1
|
Wu DQ, Guo YF, Zou Y, Tang XT, Zhang WY, Di WD. Immune modulation of buffalo peripheral blood mononuclear cells by two asparaginyl endopeptidases from Fasciola gigantica. Parasit Vectors 2024; 17:516. [PMID: 39696651 DOI: 10.1186/s13071-024-06570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Fascioliasis is a zoonotic parasitic disease caused by Fasciola hepatica and Fasciola gigantica, which poses a serious threat to global public health and livestock farming. Fasciola gigantica secretes and excretes various components to manipulate the immune response, thereby enhancing its invasion, migration, and survival in vivo. However, the roles of specific components in immune modulation, such as asparagine endopeptidase, remain unknown. METHODS The transcriptional abundance of members of the asparagine endopeptidase family (also known as the legumain family) from F. gigantica was analyzed. Two highly transcribed asparagine endopeptidases in metacercariae, juveniles and adults were cloned, and their recombinant proteins-recombinant F. gigantica legumain (rFgLGMN-1) and (rFgLGMN-2)-were expressed in prokaryotic expression system. Their regulatory effects on buffalo peripheral blood mononuclear cells (PBMCs), including proliferation, migration, total nitric oxide (NO) production, cytokine secretion, and phagocytosis were explored in vitro. RESULTS Ten members of the legumain family were detected in F. gigantica, among of which FgLGMN-1 and FgLGMN-2 exhibited high transcription levels in juveniles and adults. The isolation of sequences indicated that FgLGMN-1 encodes 409 amino acids, while FgLGMN-2 encodes 403 amino acids. Both recombinant FgLGMN-1 (rFgLGMN-1) and rFgLGMN-2 were recognized by serum from buffaloes infected with F. gigantica. Both rFgLGMN-1 and rFgLGMN-2 inhibited the proliferation of PBMCs, and rFgLGMN-1 also inhibited the migration of PBMCs. While rFgLGMN-1 increased the production of total NO, rFgLGMN-2 decreased NO production. Both rFgLGMN-1 and rFgLGMN-2 increased the transcription of the cytokines interleukin-10 and transforming growth factor β. The effect of rFgLGMN-1 and rFgLGMN-2 on the phagocytosis of PBMCs varied depending on their concentrations. CONCLUSIONS rFgLGMN-1 and rFgLGMN-2 modulate several cellular and immunological functions of PBMCs, and exhibited distinct regulatory effects on these in vitro, which indicated that they may play roles in immune modulation and facilitate fluke development. However, due to uncertainties associated with in vitro experiments, further studies are necessary to elucidate the precise functions of these legumains.
Collapse
Affiliation(s)
- Dong-Qi Wu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yan-Feng Guo
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu Zou
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Ting Tang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei-Yu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wen-Da Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
2
|
Cheng WH, Chen RM, Ong SC, Yeh YM, Huang PJ, Lee CC. Interaction of human neutrophils with Trichomonas vaginalis protozoan highlights lactoferrin secretion. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00210-X. [PMID: 39551635 DOI: 10.1016/j.jmii.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Neutrophils are vital constituents of the immune response in the vaginal environment, playing a pivotal role in the defense against trichomoniasis. Earlier studies have shown that Trichomonas vaginalis (T. vaginalis) can release leukotriene B4 (LTB4), a molecule that attracts and activates neutrophils. Additionally, secretory products from this parasite can induce the production of interleukin-8 (IL-8) in mast cells and neutrophils, which further recruits neutrophils to the infection site. The precise reasons behind T. vaginalis actively promoting interaction between parasites and neutrophils rather than inhibiting the inflammatory response remain unclear. RESULTS In this study, we collected conditioned medium to elucidate the intricate dynamics between T. vaginalis and human neutrophils. We conducted a comprehensive profiling of soluble excretory/secretory proteins (ESPs), identifying 192 protein spots, of which 94 were successfully characterized through mass spectrometry analysis. Notably, the majority of induced ESPs from co-cultivation exhibited consistency with the trichomonad and neutrophil standalone groups, except for lactoferrin, which was observed exclusively following the interaction between neutrophils and T. vaginalis. The secretion of lactoferrin was determined to be a contact-dependent process. It was interesting to identify the ability of the iron-loaded lactoferrin to extend the survival time of T. vaginalis under iron-deficient conditions. CONCLUSIONS This study represents the first to identify the origin of lactoferrin during T. vaginalis infection, shedding light on the potential reason for T. vaginalis's ability to attract neutrophils to the infection site: the acquisition of the iron source, lactoferrin.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Ruei-Min Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan Dist., Taoyuan City, Taiwan
| | - Seow-Chin Ong
- Department of Parasitology, College of Medicine, Chang Gung University, Guishan Dist., Taoyuan City, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jung Huang
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan Dist., Taoyuan City, Taiwan
| | - Chi-Ching Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Guishan Dist., Taoyuan City, Taiwan
| |
Collapse
|
3
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Reyes-López M, Aguirre-Armenta B, Piña-Vázquez C, de la Garza M, Serrano-Luna J. Hemoglobin uptake and utilization by human protozoan parasites: a review. Front Cell Infect Microbiol 2023; 13:1150054. [PMID: 37360530 PMCID: PMC10289869 DOI: 10.3389/fcimb.2023.1150054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The protozoan disease is a major global health concern. Amoebiasis, leishmaniasis, Chagas disease, and African sleeping sickness affect several million people worldwide, leading to millions of deaths annually and immense social and economic problems. Iron is an essential nutrient for nearly all microbes, including invading pathogens. The majority of iron in mammalian hosts is stored intracellularly in proteins, such as ferritin and hemoglobin (Hb). Hb, present in blood erythrocytes, is a very important source of iron and amino acids for pathogenic microorganisms ranging from bacteria to eukaryotic pathogens, such as worms, protozoa, yeast, and fungi. These organisms have developed adequate mechanisms to obtain Hb or its byproducts (heme and globin) from the host. One of the major virulence factors identified in parasites is parasite-derived proteases, essential for host tissue degradation, immune evasion, and nutrient acquisition. The production of Hb-degrading proteases is a Hb uptake mechanism that degrades globin in amino acids and facilitates heme release. This review aims to provide an overview of the Hb and heme-uptake mechanisms utilized by human pathogenic protozoa to survive inside the host.
Collapse
|
5
|
León-Sicairos CR, Figueroa-Angulo EE, Calla-Choque JS, Arroyo R. The Non-Canonical Iron-Responsive Element of IRE-tvcp12 Hairpin Structure at the 3'-UTR of Trichomonas vaginalis TvCP12 mRNA That Binds TvHSP70 and TvACTN-3 Can Regulate mRNA Stability and Amount of Protein. Pathogens 2023; 12:pathogens12040586. [PMID: 37111472 PMCID: PMC10143249 DOI: 10.3390/pathogens12040586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Trichomonas vaginalis is one of the most common sexually transmitted parasites in humans. This protozoan has high iron requirements for growth, metabolism, and virulence. However, iron concentrations also differentially modulate T. vaginalis gene expression as in the genes encoding cysteine proteinases TvCP4 and TvCP12. Our goal was to identify the regulatory mechanism mediating the upregulation of tvcp12 under iron-restricted (IR) conditions. Here, we showed by RT-PCR, Western blot, and immunocytochemistry assays that IR conditions increase mRNA stability and amount of TvCP12. RNA electrophoretic mobility shift assay (REMSA), UV cross-linking, and competition assays demonstrated that a non-canonical iron-responsive element (IRE)-like structure at the 3'-untranslated region of the tvcp12 transcript (IRE-tvcp12) specifically binds to human iron regulatory proteins (IRPs) and to atypical RNA-binding cytoplasmic proteins from IR trichomonads, such as HSP70 and α-Actinin 3. These data were confirmed by REMSA supershift and Northwestern blot assays. Thus, our findings show that a positive gene expression regulation under IR conditions occurs at the posttranscriptional level possibly through RNA-protein interactions between atypical RNA-binding proteins and non-canonical IRE-like structures at the 3'-UTR of the transcript by a parallel mechanism to the mammalian IRE/IRP system that can be applied to other iron-regulated genes of T. vaginalis.
Collapse
Affiliation(s)
- Claudia R León-Sicairos
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Elisa E Figueroa-Angulo
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Jaeson S Calla-Choque
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Rossana Arroyo
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| |
Collapse
|
6
|
Molecular Targets Implicated in the Antiparasitic and Anti-Inflammatory Activity of the Phytochemical Curcumin in Trichomoniasis. Molecules 2020; 25:molecules25225321. [PMID: 33202696 PMCID: PMC7697451 DOI: 10.3390/molecules25225321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/03/2022] Open
Abstract
Trichomoniasis, is the most prevalent non-viral sexually transmitted disease worldwide. Although metronidazole (MDZ) is the recommended treatment, several strains of the parasite are resistant to MDZ, and new treatments are required. Curcumin (CUR) is a polyphenol with anti-inflammatory, antioxidant and antiparasitic properties. In this study, we evaluated the effects of CUR on two biochemical targets: on proteolytic activity and hydrogenosomal metabolism in Trichomonas vaginalis. We also investigated the role of CUR on pro-inflammatory responses induced in RAW 264.7 phagocytic cells by parasite proteinases on pro-inflammatory mediators such as the nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1beta (IL-1β), chaperone heat shock protein 70 (Hsp70) and glucocorticoid receptor (mGR). CUR inhibited the growth of T. vaginalis trophozoites, with an IC50 value between 117 ± 7 μM and 173 ± 15 μM, depending on the culture phase. CUR increased pyruvate:ferredoxin oxidoreductase (PfoD), hydrogenosomal enzyme expression and inhibited the proteolytic activity of parasite proteinases. CUR also inhibited NO production and decreased the expression of pro-inflammatory mediators in macrophages. The findings demonstrate the potential usefulness of CUR as an antiparasitic and anti-inflammatory treatment for trichomoniasis. It could be used to control the disease and mitigate the associated immunopathogenic effects.
Collapse
|
7
|
Bhakta SB, Moran JA, Mercer F. Neutrophil interactions with the sexually transmitted parasite Trichomonas vaginalis: implications for immunity and pathogenesis. Open Biol 2020; 10:200192. [PMID: 32873151 PMCID: PMC7536067 DOI: 10.1098/rsob.200192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Trichomoniasis is the third most common sexually transmitted infection in humans and is caused by the protozoan parasite, Trichomonas vaginalis (Tv). Pathogenic outcomes are more common in women and generally include mild vaginitis or cervicitis. However, more serious effects associated with trichomoniasis include adverse reproductive outcomes. Like other infectious agents, pathogenesis from Tv infection is predicted to be the result of both parasite and host factors. At the site of infection, neutrophils are the most abundant immune cells present and probably play key roles in both parasite clearance and inflammatory pathology. Here, we discuss the evidence that neutrophils home to the site of Tv infection, kill the parasite, and that in some circumstances, parasites possibly evade neutrophil-directed killing. In vitro, the parasite is killed by neutrophils using a novel antimicrobial mechanism called trogocytosis, which probably involves both innate and adaptive immunity. While mechanisms of evasion are mostly conjecture at present, the persistence of Tv infections in patients argues strongly for their existence. Additionally, many strains of Tv harbour microbial symbionts Mycoplasma hominis or Trichomonasvirus, which are both predicted to impact neutrophil responses against the parasite. Novel research tools, especially animal models, will help to reveal the true outcomes of many factors involved in neutrophil-Tv interactions during trichomoniasis.
Collapse
Affiliation(s)
| | | | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| |
Collapse
|
8
|
Kalia N, Singh J, Kaur M. Immunopathology of Recurrent Vulvovaginal Infections: New Aspects and Research Directions. Front Immunol 2019; 10:2034. [PMID: 31555269 PMCID: PMC6722227 DOI: 10.3389/fimmu.2019.02034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recurrent vulvovaginal infections (RVVI), a devastating group of mucosal infection, are severely affecting women's quality of life. Our understanding of the vaginal defense mechanisms have broadened recently with studies uncovering the inflammatory nature of bacterial vaginosis, inflammatory responses against novel virulence factors, innate Type 17 cells/IL-17 axis, neutrophils mediated killing of pathogens by a novel mechanism, and oxidative stress during vaginal infections. However, the pathogens have fine mechanisms to subvert or manipulate the host immune responses, hijack them and use them for their own advantage. The odds of hijacking increases, due to impaired immune responses, the net magnitude of which is the result of numerous genetic variations, present in multiple host genes, detailed in this review. Thus, by underlining the role of the host immune responses in disease etiology, modern research has clarified a major hypothesis shift in the pathophilosophy of RVVI. This knowledge can further be used to develop efficient immune-based diagnosis and treatment strategies for this enigmatic disease conditions. As for instance, plasma-derived MBL replacement, adoptive T-cell, and antibody-based therapies have been reported to be safe and efficacious in infectious diseases. Therefore, these emerging immune-therapies could possibly be the future therapeutic options for RVVI.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
9
|
Allain T, Fekete E, Buret AG. Giardia Cysteine Proteases: The Teeth behind the Smile. Trends Parasitol 2019; 35:636-648. [DOI: 10.1016/j.pt.2019.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 01/15/2023]
|
10
|
Mercer F, Johnson PJ. Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses. Trends Parasitol 2018; 34:683-693. [PMID: 30056833 PMCID: PMC11132421 DOI: 10.1016/j.pt.2018.05.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 01/03/2023]
Abstract
The parasite Trichomonas vaginalis (Tv) causes a highly prevalent sexually transmitted infection. As an extracellular pathogen, the parasite mediates adherence to epithelial cells to colonize the human host. In addition, the parasite interfaces with the host immune system and the vaginal microbiota. Modes of Tv pathogenesis include damage to host tissue mediated by parasite killing of host cells, disruption of steady-state vaginal microbial ecology, and eliciting inflammation by activating the host immune response. Recent Tv research has uncovered new players that contribute to multifactorial mechanisms of host-parasite adherence and killing, and has examined the relationship between Tv and vaginal bacteria. Mechanisms that may lead to parasite recognition and killing, or the evasion of host immune cells, have also been revealed.
Collapse
Affiliation(s)
- Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA.
| | - Patricia J Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, 1602 Molecular Sciences Building, 609 Charles E. Young Drive East, Los Angeles, CA 90095-1489, USA.
| |
Collapse
|
11
|
Mercer F, Ng SH, Brown TM, Boatman G, Johnson PJ. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis. PLoS Biol 2018; 16:e2003885. [PMID: 29408891 PMCID: PMC5815619 DOI: 10.1371/journal.pbio.2003885] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/16/2018] [Accepted: 01/17/2018] [Indexed: 11/24/2022] Open
Abstract
T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis-host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking "bites" of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target.
Collapse
Affiliation(s)
- Frances Mercer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shek Hang Ng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Taylor M. Brown
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Grace Boatman
- Pomona College, Claremont, California, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
12
|
Menezes CB, Tasca T. Trichomoniasis immunity and the involvement of the purinergic signaling. Biomed J 2016; 39:234-243. [PMID: 27793265 PMCID: PMC6138788 DOI: 10.1016/j.bj.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Innate and adaptive immunity play a significant role in trichomoniasis, the most common non-viral sexually transmitted disease worldwide. In the urogenital tract, innate immunity is accomplished by a defense physical barrier constituted by epithelial cells, mucus, and acidic pH. During infection, immune cells, antimicrobial peptides, cytokines, chemokines, and adaptive immunity evolve in the reproductive tract, and a proinflammatory response is generated to eliminate the invading extracellular pathogen Trichomonas vaginalis. However, the parasite has developed complex evolutionary mechanisms to evade the host immune response through cysteine proteases, phenotypic variation, and molecular mimicry. The purinergic system constitutes a signaling cellular net where nucleotides and nucleosides, enzymes, purinoceptors and transporters are involved in almost all cells and tissues signaling pathways, especially in central and autonomic nervous systems, endocrine, respiratory, cardiac, reproductive, and immune systems, during physiological as well as pathological processes. The involvement of the purinergic system in T. vaginalis biology and infection has been demonstrated and this review highlights the participation of this signaling pathway in the parasite immune evasion strategies.
Collapse
Affiliation(s)
- Camila Braz Menezes
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Parasitology Research Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
Mercer F, Diala FGI, Chen YP, Molgora BM, Ng SH, Johnson PJ. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis. PLoS Negl Trop Dis 2016; 10:e0004913. [PMID: 27529696 PMCID: PMC4986988 DOI: 10.1371/journal.pntd.0004913] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 11/18/2022] Open
Abstract
Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells.
Collapse
Affiliation(s)
- Frances Mercer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Fitz Gerald I. Diala
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Yi-Pei Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Brenda M. Molgora
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shek Hang Ng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Tolbert MK, Gookin JL. Mechanisms of Tritrichomonas foetus Pathogenicity in Cats with Insights from Venereal Trichomonosis. J Vet Intern Med 2016; 30:516-26. [PMID: 26946069 PMCID: PMC4913604 DOI: 10.1111/jvim.13920] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/26/2015] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Almost 20 years has passed since trichomonosis was first recognized as a potential cause of diarrhea in domestic cats. Despite progress in confirming disease causation, developing means for diagnosis, and identifying approaches to treatment of the infection, we still know very little about how this parasite causes diarrhea. With increasing recognition of resistance of trichomonosis to treatment with 5‐nitroimidazole drugs, new treatment strategies based on an understanding of disease pathogenesis are needed. In this review, lessons learned from the pathogenesis of venereal trichomonosis in people and cattle are applied to clinical observations of trichomonosis in cats in effort to generate insight into areas where further research may be beneficial.
Collapse
Affiliation(s)
- M K Tolbert
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| | - J L Gookin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
15
|
Figueroa-Angulo EE, Calla-Choque JS, Mancilla-Olea MI, Arroyo R. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins. Biomolecules 2015; 5:3354-95. [PMID: 26703754 PMCID: PMC4693282 DOI: 10.3390/biom5043354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.
Collapse
Affiliation(s)
- Elisa E Figueroa-Angulo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Jaeson S Calla-Choque
- Laboratorio de Inmunopatología en Neurocisticercosis, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P., Lima 15102, Peru.
| | - Maria Inocente Mancilla-Olea
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| |
Collapse
|
16
|
Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure. Infection 2015; 44:447-58. [PMID: 26546373 DOI: 10.1007/s15010-015-0860-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/27/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE Trichomonas vaginalis, which colonizes the genitourinary tract of men and women, is a sexually transmitted parasite causing symptomatic or asymptomatic trichomoniasis. The host-parasite relationship is very complex, and clinical symptoms cannot likely be attributed to a single pathogenic effect. Among the many factors responsible for interactions between T. vaginalis and host tissues, contact-dependent and contact-independent mechanisms are important in pathogenicity, as is the immune response. METHODS This review focuses on the potential virulence properties of T. vaginalis and its role in female and male infertility. RESULTS It highlights the association between T. vaginalis infection and serious adverse health consequences experienced by women, including infertility, preterm birth and low-birth-weight infants. Long-term clinical observations and results of in vitro experimental studies indicate that in men, trichomoniasis has been also associated with infertility through inflammatory damage to the genitourinary tract or interference with sperm function. CONCLUSION These results contribute significantly to improving our knowledge of the role of parasitic virulence factors in the development of infection and its role in human infertility.
Collapse
|
17
|
Ibáñez-Escribano A, Nogal-Ruiz JJ, Pérez-Serrano J, Gómez-Barrio A, Escario JA, Alderete J. Sequestration of host-CD59 as potential immune evasion strategy of Trichomonas vaginalis. Acta Trop 2015; 149:1-7. [PMID: 25976413 DOI: 10.1016/j.actatropica.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 05/04/2015] [Indexed: 12/26/2022]
Abstract
Trichomonas vaginalis is known to evade complement-mediated lysis. Because the genome of T. vaginalis does not possess DNA sequence with homology to human protectin (CD59), a complement lysis restricting factor, we tested the hypothesis that host CD59 acquisition by T. vaginalis organisms mediates resistance to complement killing. This hypothesis was based on the fact that trichomonads are known to associate with host proteins. No CD59 was detected on the surface of T. vaginalis grown in serum-based medium using as probe anti-CD59 monoclonal antibody (MAb). We, therefore, infected mice intraperitoneally with live T. vaginalis, and trichomonads harvested from ascites were tested for binding of CD59. Immunofluorescence showed that parasites had surface CD59. Furthermore, as mouse erythrocytes (RBCs) possess membrane-associated CD59, and trichomonads use RBCs as a nutrient source, organisms were co-cultured with murine RBCs for one week. Parasites were shown to have detectable surface CD59. Importantly, live T. vaginalis with bound CD59 were compared with batch-grown parasites without surface-associated CD59 for sensitivity to complement in human serum. Trichomonads without surface-bound CD59 had a higher level of killing by complement than did parasites with surface CD59. These data show that host CD59 acquired onto the surface by live T. vaginalis may be an alternative mechanism for complement evasion. We describe a novel strategy by T. vaginalis consistent with host protein procurement by this parasite to evade the lytic action of complement.
Collapse
|
18
|
Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:946787. [PMID: 26090464 PMCID: PMC4450334 DOI: 10.1155/2015/946787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/09/2015] [Indexed: 12/29/2022]
Abstract
We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes.
Collapse
|
19
|
|
20
|
Malla N, Goyal K, Dhanda RS, Yadav M. Immunity in urogenital protozoa. Parasite Immunol 2014; 36:400-8. [PMID: 25201404 DOI: 10.1111/pim.12114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/20/2014] [Indexed: 01/15/2023]
Abstract
Innate and adaptive immunity play a significant role in urogenital infections. Innate immunity is provided by the epithelial cells and mucus lining along with acidic pH, which forms a strong physical barrier against the pathogens in female reproductive tract. Cells of innate immune system, antimicrobial peptides, cytokines, chemokines and adaptive immunity in the reproductive tract are evolved during infection, and a pro-inflammatory response is generated to fight against the invading pathogen Trichomonas vaginalis, a primary urogenital protozoa, the etiological agent of human trichomoniasis, a curable sexually transmitted infection. The involvement of the urogenital tract by other protozoal infections such as P. falciparum, Trypanosoma, Leishmania, Toxoplasma, Entamoeba histolytica and Acanthamoeba infection is rarely reported. Trichomonas induce pro-inflammatory and immunosuppressive responses in infected subjects. Multifactorial pathogenic mechanisms including parasite adherence, cysteine proteases, lipophosphoglycan, free radical, cytokine generation and Toll-like receptors appear to interplay with the induction of local and systemic immune responses that ultimately determine the outcome of the infection. However, the involvement of urogenital pathogen-specific immune mechanisms and effect of normal local resident flora on the outcome (symptomatic vs. asymptomatic) of infection are poorly understood. Moreover, immune interactions in trichomoniasis subjects co-infected with bacterial and viral pathogens need to be elucidated.
Collapse
Affiliation(s)
- N Malla
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
21
|
Hernández HM, Marcet R, Sarracent J. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. ACTA ACUST UNITED AC 2014; 21:54. [PMID: 25348828 PMCID: PMC4209856 DOI: 10.1051/parasite/2014054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
Abstract
Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis.
Collapse
Affiliation(s)
- Hilda M Hernández
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Ricardo Marcet
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| | - Jorge Sarracent
- Parasitology Department, "Pedro Kourí" Tropical Medicine Institute, Havana 10400, Cuba
| |
Collapse
|
22
|
Carvajal-Gamez BI, Quintas-Granados LI, Arroyo R, Vázquez-Carrillo LI, Ramón-Luing LDLA, Carrillo-Tapia E, Alvarez-Sánchez ME. Putrescine-dependent re-localization of TvCP39, a cysteine proteinase involved in Trichomonas vaginalis cytotoxicity. PLoS One 2014; 9:e107293. [PMID: 25251406 PMCID: PMC4175073 DOI: 10.1371/journal.pone.0107293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/09/2014] [Indexed: 11/19/2022] Open
Abstract
Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP) involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB) (an inhibitor of putrescine biosynthesis), diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization.
Collapse
Affiliation(s)
| | | | - Rossana Arroyo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Mexico City, Mexico
| | | | | | - Eduardo Carrillo-Tapia
- Genomic Sciences Postgraduate, Autonomous University of Mexico City (UACM), Mexico City, Mexico
| | | |
Collapse
|
23
|
Cysteine protease activity of feline Tritrichomonas foetus promotes adhesion-dependent cytotoxicity to intestinal epithelial cells. Infect Immun 2014; 82:2851-9. [PMID: 24752513 DOI: 10.1128/iai.01671-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trichomonads are obligate protozoan parasites most renowned as venereal pathogens of the reproductive tract of humans and cattle. Recently, a trichomonad highly similar to bovine venereal Tritrichomonas foetus but having a unique tropism for the intestinal tract was recognized as a significant cause of colitis in domestic cats. Despite a high prevalence, worldwide distribution, and lack of consistently effective drugs for treatment of the infection, the cellular mechanisms of T. foetus pathogenicity in the intestinal tract have not been examined. The aims of this study were to determine the pathogenic effect of feline T. foetus on porcine intestinal epithelial cells, the dependence of T. foetus pathogenicity on adhesion of T. foetus to the intestinal epithelium, and the identity of mediators responsible for these effects. Using an in vitro coculture approach to model feline T. foetus infection of the intestinal epithelium, these studies demonstrate that T. foetus promotes a direct contact-dependent activation of intestinal epithelial cell apoptosis signaling and progressive monolayer destruction. Moreover, these pathological effects were demonstrated to be largely dependent on T. foetus cell-associated cysteine protease activity. Finally, T. foetus cysteine proteases were identified as enabling cytopathic effects by promoting adhesion of T. foetus to the intestinal epithelium. The present studies are the first to examine the cellular mechanisms of pathogenicity of T. foetus toward the intestinal epithelium and support further investigation of the cysteine proteases as virulence factors in vivo and as potential therapeutic targets for ameliorating the pathological effects of intestinal trichomonosis.
Collapse
|
24
|
Abstract
Members of the family Trichomonadidae, mainly Trichomonas gallinae and Tetratrichomonas gallinarum, represent important parasites in birds with worldwide presence, since being reported in the 19th century. Especially Columbiformes, Falconiformes and Strigiformes can be severely affected by trichomonads, whereas the majority of infections in Galliformes and Anatiformes are subclinical although severe infections are occasionally reported. With the recent appearance of deadly infections in wild Passeriformes the protozoan parasite T. gallinae obtained greater attention which will be addressed in this review. Although light microscopy remains the method of choice to confirm the presence of trichomonads molecular studies were introduced in recent years, in order to characterize the parasites and to establish relationships between isolates. Isolation of trichomonads is a prerequisite for detailed in vitro and in vivo studies and different media are reported to obtain suitable material. The limited information about virulence factors will be reviewed in context with the pathogenicity of trichomonads which varies greatly, indicating certain strain heterogeneity of the parasites. Options for treatment characterized by the leading role of imidazoles whose activity is sometimes hampered by resistant parasites remains a challenge for the future. Introducing more standardized genetic studies and investigations concentrating on the host-pathogen interaction should be helpful to elucidate virulence factors which might lead to new concepts of treatment.
Collapse
|
25
|
Cárdenas-Guerra RE, Arroyo R, Rosa de Andrade I, Benchimol M, Ortega-López J. The iron-induced cysteine proteinase TvCP4 plays a key role in Trichomonas vaginalis haemolysis. Microbes Infect 2013; 15:958-68. [DOI: 10.1016/j.micinf.2013.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/17/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
|
26
|
Quintas-Granados LI, Villalpando JL, Vázquez-Carrillo LI, Arroyo R, Mendoza-Hernández G, Álvarez-Sánchez ME. TvMP50 is an immunogenic metalloproteinase during male trichomoniasis. Mol Cell Proteomics 2013; 12:1953-64. [PMID: 23579185 PMCID: PMC3708178 DOI: 10.1074/mcp.m112.022012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 03/21/2013] [Indexed: 01/27/2023] Open
Abstract
Trichomonas vaginalis, a human urogenital tract parasite, is capable of surviving in the male microenvironment, despite of the presence of Zn(2+). Concentrations > 1.6 mM of Zn(2+) have a trichomonacidal effect; however, in the presence of ≤1.6 mM Zn(2+), several trichomonad proteins are up- or down-regulated. Herein, we analyzed the proteome of a T. vaginalis male isolate (HGMN01) grown in the presence of Zn(2+) and found 32 protein spots that were immunorecognized by male trichomoniasis patient serum. Using mass spectrometry (MS), the proteins were identified and compared with 23 spots that were immunorecognized in the proteome of a female isolate using the same serum. Interestingly, we found a 50-kDa metallopeptidase (TvMP50). Unexpectedly, this proteinase was immunodetected by the serum of male trichomoniasis patients but not by the female patient serum or sera from healthy men and women. We analyzed the T. vaginalis genome and localized the mp50 gene in locus TVAG_403460. Using an RT-PCR assay, we amplified a 1320-bp mp50 mRNA transcript that was expressed in the presence of Zn(2+) in the HGMN01 and CNCD147 T. vaginalis isolates. According to a Western blot assay, native TvMP50 was differentially expressed in the presence of Zn(2+). The TvMP50 proteolytic activity increased in the presence of Zn(2+) in both isolates and was inhibited by EDTA but not by ptosyl-L-lysine chloromethyl ketone (TLCK), E64, leupeptin, or phenylmethane sulfonyl fluoride. Furthermore, the recombinant TvMP50 had proteolytic activity that was inhibited by EDTA. These data suggested that TvMP50 is immunogenic during male trichomoniasis, and Zn(2+) induces its expression.
Collapse
Affiliation(s)
- Laura Itzel Quintas-Granados
- From the ‡Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100. México D.F., México
| | - José Luis Villalpando
- From the ‡Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100. México D.F., México
| | - Laura Isabel Vázquez-Carrillo
- From the ‡Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100. México D.F., México
| | - Rossana Arroyo
- §Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av IPN 2508, Col. San Pedro Zacatenco CP 07360. México D.F., México
| | - Guillermo Mendoza-Hernández
- ¶Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
| | - María Elizbeth Álvarez-Sánchez
- From the ‡Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100. México D.F., México
| |
Collapse
|
27
|
Epitopes of the highly immunogenic Trichomonas vaginalis α-actinin are serodiagnostic targets for both women and men. J Clin Microbiol 2013; 51:2483-90. [PMID: 23616456 DOI: 10.1128/jcm.00582-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There is a need for a point-of-care serodiagnostic test for women and men for sexually transmitted infections (STIs) caused by Trichomonas vaginalis. Sera from women with this STI and sera from men that were analyzed in studies showing a relationship between serostatus and prostate cancer are highly seropositive in response to trichomonad α-actinin and its truncated protein (ACT-P2) (positive control sera). Epitope mapping experiments showed that positive control sera from women had antibodies to 13 distinct epitopes, 5 of which were detected by positive control sera from men. Sera from women and men that were unreactive with α-actinin (negative control sera) failed to detect any of the epitopes or other α-actinin amino acid sequences. The T. vaginalis α-actinin amino acid sequence and the sequences of the epitopes showed little or no identity with those of other proteins of microbial pathogens or the human α-actinin 1 (HuACTN1) homolog. Immunoassays such as dot blot, immunoblot, and enzyme-linked immunosorbent assays were used. Positive control sera did not detect HuACTN1 in immunoassays, and the range of levels of identity of α-actinin epitopes with HuACTN1 was 0% to 50%. Comparison of the T. vaginalis α-actinin epitopes with proteins in data banks, such as Tritrichomonas suis, Candida albicans, and Saccharomyces cerevisiae proteins, gave a range of identity levels of 0% to 22%. Specific 15-mer peptide epitopes of α-actinin with low to no identity with other proteins were synthesized and were reactive with positive control sera only. These findings identify epitopes of α-actinin as candidate serodiagnostic targets and suggest strongly that a highly seropositive reaction to α-actinin suggests exposure to T. vaginalis.
Collapse
|
28
|
The TvLEGU-1, a legumain-like cysteine proteinase, plays a key role in Trichomonas vaginalis cytoadherence. BIOMED RESEARCH INTERNATIONAL 2013; 2013:561979. [PMID: 23509742 PMCID: PMC3581150 DOI: 10.1155/2013/561979] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/21/2012] [Accepted: 09/28/2012] [Indexed: 01/02/2023]
Abstract
The goal of this paper was to characterize a Trichomonas vaginalis cysteine proteinase (CP) legumain-1 (TvLEGU-1) and determine its potential role as a virulence factor during T. vaginalis infection. A 30-kDa band, which migrates in three protein spots (pI~6.3, ~6.5, and ~6.7) with a different type and level of phosphorylation, was identified as TvLEGU-1 by one- and two-dimensional Western blot (WB) assays, using a protease-rich trichomonad extract and polyclonal antibodies produced against the recombinant TvLEGU-1 (anti-TvLEGU-1r). Its identification was confirmed by mass spectrometry. Immunofluorescence, cell binding, and WB assays showed that TvLEGU-1 is upregulated by iron at the protein level, localized on the trichomonad surface and in lysosomes and Golgi complex, bound to the surface of HeLa cells, and was found in vaginal secretions. Additionally, the IgG and Fab fractions of the anti-TvLEGU-1r antibody inhibited trichomonal cytoadherence up to 45%. Moreover, the Aza-Peptidyl Michael Acceptor that inhibited legumain proteolytic activity in live parasites also reduced levels of trichomonal cytoadherence up to 80%. In conclusion, our data show that the proteolytic activity of TvLEGU-1 is necessary for trichomonal adherence. Thus, TvLEGU-1 is a novel virulence factor upregulated by iron. This is the first report that a legumain-like CP plays a role in a pathogen cytoadherence.
Collapse
|
29
|
Conrad MD, Bradic M, Warring SD, Gorman AW, Carlton JM. Getting trichy: tools and approaches to interrogating Trichomonas vaginalis in a post-genome world. Trends Parasitol 2012; 29:17-25. [PMID: 23219217 DOI: 10.1016/j.pt.2012.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis is a parasite of the urogenital tract in men and women, with a worldwide presence and significant implications for global public health. T. vaginalis research entered the age of genomics with the publication of the first genome sequence in 2007, but subsequent utilization of other 'omics' technologies and methods has been slow. Here, we review some of the tools and approaches available to interrogate T. vaginalis biology, with an emphasis on recent advances and current limitations, and draw attention to areas where further efforts are needed to examine effectively the complex and intriguing biology of the parasite.
Collapse
Affiliation(s)
- Melissa D Conrad
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
30
|
The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect 2012; 14:1411-27. [DOI: 10.1016/j.micinf.2012.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 07/26/2012] [Accepted: 09/02/2012] [Indexed: 11/21/2022]
|
31
|
Prospective study of effect modification by Toll-like receptor 4 variation on the association between Trichomonas vaginalis serostatus and prostate cancer. Cancer Causes Control 2012. [PMID: 23179660 DOI: 10.1007/s10552-012-0103-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE In previous studies, we observed a positive association between Trichomonas vaginalis serostatus and risk of prostate cancer, particularly aggressive cancer, which we hypothesized might be due to T. vaginalis-mediated intraprostatic inflammation and cell damage. To explore this hypothesis further, we investigated effect modification by Toll-like receptor 4 (TLR4) variation on this association. We hypothesized that TLR4 variation might serve a marker of the anti-trichomonad immune response because T. vaginalis has been shown to elicit inflammation through this receptor. METHODS We previously genotyped the non-synonymous TLR4 single nucleotide polymorphism (SNP), rs4986790, and determined T. vaginalis serostatus for 690 incident prostate cancer cases and 692 controls in a nested case-control study within the Health Professionals Follow-up Study. RESULTS A non-significant suggestion of effect modification was observed by rs4986790 carrier status on the association between T. vaginalis serostatus and prostate cancer risk (p interaction = 0.07). While no association was observed among men homozygous wildtype for this SNP (odds ratio (OR) = 1.23, 95 % confidence interval (CI): 0.86-1.77), a positive association was observed among variant carriers (OR = 4.16, 95 % CI: 1.32-13.1). CONCLUSIONS Although not statistically significant, TLR4 variation appeared to influence the association between T. vaginalis serostatus and prostate cancer risk consistent with the hypothesis that inflammation plays a role in this association. Larger studies will be necessary to explore this possible effect modification further.
Collapse
|
32
|
Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect Immun 2012; 80:3900-11. [PMID: 22927047 DOI: 10.1128/iai.00611-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The morphological transformation of Trichomonas vaginalis from an ellipsoid form in batch culture to an adherent amoeboid form results from the contact of parasites with vaginal epithelial cells and with immobilized fibronectin (FN), a basement membrane component. This suggests host signaling of the parasite. We applied integrated transcriptomic and proteomic approaches to investigate the molecular responses of T. vaginalis upon binding to FN. A transcriptome analysis was performed by using large-scale expressed-sequence-tag (EST) sequencing. A total of 20,704 ESTs generated from batch culture (trophozoite-EST) versus FN-amoeboid trichomonad (FN-EST) cDNA libraries were analyzed. The FN-EST library revealed decreased amounts of transcripts that were of lower abundance in the trophozoite-EST library. There was a shift by FN-bound organisms to the expression of transcripts encoding essential proteins, possibly indicating the expression of genes for adaptation to the morphological changes needed for the FN-adhesive processes. In addition, we identified 43 differentially expressed proteins in the proteomes of FN-bound and unbound trichomonads. Among these proteins, cysteine peptidase, glyceraldehyde-3-phosphate dehydrogenase (an FN-binding protein), and stress-related proteins were upregulated in the FN-adherent cells. Stress-related genes and proteins were highly expressed in both the transcriptome and proteome of FN-bound organisms, implying that these genes and proteins may play critical roles in the response to adherence. This is the first report of a comparative proteomic and transcriptomic analysis after the binding of T. vaginalis to FN. This approach may lead to the discovery of novel virulence genes and affirm the role of genes involved in disease pathogenesis. This knowledge will permit a greater understanding of the complex host-parasite interplay.
Collapse
|
33
|
Abstract
Trichomonas vaginalis is a sexually transmitted obligate extracellular parasite that colonizes the human urogenital tract. Despite being of critical importance to the parasite's survival relatively little is known about the mechanisms employed by T. vaginalis to establish an infection and thrive within its host. Several studies have focused on the interaction of the parasite with host cells and extracellular matrix, identifying multiple suspected T. vaginalis adhesins. However, with the exception of its surface lipophosphoglycan, the evidence supporting a role in adhesion is indirect or controversial for many candidate molecules. The availability of the T. vaginalis genome sequence paved the way for genomic analyses to search for proteins possibly involved in host-parasite interactions. Several proteomic analyses have also provided insight into surface, soluble and secreted proteins that may be involved in Trichomonas pathogenesis. Although the accumulation of molecular data allows for a more rational approach towards identifying drug targets and vaccine candidates for this medically important parasite, a continued effort is required to advance our understanding of its biology. In the present chapter, we review the current status of research aimed at understanding T. vaginalis pathogenesis. Applied experimental approaches, an overview of significant conclusions drawn from this research and future challenges are discussed.
Collapse
|
34
|
Cysteine peptidases, secreted by Trichomonas gallinae, are involved in the cytopathogenic effects on a permanent chicken liver cell culture. PLoS One 2012; 7:e37417. [PMID: 22649527 PMCID: PMC3359344 DOI: 10.1371/journal.pone.0037417] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/19/2012] [Indexed: 01/10/2023] Open
Abstract
Trichomonas gallinae, the aetiological agent of avian trichomonosis, was shown to secrete soluble factors involved in cytopathogenic effect on a permanent chicken liver (LMH) cell culture. The present study focused on the characterization of these molecules. The addition of specific peptidase inhibitors to the cell-free filtrate partially inhibited the monolayer destruction, which implied the presence of peptidases in the filtrate and their involvement in the cytopathogenic effect. One-dimensional substrate (gelatin) SDS-PAGE confirmed the proteolytic character of the filtrate by demonstrating the proteolytic activity within the molecular weight range from 38 to 110 kDa. In addition, the proteolytic activity was specifically inhibited by addition of TLCK and E-64 cysteine peptidase inhibitors implying their cysteine peptidase nature. Furthermore, variations in the intensity and the number of proteolytic bands were observed between cell-free filtrates of low and high passages of the same T. gallinae clonal culture. Two-dimensional substrate gel electrophoresis of concentrated T. gallinae cell-free filtrate identified at least six proteolytic spots. The mass spectrometric analysis of spots from 2-D gels identified the presence of at least two different Clan CA, family C1, cathepsin L-like cysteine peptidases in the cell-free filtrate of T. gallinae. In parallel, a PCR approach using degenerated primers based on the conserved amino acid sequence region of cysteine peptidases from Trichomonas vaginalis identified the coding sequences for four different Clan CA, family C1, cathepsin L-like cysteine peptidases. Finally, this is the first report analyzing molecules secreted by T. gallinae and demonstrating the ubiquity of peptidases secreted by this protozoon.
Collapse
|
35
|
Identification and characterization of the immunogenic cytotoxic TvCP39 proteinase gene of Trichomonas vaginalis. Int J Biochem Cell Biol 2011; 43:1500-11. [DOI: 10.1016/j.biocel.2011.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 06/17/2011] [Accepted: 07/05/2011] [Indexed: 12/31/2022]
|
36
|
PIAZZON C, LAMAS J, LEIRO JM. Role of scuticociliate proteinases in infection success in turbot, Psetta maxima (L.). Parasite Immunol 2011; 33:535-44. [DOI: 10.1111/j.1365-3024.2011.01310.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Trichomonasvirus: a new genus of protozoan viruses in the family Totiviridae. Arch Virol 2010; 156:171-9. [PMID: 20976609 DOI: 10.1007/s00705-010-0832-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/30/2010] [Indexed: 12/23/2022]
|
38
|
Liu PC, Chuang WH, Tu CC, Lee KK. Purification of a toxic cysteine protease produced by pathogenic Aeromonas hydrophila isolated from rainbow trout. J Basic Microbiol 2010; 50:538-47. [PMID: 20806257 DOI: 10.1002/jobm.201000105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An extracellular lethal toxin produced by Aeromonas hydrophila strain RT860715K originally isolated from diseased rainbow trout (Oncorhynchus mykiss) was purified by using Fast Protein Liquid Chromatography system with hydrophobic interaction chromatography and anion exchange columns. The toxin was a cysteine protease, inhibited by L -cysteine, iodoacetic acid, N -ethylamleimide, P-chloromercuibenzene-sulfonic acid and N-α-p-tosyl-1-lysine-chloromethyl ketone (TLCK), and showed maximal activity at pH 6.0. The molecular weight of the purified enzyme proved to be 94 kDa as estimated by SDS-PAGE. In addition, the toxin was also completely inhibited by HgCl(2) but partially inhibited by ethylenediamine tetraacetic acid (EDTA) and CuCl₂. Both the extracellular products of Aeromonas hydrophila RT860715K and the purified protease were lethal to rainbow trout (weighing 18 g) with LD₅₀ values of 2.87 and 0.93 μg protein g⁻¹ fish body weight, respectively. The addition of L-cysteine completely inhibited the lethal toxicity of the purified protease, indicating that this cysteine protease was a lethal toxin produced by the bacterium.
Collapse
Affiliation(s)
- Ping-Chung Liu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | |
Collapse
|
39
|
Identification and characterization of a surface-associated, subtilisin-like serine protease inTrichomonas vaginalis. Parasitology 2010; 137:1621-35. [DOI: 10.1017/s003118201000051x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYTrichomonas vaginalisis a protozoan parasite causing trichomonosis, a sexually transmitted infection in humans. This parasite has numerous proteases, most of which are cysteine proteases that appear to be involved in adherence and cytotoxicity of host cells. In this report we identify and characterize a putative subtilisin-like serine protease (SUB1). Thesub1gene encodes a 101-kDa protein.In silicoanalyses predict signal and pro-peptides at the N-terminus, and a transmembrane helix at the carboxy-terminal region. Thesub1gene was found as single copy by Southern analysis, albeit additional serine protease related genes are annotated in theT. vaginalisgenome. The expression ofsub1could only be detected by RT-PCR and Ribonuclease Protection Assays, suggesting a low abundant mRNA. Thesub1gene transcription start site was correctly assigned by RPA. The transcript abundance was found to be modulated by the availability of iron in the growth medium. Antibodies raised to a specific SUB1 peptide recognized a single protein band (~82 kDa) in Western blots, possibly representing the mature form of the protein. Immunofluorescence showed SUB1 on the trichomonad surface, and in dispersed vesicles throughout the cytoplasm. A bioinformatic analysis of genes annotated as serine proteases in theT. vaginalisgenome is also presented. To our knowledge this is the first putative serine protease experimentally described forT. vaginalis.
Collapse
|
40
|
Ramón-Luing LA, Rendón-Gandarilla FJ, Cárdenas-Guerra RE, Rodríguez-Cabrera NA, Ortega-López J, Avila-González L, Angel-Ortiz C, Herrera-Sánchez CN, Mendoza-García M, Arroyo R. Immunoproteomics of the active degradome to identify biomarkers for Trichomonas vaginalis. Proteomics 2010; 10:435-44. [PMID: 19957290 DOI: 10.1002/pmic.200900479] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Trichomonas vaginalis, a sexually transmitted parasite, has many cysteine proteinases (CPs); some are involved in trichomonal pathogenesis, express during infection, and antibodies against CPs have been detected in patient sera. The goal of this study was to identify the antigenic proteinases of T. vaginalis as potential biomarkers for trichomonosis. The proteases detected when T. vaginalis protein extracts are incubated without protease inhibitors, the trichomonad-active degradome, and the immunoproteome were obtained by using 2-DE, 2-D-zymograms, 2-D-Western blot (WB) assays with trichomonosis patient sera, and MS analysis. Forty-nine silver-stained spots were detected in the region of 200-21 kDa of parasite protease-resistant extracts. A similar proteolytic pattern was observed in the 2-D zymograms. Nine CPs were identified in the 30 kDa region (TvCP1, TvCP2, TvCP3, TvCP4, TvCP4-like, TvCP12, TvCPT, TvLEGU-1, and another legumain-like CP). The major reactive spots to T. vaginalis-positive patient sera by 2-D-WB corresponded to four papain-like (TvCP2, TvCP4, TvCP4-like, TvCPT), and one legumain-like (TvLEGU-1) CPs. The genes of TvCP4, TvCPT, and TvLEGU-1 were cloned, sequenced, and expressed in Escherichia coli. Purified recombinant CPs were recognized by culture-positive patient sera in 1-D-WB assays. These data show that some CPs could be potential biomarkers for serodiagnosis of trichomonosis.
Collapse
Affiliation(s)
- Lucero A Ramón-Luing
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
De Jesus JB, Cuervo P, Britto C, Sabóia-Vahia L, Costa E Silva-Filho F, Borges-Veloso A, Barreiros Petrópolis D, Cupolillo E, Barbosa Domont G. Cysteine peptidase expression in Trichomonas vaginalis isolates displaying high- and low-virulence phenotypes. J Proteome Res 2009; 8:1555-64. [PMID: 19186947 DOI: 10.1021/pr8009066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, we identified and characterized the cysteine peptidase (CP) profiles of Trichomonas vaginalis isolates exhibiting high- and low-virulence phenotypes using a combination of two-dimensional SDS-PAGE (2DE), tandem mass spectrometry (MS/MS), and data mining. Seven of the eight CPs identified belong to Clan CA, family C1, cathepsin L-like CP, and one belongs to Clan CD, family C13, asparaginyl endopeptidase-like CP. Quantitative and qualitative differences in CP expression were detected between the isolates. BLAST analysis followed by CLUSTAL alignment of amino acid sequences of differentially expressed CPs showed identity or high homology to previously described CP cDNA clones CP1, CP3, CP4, and to a secreted CP fraction of 30 kDa involved in apoptosis of vaginal epithelial cells. One- and two-dimensional-substrate gel analyses revealed the differential CP profiles between the isolates, indicating that the combination of zymography with 2DE and MS/MS might be a powerful experimental approach to map and identify active peptidases in T. vaginalis. Toxicity exerted upon HeLa cells by high- and low-virulence isolates was 98.3% and 31%, respectively. Pretreatment of parasites with specific Clan CA papain-like CP inhibitor l-3-carboxy-2,3-trans-epoxypropionyl-leucylamido(4-guanidino)butane (E-64) drastically reduced the cytotoxic effect to 21.7% and 0.8%, respectively, suggesting that T. vaginalis papain-like CPs are the main factors involved in the cellular damage.
Collapse
Affiliation(s)
- Jose Batista De Jesus
- Departamento de Ciências Naturais, Universidade Federal de São João del Rei, São João del Rei, MG, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
LEIRO J, PIAZZÓN MC, BUDIÑO B, SANMARTÍN ML, LAMAS J. Complement-mediated killing ofPhilasterides dicentrarchi(Ciliophora) by turbot serum: relative importance of alternative and classical pathways. Parasite Immunol 2008; 30:535-43. [DOI: 10.1111/j.1365-3024.2008.01052.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Rudenskaya GN, Pupov DV. Cysteine proteinases of microorganisms and viruses. BIOCHEMISTRY (MOSCOW) 2008; 73:1-13. [PMID: 18294123 PMCID: PMC7087786 DOI: 10.1134/s000629790801001x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review considers properties of secreted cysteine proteinases of protozoa, bacteria, and viruses and presents information on the contemporary taxonomy of cysteine proteinases. Literature data on the structure and physicochemical and enzymatic properties of these enzymes are reviewed. High interest in cysteine proteinases is explained by the discovery of these enzymes mostly in pathogenic organisms. The role of the proteinases in pathogenesis of several severe diseases of human and animals is discussed.
Collapse
Affiliation(s)
- G N Rudenskaya
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| | | |
Collapse
|
44
|
Kummer S, Hayes GR, Gilbert RO, Beach DH, Lucas JJ, Singh BN. Induction of human host cell apoptosis by Trichomonas vaginalis cysteine proteases is modulated by parasite exposure to iron. Microb Pathog 2008; 44:197-203. [DOI: 10.1016/j.micpath.2007.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/18/2007] [Accepted: 09/20/2007] [Indexed: 11/30/2022]
|
45
|
Alvarez-Sánchez ME, Solano-González E, Yañez-Gómez C, Arroyo R. Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in Trichomonas vaginalis. Microbes Infect 2007; 9:1597-605. [PMID: 18023389 DOI: 10.1016/j.micinf.2007.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Accepted: 09/11/2007] [Indexed: 11/30/2022]
Abstract
Several cysteine proteinases (CPs) participate in the virulence of Trichomonas vaginalis. One of them is a 65kDa CP, CP65, involved in cytotoxicity. The aim of this work was to investigate the effect of iron on the trichomonal CP65-dependent cytotoxicity using parasites grown under distinct iron concentrations. Cytotoxicity and cell-binding assays, and zymograms were performed. At the highest iron concentration (250 microM), parasites exhibited the lowest levels of cytotoxicity and less CP65 proteolytic activity. Other cations in the culture medium did not affect the trichomonal CP65-dependent cytotoxicity as iron did. Another four trichomonad fresh isolates presented similar iron negative effect over cytotoxicity. Western blot and RT-PCR experiments also showed reduction in the amount of protein and transcript of CP65 in trichomonads grown under iron-rich conditions, as compared with parasites grown in normal and iron-depleted media. Indirect immunofluorescence using the anti-CP65 antibody showed that parasites grown in iron-rich medium expressed less CP65 than those grown in normal and iron-depleted media. Cytotoxicity inhibition experiments with the anti-CP65 antibody confirmed the iron negative effect over the CP65-dependent cytotoxicity. In conclusion, our data show that iron specifically down-regulates proteolytic activity, expression, and transcription of CP65, negatively affecting trichomonal cytotoxicity in vitro.
Collapse
Affiliation(s)
- María Elizbeth Alvarez-Sánchez
- Departamento de Patología Experimental, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av IPN 2508, Col. San Pedro Zacatenco, Mexico City, CP 07360, Mexico
| | | | | | | |
Collapse
|
46
|
Yadav M, Dubey ML, Gupta I, Malla N. Cysteine proteinase 30 (CP30) and antibody response to CP30 in serum and vaginal washes of symptomatic and asymptomatic Trichomonas vaginalis-infected women. Parasite Immunol 2007; 29:359-65. [PMID: 17576365 DOI: 10.1111/j.1365-3024.2007.00952.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infection with Trichomonas vaginalis may be asymptomatic or with symptoms suggestive of vaginitis. Because cysteine proteinase 30 (CP30) of T. vaginalis is known to be a virulence marker that plays a role in cytoadherence, the aim of this study was to analyse the presence of CP30 and antibody to CP30 in clinical samples of symptomatic and asymptomatic infected women. CP30 was detected in all the serum and vaginal washes (VWs) of symptomatic women and in 65% of the serum and 80% of the VWs of asymptomatic women. This suggested that the majority of asymptomatic women also exhibit CP30 in the serum and VWs. Antibody to CP30 was detected in all the serum samples of symptomatic and asymptomatic women and in the VWs of only 54.5% of the symptomatic and 35% of the asymptomatic women. Antibody to CP30 was also detected in 3/20 of the serum samples and in none of the VWs from uninfected women. Significantly higher amounts of antibody (mean OD values) were observed in serum and VWs of symptomatic as compared to asymptomatic and healthy women (P<0.001). These results indicate that besides CP30, other factors may also be playing a role in leading to symptomatic infection, because CP30 was detected in clinical samples from all the symptomatic and the majority of the asymptomatic women. Although anti-CP30 antibodies do not appear to be protective, detection of antibody to CP30 antigen in serum samples may be used as a diagnostic tool.
Collapse
Affiliation(s)
- M Yadav
- Department of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
47
|
Yadav M, Dubey ML, Gupta I, Bhatti G, Malla N. Cysteine proteinase 30 in clinical isolates of T. vaginalis from symptomatic and asymptomatic infected women. Exp Parasitol 2007; 116:399-406. [PMID: 17420015 DOI: 10.1016/j.exppara.2007.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 02/10/2007] [Accepted: 02/12/2007] [Indexed: 11/19/2022]
Abstract
A cysteine proteinase of 30 kDa (CP30) of Trichomonas vaginalis, is known to play a role in cytoadherence of the parasite to host cells. However, the CP30 activity in clinical isolates from symptomatic and asymptomatic patients has not been analyzed. In the present study, CP30 was detected in 20 fresh and long-term culture maintained T. vaginalis isolates each from symptomatic and asymptomatic women by substrate gel electrophoresis and immunoblotting. Though CP30 was detected in all the fresh isolates from 20 symptomatic and 20 asymptomatic women, the intensity of CP30 band was significantly higher in isolates from symptomatic as compared to asymptomatic women indicating higher expression in former. CP30 was found in all the 20 long-term cultured isolates from symptomatic whereas only in 70% of asymptomatic women indicating that CP30 expression is a more stable characteristic of symptomatic isolates. The isolates from symptomatic women, demonstrated significantly higher cytoadherence to VECs as compared to asymptomatic women. In both the types of isolates, this cytoadherence was inhibited significantly by CP30 specific hyperimmune serum. These results confirm that CP30 is an important virulence factor of T. vaginalis and has an important role in cytoadherence to VECs and thus has a role in pathogenesis of trichomoniasis.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | |
Collapse
|
48
|
Kucknoor AS, Mundodi V, Alderete JF. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cell Microbiol 2007; 9:2586-97. [PMID: 17590165 PMCID: PMC2574865 DOI: 10.1111/j.1462-5822.2007.00979.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We showed recently that contact of human vaginal epithelial cells (VECs) by Trichomonas vaginalis and incubation with trichomonad proteins in conditioned medium induced expression of VEC genes. We performed 2-D SDS-PAGE followed by MALDI-TOF to identify the major secreted proteins. Based on protein abundance and separation of spots in 2-D gels, 32 major secreted proteins were examined, which gave 19 proteins with accession numbers. These proteins included known secreted cysteine proteinases. In addition, other secreted proteins were enzymes of carbohydrate metabolism, adhesin protein AP65, heat shock proteins, thioredoxin reductase and coronins. We confirmed that the secreted trichomonad proteins induced expression of VEC genes, including interleukin 8 (IL-8), COX-2 and fibronectin. Purified AP65 added to VECs had a pronounced effect only on IL-8 gene expression, which was inhibited in the presence of 12G4 monoclonal antibody to AP65. Moreover, AP65 expressed episomally within epithelial cells was found to enhance the expression of IL-8 and COX-2. This may be the first report of analysis of the secreted proteins of T. vaginalis and of the host epithelial cell response to these proteins and to the prominent adhesin AP65.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/pharmacology
- Cells, Cultured
- Culture Media, Conditioned/metabolism
- Culture Media, Conditioned/pharmacology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Cysteine Endopeptidases/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Female
- Fibronectins/genetics
- Fibronectins/metabolism
- Gene Expression/drug effects
- HeLa Cells
- Humans
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Protozoan Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Thioredoxin-Disulfide Reductase/genetics
- Thioredoxin-Disulfide Reductase/metabolism
- Trichomonas vaginalis/metabolism
- Vagina/cytology
Collapse
Affiliation(s)
- Ashwini S Kucknoor
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, TX, USA
| | | | | |
Collapse
|
49
|
Solano-González E, Alvarez-Sánchez ME, Avila-González L, Rodríguez-Vargas VH, Arroyo R, Ortega-López J. Location of the cell-binding domain of CP65, a 65kDa cysteine proteinase involved in Trichomonas vaginalis cytotoxicity. Int J Biochem Cell Biol 2006; 38:2114-27. [PMID: 16891146 DOI: 10.1016/j.biocel.2006.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 06/01/2006] [Accepted: 06/02/2006] [Indexed: 11/23/2022]
Abstract
The cysteine proteinase (CP) of 65kDa, CP65, binds to the surface of HeLa cells and is involved in Trichomonas vaginalis cellular damage. To identify and locate the CP65 cellular-binding domain, we enriched the CP65 protein band by ammonium sulfate fractionation and ion-exchange chromatography and the N-terminal sequence was obtained. A 618bp gene fragment was obtained by PCR using genomic DNA as template and primers derived from the N-terminal sequence of CP65 and the Asn papain-catalytic conserved region. This gene fragment encodes for 206 amino acid (aa) residues corresponding to the N-terminal region of a mature CP with 67-76% identity to the reported trichomonad cathepsin-L-like CPs. This gene fragment was expressed in a bacterial system for antibody production and functional analysis. Antibodies against the native trichomonad CP65 recognized the recombinant protein, referred to as rCP65, confirming its relationship with the CP65 gene. The rCP65 protein was bound to the surface of HeLa cells and competed with the native CP65 for binding. Antibodies to the rCP65 (alpha-rCP65) reacted with the trichomonad CP65 located on the parasite surface, and inhibited trichomonal cytotoxicity in a concentration-dependent manner. These data strongly suggest that this gene fragment encodes for the putative cell-binding domain (CBD) of CP65 located at its N-terminal region.
Collapse
Affiliation(s)
- Eduardo Solano-González
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, CP 07360, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Trichomonas vaginalis has long been recognized as a cause of infectious vaginitis in women. More recently, studies have demonstrated a significant burden of disease in men with urethritis or men at high risk for sexually transmitted diseases. There is increasing interest in this pathogen as more data accumulates linking it to HIV transmission and perinatal morbidity. New diagnostic methods have emerged that may increase sensitivity of diagnosis or improve point-of-care access to testing. Nitroimidazoles remain the mainstay of therapy. Metronidazole and tinidazole are highly effective as single-dose therapy. Unfortunately, despite the link between T. vaginalis infection and perinatal morbidity, nitroimidazole therapy during pregnancy remains controversial. Although metronidazole resistance is currently uncommon, pharmacological features and nitroimidazole resistance patterns suggest that tinidazole may be more effective in treating patients with metronidazole treatment failure. Alternatives to nitroimidazole therapy are few, and most have limited efficacy and significant toxicity.
Collapse
Affiliation(s)
- Neha Nanda
- Department of Medicine, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | | | | | | |
Collapse
|