1
|
Liu Y, Lam DMK, Luan M, Zheng W, Ai H. Recent development of oral vaccines (Review). Exp Ther Med 2024; 27:223. [PMID: 38590568 PMCID: PMC11000446 DOI: 10.3892/etm.2024.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/08/2024] [Indexed: 04/10/2024] Open
Abstract
Oral immunization can elicit an effective immune response and immune tolerance to specific antigens. When compared with the traditional injection route, delivering antigens via the gastrointestinal mucosa offers superior immune effects and compliance, as well as simplicity and convenience, making it a more optimal route for immunization. At present, various oral vaccine delivery systems exist. Certain modified bacteria, such as Salmonella, Escherichia coli and particularly Lactobacillus, are considered promising carriers for oral vaccines. These carriers can significantly enhance immunization efficiency by actively replicating in the intestinal tract following oral administration. The present review provided a discussion of the main mechanisms of oral immunity and the research progress made in the field of oral vaccines. Additionally, it introduced the advantages and disadvantages of the currently more commonly administered injectable COVID-19 vaccines, alongside the latest advancements in this area. Furthermore, recent developments in oral vaccines are summarized, and their potential benefits and side effects are discussed.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | - Mei Luan
- Department of Geriatric Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Wenfu Zheng
- Chinese Academy of Sciences Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
2
|
Stark JC, Jaroentomeechai T, Moeller TD, Hershewe JM, Warfel KF, Moricz BS, Martini AM, Dubner RS, Hsu KJ, Stevenson TC, Jones BD, DeLisa MP, Jewett MC. On-demand biomanufacturing of protective conjugate vaccines. SCIENCE ADVANCES 2021; 7:eabe9444. [PMID: 33536221 PMCID: PMC7857678 DOI: 10.1126/sciadv.abe9444] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/18/2020] [Indexed: 05/19/2023]
Abstract
Conjugate vaccines are among the most effective methods for preventing bacterial infections. However, existing manufacturing approaches limit access to conjugate vaccines due to centralized production and cold chain distribution requirements. To address these limitations, we developed a modular technology for in vitro conjugate vaccine expression (iVAX) in portable, freeze-dried lysates from detoxified, nonpathogenic Escherichia coli. Upon rehydration, iVAX reactions synthesize clinically relevant doses of conjugate vaccines against diverse bacterial pathogens in 1 hour. We show that iVAX-synthesized vaccines against Francisella tularensis subsp. tularensis (type A) strain Schu S4 protected mice from lethal intranasal F. tularensis challenge. The iVAX platform promises to accelerate development of new conjugate vaccines with increased access through refrigeration-independent distribution and portable production.
Collapse
Affiliation(s)
- Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA
| | - Tyler D Moeller
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA
| | - Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Bridget S Moricz
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd 3-403 Bowen Science Building, Iowa City, IA 52242, USA
| | - Anthony M Martini
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd 3-403 Bowen Science Building, Iowa City, IA 52242, USA
| | - Rachel S Dubner
- Department of Biological Sciences, Northwestern University, 2205 Tech Drive Hogan Hall 2144, Evanston, IL 60208-3500, USA
| | - Karen J Hsu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute B224, Evanston, IL 60208-3120, USA
| | - Taylor C Stevenson
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853, USA
| | - Bradley D Jones
- Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd 3-403 Bowen Science Building, Iowa City, IA 52242, USA
- Graduate Program in Genetics, 431 Newton Rd, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA.
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA.
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd Technological Institute E136, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 N. St Clair St, Suite 1200, Chicago, IL 60611-3068, USA
- Simpson-Querrey Institute, Northwestern University, 303 E. Superior St, Suite 11-131 Chicago, IL 60611-2875, USA
| |
Collapse
|
3
|
Kumar P, Sunita, Dubey KK, Shukla P. Whole-Cell Vaccine Preparation: Options and Perspectives. Methods Mol Biol 2021; 2183:249-266. [PMID: 32959248 DOI: 10.1007/978-1-0716-0795-4_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vaccines are biological preparations to elicit a specific immune response in individuals against the targetted microorganisms. The use of vaccines has caused the near eradication of many critical diseases and has had an everlasting impact on public health at a relatively low cost. Most of the vaccines developed today are based on techniques which were developed a long time ago. In the beginning, vaccines were prepared from tissue fluids obtained from infected animals or people, but at present, the scenario has changed with the development of vaccines from live or killed whole microorganisms and toxins or using genetic engineering approaches. Considerable efforts have been made in vaccine development, but there are still many diseases that need attention, and new technologies are being developed in vaccinology to combat them. In this chapter, we discuss different approaches for vaccine development, including the properties and preparation of whole-cell vaccines.
Collapse
Affiliation(s)
- Punit Kumar
- Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, India.,Department of Clinical Immunology, Allergology and Microbiology, Karaganda Medical University, 40 Gogol Street, Karaganda, Kazakhstan
| | - Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, India
| | - Kashyap Kumar Dubey
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, India.
| |
Collapse
|
4
|
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020; 11:283. [PMID: 32153587 PMCID: PMC7050619 DOI: 10.3389/fimmu.2020.00283] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.
Collapse
Affiliation(s)
- Kyle Saylor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- Locus Biosciences, Morrisville, NC, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- BioPharmaceutical Technology Department, GlaxoSmithKline, Rockville, MD, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Ghotloo S, Golsaz-Shirazi F, Amiri MM, Jeddi-Tehrani M, Shokri F. Epitope Mapping of Tetanus Toxin by Monoclonal Antibodies: Implication for Immunotherapy and Vaccine Design. Neurotox Res 2019; 37:239-249. [PMID: 31410686 DOI: 10.1007/s12640-019-00096-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 01/05/2023]
Abstract
Tetanus as a life-threatening disease is characterized by muscle spasm. The disease is caused by the neurotoxin of Clostridium tetani. Active form of tetanus neurotoxin is composed of the light chain (fragment A) and the heavy chain. Fragment A is a zinc metalloprotease, which cleaves the neuronal soluble N-ethylmaleimide-sensitive attachment receptor (SNARE) protein, leading to the blockade of inhibitory neurotransmitter release and subsequent generalized muscular spasm. Two functional domains of the heavy chain are fragment C, which is required for neuronal cell binding of the toxin and subsequent endocytosis into the vesicles, and fragment B, which is important for fragment A translocation across the vesicular membrane into the neuronal cytosol. Currently, polyclonal immunoglobulins against tetanus neurotoxin obtained from human plasma of hyper-immunized donors are utilized for passive immunotherapy of tetanus; however, these preparations have many disadvantages including high lot-to-lot heterogeneity, possibility of transmitting microbial agents, and the adverse reactions to the other proteins in the plasma. Neutralizing anti-tetanus neurotoxin monoclonal antibodies (MAbs) lack these drawbacks and could be considered as a suitable alternative for passive immunotherapy of tetanus. In this review, we provide an overview of the literature discussing epitope mapping of the published neutralizing MAbs against tetanus toxin.
Collapse
Affiliation(s)
- Somayeh Ghotloo
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran. .,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Park JB, Simpson LL. Progress toward development of an inhalation vaccine against botulinum toxin. Expert Rev Vaccines 2014; 3:477-87. [PMID: 15270652 DOI: 10.1586/14760584.3.4.477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The looming threat of bioterrorism has enhanced interest in the development of vaccines against agents such as botulinum toxin. This in turn has stimulated efforts to create vaccines that are effective by the oral and inhalation routes. Recently, considerable progress has been made in creating an inhalation vaccine against botulism. This work stems from the discovery that a polypeptide that represents a third of the toxin molecule retains the ability to be adsorbed from the airway and to evoke an immune response but retains none of the adverse effects of the native toxin. Interestingly, this polypeptide can also serve as a carrier molecule in the creation of inhalation vaccines against other pathogens.
Collapse
Affiliation(s)
- Jong-Beak Park
- Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Jefferson Medical College, 1020 Locust Street, Room 314, Philadelphia, PA 19107, USA
| | | |
Collapse
|
7
|
Höltje M, Schulze S, Strotmeier J, Mahrhold S, Richter K, Binz T, Bigalke H, Ahnert-Hilger G, Rummel A. Exchanging the minimal cell binding fragments of tetanus neurotoxin in botulinum neurotoxin A and B impacts their toxicity at the neuromuscular junction and central neurons. Toxicon 2013; 75:108-21. [DOI: 10.1016/j.toxicon.2013.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/09/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022]
|
8
|
Jang JI, Kim JS, Eom JS, Kim HG, Kim BH, Lim S, Bang IS, Park YK. Expression and delivery of tetanus toxin fragment C fused to the N-terminal domain of SipB enhances specific immune responses in mice. Microbiol Immunol 2013; 56:595-604. [PMID: 22708880 DOI: 10.1111/j.1348-0421.2012.00480.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Live attenuated bacteria can be used as a carrier for the delivery of foreign antigens to a host's immune system. The N-terminal domain of SipB, a translocon protein of the type III secretion system of Salmonella enterica serovar Typhimurium, is required for secretion and outer membrane localization. In the present study, vaccine plasmids for antigen delivery in which the non-toxic tetanus toxin fragment C (TTFC), which contains a T cell epitope, is fused to the N-terminal 160 amino acids of SipB were developed. It was found that the recombinant proteins are secreted into the culture media and localized to the bacterial surface. TTFC-specific antibody responses are significantly increased in mice orally immunized with attenuated S. Typhimurium BRD509 strains carrying TTFC delivery plasmids. When the TTFC delivery cassettes were introduced into a low copy vector, the plasmid was stably maintained in the BRD509 strain and induced an immune response to the TTFC antigen in mice. These results suggest that expression and delivery of heterologous antigens fused to the N-terminus of SipB enhance the induction of antigen-specific immune responses, and that the N-terminal domain of SipB can be used as a versatile delivery system for foreign antigens.
Collapse
Affiliation(s)
- Jung Im Jang
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Toivonen JM, Oliván S, Osta R. Tetanus toxin C-fragment: the courier and the cure? Toxins (Basel) 2010; 2:2622-44. [PMID: 22069568 PMCID: PMC3153173 DOI: 10.3390/toxins2112622] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 10/28/2010] [Indexed: 12/14/2022] Open
Abstract
In many neurological disorders strategies for a specific delivery of a biological activity from the periphery to the central nervous system (CNS) remains a considerable challenge for successful therapy. Reporter assays have established that the non-toxic C-fragment of tetanus toxin (TTC), provided either as protein or encoded by non-viral naked DNA plasmid, binds pre-synaptic motor neuron terminals and can facilitate the retrograde axonal transport of desired therapeutic molecules to the CNS. Alleviated symptoms in animal models of neurological diseases upon delivery of therapeutic molecules offer a hopeful prospect for TTC therapy. This review focuses on what has been learned on TTC-mediated neuronal targeting, and discusses the recent discovery that, instead of being merely a carrier molecule, TTC itself may well harbor neuroprotective properties.
Collapse
Affiliation(s)
- Janne M Toivonen
- LAGENBIO-I3A, Veterinary School, Aragón Institute of Health Sciences (IACS), Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | | | | |
Collapse
|
10
|
Abstract
Tetanus neurotoxin and botulinum neurotoxins are the causative agents of tetanus and botulism. They block the release of neurotransmitters from synaptic vesicles in susceptible animals and man and act in nanogram quantities because of their ability to specifically attack motoneurons. They developed an ingenious strategy to enter neurons. This involves a concentration step via complex polysialo gangliosides at the plasma membrane and the uptake and ride in recycling synaptic vesicles initiated by binding to a specific protein receptor. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had misused before to enter their target cells, via specific cleavage of protein core components of the cellular membrane fusion machinery. The uptake of four out of seven known botulinum neurotoxins into synaptic vesicles has been demonstrated to rely on binding to intravesicular segments of the synaptic vesicle proteins synaptotagmin or synaptic vesicle protein 2. This review summarizes the present knowledge about the cell receptor molecules and the mode of toxin-receptor interaction that enables the toxins' sophisticated access to their site of action.
Collapse
Affiliation(s)
- Thomas Binz
- Institut für Biochemie, Medizinische Hochschule Hannover, Hannover, Germany.
| | | |
Collapse
|
11
|
Brunger AT, Rummel A. Receptor and substrate interactions of clostridial neurotoxins. Toxicon 2009; 54:550-60. [PMID: 19268493 PMCID: PMC2756235 DOI: 10.1016/j.toxicon.2008.12.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 01/27/2023]
Abstract
The high potency of clostridial neurotoxins relies predominantly on their neurospecific binding and specific hydrolysis of SNARE proteins. Their multi-step mode of mechanism can be ascribed to their multi-domain three-dimensional structure. The C-terminal H(CC)-domain interacts subsequently with complex polysialo-gangliosides such as GT1b and a synaptic vesicle protein receptor via two neighbouring binding sites, resulting in highly specific uptake of the neurotoxins at synapses of cholinergic motoneurons. After its translocation the enzymatically active light chain specifically hydrolyses specific SNARE proteins, preventing SNARE complex assembly and thereby blocking exocytosis of neurotransmitter.
Collapse
Affiliation(s)
- Axel T Brunger
- The Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University, J.H. Clark Center, E300C, 318 Campus Drive, Stanford, CA 94305, USA.
| | | |
Collapse
|
12
|
Larsen KE, Benn SC, Ay I, Chian RJ, Celia SA, Remington MP, Bejarano M, Liu M, Ross J, Carmillo P, Sah D, Phillips KA, Sulzer D, Pepinsky RB, Fishman PS, Brown RH, Francis JW. A glial cell line-derived neurotrophic factor (GDNF):tetanus toxin fragment C protein conjugate improves delivery of GDNF to spinal cord motor neurons in mice. Brain Res 2006; 1120:1-12. [PMID: 17020749 DOI: 10.1016/j.brainres.2006.08.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 08/07/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has shown robust neuroprotective and neuroreparative activities in various animal models of Parkinson's Disease or amyotrophic lateral sclerosis (ALS). The successful use of GDNF as a therapeutic in humans, however, appears to have been hindered by its poor bioavailability to target neurons in the central nervous system (CNS). To improve delivery of exogenous GDNF protein to CNS motor neurons, we employed chemical conjugation techniques to link recombinant human GDNF to the neuronal binding fragment of tetanus toxin (tetanus toxin fragment C, or TTC). The predominant species present in the purified conjugate sample, GDNF:TTC, had a molecular weight of approximately 80 kDa as determined by non-reducing SDS-PAGE. Like GDNF, addition of GDNF:TTC to culture media of neuroblastoma cells expressing GFRalpha-1/c-RET produced a dose-dependent increase in cellular phospho-c-RET levels. Treatment of cultured midbrain dopaminergic neurons with either GDNF or the conjugate similarly promoted both DA neuron survival and neurite outgrowth. However, in contrast to mice treated with GDNF by intramuscular injection, mice receiving GDNF:TTC revealed intense GDNF immunostaining associated with spinal cord motor neurons in fixed tissue sections. That GDNF:TTC provided neuroprotection of axotomized motor neurons in neonatal rats further revealed that the conjugate retained its GDNF activity in vivo. These results indicate that TTC can serve as a non-viral vehicle to substantially improve the delivery of functionally active growth factors to motor neurons in the mammalian CNS.
Collapse
Affiliation(s)
- Kristin E Larsen
- Columbia University, Department of Neurology, New York, NY 10032, and Cecil B. Day Laboratory for Neuromuscular Research, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Benn SC, Ay I, Bastia E, Chian RJ, Celia SA, Pepinsky RB, Fishman PS, Brown RH, Francis JW. Tetanus toxin fragment C fusion facilitates protein delivery to CNS neurons from cerebrospinal fluid in mice. J Neurochem 2005; 95:1118-31. [PMID: 16271047 DOI: 10.1111/j.1471-4159.2005.03459.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To improve protein delivery to the CNS following intracerebroventricular administration, we compared the distribution of a human Cu/Zn superoxide dismutase:tetanus toxin fragment C fusion protein (SOD1:TTC) in mouse brain and spinal cord with that of tetanus toxin fragment C (TTC) or human SOD1 (hSOD1) alone, following continuous infusion into the lateral ventricle. Mice infused with TTC or SOD1:TTC showed intense anti-TTC or anti-hSOD1 labeling, respectively, throughout the CNS. In contrast, animals treated with hSOD1 revealed moderate staining in periventricular tissues. In spinal cord sections from animals infused with SOD1:TTC, the fusion protein was found in neuron nuclear antigen-positive (NeuN+) neurons and not glial fibrillary acidic protein-positive (GFAP+) astrocytes. The percentage of NeuN+ ventral horn cells that were co-labeled with hSOD1 antibody was greater in mice treated with SOD1:TTC (cervical cord = 73 +/- 8.5%; lumbar cord = 62 +/- 7.7%) than in mice treated with hSOD1 alone (cervical cord = 15 +/- 3.9%; lumbar cord = 27 +/-4.7%). Enzyme-linked immunosorbent assay for hSOD1 further demonstrated that SOD1:TTC-infused mice had higher levels of immunoreactive hSOD1 in CNS tissue extracts than hSOD1-infused mice. Following 24 h of drug washout, tissue extracts from SOD1:TTC-treated mice still contained substantial amounts of hSOD1, while extracts from hSOD1-treated mice lacked detectable hSOD1. Immunoprecipitation of SOD1:TTC from these extracts using anti-TTC antibody revealed that the recovered fusion protein was structurally intact and enzymatically active. These results indicate that TTC may serve as a useful prototype for development as a non-viral vehicle for improving delivery of therapeutic proteins to the CNS.
Collapse
Affiliation(s)
- Susanna C Benn
- Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abreu PAE, Miyasato PA, Vilar MM, Dias WO, Ho PL, Tendler M, Nascimento ALTO. Sm14 of Schistosoma mansoni in fusion with tetanus toxin fragment C induces immunoprotection against tetanus and schistosomiasis in mice. Infect Immun 2004; 72:5931-7. [PMID: 15385496 PMCID: PMC517564 DOI: 10.1128/iai.72.10.5931-5937.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed vectors that permit the expression in Escherichia coli of Schistosoma mansoni fatty acid-binding protein 14 (Sm14) in fusion with the nontoxic, but highly immunogenic, tetanus toxin fragment C (TTFC). The recombinant six-His-tagged proteins were purified by nickel affinity chromatography and used in immunization and challenge assays. Animals inoculated with TTFC in fusion with or coadministered with Sm14 showed high levels of tetanus toxin antibodies, while animals inoculated with Sm14 in fusion with or coadministered with TTFC showed high levels of Sm14 antibodies. In both cases, there were no changes in the type of immune response (Th2) obtained with the fusion proteins compared to those obtained with the nonfused proteins. Mice immunized with the recombinant proteins (TTFC in fusion with or coadministered with Sm14) survived the challenge with tetanus toxin and did not show any symptoms of the disease. Control animals inoculated with either phosphate-buffered saline (PBS) or Sm14 died with severe symptoms of tetanus after 24 h. Mice immunized with the recombinant proteins (Sm14 in fusion with or coadministered with TTFC) showed a 50% reduction in worm burden when they were challenged with S. mansoni cercariae, while control animals inoculated with either PBS or TTFC were not protected. The results show that the expression of other antigens in fusion at the carboxy terminus of TTFC is feasible for the development of a multivalent recombinant vaccine.
Collapse
Affiliation(s)
- Patrícia A E Abreu
- Centro de Biotecnologia, Instituto Butantan, Universidade de São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Mauriello EMF, Duc LH, Isticato R, Cangiano G, Hong HA, De Felice M, Ricca E, Cutting SM. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 2004; 22:1177-87. [PMID: 15003646 DOI: 10.1016/j.vaccine.2003.09.031] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 09/17/2003] [Accepted: 09/24/2003] [Indexed: 11/16/2022]
Abstract
We report the use of CotC, a major component of the Bacillus subtilis spore coat, as a fusion partner for the expression of two heterologous antigens on the spore coat. Recombinant spores expressing tetanus toxin fragment C (TTFC) of Clostridium tetani or the B subunit of the heat-labile toxin of Escherichia coli (LTB) were used for oral dosing and shown to generate specific systemic and mucosal immune responses in a murine model. This report, expanding the previously described expression of TTFC on the spore surface by fusion to CotB [J Bacteriol 183 (2001) 6294] and its use for oral vaccination [Infect Immun 71 (2003) 2810] shows that different antigens can be successfully presented on the spore coat and supports the use of the spore as an efficient vehicle for mucosal immunisation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/biosynthesis
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/immunology
- Bacillus subtilis/chemistry
- Bacillus subtilis/immunology
- Bacterial Toxins/immunology
- Blotting, Western
- Chromosomes, Bacterial/immunology
- Cyclohexanones/chemistry
- Cyclohexanones/immunology
- Enterotoxins/immunology
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli Proteins
- Female
- Genes, Bacterial/genetics
- Immunity, Mucosal/immunology
- Immunization
- Mice
- Mice, Inbred C57BL
- Neutralization Tests
- Peptide Fragments/immunology
- Recombinant Fusion Proteins/immunology
- Spores, Bacterial/chemistry
- Spores, Bacterial/immunology
- Tetanus/immunology
- Tetanus Toxin/immunology
- Transformation, Bacterial
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Emilia M F Mauriello
- Dipartimento di Fisiologia Generale ed Ambientale, Sezione di Microbiologia, Università Federico II, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
For the first time, bacterial spores have been evaluated as vaccine vehicles. Bacillus subtilis spores displaying the tetanus toxin fragment C (TTFC) antigen were used for oral and intranasal immunization and were shown to generate mucosal and systemic responses in a murine model. TTFC-specific immunoglobulin G titers in serum (determined by enzyme-linked immunosorbent assay) reached significant levels 33 days after oral dosing, while responses against the spore coat proteins were relatively low. Tetanus antitoxin levels were sufficient to protect against an otherwise lethal challenge of tetanus toxin (20 50% lethal doses). The robustness and long-term storage properties of bacterial spores, coupled with simplified genetic manipulation and cost-effective manufacturing, make them particularly attractive vehicles for oral and intranasal vaccination.
Collapse
Affiliation(s)
- Le H Duc
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Rummel A, Bade S, Alves J, Bigalke H, Binz T. Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 2003; 326:835-47. [PMID: 12581644 DOI: 10.1016/s0022-2836(02)01403-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetanus neurotoxin binds via its carboxyl-terminal H(C)-fragment selectively to neurons mediated by complex gangliosides. We investigated the lactose and sialic acid binding pockets of four recently discovered potential binding sites employing site-directed mutagenesis. Substitution of residues in the lactose binding pocket drastically decreased the binding of the H(C)-fragment to immobilized gangliosides and to rat brain synaptosomes as well as the inhibitory action of recombinant full length tetanus neurotoxin on exocytosis at peripheral nerves. The conserved motif of S(1287)XWY(1290) em leader G(1300) assisted by N1219, D1222, and H1271 within the lactose binding site comprises a typical sugar binding pocket, as also present, for example, in cholera toxin. Replacement of the main residue of the sialic acid binding site, R1226, again caused a dramatic decline in binding affinity and neurotoxicity. Since the structural integrity of the H(C)-fragment mutants was verified by circular dichroism and fluorescence spectroscopy, these data provide the first biochemical evidence that two carbohydrate interaction sites participate in the binding and uptake process of tetanus neurotoxin. The simultaneous binding of one ganglioside molecule to each of the two binding sites was demonstrated by mass spectroscopy studies, whereas ganglioside-mediated linkage of native tetanus neurotoxin molecules was ruled out by size exclusion chromatography. Hence, a subsequent displacement of one ganglioside by a glycoprotein receptor is discussed.
Collapse
Affiliation(s)
- Andreas Rummel
- Institute of Biochemistry, Medizinische Hochschule Hannover, D-30623 Hannover, Germany
| | | | | | | | | |
Collapse
|
18
|
Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, van Wijk KJ, Dougan G, Maliga P. Expression of tetanus toxin Fragment C in tobacco chloroplasts. Nucleic Acids Res 2003; 31:1174-9. [PMID: 12582236 PMCID: PMC150239 DOI: 10.1093/nar/gkg221] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Revised: 12/05/2002] [Accepted: 12/13/2002] [Indexed: 11/14/2022] Open
Abstract
Fragment C (TetC) is a non-toxic 47 kDa polypeptide fragment of tetanus toxin that can be used as a subunit vaccine against tetanus. Expression of TetC in Escherichia coli and yeast was dependent on the availability of synthetic genes that were required to improve translation efficiency and stabilize the mRNA. To explore the feasibility of producing TetC in tobacco leaves, we attempted expression of both the bacterial high-AT (72.3% AT) and the synthetic higher-GC genes (52.5% AT) in tobacco chloroplasts. We report here that the bacterial high-AT mRNA is stable in tobacco chloroplasts. Significant TetC accumulation was obtained from both genes, 25 and 10% of total soluble cellular protein, respectively, proving the versatility of plastids for expression of unmodified high-AT and high-GC genes. Mucosal immunization of mice with the plastid- produced TetC induced protective levels of TetC antibodies. Thus, expression of TetC in chloroplasts provides a potential route towards the development of a safe, plant-based tetanus vaccine for nasal and oral applications.
Collapse
Affiliation(s)
- John S Tregoning
- Waksman Institute, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fotinou C, Emsley P, Black I, Ando H, Ishida H, Kiso M, Sinha KA, Fairweather NF, Isaacs NW. The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 2001; 276:32274-81. [PMID: 11418600 DOI: 10.1074/jbc.m103285200] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetanus toxin, a member of the family of Clostridial neurotoxins, is one of the most potent toxins known. The crystal structure of the complex of the COOH-terminal fragment of the heavy chain with an analogue of its ganglioside receptor, GT1b, provides the first direct identification and characterization of the ganglioside-binding sites. The ganglioside induces cross-linking by binding to two distinct sites on the Hc molecule. The structure sheds new light on the binding of Clostridial neurotoxins to receptors on neuronal cells and provides important information relevant to the design of anti-tetanus and anti-botulism therapeutic agents.
Collapse
Affiliation(s)
- C Fotinou
- Department of Chemistry, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li Y, Foran P, Lawrence G, Mohammed N, Chan-Kwo-Chion CK, Lisk G, Aoki R, Dolly O. Recombinant forms of tetanus toxin engineered for examining and exploiting neuronal trafficking pathways. J Biol Chem 2001; 276:31394-401. [PMID: 11402045 DOI: 10.1074/jbc.m103517200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetanus toxin is a fascinating, multifunctional protein that binds to peripheral neurons, undergoes retrograde transport and trans-synaptic transfer to central inhibitory neurons where it blocks transmitter release, thereby, causing spastic paralysis. As a pre-requisite for exploiting its unique trafficking properties, a novel recombinant single chain was expressed at a high level in Escherichia coli as a soluble, easily purifiable protein. It could be activated with enterokinase to produce a dichain that matched native toxin in terms of proteolytic and neuroinhibitory activities, as well as induction of spastic paralysis in mice. Importantly, nicking was not essential for protease activity. Substitution of Glu(234) by Ala created a protease-deficient atoxic form, which blocked the neuroparalytic action of tetanus toxin in vitro, with equal potency to its heavy chain; but, the mutant proved >30-fold more potent in preventing tetanus in mice. This observation unveils differences between the intoxication processes resulting from retrograde transport of toxin in vivo and its local uptake into peripheral or central nerves in vitro, dispelling a popularly held belief that the heavy chain is the sole determinant for efficient trafficking. Thus, this innocuous mutant may be a useful vehicle, superior to the heavy chain, for drug delivery to central neurons.
Collapse
Affiliation(s)
- Y Li
- Department of Biochemistry, Imperial College, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sinha K, Box M, Lalli G, Schiavo G, Schneider H, Groves M, Siligardi G, Fairweather N. Analysis of mutants of tetanus toxin Hc fragment: ganglioside binding, cell binding and retrograde axonal transport properties. Mol Microbiol 2000; 37:1041-51. [PMID: 10972823 DOI: 10.1046/j.1365-2958.2000.02091.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tetanus toxin binds neuronal tissue prior to internalization and trafficking to the central nervous system. Binding of the carboxy-terminal 50 kDa HC fragment of tetanus toxin to polysialogangliosides is important for this initial cell binding step. Using the three-dimensional structure of HC, mutants were designed to investigate the role of individual residues in ganglioside binding. Mutant proteins were tested for binding to GT1b gangliosides, to primary motoneurons and for their ability to undergo retrograde transport in mice. Two classes of mutant were obtained: (i) those containing deletions in loop regions within the C-terminal beta-trefoil domain which showed greatly reduced ganglioside and cell binding and did not undergo retrograde transport and (ii) those that showed reduced ganglioside binding, but retained primary neuronal cell binding and retrograde transport. The second class included point mutants of Histidine-1293, previously implicated in GT1b binding. Our deletion analysis is entirely consistent with recent structural studies which have identified sugar-binding sites in the immediate vicinity of the residues identified by mutagenesis. These results demonstrate that ganglioside binding can be severely impaired without abolishing cell binding and intracellular trafficking of tetanus toxin.
Collapse
Affiliation(s)
- K Sinha
- Department of Biochemistry, Imperial College, South Kensington, London SW7 2AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schneider H, Groves M, Mühle C, Reynolds PN, Knight A, Themis M, Carvajal J, Scaravilli F, Curiel DT, Fairweather NF, Coutelle C. Retargeting of adenoviral vectors to neurons using the Hc fragment of tetanus toxin. Gene Ther 2000; 7:1584-92. [PMID: 11021597 DOI: 10.1038/sj.gt.3301270] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Hc fragment of tetanus toxin (Hc) retains the specific nerve cell binding and transport properties of the holotoxin, but lacks any toxicity. We are investigating the potential for utilising its neurotropism for targeted gene delivery to the central nervous system. Previously we reported the use of Hc-polylysine conjugates for selective gene transfer into neuronal cells in vitro. However, as attempts to apply these constructs in vivo were not successful, we have extended these studies to modification of the tropism of adenoviral vectors. Either Hc-polylysine conjugates or the Fab fragment of a neutralising anti-knob antibody covalently bound to Hc were attached to the virus. Infection of neuronal and non-neuronal cell lines with retargeted virus showed highly increased neuronal cell selectivity, but no significant enhancement of gene delivery into these cells. High concentrations of free Hc blocked the infectivity of the retargeted vector efficiently. Intramuscular injection of retargeted virus into mouse tongues resulted in selective gene transfer to the neurons of the hypoglossal nucleus, where no pathological changes were observed. As differentiated neurons do not undergo cell division, appropriate vectors carrying a thymidine kinase gene, which allows selective elimination of dividing cells, may be exploitable for the treatment of tumours of the central nervous system. The demonstrated suitability of the Hc fragment of tetanus toxin as targeting moiety for viral vectors also indicates a potential for gene therapy of inherited neurodegenerative diseases such as spinal muscular atrophy.
Collapse
Affiliation(s)
- H Schneider
- Division of Biomedical Sciences, Imperial College School of Medicine, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Francis JW, Brown RH, Figueiredo D, Remington MP, Castillo O, Schwarzschild MA, Fishman PS, Murphy JR, vanderSpek JC. Enhancement of diphtheria toxin potency by replacement of the receptor binding domain with tetanus toxin C-fragment: a potential vector for delivering heterologous proteins to neurons. J Neurochem 2000; 74:2528-36. [PMID: 10820215 DOI: 10.1046/j.1471-4159.2000.0742528.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study describes the expression, purification, and characterization of a recombinant fusion toxin, DAB(389)TTC, composed of the catalytic and membrane translocation domains of diphtheria toxin (DAB(389)) linked to the receptor binding fragment of tetanus toxin (C-fragment). As determined by its ability to inhibit cellular protein synthesis in primary neuron cultures, DAB(389)TTC was approximately 1,000-fold more cytotoxic than native diphtheria toxin or the previously described fusion toxin, DAB(389)MSH. The cytotoxic effect of DAB(389)TTC on cultured cells was specific toward neuronal-type cells and was blocked by coincubation of the chimeric toxin with tetanus antitoxin. The toxicity of DAB(389)TTC, like that of diphtheria toxin, was dependent on passage through an acidic compartment and ADP-ribosyltransferase activity of the DAB(389) catalytic fragment. These results suggest that a catalytically inactive form of DAB(389)TTC may be useful as a nonviral vehicle to deliver exogenous proteins to the cytosolic compartment of neurons.
Collapse
Affiliation(s)
- J W Francis
- Cecil B. Day Center for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Emsley P, Fotinou C, Black I, Fairweather NF, Charles IG, Watts C, Hewitt E, Isaacs NW. The structures of the H(C) fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J Biol Chem 2000; 275:8889-94. [PMID: 10722735 DOI: 10.1074/jbc.275.12.8889] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The entry of tetanus neurotoxin into neuronal cells proceeds through the initial binding of the toxin to gangliosides on the cell surface. The carboxyl-terminal fragment of the heavy chain of tetanus neurotoxin contains the ganglioside-binding site, which has not yet been fully characterized. The crystal structures of native H(C) and of H(C) soaked with carbohydrates reveal a number of binding sites and provide insight into the possible mode of ganglioside binding.
Collapse
Affiliation(s)
- P Emsley
- Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mesnage S, Weber-Levy M, Haustant M, Mock M, Fouet A. Cell surface-exposed tetanus toxin fragment C produced by recombinant Bacillus anthracis protects against tetanus toxin. Infect Immun 1999; 67:4847-50. [PMID: 10456940 PMCID: PMC96818 DOI: 10.1128/iai.67.9.4847-4850.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis, the causal agent of anthrax, synthesizes two surface layer (S-layer) proteins, EA1 and Sap, which account for 5 to 10% of total protein and are expressed in vivo. A recombinant B. anthracis strain was constructed by integrating into the chromosome a translational fusion harboring the DNA fragments encoding the cell wall-targeting domain of the S-layer protein EA1 and tetanus toxin fragment C (ToxC). This construct was expressed under the control of the promoter of the S-layer component gene. The hybrid protein was stably expressed on the cell surface of the bacterium. Mice were immunized with bacilli of the corresponding strain, and the hybrid protein elicited a humoral response to ToxC. This immune response was sufficient to protect mice against tetanus toxin challenge. Thus, the strategy developed in this study may make it possible to generate multivalent live veterinary vaccines, using the S-layer protein genes as a cell surface display system.
Collapse
Affiliation(s)
- S Mesnage
- Toxines et Pathogénie Bactériennes, URA 1858, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France.
| | | | | | | | | |
Collapse
|
26
|
Knight A, Carvajal J, Schneider H, Coutelle C, Chamberlain S, Fairweather N. Non-viral neuronal gene delivery mediated by the HC fragment of tetanus toxin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:762-9. [PMID: 10092862 DOI: 10.1046/j.1432-1327.1999.00108.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many inherited neurological diseases and cancers could potentially benefit from efficient targeted gene delivery to neurons of the central nervous system. The nontoxic fragment C (HC) of tetanus toxin retains the specific nerve cell binding and transport properties of tetanus holotoxin. The HC fragment has previously been used to promote the uptake of attached proteins such as horseradish peroxidase, beta-galactosidase and superoxide dismutase into neuronal cells in vitro and in vivo. We report the use of purified recombinant HC fragment produced in yeast and covalently bound to polylysine [poly(K)] to enable binding of DNA. We demonstrate that when used to transfect cells, this construct results in nonviral gene delivery and marker gene expression in vitro in N18 RE 105 cells (a neuroblastoma x glioma mouse/rat hybrid cell line) and F98 (a glioma cell line). Transfection was dependent on HC and was neuronal cell type specific. HC may prove a useful targeting ligand for future neuronal gene therapy.
Collapse
Affiliation(s)
- A Knight
- Section of Molecular Genetics, ICSM, London, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Marvaud JC, Eisel U, Binz T, Niemann H, Popoff MR. TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to botR. Infect Immun 1998; 66:5698-702. [PMID: 9826344 PMCID: PMC108720 DOI: 10.1128/iai.66.12.5698-5702.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The TetR gene immediately upstream from the tetanus toxin (TeTx) gene was characterized. It encodes a 21,562-Da protein which is related (50 to 65% identity) to the equivalent genes (botR) in Clostridium botulinum. TetR has the feature of a DNA binding protein with a basic pI (9.53). It contains a helix-turn-helix motif and shows 29% identity with other putative regulatory genes in Clostridium, i.e., uviA from C. perfringens and txeR from C. difficile. We report for the first time the transformation of C. tetani by electroporation, which permitted us to investigate the function of tetR. Overexpression of tetR in C. tetani induced an increase in TeTx production and in the level of the corresponding mRNA. This indicates that TetR is a transcriptional activator of the TeTx gene. Overexpression of botR/A (60% identity with TetR at the amino acid level) in C. tetani induced an increase in TeTx production comparable to that for overexpression of tetR. However, botR/C (50% identity with TetR at the amino acid level) was less efficient. This supports that TetR positively regulates the TeTx gene in C. tetani and that a conserved mechanism of regulation of the neurotoxin genes is involved in C. tetani and C. botulinum.
Collapse
Affiliation(s)
- J C Marvaud
- Unité des Toxines Microbiennes, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
28
|
Figueiredo DM, Hallewell RA, Chen LL, Fairweather NF, Dougan G, Savitt JM, Parks DA, Fishman PS. Delivery of recombinant tetanus-superoxide dismutase proteins to central nervous system neurons by retrograde axonal transport. Exp Neurol 1997; 145:546-54. [PMID: 9217090 DOI: 10.1006/exnr.1997.6490] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nontoxic C fragment of tetanus toxin (TC) can transport other proteins from the circulation to central nervous system (CNS) motor neurons. Increased levels of CuZn superoxide dismutase (SOD) are protective in experimental models of stroke and Parkinson's disease, whereas mutations in SOD can cause motor neuron disease. We have linked TC to SOD and purified the active recombinant proteins in both the TC-SOD and SOD-TC orientations. Light microscopic immunohistochemistry and quantitative enzyme-linked immunosorbant assays (ELISA) of mouse brainstem, after intramuscular injection, demonstrate that the fusion proteins undergo retrograde axonal transport and transsynaptic transfer as efficiently as TC alone.
Collapse
Affiliation(s)
- D M Figueiredo
- Department of Biochemistry, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Anderson R, Gao XM, Papakonstantinopoulou A, Roberts M, Dougan G. Immune response in mice following immunization with DNA encoding fragment C of tetanus toxin. Infect Immun 1996; 64:3168-73. [PMID: 8757849 PMCID: PMC174203 DOI: 10.1128/iai.64.8.3168-3173.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tetanus toxin is a potent neurotoxin synthesized by Clostridium tetani. Immunization with fragment C protein, the nontoxic C-terminal domain of tetanus toxin, will protect mice against lethal challenge with tetanus toxin. A synthetic gene encoding fragment C (tetC) had previously been shown to express high levels of fragment C in Saccharomyces cerevisiae. A plasmid, pcDNA3/tetC, which encodes the synthetic tetC gene expressed under the control of the human cytomegalovirus major intermediate-early promoter/enhancer region, was constructed. Expression of fragment C was observed in eukaryotic cells growing in vitro following transfection with pcDNA3/tetC. The immune response induced by intramuscular immunization with pure pcDNA3/tetC DNA was evaluated in a murine model. Anti-fragment C serum immunoglobulin and proliferative responses in splenocytes were observed in BALB/c mice following two immunizations with pcDNA3/tetC. The major immunoglobulin G subclass that recognized fragment C was immunoglobulin G2a, and the stimulated splenocytes secreted high levels of gamma interferon. Immunity to tetanus is dependent on the presence of neutralizing serum antibodies against tetanus toxin. Sufficient anti-fragment C serum immunoglobulins were induced by DNA-mediated immunization to protect mice against lethal challenge with tetanus toxin.
Collapse
Affiliation(s)
- R Anderson
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | | | | | |
Collapse
|