1
|
Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Front Cell Infect Microbiol 2017. [PMID: 28603700 DOI: 10.3389/fcimb.2017.00215.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS), a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility) for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM). Proteins destined for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo proteins is constantly growing. The actual structure of the translocon, situated in the OM of bacteria, remains the least explored area; however, new technical approaches and increasing scientific attention have resulted in a growing body of data. Therefore, we present a compact up-to-date review of this topic.
Collapse
Affiliation(s)
- Anna M Lasica
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Miroslaw Ksiazek
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
2
|
Lasica AM, Ksiazek M, Madej M, Potempa J. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Front Cell Infect Microbiol 2017; 7:215. [PMID: 28603700 PMCID: PMC5445135 DOI: 10.3389/fcimb.2017.00215] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022] Open
Abstract
Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS), a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility) for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM). Proteins destined for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo proteins is constantly growing. The actual structure of the translocon, situated in the OM of bacteria, remains the least explored area; however, new technical approaches and increasing scientific attention have resulted in a growing body of data. Therefore, we present a compact up-to-date review of this topic.
Collapse
Affiliation(s)
- Anna M Lasica
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Miroslaw Ksiazek
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of DentistryLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
3
|
Carvalho-Filho PC, Gomes-Filho IS, Meyer R, Olczak T, Xavier MT, Trindade SC. Role of Porphyromonas gingivalis HmuY in Immunopathogenesis of Chronic Periodontitis. Mediators Inflamm 2016; 2016:7465852. [PMID: 27403039 PMCID: PMC4925967 DOI: 10.1155/2016/7465852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/25/2016] [Indexed: 12/03/2022] Open
Abstract
Periodontitis is a multifactorial disease, with participation of bacterial, environmental, and host factors. It results from synergistic and dysbiotic multispecies microorganisms, critical "keystone pathogens," affecting the whole bacterial community. The purpose of this study was to review the role of Porphyromonas gingivalis in the immunopathogenesis of chronic periodontitis, with special attention paid to HmuY. The host response during periodontitis involves the innate and adaptive immune system, leading to chronic inflammation and progressive destruction of tooth-supporting tissues. In this proinflammatory process, the ability of P. gingivalis to evade the host immune response and access nutrients in the microenvironment is directly related to its survival, proliferation, and infection. Furthermore, heme is an essential nutrient for development of these bacteria, and HmuY is responsible for its capture from host heme-binding proteins. The inflammatory potential of P. gingivalis HmuY has been shown, including induction of high levels of proinflammatory cytokines and CCL2, decreased levels of IL-8, and increased levels of anti-HmuY IgG and IgG1 antibodies in individuals with chronic periodontitis. Therefore, the HmuY protein might be a promising target for therapeutic strategies and for development of diagnostic methods in chronic periodontitis, especially in the case of patients with chronic periodontitis not responding to treatment, monitoring, and maintenance therapy.
Collapse
Affiliation(s)
- P. C. Carvalho-Filho
- Odontology Course, Bahiana School of Medicine and Public Health, 41150-100 Salvador, BA, Brazil
| | - I. S. Gomes-Filho
- Department of Periodontics, Feira de Santana State University, 44036-900 Feira de Santana, BA, Brazil
| | - R. Meyer
- Department of Biointeraction, Federal University of Bahia, 40110-100 Salvador, BA, Brazil
| | - T. Olczak
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - M. T. Xavier
- Odontology Course, Bahiana School of Medicine and Public Health, 41150-100 Salvador, BA, Brazil
| | - S. C. Trindade
- Department of Periodontics, Feira de Santana State University, 44036-900 Feira de Santana, BA, Brazil
| |
Collapse
|
4
|
Shoji M, Nakayama K. Glycobiology of the oral pathogen Porphyromonas gingivalis and related species. Microb Pathog 2015; 94:35-41. [PMID: 26456570 DOI: 10.1016/j.micpath.2015.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
Until recently, glycoproteins had only been described in eukaryotes. However, advances in detection methods and genome analyses have allowed the discovery of N-linked or O-linked glycoproteins, similar to those found in eukaryotes, in some bacterial species. These prokaryotic glycoproteins play roles in adhesion, solubility, formation of protein complexes, protection from protein degradation, and changes in antigenicity. Periodontal pathogen Porphyromonas gingivalis secretes virulence proteins via the type IX secretion system, some of which localize on the cell surface by binding to lipopolysaccharide (LPS). These virulence proteins have a conserved C-terminal domain (CTD) region, which is used as a secretion signal. However, it is still uncertain how the secreted proteins on the cell surface bind to LPS. In this review, we discuss the synthesis of P. gingivalis O polysaccharide, which plays a role in anchoring the CTD protein on the cell surface, and recent discoveries of glycoproteins in P. gingivalis as well as other species in the phylum Bacteroidetes.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.
| |
Collapse
|
5
|
Xie H. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles. Future Microbiol 2015; 10:1517-27. [PMID: 26343879 DOI: 10.2217/fmb.15.63] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Porphyromonas gingivalis is one of the keystone pathogens associated with chronic periodontitis. All P. gingivalis strains examined thus far produce outer membrane vesicles. Recent studies have found that vesicles possess some well-known virulence factors of P. gingivalis such as adhesins, toxins and proteolytic enzymes. Carrying most of the characteristic features of their parent P. gingivalis cells, vesicles communicate with host cells and other members of microbial biofilms, resulting in the transmission of virulence factors into these host cells and the formation of pathogenic bacteria-dominated microbial communities. An in-depth understanding of both the nature and role of vesicles in the pathogenicity of P. gingivalis is both important and timely, particularly when speaking of periodontitis and its related systemic effects.
Collapse
Affiliation(s)
- H Xie
- Department of Oral Biology, School of Dentistry, Meharry Medical College, 1005 Dr DB Todd, Nashville, Tennessee, TN 37208, USA
| |
Collapse
|
6
|
Klein BA, Duncan MJ, Hu LT. Defining essential genes and identifying virulence factors of Porphyromonas gingivalis by massively parallel sequencing of transposon libraries (Tn-seq). Methods Mol Biol 2015; 1279:25-43. [PMID: 25636611 PMCID: PMC4824196 DOI: 10.1007/978-1-4939-2398-4_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen in the development and progression of periodontal disease. Obstacles to the development of saturated transposon libraries have previously limited transposon mutant-based screens as well as essential gene studies. We have developed a system for efficient transposon mutagenesis of P. gingivalis using a modified mariner transposon. Tn-seq is a technique that allows for quantitative assessment of individual mutants within a transposon mutant library by sequencing the transposon-genome junctions and then compiling mutant presence by mapping to a base genome. Using Tn-seq, it is possible to quickly define all the insertional mutants in a library and thus identify nonessential genes under the conditions in which the library was produced. Identification of fitness of individual mutants under specific conditions can be performed by exposing the library to selective pressures.
Collapse
Affiliation(s)
- Brian A Klein
- Graduate Program of Molecular Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
7
|
Nakayama K. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility. J Periodontal Res 2014; 50:1-8. [PMID: 25546073 PMCID: PMC4674972 DOI: 10.1111/jre.12255] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/22/2022]
Abstract
Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria.
Collapse
Affiliation(s)
- K Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
8
|
Belibasakis G, Thurnheer T, Bostanci N. Porphyromonas gingivalis: a heartful oral pathogen? Virulence 2014; 5:463-4. [PMID: 24759693 PMCID: PMC4063808 DOI: 10.4161/viru.28930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022] Open
Affiliation(s)
- Georgios Belibasakis
- Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| | - Thomas Thurnheer
- Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| | - Nagihan Bostanci
- Oral Translational Research; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| |
Collapse
|
9
|
Phillips P, Progulske-Fox A, Grieshaber S, Grieshaber N. Expression of Porphyromonas gingivalis small RNA in response to hemin availability identified using microarray and RNA-seq analysis. FEMS Microbiol Lett 2013; 351:202-8. [PMID: 24245974 DOI: 10.1111/1574-6968.12320] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/18/2013] [Accepted: 10/27/2013] [Indexed: 11/28/2022] Open
Abstract
There is a significant body of work suggesting that sRNA-mediated post-transcriptional regulation is a conserved mechanism among pathogenic bacteria to modulate bacterial virulence and survival. Porphyromonas gingivalis is recognized as an etiological agent of periodontitis and implicated in contributing to the development of multiple inflammatory diseases including cardiovascular disease. Using NimbleGen microarray analysis and a strand-specific method to sequence cDNA libraries of small RNA-enriched P. gingivalis transcripts using Illumina's high-throughput sequencing technology, we identified putative sRNA and generated sRNA expression profiles in response to growth phase, hemin availability after hemin starvation, or both. We identified transcripts that mapped to intergenic sequences as well as antisense transcripts that mapped to open reading frames of the annotated genome. Overall, this approach provided a comprehensive way to survey transcriptional activity to discover functionally linked RNA transcripts, responding to specific environmental cues, that merit further investigation.
Collapse
|
10
|
Hirano T, Beck DAC, Demuth DR, Hackett M, Lamont RJ. Deep sequencing of Porphyromonas gingivalis and comparative transcriptome analysis of a LuxS mutant. Front Cell Infect Microbiol 2012; 2:79. [PMID: 22919670 PMCID: PMC3422912 DOI: 10.3389/fcimb.2012.00079] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/21/2012] [Indexed: 01/10/2023] Open
Abstract
Porphyromonas gingivalis is a major etiological agent in chronic and aggressive forms of periodontal disease. The organism is an asaccharolytic anaerobe and is a constituent of mixed species biofilms in a variety of microenvironments in the oral cavity. P. gingivalis expresses a range of virulence factors over which it exerts tight control. High-throughput sequencing technologies provide the opportunity to relate functional genomics to basic biology. In this study we report qualitative and quantitative RNA-Seq analysis of the transcriptome of P. gingivalis. We have also applied RNA-Seq to the transcriptome of a ΔluxS mutant of P. gingivalis deficient in AI-2-mediated bacterial communication. The transcriptome analysis confirmed the expression of all predicted ORFs for strain ATCC 33277, including 854 hypothetical proteins, and allowed the identification of hitherto unknown transcriptional units. Twelve non-coding RNAs were identified, including 11 small RNAs and one cobalamin riboswitch. Fifty-seven genes were differentially regulated in the LuxS mutant. Addition of exogenous synthetic 4,5-dihydroxy-2,3-pentanedione (DPD, AI-2 precursor) to the ΔluxS mutant culture complemented expression of a subset of genes, indicating that LuxS is involved in both AI-2 signaling and non-signaling dependent systems in P. gingivalis. This work provides an important dataset for future study of P. gingivalis pathophysiology and further defines the LuxS regulon in this oral pathogen.
Collapse
Affiliation(s)
- Takanori Hirano
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville Louisville, KY, USA
| | | | | | | | | |
Collapse
|
11
|
Response of Porphyromonas gingivalis to heme limitation in continuous culture. J Bacteriol 2008; 191:1044-55. [PMID: 19028886 DOI: 10.1128/jb.01270-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Porphyromonas gingivalis is an anaerobic, asaccharolytic, gram-negative bacterium that has essential requirements for both iron and protoporphyrin IX, which it preferentially obtains as heme. A combination of large-scale quantitative proteomic analysis using stable isotope labeling strategies and mass spectrometry, together with transcriptomic analysis using custom-made DNA microarrays, was used to identify changes in P. gingivalis W50 protein and transcript abundances on changing from heme-excess to heme-limited continuous culture. This approach identified 160 genes and 70 proteins that were differentially regulated by heme availability, with broad agreement between the transcriptomic and proteomic data. A change in abundance of the enzymes of the aspartate and glutamate catabolic pathways was observed with heme limitation, which was reflected in organic acid end product levels of the culture fluid. These results demonstrate a shift from an energy-efficient anaerobic respiration to a less efficient process upon heme limitation. Heme limitation also resulted in an increase in abundance of a protein, PG1374, which we have demonstrated, by insertional inactivation, to have a role in epithelial cell invasion. The greater abundance of a number of transcripts/proteins linked to invasion of host cells, the oxidative stress response, iron/heme transport, and virulence of the bacterium indicates that there is a broad response of P. gingivalis to heme availability.
Collapse
|
12
|
Bélanger M, Rodrigues P, Progulske-Fox A. Genetic manipulation of Porphyromonas gingivalis. ACTA ACUST UNITED AC 2008; Chapter 13:Unit13C.2. [PMID: 18770611 DOI: 10.1002/9780471729259.mc13c02s05] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Porphyromonas gingivalis, an oral anaerobic bacterium, is an important etiological agent of periodontal disease and may contribute to cardiovascular disease, preterm birth, and diabetes as well. Therefore, genetic studies are of crucial importance in investigating molecular mechanisms of P. gingivalis virulence. Although molecular genetic tools have been available for many bacterial species for some time, genetic manipulations of Porphyromonas species were not developed until more recently and remain limited. In this unit, current molecular genetic approaches for mutant construction in P. gingivalis using the suicide vector pPR-UF1 and the transposon Tn4351 are described, as are protocols for performing electroporation and conjugation. Furthermore, a technique to restore the wild-type phenotype of the mutant by complementation using vector pT-COW is provided. Finally, a description of a noninvasive reporter system allowing the study of gene expression and regulation in P. gingivalis completes this unit.
Collapse
|
13
|
James CE, Hasegawa Y, Park Y, Yeung V, Tribble GD, Kuboniwa M, Demuth DR, Lamont RJ. LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis. Infect Immun 2006; 74:3834-44. [PMID: 16790755 PMCID: PMC1489751 DOI: 10.1128/iai.01768-05] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The periodontal pathogen Porphyromonas gingivalis employs a variety of mechanisms for the uptake of hemin and inorganic iron. Previous work demonstrated that hemin uptake in P. gingivalis may be controlled by LuxS-mediated signaling. In the present study, the expression of genes involved in hemin and iron uptake was determined in parent and luxS mutant strains by quantitative real-time reverse transcription-PCR. Compared to the parental strain, the luxS mutant showed reduced levels of transcription of genes coding for the TonB-linked hemin binding protein Tlr and the lysine-specific protease Kgp, which can degrade host heme-containing proteins. In contrast, there was up-regulation of the genes for another TonB-linked hemin binding protein, HmuR; a hemin binding lipoprotein, FetB; a Fe(2+) ion transport protein, FeoB1; and the iron storage protein ferritin. Differential expression of these genes in the luxS mutant was maximal in early-exponential phase, which corresponded with peak expression of luxS and AI-2 signal activity. Complementation of the luxS mutation with wild-type luxS in trans rescued expression of hmuR. Mutation of the GppX two-component signal transduction pathway caused an increase in expression of luxS along with tlr and lower levels of message for hmuR. Moreover, expression of hmuR was repressed, and expression of tlr stimulated, when the luxS mutant was incubated with AI-2 partially purified from the culture supernatant of wild-type cells. A phenotypic outcome of the altered expression of genes involved in hemin uptake was impairment of growth of the luxS mutant in hemin-depleted medium. The results demonstrate a role of LuxS/AI-2 in the regulation of hemin and iron acquisition pathways in P. gingivalis and reveal a novel control pathway for luxS expression.
Collapse
Affiliation(s)
- Chloe E James
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005; 38:72-122. [PMID: 15853938 DOI: 10.1111/j.1600-0757.2005.00113.x] [Citation(s) in RCA: 650] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Stanley C Holt
- Department of Periodontology, The Forsyth Institute, Boston, MA, USA
| | | |
Collapse
|
15
|
Olczak T, Simpson W, Liu X, Genco CA. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 2005; 29:119-44. [PMID: 15652979 DOI: 10.1016/j.femsre.2004.09.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 06/18/2004] [Accepted: 09/02/2004] [Indexed: 11/26/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with the initiation and progression of adult periodontal disease. Iron is utilized by this pathogen in the form of heme and has been shown to play an essential role in its growth and virulence. Recently, considerable attention has been given to the characterization of various secreted and surface-associated proteins of P. gingivalis and their contribution to virulence. In particular, the properties of proteins involved in the uptake of iron and heme have been extensively studied. Unlike other Gram-negative bacteria, P. gingivalis does not produce siderophores. Instead it employs specific outer membrane receptors, proteases (particularly gingipains), and lipoproteins to acquire iron/heme. In this review, we will focus on the diverse mechanisms of iron and heme acquisition in P. gingivalis. Specific proteins involved in iron and heme capture will be described. In addition, we will discuss new genes for iron/heme utilization identified by nucleotide sequencing of the P. gingivalis W83 genome. Putative iron- and heme-responsive gene regulation in P. gingivalis will be discussed. We will also examine the significance of heme/hemoglobin acquisition for the virulence of this pathogen.
Collapse
Affiliation(s)
- Teresa Olczak
- Institute of Biochemistry and Molecular Biology, Laboratory of Biochemistry, Wroclaw University, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | | | |
Collapse
|
16
|
Sato K, Sakai E, Veith PD, Shoji M, Kikuchi Y, Yukitake H, Ohara N, Naito M, Okamoto K, Reynolds EC, Nakayama K. Identification of a new membrane-associated protein that influences transport/maturation of gingipains and adhesins of Porphyromonas gingivalis. J Biol Chem 2005; 280:8668-77. [PMID: 15634642 DOI: 10.1074/jbc.m413544200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dual membrane envelopes of Gram-negative bacteria provide two barriers of unlike nature that regulate the transport of molecules into and out of organisms. Organisms have developed several systems for transport across the inner and outer membranes. The Gram-negative periodontopathogenic bacterium Porphyromonas gingivalis produces proteinase and adhesin complexes, gingipains/adhesins, on the cell surface and in the extracellular milieu as one of the major virulence factors. Gingipains and/or adhesins are encoded by kgp, rgpA, rgpB, and hagA on the chromosome. In this study, we isolated a P. gingivalis mutant (porT), which showed very weak activities of gingipains in the cell lysates and culture supernatants. Subcellular fractionation and immunoblot analysis demonstrated that precursor forms of gingipains and adhesins were accumulated in the periplasmic space of the porT mutant cells. Peptide mass fingerprinting and N-terminal amino acid sequencing of the precursor proteins and the kgp'-'rgpB chimera gene product in the porT mutant indicated that these proteins lacked the signal peptide regions, consistent with their accumulation in the periplasm. The PorT protein seemed to be membrane-associated and exposed to the periplasmic space, as revealed by subcellular fractionation and immunoblot analysis using anti-PorT antiserum. These results suggest that the membrane-associated protein PorT is essential for transport of the kgp, rgpA, rgpB, and hagA gene products across the outer membrane from the periplasm to the cell surface, where they are processed and matured.
Collapse
Affiliation(s)
- Keiko Sato
- Divisions of Microbiology, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kuramitsu HK. Molecular genetic analysis of the virulence of oral bacterial pathogens: an historical perspective. ACTA ACUST UNITED AC 2003; 14:331-44. [PMID: 14530302 DOI: 10.1177/154411130301400504] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review will focus on the impact of molecular genetic approaches on elucidating the bacterial etiology of oral diseases from an historical perspective. Relevant results from the pre- and post-recombinant DNA periods will be highlighted, including the roles of gene cloning, mutagenesis, and nucleotide sequencing in this area of research. Finally, the impact of whole-genome sequencing on deciphering the virulence mechanisms of oral pathogens, along with new approaches to control these organisms, will be discussed.
Collapse
Affiliation(s)
- Howard K Kuramitsu
- Department of Oral Biology, State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
18
|
Kesavalu L, Holt SC, Ebersole JL. In vitro environmental regulation of Porphyromonas gingivalis growth and virulence. ORAL MICROBIOLOGY AND IMMUNOLOGY 2003; 18:226-33. [PMID: 12823798 DOI: 10.1034/j.1399-302x.2003.00071.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Porphyromonas gingivalis appears to be a major contributor to periodontal disease, especially soft tissue destruction, which is reflected by the ability to cause invasive, spreading lesions, and tissue inflammation in a murine abscess model. This study investigated the role of hemin on the regulation of growth and virulence of P. gingivalis strains. P. gingivalis strains W50, A7A1-28, 3079, 381, W50/BEI, and NG4B19 were grown in broth and on blood agar plates. P. gingivalis cells grown under iron-depleted conditions for multiple passages showed significantly decreased lesion size in mice, in contrast to cells grown under iron-normal (5 microg/ml) and iron-elevated conditions. Statistically significant (P < 0.01) decreases in gingipain enzyme activity were found among the strains grown under iron-depleted conditions. P. gingivalis grown in the presence of blood induced significantly different lesion type, lesion size, lesion onset, and mortality. Elevated hemin resulted in increased cell-associated iron in P. gingivalis, which increased the capacity of the microorganism to survive at times of iron deprivation. These results indicate that hemin or iron availability regulates multiple aspects related to P. gingivalis virulence, including growth, survival, gingipain levels, and iron accumulation.
Collapse
Affiliation(s)
- L Kesavalu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536-0305, USA.
| | | | | |
Collapse
|
19
|
Genco CA, Maloy WL, Kari UP, Motley M. Antimicrobial activity of magainin analogues against anaerobic oral pathogens. Int J Antimicrob Agents 2003; 21:75-8. [PMID: 12507842 DOI: 10.1016/s0924-8579(02)00275-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Magainins are a family of potent antimicrobial cationic peptides that possess antimicrobial activity against a wide range of target organisms. In this study, the antimicrobial activity of synthetic magainin-mimetic compounds MSI-751 and MSI-774 was investigated against the periodontal pathogens Porphyromonas gingivalis, Fusobacterium nucleatum, Actinobacillus actinomycetemcomitans, Eikenella corrodens, Prevotella loescheii and Prevotella intermedia. P. gingivalis was more susceptible to MSI-751 than to MSI-774, whereas the other oral pathogens showed little difference in susceptibility to the two compounds. MSI-751 exhibited a rapid, dose-dependent bactericidal effect on P. gingivalis. Electron microscopy of MSI-751-treated P. gingivalis revealed intact cell wall vesicles devoid of cell contents, suggesting perturbation of the cytoplasmic membrane by this compound, perhaps equivalent to formation of membrane-disruptive ion channels by magainin peptides. These studies demonstrate that synthetic magainin derivatives exhibit antimicrobial activity against oral pathogens by disruption of cell membrane integrity.
Collapse
Affiliation(s)
- Caroline Attardo Genco
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118-2393, USA
| | | | | | | |
Collapse
|
20
|
Xu X, Kolodrubetz D. Construction and analysis of hemin binding protein mutants in the oral pathogen Treponema denticola. Res Microbiol 2002; 153:569-77. [PMID: 12455704 DOI: 10.1016/s0923-2508(02)01370-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Treponema denticola, a periodontal pathogen, can use hemin as its sole iron source. The organism synthesizes two low-iron-induced outer-membrane hemin-binding proteins, HbpA and HbpB. To characterize genetically the function of these two novel proteins, standard recombinant DNA procedures and electroporation were used to construct T. denticola strains in which the genomic copies of either hbpA or both hbpA and hbpB were interrupted with an erythromycin resistance cassette. Northern blot and RT-PCR analyses verified that the normal hbpA transcripts were missing in both mutants. The hbpA mutation also had a polar effect on the transcription of hbpB and thus neither mutant strain transcribes the downstream hbpB gene. The parental and hbp mutant strains had similar growth properties in normal media, but the mutants reached a lower cell density than parental cells in iron-restricted media. The results indicate that HbpA and/or HbpB are required for efficient iron utilization but that there is an additional system that can help T. denticola acquire iron. The growth defect of the mutants was totally restored by lactoferrin but only partially restored by adding exogenous hemin or inorganic iron. Thus, hbpA and/or hbpB specifically facilitate hemin and iron utilization under low iron conditions and are presumably important for T. denticola virulence in the host environment.
Collapse
MESH Headings
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Heme-Binding Proteins
- Hemeproteins/genetics
- Hemeproteins/metabolism
- Hemin/metabolism
- Iron/metabolism
- Mutagenesis, Insertional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Treponema/genetics
- Treponema/growth & development
- Treponema/metabolism
Collapse
|
21
|
Shoji M, Ratnayake DB, Shi Y, Kadowaki T, Yamamoto K, Yoshimura F, Akamine A, Curtis MA, Nakayama K. Construction and characterization of a nonpigmented mutant of Porphyromonas gingivalis: cell surface polysaccharide as an anchorage for gingipains. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1183-1191. [PMID: 11932462 DOI: 10.1099/00221287-148-4-1183] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A nonpigmented mutant of Porphyromonas gingivalis was constructed by using transposon mutagenesis. The mutant possessed the transposon DNA at the novel gene porR. Gene targeted mutagenesis revealed that porR was responsible for pigmentation. The porR gene shared similarities with genes of the degT family, the products of which are now considered to be transaminases involved in biosynthesis of sugar portions of cell-surface polysaccharides and aminoglycosides. The porR mutant showed a pleiotropic phenotype: delayed maturation of fimbrillin, preferential presence of Rgp and Kgp proteinases in culture supernatants, and no haemagglutination. The porR mutant had altered phenol extractable polysaccharide compared to the porR(+) sibling strain. A mAb, 1B5, that reacts with sugar portions of P. gingivalis cell surface polysaccharide and membrane-type Rgp proteinase showed no reaction with the cell lysates of the porR mutant. These results indicate that porR is involved in biosynthesis of cell surface polysaccharide that may function as an anchorage for Rgp, Kgp, haemagglutinins and the haemoglobin receptor protein.
Collapse
Affiliation(s)
- Mikio Shoji
- Departments of Oral Infectious Diseases and Immunology1, Endodontology and Operative Dentistry2 and Pharmacology3, Faculty of Dental Science, Kyushu University, Fukuoka812-8582, Japan
| | - Dinath B Ratnayake
- Departments of Oral Infectious Diseases and Immunology1, Endodontology and Operative Dentistry2 and Pharmacology3, Faculty of Dental Science, Kyushu University, Fukuoka812-8582, Japan
| | - Yixin Shi
- Departments of Oral Infectious Diseases and Immunology1, Endodontology and Operative Dentistry2 and Pharmacology3, Faculty of Dental Science, Kyushu University, Fukuoka812-8582, Japan
| | - Tomoko Kadowaki
- Departments of Oral Infectious Diseases and Immunology1, Endodontology and Operative Dentistry2 and Pharmacology3, Faculty of Dental Science, Kyushu University, Fukuoka812-8582, Japan
| | - Kenji Yamamoto
- Departments of Oral Infectious Diseases and Immunology1, Endodontology and Operative Dentistry2 and Pharmacology3, Faculty of Dental Science, Kyushu University, Fukuoka812-8582, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya464-8650, Japan4
| | - Akifumi Akamine
- Departments of Oral Infectious Diseases and Immunology1, Endodontology and Operative Dentistry2 and Pharmacology3, Faculty of Dental Science, Kyushu University, Fukuoka812-8582, Japan
| | - Michael A Curtis
- Department of Medical Microbiology, Division of Molecular Pathology Infection and Immunity, St Bartholomew's and the Royal London School of Medicine and Dentistry, London E1 2AA, UK5
| | - Koji Nakayama
- Department of Microbiology, School of Dentistry, Nagasaki University, Nagasaki 852-8588, Japan6
| |
Collapse
|
22
|
Burgess NA, Kirke DF, Williams P, Winzer K, Hardie KR, Meyers NL, Aduse-Opoku J, Curtis MA, Cámara M. LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. MICROBIOLOGY (READING, ENGLAND) 2002; 148:763-772. [PMID: 11882711 DOI: 10.1099/00221287-148-3-763] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis is a Gram-negative black-pigmented obligate anaerobe implicated in the aetiology of human periodontal disease. The virulence of P. gingivalis is associated with the elaboration of the cysteine proteases Arg-gingipain (Rgp) and Lys-gingipain (Kgp), which are produced at high bacterial cell densities. To determine whether quorum sensing plays a role in the regulation of Rgp and Kgp, biosensors capable of detecting either N-acylhomoserine lactone (AHLs) or the luxS-dependent autoinducer (AI-2) quorum-sensing signalling molecules in spent culture supernatants were first employed. While no AHLs could be detected, the Vibrio harveyi BB170 biosensor was activated by spent P. gingivalis W50 culture supernatants. The P. gingivalis luxS gene was cloned and demonstrated to restore AI-2 production in the Escherichia coli luxS mutant DH5alpha. Mutation of luxS abolished AI-2 production in P. gingivalis. Western blotting using antibodies raised against the recombinant protein revealed that LuxS levels increased throughout growth even though AI-2 activity was only maximally detected at the mid-exponential phase of growth and disappeared by the onset of stationary phase. Similar results were obtained with E. coli DH5alpha transformed with luxS, suggesting that AI-2 production is not limited by a lack of LuxS protein. Analysis of Rgp and Kgp protease activities revealed that the P. gingivalis luxS mutant produced around 45% less Rgp and 30% less Kgp activity than the parent strain. In addition, the luxS mutant exhibited a fourfold reduction in haemagglutinin titre. However, these reductions in virulence determinant levels were insufficient to attenuate the luxS mutant in a murine lesion model of P. gingivalis infection.
Collapse
Affiliation(s)
- Nicola A Burgess
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | - David F Kirke
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | - Paul Williams
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | - Klaus Winzer
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
| | - Kim R Hardie
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| | | | - Joseph Aduse-Opoku
- MRC Molecular Pathogenesis Group, Department of Oral Microbiology, St Bartholomews and the Royal London School of Dentistry, 32 Newark St, London E1 2AA, UK4
| | - Michael A Curtis
- MRC Molecular Pathogenesis Group, Department of Oral Microbiology, St Bartholomews and the Royal London School of Dentistry, 32 Newark St, London E1 2AA, UK4
| | - Miguel Cámara
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK2
- Institute of Infections and Immunity, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK1
| |
Collapse
|
23
|
Curtis MA, Aduse-Opoku J, Rangarajan M. Cysteine proteases of Porphyromonas gingivalis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 12:192-216. [PMID: 11497373 DOI: 10.1177/10454411010120030101] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cysteine proteases of Porphyromonas gingivalis are extracellular products of an important etiological agent in periodontal diseases. Many of the in vitro actions of these enzymes are consistent with the observed deregulated inflammatory and immune features of the disease. They are significant targets of the immune responses of affected individuals and are viewed by some as potential molecular targets for therapeutic approaches to these diseases. Furthermore, they appear to represent a complex group of genes and protein products whose transcriptional and translational control and maturation pathways may have a broader relevance to virulence determinants of other persistent bacterial pathogens of human mucosal surfaces. As a result, the genetics, chemistry, and virulence-related properties of the cysteine proteases of P. gingivalis have been the focus of much research effort over the last ten years. In this review, we describe some of the progress in their molecular characterization and how their putative biological roles, in relation to the in vivo growth and survival strategies of P. gingivalis, may also contribute to the periodontal disease process.
Collapse
Affiliation(s)
- M A Curtis
- Department of Medical Microbiology, Bart's and The London, Queen Mary School of Medicine and Dentistry, UK.
| | | | | |
Collapse
|
24
|
Sroka A, Sztukowska M, Potempa J, Travis J, Genco CA. Degradation of host heme proteins by lysine- and arginine-specific cysteine proteinases (gingipains) of Porphyromonas gingivalis. J Bacteriol 2001; 183:5609-16. [PMID: 11544223 PMCID: PMC95452 DOI: 10.1128/jb.183.19.5609-5616.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis can use hemoglobin bound to haptoglobin and heme complexed to hemopexin as heme sources; however, the mechanism by which hemin is released from these proteins has not been defined. In the present study, using a variety of analytical methods, we demonstrate that lysine-specific cysteine proteinase of P. gingivalis (gingipain K, Kgp) can efficiently cleave hemoglobin, hemopexin, haptoglobin, and transferrin. Degradation of hemopexin and transferrin in human serum by Kgp was also detected; however, we did not observe extensive degradation of hemoglobin in serum by Kgp. Likewise the beta-chain of haptoglobin was partially protected from degradation by Kgp in a haptoglobin-hemoglobin complex. Arginine-specific gingipains (gingipains R) were also found to degrade hemopexin and transferrin in serum; however, this was observed only at relatively high concentrations of these enzymes. Growth of P. gingivalis strain A7436 in a minimal media with normal human serum as a source of heme correlated not only with the ability of the organism to degrade hemoglobin, haptoglobin, hemopexin, and transferrin but also with an increase in gingipain K and gingipain R activity. The ability of gingipain K to cleave hemoglobin, haptoglobin, and hemopexin may provide P. gingivalis with a usable source of heme for growth and may contribute to the proliferation of P. gingivalis within periodontal pockets in which erythrocytes are abundant.
Collapse
Affiliation(s)
- A Sroka
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
25
|
Olczak T, Dixon DW, Genco CA. Binding specificity of the Porphyromonas gingivalis heme and hemoglobin receptor HmuR, gingipain K, and gingipain R1 for heme, porphyrins, and metalloporphyrins. J Bacteriol 2001; 183:5599-608. [PMID: 11544222 PMCID: PMC95451 DOI: 10.1128/jb.183.19.5599-5608.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous genetic and biochemical studies have confirmed that hemoglobin and hemin utilization in Porphyromonas gingivalis is mediated by the outer membrane hemoglobin and heme receptor HmuR, as well as gingipain K (Kgp), a lysine-specific cysteine protease, and gingipain R1 (HRgpA), one of two arginine-specific cysteine proteases. In this study we report on the binding specificity of the recombinant P. gingivalis HmuR protein and native gingipains for hemoglobin, hemin, various porphyrins, and metalloporphyrins as assessed by spectrophotometric assays, by affinity chromatography, and by enzyme-linked immunosorbent assay. Protoporphyrin, mesoporphyrin, deuteroporphyrin, hematoporphyrin, and some of their iron, copper, and zinc derivatives were examined to evaluate the role of both the central metal ion and the peripheral substituents on binding to recombinant HmuR and soluble gingipains. Scatchard analysis of hemin binding to Escherichia coli cells expressing recombinant membrane-associated six-His-tagged HmuR yielded a linear plot with a binding affinity of 2.4 x 10(-5) M. Recombinant E. coli cells bound the iron, copper, and zinc derivatives of protoporphyrin IX (PPIX) with similar affinities, and approximately four times more tightly than PPIX itself, which suggests that the active site of HmuR contains a histidine that binds the metal ion in the porphyrin ring. Furthermore, we found that recombinant HmuR prefers the ethyl and vinyl side chains of the PPIX molecule to either the larger hydroxyethyl or smaller hydrogen side chains. Kgp and HRgpA were demonstrated to bind various porphyrins and metalloporphyrins with affinities similar to those for hemin, indicating that the binding of Kgp and HRgpA to these porphyrins does not require a metal within the porphyrin ring. We did not detect the binding of RgpB, the arginine-specific cysteine protease that lacks a C-terminal hemagglutinin domain, to hemoglobin, porphyrins, or metalloporphyrins. Kgp and HRgpA, but not RgpB, were demonstrated to bind directly to soluble recombinant six-His-tagged HmuR. Several possible mechanisms for the cooperation between outer membrane receptor HmuR and proteases Kgp and HRgpA in hemin and hemoglobin binding and utilization are discussed.
Collapse
Affiliation(s)
- T Olczak
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
26
|
Chung WO, Park Y, Lamont RJ, McNab R, Barbieri B, Demuth DR. Signaling system in Porphyromonas gingivalis based on a LuxS protein. J Bacteriol 2001; 183:3903-9. [PMID: 11395453 PMCID: PMC95272 DOI: 10.1128/jb.183.13.3903-3909.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The luxS gene of quorum-sensing Vibrio harveyi is required for type 2 autoinducer production. We identified a Porphyromonas gingivalis open reading frame encoding a predicted peptide of 161 aa that shares 29% identity with the amino acid sequence of the LuxS protein of V. harveyi. Conditioned medium from a late-log-phase P. gingivalis culture induced the luciferase operon of V. harveyi, but that from a luxS insertional mutant did not. In P. gingivalis, the expression of luxS mRNA was environmentally controlled and varied according to the cell density and the osmolarity of the culture medium. In addition, differential display PCR showed that the inactivation of P. gingivalis luxS resulted in up-regulation of a hemin acquisition protein and an arginine-specific protease and reduced expression of a hemin-regulated protein, a TonB homologue, and an excinuclease. The data suggest that the luxS gene in P. gingivalis may function to control the expression of genes involved in the acquisition of hemin.
Collapse
Affiliation(s)
- W O Chung
- Department of Oral Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
27
|
Amano A, Premaraj T, Kuboniwa M, Nakagawa I, Shizukuishi S, Morisaki I, Hamada S. Altered antigenicity in periodontitis patients and decreased adhesion of Porphyromonas gingivalis by environmental temperature stress. ORAL MICROBIOLOGY AND IMMUNOLOGY 2001; 16:124-8. [PMID: 11240867 DOI: 10.1034/j.1399-302x.2001.016002124.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Periodontopathogenic bacteria survive various environmental changes during the progression of periodontal disease. Alterations in metabolism and protein expression will have to take place to adapt their physiological functions to environmental stress. We examined the effects of an elevation of 2 degrees C in temperature on the adhesive ability and antigenicity of Porphyromonas gingivalis. Elevation of growth temperature of P. gingivalis from 37 degrees C to 39 degrees C remarkably suppressed the expression of surface filamentous structures, such as fimbriae, as well as the adhesive capacities to salivary components and Streptococcus oralis. Sera of severe periodontitis patients revealed a marked increase in serological activity with 39 degrees C cells than with 37 degrees C cells. The alteration of protein profiles of bacterial surface components by temperature elevation was demonstrated by SDS-PAGE, and their Western blot profiles were also different from those of cells grown at 37 degrees C. Although a uniform trend was not found in the altered patterns, sera from severe periodontitis patients detected more antigenic proteins in cells grown at 39 degrees C than 37 degrees C cells. These observations suggest that P. gingivalis downregulates the expression of fimbriae and alters its adhesive capacity and antigenicity by the temperature stress that could occur during the disease progression.
Collapse
Affiliation(s)
- A Amano
- Department of Oral Science Methodology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Rovaldi CR, Pievsky A, Sole NA, Friden PM, Rothstein DM, Spacciapoli P. Photoactive porphyrin derivative with broad-spectrum activity against oral pathogens In vitro. Antimicrob Agents Chemother 2000; 44:3364-7. [PMID: 11083641 PMCID: PMC90206 DOI: 10.1128/aac.44.12.3364-3367.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2000] [Accepted: 08/31/2000] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) has historically been used as a means to treat cancerous tumors but has recently been used to kill bacterial cells through the use of targeted photosensitizers. PDT is a potential adjunct to scaling and root planing in the treatment of periodontal disease. However, the effectiveness of porphyrin derivatives against microorganisms has been limited because some gram-negative bacteria are refractory to photodynamic treatment with these agents. We have designed a porphyrin derivative conjugated to a pentalysine moeity that endows the molecule with activity against gram-positive and gram-negative bacteria. Whereas the porphyrin, chlorin e6, showed in vitro activity against a limited spectrum of bacteria, chlorin e6 conjugated to pentalysine showed in vitro activity against all oral microorganisms tested, including Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, Bacteroides forsythus, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum subsp. polymorphum, Actinomyces viscosus, and the streptococci. Potent antimicrobial activity (>/=5-log-unit reduction in the numbers of CFU per milliliter) was retained in the presence of up to 25% whole sheep blood. The use of potent, selective agents such as this chlorin e6-pentalysine conjugate to more effectively reduce the pathogenic bacteria in the periodontal pocket may be a significant tool for the treatment of periodontal disease.
Collapse
Affiliation(s)
- C R Rovaldi
- Periodontix, Inc., Watertown, Massachusetts 02472, USA
| | | | | | | | | | | |
Collapse
|
29
|
Simpson W, Olczak T, Genco CA. Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. J Bacteriol 2000; 182:5737-48. [PMID: 11004172 PMCID: PMC94695 DOI: 10.1128/jb.182.20.5737-5748.2000] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative pathogen Porphyromonas gingivalis requires hemin for growth. Hemoglobin bound to haptoglobin and hemin complexed to hemopexin can be used as heme sources, indicating that P. gingivalis must have a means to remove the hemin from these host iron-binding proteins. However, the specific mechanisms utilized by P. gingivalis for the extraction of heme from heme-binding proteins and for iron transport are poorly understood. In this study we have determined that a newly identified TonB-dependent hemoglobin-hemin receptor (HmuR) is involved in hemoglobin binding and utilization in P. gingivalis A7436. HmuR shares amino acid homology with TonB-dependent outer membrane receptors of gram-negative bacteria involved in the acquisition of iron from hemin and hemoglobin, including HemR of Yersinia enterocolitica, ShuA of Shigella dysenteriae, HpuB of Neisseria gonorrhoeae and N. meningitidis, HmbR of N. meningitidis, HgbA of Haemophilus ducreyi, and HgpB of H. influenzae. Southern blot analysis confirmed the presence of the hmuR gene and revealed genetic variability in the carboxy terminus of hmuR in P. gingivalis strains 33277, 381, W50, and 53977. We also identified directly upstream of the hmuR gene a gene which we designated hmuY. Upstream of the hmuY start codon, a region with homology to the Fur binding consensus sequence was identified. Reverse transcription-PCR analysis revealed that hmuR and hmuY were cotranscribed and that transcription was negatively regulated by iron. Inactivation of hmuR resulted in a decreased ability of P. gingivalis to bind hemoglobin and to grow with hemoglobin or hemin as sole iron sources. Escherichia coli cells expressing recombinant HmuR were shown to bind hemoglobin and hemin. Furthermore, purified recombinant HmuR was demonstrated to bind hemoglobin. Taken together, these results indicate that HmuR serves as the major TonB-dependent outer membrane receptor involved in the utilization of both hemin and hemoglobin in P. gingivalis.
Collapse
Affiliation(s)
- W Simpson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
30
|
Abstract
Porphyromonas gingivalis is a Gram-negative, black pigmented oral anaerobe associated with adult periodontitis. The adherence of the bacterium to junctional epithelial cells is the first step in infection and colonization. The molecular mechanisms and genetics of colonization are, as yet, not well understood, although it has been demonstrated that P. gingivalis fimbriae are involved in adhesion. In addition, cell surface cysteine proteinases may play a role either directly as adhesins or indirectly through their involvement in the biogenesis of fimbriae. A link has been established between cysteine proteinase-hemagglutinating activity and colongy pigmentation on blood agar. In this study a P. gingivalis ATCC 33277 transposon library was screened for white mutants. Pleiotropic mutants were identified with altered pigmentation, proteinase, hemagglutinin and haemolytic activities. Although the mutants fell into two classes based on the above phenotypes, by electron microscopy both classes showed increased fimbriation and decreased vesicle formation. Sequencing of genomic DNA flanking the transposon insertions revealed that one class of mutants carried disruptions in the gene encoding Lys-gingipain (kgp) and the other in a gene homologous to a glycosyl transferase. Potential roles for these genes in pigmentation, fimbriation, vesicle formation and attachment to epithelial cells are discussed.
Collapse
Affiliation(s)
- T Chen
- Department of Molecular Genetics, The Forsyth Institute, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
31
|
Funahashi T, Fujiwara C, Okada M, Miyoshi S, Shinoda S, Narimatsu S, Yamamoto S. Characterization of Vibrio parahaemolyticus manganese-resistant mutants in reference to the function of the ferric uptake regulatory protein. Microbiol Immunol 2000; 44:963-70. [PMID: 11220684 DOI: 10.1111/j.1348-0421.2000.tb02591.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In many bacteria, the ferric uptake regulatory protein (Fur) has a central role in the negative regulation of genes affected by iron limitation. In this study, Vibrio parahaemolyticus strains carrying mutations in the fur gene encoding Fur were isolated by the manganese selection method to assess the function of Fur in connection with alternations in the coordinate expression of the siderophore vibrioferrin (VF) and iron-repressible outer membrane proteins (IROMPs). Ten out of 25 manganese-resistant mutants constitutively produced VF and expressed at least two IROMPs irrespective of the iron concentration in the medium. PCR-direct DNA sequencing of the fur genes in these mutants identified four different point mutations causing amino acid changes. Moreover, a fur overexpressing plasmid was constructed to prepare antiserum against V. parahaemolyticus Fur. Western blotting with this antiserum revealed that the intracellular abundance of the wild-type Fur was not significantly affected by the iron concentrations in the growth medium, and that the Fur proteins of the mutant strains occurred at substantially smaller amounts and/or migrated more rapidly in sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the wild-type Fur. These data afford an additional insight into the structure-function relationship of Fur and imply its involvement in the iron acquisition systems of V. parahaemolyticus, although it is yet unknown whether its action on the target genes is direct or indirect.
Collapse
Affiliation(s)
- T Funahashi
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Sawada K, Kokeguchi S, Hongyo H, Sawada S, Miyamoto M, Maeda H, Nishimura F, Takashiba S, Murayama Y. Identification by subtractive hybridization of a novel insertion sequence specific for virulent strains of Porphyromonas gingivalis. Infect Immun 1999; 67:5621-5. [PMID: 10531208 PMCID: PMC96934 DOI: 10.1128/iai.67.11.5621-5625.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subtractive hybridization was employed to isolate specific genes from virulent Porphyromonas gingivalis strains that are possibly related to abscess formation. The genomic DNA from the virulent strain P. gingivalis W83 was subtracted with DNA from the avirulent strain ATCC 33277. Three clones unique to strain W83 were isolated and sequenced. The cloned DNA fragments were 885, 369, and 132 bp and had slight homology with only Bacillus stearothermophilus IS5377, which is a putative transposase. The regions flanking the cloned DNA fragments were isolated and sequenced, and the gene structure around the clones was revealed. These three clones were located side-by-side in a gene reported as an outer membrane protein. The three clones interrupt the open reading frame of the outer membrane protein gene. This inserted DNA, consisting of three isolated clones, was designated IS1598, which was 1,396 bp (i.e., a 1,158-bp open reading frame) in length and was flanked by 16-bp terminal inverted repeats and a 9-bp duplicated target sequence. IS1598 was detected in P. gingivalis W83, W50, and FDC 381 by Southern hybridization. All three P. gingivalis strains have been shown to possess abscess-forming ability in animal models. However, IS1598 was not detected in avirulent strains of P. gingivalis, including ATCC 33277. The IS1598 may interrupt the synthesis of the outer membrane protein, resulting in changes in the structure of the bacterial outer membrane. The IS1598 isolated in this study is a novel insertion element which might be a specific marker for virulent P. gingivalis strains.
Collapse
Affiliation(s)
- K Sawada
- Department of Periodontology, Okayama University Dental School, Okayama 700-8525, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Simpson W, Wang CY, Mikolajczyk-Pawlinska J, Potempa J, Travis J, Bond VC, Genco CA. Transposition of the endogenous insertion sequence element IS1126 modulates gingipain expression in Porphyromonas gingivalis. Infect Immun 1999; 67:5012-20. [PMID: 10496872 PMCID: PMC96847 DOI: 10.1128/iai.67.10.5012-5020.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported on a Tn4351-generated mutant of Porphyromonas gingivalis (MSM-3) which expresses enhanced arginine-specific proteinase activity and does not utilize hemin or hemoglobin for growth (C. A. Genco et al., Infect. Immun. 63:2459-2466, 1995). In the process of characterizing the genetic lesion in P. gingivalis MSM-3, we have determined that the endogenous P. gingivalis insertion sequence element IS1126 is capable of transposition within P. gingivalis. We have also determined that IS1126 transposition modulates the transcription of the genes encoding the lysine-specific proteinase, gingipain K (kgp) and the arginine-specific proteinase, gingipain R2 (rgpB). Sequence analysis of P. gingivalis MSM-3 revealed that Tn4351 had inserted 60 bp upstream of the P. gingivalis endogenous IS element IS1126. Furthermore, P. gingivalis MSM-3 exhibited two additional copies of IS1126 compared to the parental strain A7436. Examination of the first additional IS1126 element, IS1126(1), indicated that it has inserted into the putative promoter region of the P. gingivalis kgp gene. Analysis of total RNA extracted from P. gingivalis MSM-3 demonstrated no detectable kgp transcript; likewise, P. gingivalis MSM-3 was devoid of lysine-specific proteinase activity. The increased arginine-specific proteinase activity exhibited by P. gingivalis MSM-3 was demonstrated to correlate with an increase in the rgpA and rgpB transcripts. The second additional IS1126 element, IS1126(2), was found to have inserted upstream of a newly identified gene, hmuR, which exhibits homology to a number of TonB-dependent genes involved in hemin and iron acquisition. Analysis of total RNA from P. gingivalis MSM-3 demonstrated that hmuR is transcribed, indicating that the insertion of IS1126 had not produced a polar effect on hmuR transcription. The hemin-hemoglobin defect in P. gingivalis MSM-3 is proposed to result from the inactivation of Kgp, which has recently been demonstrated to function in hemoglobin binding. Taken together, the results presented here demonstrate that the introduction of Tn4351 into the P. gingivalis chromosome has resulted in two previously undocumented phenomena in P. gingivalis: (i) the transposition of the endogenous insertion sequence element IS1126 and (ii) the modulation of gingipain transcription and translation as a result of IS1126 transposition.
Collapse
Affiliation(s)
- W Simpson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Lewis JP, Dawson JA, Hannis JC, Muddiman D, Macrina FL. Hemoglobinase activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis W83. J Bacteriol 1999; 181:4905-13. [PMID: 10438761 PMCID: PMC93978 DOI: 10.1128/jb.181.16.4905-4913.1999] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, an important periodontal disease pathogen, forms black-pigmented colonies on blood agar. Pigmentation is believed to result from accumulation of iron protoporphyrin IX (FePPIX) derived from erythrocytic hemoglobin. The Lys-X (Lys-gingipain) and Arg-X (Arg-gingipain) cysteine proteases of P. gingivalis bind and degrade erythrocytes. We have observed that mutations abolishing activity of the Lys-X-specific cysteine protease, Kgp, resulted in loss of black pigmentation of P. gingivalis W83. Because the hemagglutinating and hemolytic potentials of mutant strains were reduced but not eliminated, we hypothesized that this protease played a role in acquisition of FePPIX from hemoglobin. In contrast to Arg-gingipain, Lys-gingipain was not inhibited by hemin, suggesting that this protease played a role near the cell surface where high concentrations of hemin confer the black pigmentation. Human hemoglobin contains 11 Lys residues in the alpha chain and 10 Lys residues in the beta chain. In contrast, there are only three Arg residues in each of the alpha and beta chains. These observations are consistent with human hemoglobin being a preferred substrate for Lys-gingipain but not Arg-gingipain. The ability of the Lys-gingipain to cleave human hemoglobin at Lys residues was confirmed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of hemoglobin fragments resulting from digestion with the purified protease. We were able to detect several of the predicted hemoglobin fragments rendered by digestion with purified Lys-gingipain. Thus, we postulate that the Lys-gingipain of P. gingivalis is a hemoglobinase which plays a role in heme and iron uptake by effecting the accumulation of FePPIX on the bacterial cell surface.
Collapse
Affiliation(s)
- J P Lewis
- Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
35
|
Deshpande RG, Khan MB. Purification and characterization of hemolysin from Porphyromonas gingivalis A7436. FEMS Microbiol Lett 1999; 176:387-94. [PMID: 10427721 DOI: 10.1111/j.1574-6968.1999.tb13688.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Porphyromonas gingivalis, a periodontal pathogen, has the ability to lyse erythrocytes. The hemolytic activity of P. gingivalis A7436 was purified as a 45-kDa protein from the culture supernatant of a 3-days old culture using nickel-nitrilotriacetic acid chromatography. Erythrocytes treated with purified P. gingivalis hemolysin showed the presence of pores and extracellular debris by scanning electron microscopy. Active immunization of mice with 15 micrograms hemolysin induced neutralizing antibodies to hemolysin. Heating at 60 degrees C and treatment with trypsin and dithiothreitol abolished hemolytic activity, while incubation with the protease inhibitor Na-p-tosyl-L-lysine chloromethyl ketone caused no effect. We report here for the first time purification of a hemolysin from P. gingivalis A7436. The amino acid sequence of an internal peptide of hemolysin showed sequence similarity with fimbrillin from P. gingivalis HG564. However, the amino acid composition of purified hemolysin was different from that of P. gingivalis fimbrillin. Also, the ability to lyse but not agglutinate erythrocytes and to bind to nickel-nitrilotriacetic acid differentiates P. gingivalis hemolysin from fimbrillin.
Collapse
Affiliation(s)
- R G Deshpande
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA.
| | | |
Collapse
|
36
|
Stubbs S, Hobot JA, Waddington RJ, Embery G, Lewis MA. Effect of environmental haemin upon the physiology and biochemistry of Prevotella intermedia R78. Lett Appl Microbiol 1999; 29:31-6. [PMID: 10432629 DOI: 10.1046/j.1365-2672.1999.00570.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of environmental haemin on the physiology and biochemistry of Prevotella intermedia R78 grown in batch culture was assessed. Extent and rate of growth increased as the environmental haemin concentration was raised. In addition, cell morphology was predominantly cocco-bacillary when cultured in high haemin environments, while bacillary forms were prevalent in low haemin conditions (< 2.5 mumol l-1). Cells harvested from low haemin environments produced greater numbers of extracellular vesicles and greater amounts of peptidolytic activity, haemagglutinating potential and haemin binding activity when compared with cells harvested from high haemin conditions. The results of the present study indicate that aspects of the biochemistry and physiology of P. intermedia are influenced by changes in environmental haemin levels.
Collapse
Affiliation(s)
- S Stubbs
- Anaerobe Reference Unit, Public Health Laboratory, University Hospital of Wales, Cardiff, UK
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- S C Holt
- Department of Microbiology, University of Texas Health Science Center at San Antonio, Graduate School of Biomedical Sciences, USA
| | | | | | | |
Collapse
|
38
|
Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 1998; 62:1244-63. [PMID: 9841671 PMCID: PMC98945 DOI: 10.1128/mmbr.62.4.1244-1263.1998] [Citation(s) in RCA: 772] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a major etiological agent in the initiation and progression of severe forms of periodontal disease. An opportunistic pathogen, P. gingivalis can also exist in commensal harmony with the host, with disease episodes ensuing from a shift in the ecological balance within the complex periodontal microenvironment. Colonization of the subgingival region is facilitated by the ability to adhere to available substrates such as adsorbed salivary molecules, matrix proteins, epithelial cells, and bacteria that are already established as a biofilm on tooth and epithelial surfaces. Binding to all of these substrates may be mediated by various regions of P. gingivalis fimbrillin, the structural subunit of the major fimbriae. P. gingivalis is an asaccharolytic organism, with a requirement for hemin (as a source of iron) and peptides for growth. At least three hemagglutinins and five proteinases are produced to satisfy these requirements. The hemagglutinin and proteinase genes contain extensive regions of highly conserved sequences, with posttranslational processing of proteinase gene products contributing to the formation of multimeric surface protein-adhesin complexes. Many of the virulence properties of P. gingivalis appear to be consequent to its adaptations to obtain hemin and peptides. Thus, hemagglutinins participate in adherence interactions with host cells, while proteinases contribute to inactivation of the effector molecules of the immune response and to tissue destruction. In addition to direct assault on the periodontal tissues, P. gingivalis can modulate eucaryotic cell signal transduction pathways, directing its uptake by gingival epithelial cells. Within this privileged site, P. gingivalis can replicate and impinge upon components of the innate host defense. Although a variety of surface molecules stimulate production of cytokines and other participants in the immune response, P. gingivalis may also undertake a stealth role whereby pivotal immune mediators are selectively inactivated. In keeping with its strict metabolic requirements, regulation of gene expression in P. gingivalis can be controlled at the transcriptional level. Finally, although periodontal disease is localized to the tissues surrounding the tooth, evidence is accumulating that infection with P. gingivalis may predispose to more serious systemic conditions such as cardiovascular disease and to delivery of preterm infants.
Collapse
Affiliation(s)
- R J Lamont
- Department of Oral Biology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
39
|
Abstract
Porphyromonas gingivalis is one of the principal pathogens in the development of adult periodontitis. Several different animal models have been used to evaluate the complex interactions between P. gingivalis and the host and these have been an important research tool for studying the pathogenesis of P. gingivalis-mediated periodontal diseases.
Collapse
Affiliation(s)
- C A Genco
- Dept of Medicine, Boston University School of Medicine, MA 02118-2393, USA.
| | | | | |
Collapse
|
40
|
Kuboniwa M, Amano A, Shizukuishi S. Hemoglobin-binding protein purified from Porphyromonas gingivalis is identical to lysine-specific cysteine proteinase (Lys-gingipain). Biochem Biophys Res Commun 1998; 249:38-43. [PMID: 9705827 DOI: 10.1006/bbrc.1998.8958] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional protein that binds to human hemoglobin (hemoglobin-binding protein; HBP) was purified from Porphyromonas gingivalis cells. The analyses of the amino-terminal sequence and amino acid composition revealed that HBP is identical to lysine-specific cysteine proteinase (51 kDa Lys-gingipain; KGP) of P. gingivalis 381. It is a novel finding that KGP has binding affinity to hemoglobin. The binding activity of HBP was enhanced by acidic or anaerobic conditions. Arg-gingipain, a member of the gingipain family, of P. gingivalis exhibited no ability to bind to hemoglobin. The recombinant protein of KGP (r-KGP) generated in Escherichia coli showed both hemoglobin-binding and proteolytic activities. The treatment of r-KGP by protein disulfide isomerase effectively enhanced binding to hemoglobin, whereas the proteinase activity was decreased. The treated r-KGP significantly inhibited the binding of hemoglobin to the whole cell extracts in a dose-dependent manner. These results suggest that the hemoglobin binding of P. gingivalis is mediated by KGP through active domain(s) distinct from that for proteinase activity.
Collapse
Affiliation(s)
- M Kuboniwa
- Department of Preventive Dentistry, Osaka University Faculty of Dentistry, Japan
| | | | | |
Collapse
|
41
|
Watanabe-Kato T, Hayashi JI, Terazawa Y, Hoover CI, Nakayama K, Hibi E, Kawakami N, Ikeda T, Nakamura H, Noguchi T, Yoshimura F. Isolation and characterization of transposon-induced mutants of Porphyromonas gingivalis deficient in fimbriation. Microb Pathog 1998; 24:25-35. [PMID: 9466944 DOI: 10.1006/mpat.1997.0170] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fimbriae are considered to be an important virulence factor of Porphyromonas gingivalis. In order to identify genes essential for fimbriation, other than fimA which encodes the major subunit protein of fimbriae, transposon mutagenesis and immunological screening techniques were used to isolate fimbria-deficient mutants. R751::*Omega4, a suicide vector that carries Tn4351, was transferred from Escherichia coli to P. gingivalis by conjugation. Twenty-two independent fimbria-deficient mutants were identified among the resulting transformants. Southern hybridization analysis with pBlue 4351, a transposon-specific probe, and R751 indicated that 45% of the mutants resulted from single transposon insertions and that the remaining 55% of the mutants resulted from cointegration of R751 sequences. Southern hybridization analysis with pUCBg12.1, a probe for the fimA region, indicated that nine of the mutants contained insertions within the 2.5 kb SacI DNA fragment of P. gingivalis that contains fimA, ORF1 (which encodes a 15 kDa protein), and the C-terminal portion of ORF5 (which encodes a 63 kDa protein). Polymerase chain reaction (PCR) analysis and further Southern hybridization analysis indicated that the insertion site(s) for all nine of these mutants was within the fimA gene. Southern hybridization analysis also indicated that the remaining thirteen mutants contained insertions somewhere outside the 10 kb fimA region. Analysis by pulsed field gel electrophoresis (PFGE) revealed that insertions for most of the thirteen mutants mapped to a 300 kb NotI fragment and are located at least approximately 200 kb away from fimA. These results identify genetic loci other than fimA, that are required for fimbriation of P. gingivalis. Future cloning and characterization of these genetic loci should be straightforward since they are now marked by antibiotic resistance genes carried by the transposon.
Collapse
Affiliation(s)
- T Watanabe-Kato
- Department of Endodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, 464, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang CY, Bond VC, Genco CA. Identification of a second endogenous Porphyromonas gingivalis insertion element. J Bacteriol 1997; 179:3808-12. [PMID: 9171437 PMCID: PMC179185 DOI: 10.1128/jb.179.11.3808-3812.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study a second endogenous Porphyromonas gingivalis insertion element (IS element) that is capable of transposition within P. gingivalis was identified. Nucleotide sequence analysis of the Tn4351 insertion site in a P. gingivalis Tn4351-generated transconjugant showed that a complete copy of the previously unidentified IS element, designated PGIS2, had inserted into IS4351R in Tn4351. PGIS2 is 1,207 bp in length with 19-bp imperfect terminal inverted repeats, and insertion resulted in a duplicated 10-bp target sequence. Results of Southern hybridization of chromosomal DNA isolated from several P. gingivalis strains with a PGIS2-specific probe demonstrated that the number of copies of PGIS2 per genome varies among different P. gingivalis strains. Computer analysis of the putative polypeptide encoded by PGIS2 revealed strong homologies to the products encoded by IS1358 from Vibrio cholerae, ISAS1 from Aeromonas salmonicida, and H-rpt in Escherichia coli K-12.
Collapse
Affiliation(s)
- C Y Wang
- Department of Biochemistry, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | | | | |
Collapse
|
43
|
Xie H, Cai S, Lamont RJ. Environmental regulation of fimbrial gene expression in Porphyromonas gingivalis. Infect Immun 1997; 65:2265-71. [PMID: 9169762 PMCID: PMC175314 DOI: 10.1128/iai.65.6.2265-2271.1997] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Porphyromonas gingivalis fimbriae are an important virulence factor involved in attachment and invasion. Fimbrillin, encoded by the fimA gene, is the major subunit protein of the fimbriae. To elucidate the influence of environmental signals on the expression of the fimA gene, a strain of P. gingivalis (designated PLE) containing a chromosomal transcriptional fusion between a promoterless lacZ gene and the fimA promoter region was constructed. Promoter activity was assessed by measurement of beta-galactosidase activity of PLE. An 11-fold increase in activity of fimA promoter was found as growth temperature declined from 39 to 34 degrees C. Promoter activity decreased by approximately 50% in response to hemin limitation and upon culture on solid medium. In addition, the presence of serum or saliva in the growth medium decreased fimA promoter activity by similar amounts. A correlation between fimA promoter activity and phenotypic properties dependent upon fimbriae was established. P. gingivalis grown at 34 degrees C, compared to 39 degrees C, showed an increased ability to adhere to Streptococcus gordonii and to invade primary cultures of gingival epithelial cells. These studies indicate that expression of the P. gingivalis fimA gene is regulated at the transcriptional level in response to several environmental conditions and that altered fimA expression can also modulate the adherence and invasion abilities of P. gingivalis.
Collapse
Affiliation(s)
- H Xie
- Department of Oral Biology, University of Washington, Seattle 98195-7132, USA
| | | | | |
Collapse
|
44
|
Stojiljkovic I, Larson J, Hwa V, Anic S, So M. HmbR outer membrane receptors of pathogenic Neisseria spp.: iron-regulated, hemoglobin-binding proteins with a high level of primary structure conservation. J Bacteriol 1996; 178:4670-8. [PMID: 8755899 PMCID: PMC178238 DOI: 10.1128/jb.178.15.4670-4678.1996] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have recently cloned and characterized the hemoglobin receptor gene from Neisseria meningitidis serogroup C. N. meningitidis cells expressing HmbR protein were able to bind biotinylated hemoglobin, and the binding was specifically inhibited by unlabeled hemoglobin and not heme. The HmbR-mediated hemoglobin binding activity of N. meningitidis cells was shown to be iron regulated. The presence of hemoglobin but not heme in the growth medium stimulated HmbR-mediated hemoglobin binding activity. The efficiency of utilization of different hemoglobins by the HmbR-expressing N. meningitidis cells was shown to be species specific; human hemoglobin was the best source of iron, followed by horse, rat, turkey, dog, mouse, and sheep hemoglobins, The phenotypic characterization of HmbR mutants of some clinical strains of N. meningitidis suggested the existence of two unrelated hemoglobin receptors. The HmbR-unrelated hemoglobin receptor was shown to be identical to Hpu, the hemoglobin-haptoglobin receptor of N. meningitidis. The Hpu-dependent hemoglobin utilization system was not able to distinguish between different sources of hemoglobin; all animal hemoglobins were utilized equally well. HmbR-like genes are also present in N. meningitidis serogroups A and B, Neisseria gonorrhoeae MS11 and FA19, Neisseria perflava, and Neisseria polysaccharea. The hemoglobin receptor genes from N. meningitidis serogroups A and B and N. gonorrhoeae MS11 were cloned, and their nucleotide sequences were determined. The nucleotide sequence identity ranged between 86.5% (for N. meningitidis serogroup B hmbR and MS11 hmbR) and 93.4% (for N. meningitidis serogroup B hmbR and N. meningitidis serogroup C hmbR). The deduced amino acid sequences of these neisserial hemoglobin receptors were also highly related, with overall 84.7% conserved amino acid residues. A stop codon was found in the hmbR gene of N. gonorrhoeae MS11. This strain was still able to use hemoglobin and hemoglobin-haptoglobin complexes as iron sources, indicating that some gonococci may express only the HmbR-independent hemoglobin utilization system.
Collapse
Affiliation(s)
- I Stojiljkovic
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, 97201, USA
| | | | | | | | | |
Collapse
|
45
|
Fujimura S, Shibata Y, Hirai K, Nakamura T. Binding of hemoglobin to the envelope of Porphyromonas gingivalis and isolation of the hemoglobin-binding protein. Infect Immun 1996; 64:2339-42. [PMID: 8675347 PMCID: PMC174076 DOI: 10.1128/iai.64.6.2339-2342.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The binding activity of the Porphyromonas gingivalis envelope and hemoglobin was examined over a wide range of pH values from 4.5 to 9.0. The binding activity in low-pH buffers was much higher than that at high pH; the optimum pHs for the binding were found to be 4.5 and 5.0. Since the hemoglobin bound to the envelope was found to dissociate in the pH 8.5 and 9.0 buffers, the binding is reversible. We hypothesized that hemoglobin-binding protein (HbBP), responsible for the binding to hemoglobin, exists in the envelope and confirmed its presence by dot blot determination with peroxidase-conjugated hemoglobin. Then we attempted to isolate HbBP from the solubilized (by a detergent) materials of the envelope by affinity chromatography. The molecular mass of HbBP was 19 kDa, and the isoelectric point was 4.3.
Collapse
Affiliation(s)
- S Fujimura
- Department of Oral Microbiology, Matsumoto Dental College, Shiojiri-Shi, Nagano-Ken, Japan
| | | | | | | |
Collapse
|
46
|
Abstract
The ability to utilize hemin and hemin-containing compounds for nutritional iron (Fe) uptake has been documented for several pathogenic bacteria. Neisseria gonorrhoeae can utilize free hemin as a source of Fe for growth; however, little is known concerning the mechanisms involved in hemin transport. In this study we have characterized the binding and accumulation of hemin by N. gonorrhoeae and defined the specificity of the gonococcal hemin receptor. N. gonorrhoeae F62 was grown in a chemically defined medium containing the iron chelator Desferal, and hemin transport was initiated by the addition of [59Fe]hemin (4.0 or 8.0 microM; specific activity, 7.0 Ci/mol). 59Fe uptake from radiolabeled hemin by N. gonorrhoeae was energy dependent, and 59Fe was shown to accumulate in the cell at a constant rate during logarithmic growth. However, we observed a decrease in the uptake of 59Fe from radiolabeled hemin when inorganic iron was present in the growth medium. Binding of 59Fe from radiolabeled hemin was inhibited by the addition of either cold hemin, hematoporphyrin, or hemoglobin, but not by ferric citrate. Although [14C]hemin was found to support the growth of N. gonorrhoeae, we did not detect the uptake of 14C from radiolabeled hemin. Extraction of the gonococcal periplasmic ferric binding protein (Fbp) from cultures grown with [59Fe]hemin indicated that a majority of the 59Fe was associated with the Fbp. Taken together, the results presented here indicate that hemin binds to a gonococcal outer membrane receptor through the protoporphyrin portion of the molecule and that following binding, iron is removed and transported into the cell, where it is associated with the gonococcal periplasmic ferric binding protein, Fbp.
Collapse
Affiliation(s)
- P J Desai
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA
| | | | | |
Collapse
|