, Colinge J, Bilban M, Mesteri I, Hazemi P, Lemmens-Gruber R, Knapp S. TLR 2 and CD14 Mediate Innate Immunity and Lung Inflammation to Staphylococcal Panton–Valentine Leukocidin In Vivo. THE JOURNAL OF IMMUNOLOGY 2010; 186:1608-17. [DOI: 10.4049/jimmunol.1001665] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Panton–Valentine leukocidin-producing Staphylococcus aureus necrotising pneumonia: measuring toxin levels in microbiological samples to attest of linezolid clinical efficacy. Int J Antimicrob Agents 2010; 35:613-4. [DOI: 10.1016/j.ijantimicag.2010.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/19/2022]
|
47
|
Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. Proc Natl Acad Sci U S A 2010; 107:5587-92. [PMID: 20231457 DOI: 10.1073/pnas.0912403107] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is epidemic in the United States, even rivaling HIV/AIDS in its public health impact. The pandemic clone USA300, like other CA-MRSA strains, expresses Panton-Valentine leukocidin (PVL), a pore-forming toxin that targets polymorphonuclear leukocytes (PMNs). PVL is thought to play a key role in the pathogenesis of necrotizing pneumonia, but data from rodent infection models are inconclusive. Rodent PMNs are less susceptible than human PMNs to PVL-induced cytolysis, whereas rabbit PMNs, like those of humans, are highly susceptible to PVL-induced cytolysis. This difference in target cell susceptibility could affect results of experimental models. Therefore, we developed a rabbit model of necrotizing pneumonia to compare the virulence of a USA300 wild-type strain with that of isogenic PVL-deletion mutant and -complemented strains. PVL enhanced the capacity of USA300 to cause severe lung necrosis, pulmonary edema, alveolar hemorrhage, hemoptysis, and death, hallmark clinical features of fatal human necrotizing pneumonia. Purified PVL instilled directly into the lung caused lung inflammation and injury by recruiting and lysing PMNs, which damage the lung by releasing cytotoxic granule contents. These findings provide insights into the mechanism of PVL-induced lung injury and inflammation and demonstrate the utility of the rabbit for studying PVL-mediated pathogenesis.
Collapse
|
48
|
Anwar S, Prince LR, Foster SJ, Whyte MKB, Sabroe I. The rise and rise of Staphylococcus aureus: laughing in the face of granulocytes. Clin Exp Immunol 2009; 157:216-24. [PMID: 19604261 DOI: 10.1111/j.1365-2249.2009.03950.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Recent developments in the study of host-pathogen interactions have fundamentally altered our understanding of the nature of Staphylococcus aureus infection, and previously held tenets regarding the role of the granulocyte are being cast aside. Novel mechanisms of pathogenesis are becoming evident, revealing the extent to which S. aureus can evade neutrophil responses successfully by resisting microbicides, surviving intracellularly and subverting cell death pathways. Developing a detailed understanding of these complex strategies is especially relevant in light of increasing staphylococcal virulence and antibiotic resistance, and the knowledge that dysfunctional neutrophil responses contribute materially to poor host outcomes. Unravelling the biology of these interactions is a challenging task, but one which may yield new strategies to address this, as yet, defiant organism.
Collapse
Affiliation(s)
- S Anwar
- Academic Unit of Respiratory Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | | | |
Collapse
|
49
|
DeLeo FR, Chambers HF. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 2009; 119:2464-74. [PMID: 19729844 PMCID: PMC2735934 DOI: 10.1172/jci38226] [Citation(s) in RCA: 337] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is the leading cause of bacterial infections in developed countries and produces a wide spectrum of diseases, ranging from minor skin infections to fatal necrotizing pneumonia. Although S. aureus infections were historically treatable with common antibiotics, emergence of drug-resistant organisms is now a major concern. Methicillin-resistant S. aureus (MRSA) was endemic in hospitals by the late 1960s, but it appeared rapidly and unexpectedly in communities in the 1990s and is now prevalent worldwide. This Review focuses on progress made toward understanding the success of community-associated MRSA as a human pathogen, with an emphasis on genome-wide approaches and virulence determinants.
Collapse
Affiliation(s)
- Frank R. DeLeo
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA.
Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, UCSF, San Francisco, California, USA
| | - Henry F. Chambers
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA.
Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, UCSF, San Francisco, California, USA
| |
Collapse
|
50
|
Abstract
Staphylococcus aureus is notorious for its ability to become resistant to antibiotics. Infections that are caused by antibiotic-resistant strains often occur in epidemic waves that are initiated by one or a few successful clones. Methicillin-resistant S. aureus (MRSA) features prominently in these epidemics. Historically associated with hospitals and other health care settings, MRSA has now emerged as a widespread cause of community infections. Community or community-associated MRSA (CA-MRSA) can spread rapidly among healthy individuals. Outbreaks of CA-MRSA infections have been reported worldwide, and CA-MRSA strains are now epidemic in the United States. Here, we review the molecular epidemiology of the epidemic waves of penicillin- and methicillin-resistant strains of S. aureus that have occurred since 1940, with a focus on the clinical and molecular epidemiology of CA-MRSA.
Collapse
Affiliation(s)
- Henry F Chambers
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94110, USA.
| | | |
Collapse
|