1
|
Titball RW. The Molecular Architecture and Mode of Action of Clostridium perfringens ε-Toxin. Toxins (Basel) 2024; 16:180. [PMID: 38668605 PMCID: PMC11053738 DOI: 10.3390/toxins16040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Clostridium perfringens ε-toxin has long been associated with a severe enterotoxaemia of livestock animals, and more recently, was proposed to play a role in the etiology of multiple sclerosis in humans. The remarkable potency of the toxin has intrigued researchers for many decades, who suggested that this indicated an enzymatic mode of action. Recently, there have been major breakthroughs by finding that it is a pore-forming toxin which shows exquisite specificity for cells bearing the myelin and lymphocyte protein (MAL) receptor. This review details the molecular structures of the toxin, the evidence which identifies MAL as the receptor and the possible roles of other cell membrane components in toxin binding. The information on structure and mode of action has allowed the functions of individual amino acids to be investigated and has led to the creation of mutants with reduced toxicity that could serve as vaccines. In spite of this progress, there are still a number of key questions around the mode of action of the toxin which need to be further investigated.
Collapse
|
2
|
Ueda K, Kawahara K, Kimoto N, Yamaguchi Y, Yamada K, Oki H, Yoshida T, Matsuda S, Matsumoto Y, Motooka D, Kawatsu K, Iida T, Nakamura S, Ohkubo T, Yonogi S. Analysis of the complete genome sequences of Clostridium perfringens strains harbouring the binary enterotoxin BEC gene and comparative genomics of pCP13-like family plasmids. BMC Genomics 2022; 23:226. [PMID: 35321661 PMCID: PMC8941779 DOI: 10.1186/s12864-022-08453-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background BEC-producing Clostridium perfringens is a causative agent of foodborne gastroenteritis. It was first reported in 2014, and since then, several isolates have been identified in Japan and the United Kingdom. The novel binary ADP-ribosylating toxin BEC, which consists of two components (BECa and BECb), is encoded on a plasmid that is similar to pCP13 and harbours a conjugation locus, called Pcp, encoding homologous proteins of the type 4 secretion system. Despite the high in vitro conjugation frequency of pCP13, its dissemination and that of related plasmids, including bec-harbouring plasmids, in the natural environment have not been characterised. This lack of knowledge has limited our understanding of the genomic epidemiology of bec-harbouring C. perfringens strains. Results In this study, we determined the complete genome sequences of five bec-harbouring C. perfringens strains isolated from 2009 to 2019. Each isolate contains a ~ 3.36 Mbp chromosome and 1–3 plasmids of either the pCW3-like family, pCP13-like family, or an unknown family, and the bec-encoding region in all five isolates was located on a ~ 54 kbp pCP13-like plasmid. Phylogenetic and SNP analyses of these complete genome sequences and the 211 assembled C. perfringens genomes in GenBank showed that although these bec-harbouring strains were split into two phylogenetic clades, the sequences of the bec-encoding plasmids were nearly identical (>99.81%), with a significantly smaller SNP accumulation rate than that of their chromosomes. Given that the Pcp locus is conserved in these pCP13-like plasmids, we propose a mechanism in which the plasmids were disseminated by horizontal gene transfer. Data mining showed that strains carrying pCP13-like family plasmids were unexpectedly common (58/216 strains) and widely disseminated among the various C. perfringens clades. Although these plasmids possess a conserved Pcp locus, their ‘accessory regions’ can accommodate a wide variety of genes, including virulence-associated genes, such as becA/becB and cbp2. These results suggest that this family of plasmids can integrate various foreign genes and is transmissible among C. perfringens strains. Conclusion This study demonstrates the potential significance of pCP13-like plasmids, including bec-encoding plasmids, for the characterisation and monitoring of the dissemination of pathogenic C. perfringens strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08453-4.
Collapse
Affiliation(s)
- Kengo Ueda
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Kawahara
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Narumi Kimoto
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Yamaguchi
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Yamada
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health, 7-6 Nagare, Tsujicho, Kita-ku, Nagoya, Aichi, 462-8576, Japan
| | - Hiroya Oki
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuya Yoshida
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeaki Matsuda
- Department of Bacterial Infection, Research Institute for Microbial Disease (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Kawatsu
- Division of Microbiology, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka, Osaka, 537-0025, Japan
| | - Tetsuya Iida
- Department of Bacterial Infection, Research Institute for Microbial Disease (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadayasu Ohkubo
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shinya Yonogi
- Department of Bacterial Infection, Research Institute for Microbial Disease (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Division of Microbiology, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka, Osaka, 537-0025, Japan.
| |
Collapse
|
3
|
Cheng JH, Wang Y, Zhang XY, Sun ML, Zhang X, Song XY, Zhang YZ, Zhang Y, Chen XL. Characterization and Diversity Analysis of the Extracellular Proteases of Thermophilic Anoxybacillus caldiproteolyticus 1A02591 From Deep-Sea Hydrothermal Vent Sediment. Front Microbiol 2021; 12:643508. [PMID: 33796092 PMCID: PMC8007923 DOI: 10.3389/fmicb.2021.643508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Protease-producing bacteria play key roles in the degradation of marine organic nitrogen. Although some deep-sea bacteria are found to produce proteases, there has been no report on protease-secreting Anoxybacillus from marine hydrothermal vent regions. Here, we analyzed the diversity and functions of the proteases, especially the extracellular proteases, of Anoxybacillus caldiproteolyticus 1A02591, a protease-secreting strain isolated from a deep-sea hydrothermal vent sediment of the East Pacific Ocean. Strain 1A02591 is a thermophilic bacterium with a strong protease-secreting ability, which displayed the maximum growth rate (0.139 h–1) and extracellular protease production (307.99 U/mL) at 55°C. Strain 1A02591 contains 75 putative proteases, including 65 intracellular proteases and 10 extracellular proteases according to signal peptide prediction. When strain 1A02591 was cultured with casein, 12 proteases were identified in the secretome, in which metalloproteases (6/12) and serine proteases (4/12) accounted for the majority, and a thermolysin-like protease of the M4 family was the most abundant, suggesting that strain 1A02591 mainly secreted a thermophilic metalloprotease. Correspondingly, the secreted proteases of strain 1A02591 showed the highest activity at the temperature as high as 70°C, and was inhibited 70% by metalloprotease inhibitor o-phenanthroline and 50% by serine protease inhibitor phenylmethylsulfonyl fluoride. The secreted proteases could degrade different proteins, suggesting the role of strain 1A02591 in organic nitrogen degradation in deep-sea hydrothermal ecosystem. These results provide the first insight into the proteases of an Anoxybacillus strain from deep-sea hydrothermal ecosystem, which is helpful in understanding the function of Anoxybacillus in the marine biogeochemical cycle.
Collapse
Affiliation(s)
- Jun-Hui Cheng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yan Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yu Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Mei-Ling Sun
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Hasan R, Rony MNH, Ahmed R. In silico characterization and structural modeling of bacterial metalloprotease of family M4. J Genet Eng Biotechnol 2021; 19:25. [PMID: 33528696 PMCID: PMC7851659 DOI: 10.1186/s43141-020-00105-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 12/15/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND The M4 family of metalloproteases is comprised of a large number of zinc-containing metalloproteases. A large number of these enzymes are important virulence factors of pathogenic bacteria and therefore potential drug targets. Whereas some enzymes have potential for biotechnological applications, the M4 family of metalloproteases is known almost exclusively from bacteria. The aim of the study was to identify the structure and properties of M4 metalloprotease proteins. RESULTS A total of 31 protein sequences of M4 metalloprotease retrieved from UniProt representing different species of bacteria have been characterized for various physiochemical properties. They were thermostable, hydrophillic protein of a molecular mass ranging from 38 to 66 KDa. Correlation on the basis of both enzymes and respective genes has also been studied by phylogenetic tree. B. cereus M4 metalloprotease (PDB ID: 1NPC) was selected as a representative species for secondary and tertiary structures among the M4 metalloprotease proteins. The secondary structure displaying 11 helices (H1-H11) is involved in 15 helix-helix interactions, while 4 β-sheet motifs composed of 15 β-strands in PDBsum. Possible disulfide bridges were absent in most of the cases. The tertiary structure of B. cereus M4 metalloprotease was validated by QMEAN4 and SAVES server (Ramachandran plot, verify 3D, and ERRAT) which proved the stability, reliability, and consistency of the tertiary structure of the protein. Functional analysis was done in terms of membrane protein topology, disease-causing region prediction, proteolytic cleavage sites prediction, and network generation. Transmembrane helix prediction showed absence of transmembrane helix in protein. Protein-protein interaction networks demonstrated that bacillolysin of B. cereus interacted with ten other proteins in a high confidence score. Five disorder regions were identified. Active sites analysis showed the zinc-binding residues-His-143, His-147, and Glu-167, with Glu-144 acting as the catalytic residues. CONCLUSION Moreover, this theoretical overview will help researchers to get a details idea about the protein structure and it may also help to design enzymes with desirable characteristics for exploiting them at industrial level or potential drug targets.
Collapse
Affiliation(s)
- Rajnee Hasan
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207 Bangladesh
| | - Md. Nazmul Haq Rony
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207 Bangladesh
| | - Rasel Ahmed
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207 Bangladesh
| |
Collapse
|
5
|
Dissecting capture and twisting of aureolysin and pseudolysin: functional amino acids of the Dispase autolysis-inducing protein. Biochem J 2020; 477:2595-2606. [PMID: 32602533 DOI: 10.1042/bcj20200407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
The Dispase autolysis-inducing protein (DAIP) from Streptomyces mobaraensis attracts M4 metalloproteases, which results in inhibition and autolysis of bacillolysin (BL) and thermolysin (TL). The present study shows that aureolysin (AL) from Staphylococcus aureus and pseudolysin (LasB) from Pseudomonas aeruginosa are likewise impaired by DAIP. Complete inhibition occurred when DAIP significantly exceeded the amount of the target protease. At low DAIP concentrations, AL and BL performed autolysis, while LasB and TL degradation required reductants or detergents that break intramolecular disulfide bonds or change the protein structure. Site directed mutagenesis of DAIP and removal of an exposed protein loop either influenced binding or inhibition of AL and TL but had no effect on LasB and BL. The Y170A and Δ239-248 variants had completely lost affinity for TL and AL. The exchange of Asn-275 also impaired the interaction of DAIP with AL. In contrast, DAIP Phe-297 substitution abolished inhibition and autolysis of both target proteases but still allowed complex formation. Our results give rise to the conclusion that other, yet unknown DAIP amino acids inactivate LasB and BL. Obviously, various bacteria in the same habitat caused Streptomyces mobaraensis to continuously optimize DAIP in inactivating the tackling metalloproteases.
Collapse
|
6
|
Revitt-Mills SA, Vidor CJ, Watts TD, Lyras D, Rood JI, Adams V. Virulence Plasmids of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0034-2018. [PMID: 31111816 PMCID: PMC11257192 DOI: 10.1128/microbiolspec.gpp3-0034-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
The clostridia cause a spectrum of diseases in humans and animals ranging from life-threatening tetanus and botulism, uterine infections, histotoxic infections and enteric diseases, including antibiotic-associated diarrhea, and food poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins are diverse, ranging from a multitude of pore-forming toxins to phospholipases, metalloproteases, ADP-ribosyltransferases and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage that replicate using a plasmid-like intermediate. Some of these plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to be conjugative. The mobile nature of these toxin genes gives a ready explanation of how clostridial toxin genes have been so widely disseminated both within the clostridial genera as well as in the wider bacterial community.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Callum J Vidor
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas D Watts
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Vicki Adams
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Rahman MT, Karim MM. Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity. Biol Trace Elem Res 2018; 182:1-13. [PMID: 28585004 DOI: 10.1007/s12011-017-1061-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a "delicate" balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)-a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.
Collapse
|
8
|
Amamura TA, Fraga TR, Vasconcellos SA, Barbosa AS, Isaac L. Pathogenic Leptospira Secreted Proteases Target the Membrane Attack Complex: A Potential Role for Thermolysin in Complement Inhibition. Front Microbiol 2017; 8:958. [PMID: 28611756 PMCID: PMC5447677 DOI: 10.3389/fmicb.2017.00958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/12/2017] [Indexed: 12/24/2022] Open
Abstract
Leptospirosis is a zoonosis caused by spirochetes from the genus Leptospira. This disease is common in tropical and subtropical areas, constituting a serious public health problem. Pathogenic Leptospira have the ability to escape the human Complement System, being able to survive when in contact with normal human serum. In a previous study, our group demonstrated that supernatants of pathogenic Leptospira (SPL) inhibit the three activation pathways of the Complement System. This inhibition can be directly correlated with the activity of secreted proteases, which cleave the Complement molecules C3, Factor B (Alternative Pathway), C4 and C2 (Classical and Lectin Pathways). In this work, we analyze the activity of the leptospiral proteases on the components of Terminal Pathway of Complement, called the membrane attack complex (MAC). We observed that proteases present in SPL from different Leptospira strains were able to cleave the purified proteins C5, C6, C7, C8, and C9, while culture supernatant from non-pathogenic Leptospira strains (SNPL) had no significant proteolytic activity on these substrates. The cleavages occurred in a time-dependent and specificity manner. No cleavage was observed when we used whole serum as a source of C5-C9 proteins, probably because of the abundant presence of plasma protease inhibitors such as α2-macroglobulin. Complement protein cleavage by SPL was inhibited by 1,10-phenanthroline, indicating the involvement of metalloproteases. Furthermore, 1,10-phenanthroline- treated normal human serum diminished pathogenic leptospira survival. We also analyzed the proteolytic activity of thermolysin (LIC13322) a metalloprotease expressed exclusively by pathogenic Leptospira strains. Recombinant thermolysin was capable of cleaving the component C6, either purified or as part of the SC5b-9 complex. Furthermore, we found that the MAC proteins C6-C9 interact with thermolysin, indicating that this metalloprotease may have an additional inhibitory effect on these molecules by direct interactions. Finally, a functional assay demonstrated that thermolysin was able to inhibit MAC-dependent erythrocytes lysis. We conclude that proteases secreted exclusively by pathogenic Leptospira strains are capable of degrading several Complement effector molecules, representing potential targets for the development of new therapies and prophylactic approaches in leptospirosis.
Collapse
Affiliation(s)
- Thais A Amamura
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Tatiana R Fraga
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | | | | | - Lourdes Isaac
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| |
Collapse
|
9
|
Deshpande S, Basu SK, Li X, Chen X. Smart, Innovative and Intelligent Technologies Used in Drug Designing. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Smart and intelligent computational methods are essential nowadays for designing, manufacturing and optimizing new drugs. New and innovative computational tools and algorithms are consistently developed and applied for the development of novel therapeutic compounds in many research projects. Rapid developments in the architecture of computers have also provided complex calculations to be performed in a smart, intelligent and timely manner for desired quality outputs. Research groups worldwide are developing drug discovery platforms and innovative tools following smart manufacturing ideas using highly advanced biophysical, statistical and mathematical methods for accelerated discovery and analysis of smaller molecules. This chapter discusses novel innovative applications in drug discovery involving use of structure-based drug design which utilizes geometrical knowledge of the three-dimensional protein structures. It discusses statistical and physics based methods such as quantum mechanics and classical molecular dynamics which can also play a major role in improving the performance and in prediction of computational drug discovery. Lastly, the authors provide insights on recent developments in cloud computing with significant increase in smart and intelligent computational power thus allowing larger data sets to be analyzed simultaneously on multi processor cloud systems. Future directions for the research are outlined.
Collapse
Affiliation(s)
| | | | - X. Li
- Industrial Crop Research Institute, Yunan Academy of Agricultural Sciences, China
| | - X. Chen
- Institute of Food Crops, Yunan Academy of Agricultural Sciences, China
| |
Collapse
|
10
|
Sjøli S, Nuti E, Camodeca C, Bilto I, Rossello A, Winberg JO, Sylte I, Adekoya OA. Synthesis, experimental evaluation and molecular modelling of hydroxamate derivatives as zinc metalloproteinase inhibitors. Eur J Med Chem 2015; 108:141-153. [PMID: 26638045 DOI: 10.1016/j.ejmech.2015.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
Enzymes of the M4 family of zinc-metalloproteinases are virulence factors secreted from gram-positive or gram-negative bacteria, and putative drug targets in the treatment of bacterial infections. In order to have a therapeutic value such inhibitors should not interfere with endogenous zinc-metalloproteinases. In the present study we have synthesised a series of hydroxamate derivatives and validated the compounds as inhibitors of the M4 enzymes thermolysin and pseudolysin, and the endogenous metalloproteinases ADAM-17, MMP-2 and MMP-9 using experimental binding studies and molecular modelling. In general, the compounds are stronger inhibitors of the MMPs than of the M4 enzymes, however, an interesting exception is LM2. The compounds bound stronger to pseudolysin than to thermolysin, and the molecular modelling studies showed that occupation of the S2(') subpocket by an aromatic group is favourable for strong interactions with pseudolysin.
Collapse
Affiliation(s)
- Stian Sjøli
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Elisa Nuti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Caterina Camodeca
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Irina Bilto
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Armando Rossello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Olayiwola A Adekoya
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| |
Collapse
|
11
|
Kim CJ, Lee DI, Lee CH, Ahn IS. Dityrosine-based substrates for the selective and sensitive assay of thermolysin. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Adekoya OA, Sjøli S, Wuxiuer Y, Bilto I, Marques SM, Santos MA, Nuti E, Cercignani G, Rossello A, Winberg JO, Sylte I. Inhibition of pseudolysin and thermolysin by hydroxamate-based MMP inhibitors. Eur J Med Chem 2014; 89:340-8. [PMID: 25462250 DOI: 10.1016/j.ejmech.2014.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 11/24/2022]
Abstract
In the present study, we have investigated the inhibition of thermolysin and pseudolysin by a series of compounds previously identified as matrix metalloproteinase (MMP) inhibitors using experimental binding studies and theoretical calculations. The experimental studies showed that some of the compounds were able to inhibit thermolysin and pseudolysin in the low μM range. The studies revealed that, in general, the compounds bound in the order MMPs > pseudolysin > thermolysin, and the strongest pseudolysin and thermolysin binders were compounds 8-12. Furthermore, compounds 8 and 9 were unique in that they bound much stronger to the two bacterial enzymes than to the MMPs. The docking calculations suggested that the phenyl group of the strongest binders (compounds 8 and 9) occupy the S2(')-subpocket, while a second ring system occupy the S1-subpocket in both thermolysin and pseudolysin. When the compounds possess two ring systems, the largest and most electron rich ring system seems to occupy the S1-subpocket.
Collapse
Affiliation(s)
- Olayiwola A Adekoya
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Stian Sjøli
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Yimingjiang Wuxiuer
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Irina Bilto
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Sérgio M Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M Amélia Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Elisa Nuti
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Giovanni Cercignani
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Armando Rossello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway.
| |
Collapse
|
13
|
Bokori-Brown M, Hall CA, Vance C, Fernandes da Costa SP, Savva CG, Naylor CE, Cole AR, Basak AK, Moss DS, Titball RW. Clostridium perfringens epsilon toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia. Vaccine 2014; 32:2682-7. [PMID: 24709588 PMCID: PMC4022833 DOI: 10.1016/j.vaccine.2014.03.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/11/2014] [Accepted: 03/25/2014] [Indexed: 12/17/2022]
Abstract
Etx mutant Y30A-Y196A showed markedly reduced cytotoxicity towards MDCK.2 cells. Y30A-Y196A is inactive in mice after intraperitoneal administration. Y30A-Y196A is able to induce a specific antibody response in rabbits. Y30A-Y196A polyclonal antibody is able to induce protective immunity in vitro. Y30A-Y196A could form the basis of a recombinant vaccine against enterotoxemia.
Epsilon toxin (Etx) is a β-pore-forming toxin produced by Clostridium perfringens toxinotypes B and D and plays a key role in the pathogenesis of enterotoxemia, a severe, often fatal disease of ruminants that causes significant economic losses to the farming industry worldwide. This study aimed to determine the potential of a site-directed mutant of Etx (Y30A-Y196A) to be exploited as a recombinant vaccine against enterotoxemia. Replacement of Y30 and Y196 with alanine generated a stable variant of Etx with significantly reduced cell binding and cytotoxic activities in MDCK.2 cells relative to wild type toxin (>430-fold increase in CT50) and Y30A-Y196A was inactive in mice after intraperitoneal administration of trypsin activated toxin at 1000× the expected LD50 dose of trypsin activated wild type toxin. Moreover, polyclonal antibody raised in rabbits against Y30A-Y196A provided protection against wild type toxin in an in vitro neutralisation assay. These data suggest that Y30A-Y196A mutant could form the basis of an improved recombinant vaccine against enterotoxemia.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| | - Charlotte A Hall
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Charlotte Vance
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Sérgio P Fernandes da Costa
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Christos G Savva
- Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Claire E Naylor
- Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Ambrose R Cole
- Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Ajit K Basak
- Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - David S Moss
- Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
14
|
Clostridium perfringens epsilon toxin: a malevolent molecule for animals and man? Toxins (Basel) 2013; 5:2138-60. [PMID: 24284826 PMCID: PMC3847718 DOI: 10.3390/toxins5112138] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 12/27/2022] Open
Abstract
Clostridium perfringens is a prolific, toxin-producing anaerobe causing multiple diseases in humans and animals. One of these toxins is epsilon, a 33 kDa protein produced by Clostridium perfringens (types B and D) that induces fatal enteric disease of goats, sheep and cattle. Epsilon toxin (Etx) belongs to the aerolysin-like toxin family. It contains three distinct domains, is proteolytically-activated and forms oligomeric pores on cell surfaces via a lipid raft-associated protein(s). Vaccination controls Etx-induced disease in the field. However, therapeutic measures are currently lacking. This review initially introduces C. perfringens toxins, subsequently focusing upon the Etx and its biochemistry, disease characteristics in various animals that include laboratory models (in vitro and in vivo), and finally control mechanisms (vaccines and therapeutics).
Collapse
|
15
|
Bokori-Brown M, Kokkinidou MC, Savva CG, Fernandes da Costa S, Naylor CE, Cole AR, Moss DS, Basak AK, Titball RW. Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies. Protein Sci 2013; 22:650-9. [PMID: 23504825 PMCID: PMC3649266 DOI: 10.1002/pro.2250] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/08/2013] [Indexed: 12/24/2022]
Abstract
Clostridium perfringens epsilon toxin (Etx) is a pore-forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx-H149A), previously reported to have reduced, but not abolished, toxicity. The three-dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx-H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx-H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx-H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx-H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx-H149A identified a glycan (β-octyl-glucoside) binding site in domain III of Etx-H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sudden death syndrome in adult cows associated with Clostridium perfringens type E. Anaerobe 2013; 20:1-4. [PMID: 23354004 DOI: 10.1016/j.anaerobe.2013.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/14/2013] [Indexed: 11/20/2022]
Abstract
Clostridium perfringens type E is considered a rare toxinotype and an infrequent cause of enterotoxemia of lambs, calves, and rabbits. Until now, only cases of young animal of C. perfringens type E bovine enterotoxemia, characterized by hemorrhagic enteritis and sudden death, have been reported. The present report details the genotypic characterization of C. perfringens type E isolates obtained from intestinal samples of adult cattle during an outbreak of enterotoxemia in Argentina. The sequences of several housekeeping genes of these isolates were analyzed and compared with those obtained from calves in North America showing a clonal unique lineage.
Collapse
|
17
|
Harkness JM, Li J, McClane BA. Identification of a lambda toxin-negative Clostridium perfringens strain that processes and activates epsilon prototoxin intracellularly. Anaerobe 2012; 18:546-52. [PMID: 22982043 DOI: 10.1016/j.anaerobe.2012.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/23/2012] [Accepted: 09/03/2012] [Indexed: 01/06/2023]
Abstract
Clostridium perfringens type B and D strains produce epsilon toxin (ETX), which is one of the most potent clostridial toxins and is involved in enteritis and enterotoxemias of domestic animals. ETX is produced initially as an inactive prototoxin that is typically then secreted and processed by intestinal proteases or possibly, for some strains, lambda toxin. During the current work a unique C. perfringens strain was identified that intracellularly processes epsilon prototoxin to an active form capable of killing MDCK cells. This activated toxin is not secreted but instead is apparently released upon lysis of bacterial cells entering stationary phase. These findings broaden understanding of the pathogenesis of type B and D infections by identifying a new mechanism of ETX activation.
Collapse
Affiliation(s)
- Justine M Harkness
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
18
|
He HL, Guo J, Chen XL, Xie BB, Zhang XY, Yu Y, Chen B, Zhou BC, Zhang YZ. Structural and functional characterization of mature forms of metalloprotease E495 from Arctic sea-ice bacterium Pseudoalteromonas sp. SM495. PLoS One 2012; 7:e35442. [PMID: 22523598 PMCID: PMC3327674 DOI: 10.1371/journal.pone.0035442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 03/16/2012] [Indexed: 11/19/2022] Open
Abstract
E495 is the most abundant protease secreted by the Arctic sea-ice bacterium Pseudoalteromonas sp. SM495. As a thermolysin family metalloprotease, E495 was found to have multiple active forms in the culture of strain SM495. E495-M (containing only the catalytic domain) and E495-M-C1 (containing the catalytic domain and one PPC domain) were two stable mature forms, and E495-M-C1-C2 (containing the catalytic domain and two PPC domains) might be an intermediate. Compared to E495-M, E495-M-C1 had similar affinity and catalytic efficiency to oligopeptides, but higher affinity and catalytic efficiency to proteins. The PPC domains from E495 were expressed as GST-fused proteins. Both of the recombinant PPC domains were shown to have binding ability to proteins C-phycocyanin and casein, and domain PPC1 had higher affinity to C-phycocyanin than domain PPC2. These results indicated that the domain PPC1 in E495-M-C1 could be helpful in binding protein substrate, and therefore, improving the catalytic efficiency. Site-directed mutagenesis on the PPC domains showed that the conserved polar and aromatic residues, D26, D28, Y30, Y/W65, in the PPC domains played key roles in protein binding. Our study may shed light on the mechanism of organic nitrogen degradation in the Arctic sea ice.
Collapse
Affiliation(s)
- Hai-Lun He
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Jun Guo
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Yong Yu
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Bai-Cheng Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
19
|
Kondo F, Okada S, Miyachi A, Kurita M, Tsuji K, Harada KI. Microbial degradation of physiologically active peptides by strain B-9. Anal Bioanal Chem 2011; 403:1783-91. [PMID: 22186872 DOI: 10.1007/s00216-011-5635-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/10/2011] [Accepted: 12/02/2011] [Indexed: 11/24/2022]
Abstract
The reaction of some physiologically active peptides with bacterial strain B-9 has been investigated. Bradykinin, β-endorphin, and [Leu(5)]enkephalin were quickly degraded, with half-lives of <5 min. Somatostatin, substance P, and angiotensin I were degraded relatively smoothly, with half-lives of 10 min to 1 h, whereas oxytocin and insulin were slowly degraded, with half-lives of 1 and 4 days, respectively. Vasopressin was barely degraded, with a half-life of >7 days. Linearized vasopressin, prepared by the reductive cleavage of the disulfide bond followed by alkylation with iodoacetamide, was degraded significantly faster than intact vasopressin, with a half-life of 2.5 h. A loop formed by disulfide bond formation was regarded as one of the degradation-resistant factors. Hydrolysis of the peptides in this study took place through cleavage of various peptide bonds, and the strain B-9 may bear similarities to the neutral endopeptidase in terms of its broad selectivity.
Collapse
Affiliation(s)
- Fumio Kondo
- Department of Pharmacology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Necrotic enteritis-derived Clostridium perfringens strain with three closely related independently conjugative toxin and antibiotic resistance plasmids. mBio 2011; 2:mBio.00190-11. [PMID: 21954306 PMCID: PMC3181468 DOI: 10.1128/mbio.00190-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The pathogenesis of avian necrotic enteritis involves NetB, a pore-forming toxin produced by virulent avian isolates of Clostridium perfringens type A. To determine the location and mobility of the netB structural gene, we examined a derivative of the tetracycline-resistant necrotic enteritis strain EHE-NE18, in which netB was insertionally inactivated by the chloramphenicol and thiamphenicol resistance gene catP. Both tetracycline and thiamphenicol resistance could be transferred either together or separately to a recipient strain in plate matings. The separate transconjugants could act as donors in subsequent matings, which demonstrated that the tetracycline resistance determinant and the netB gene were present on different conjugative elements. Large plasmids were isolated from the transconjugants and analyzed by high-throughput sequencing. Analysis of the resultant data indicated that there were actually three large conjugative plasmids present in the original strain, each with its own toxin or antibiotic resistance locus. Each plasmid contained a highly conserved 40-kb region that included plasmid replication and transfer regions that were closely related to the 47-kb conjugative tetracycline resistance plasmid pCW3 from C. perfringens. The plasmids were as follows: (i) a conjugative 49-kb tetracycline resistance plasmid that was very similar to pCW3, (ii) a conjugative 82-kb plasmid that contained the netB gene and other potential virulence genes, and (iii) a 70-kb plasmid that carried the cpb2 gene, which encodes a different pore-forming toxin, beta2 toxin. The anaerobic bacterium Clostridium perfringens can cause an avian gastrointestinal disease known as necrotic enteritis. Disease pathogenesis is not well understood, although the plasmid-encoded pore-forming toxin NetB, is an important virulence factor. In this work, we have shown that the plasmid that carries the netB gene is conjugative and has a 40-kb region that is very similar to replication and transfer regions found within each of the sequenced conjugative plasmids from C. perfringens. We also showed that this strain contained two additional large plasmids that were also conjugative and carried a similar 40-kb region. One of these plasmids encoded beta2 toxin, and the other encoded tetracycline resistance. To our knowledge, this is the first report of a bacterial strain that carries three closely related but different independently conjugative plasmids. These results have significant implications for our understanding of the transmission of virulence and antibiotic resistance genes in pathogenic bacteria.
Collapse
|
21
|
Wu JW, Chen XL. Extracellular metalloproteases from bacteria. Appl Microbiol Biotechnol 2011; 92:253-62. [DOI: 10.1007/s00253-011-3532-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
|
22
|
Bokori-Brown M, Savva CG, Fernandes da Costa SP, Naylor CE, Basak AK, Titball RW. Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J 2011; 278:4589-601. [PMID: 21518257 DOI: 10.1111/j.1742-4658.2011.08140.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clostridium perfringens ε-toxin is produced by toxinotypes B and D strains. The toxin is the aetiological agent of dysentery in newborn lambs but is also associated with enteritis and enterotoxaemia in goats, calves and foals. It is considered to be a potential biowarfare or bioterrorism agent by the US Government Centers for Disease Control and Prevention. The relatively inactive 32.9 kDa prototoxin is converted to active mature toxin by proteolytic cleavage, either by digestive proteases of the host, such as trypsin and chymotrypsin, or by C. perfringens λ-protease. In vivo, the toxin appears to target the brain and kidneys, but relatively few cell lines are susceptible to the toxin, and most work has been carried out using Madin-Darby canine kidney (MDCK) cells. The binding of ε-toxin to MDCK cells and rat synaptosomal membranes is associated with the formation of a stable, high molecular weight complex. The crystal structure of ε-toxin reveals similarity to aerolysin from Aeromonas hydrophila, parasporin-2 from Bacillus thuringiensis and a lectin from Laetiporus sulphureus. Like these toxins, ε-toxin appears to form heptameric pores in target cell membranes. The exquisite specificity of the toxin for specific cell types suggests that it binds to a receptor found only on these cells.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | | | | | | | | | |
Collapse
|
23
|
Pruteanu M, Hyland NP, Clarke DJ, Kiely B, Shanahan F. Degradation of the extracellular matrix components by bacterial-derived metalloproteases: implications for inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17:1189-200. [PMID: 20853433 DOI: 10.1002/ibd.21475] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 08/02/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Proteolytic degradation of the extracellular matrix, a feature of mucosal homeostasis and tissue renewal, also contributes to the complications of intestinal inflammation. Whether this proteolytic activity is entirely host-derived, or, in part, produced by the gut microbiota, is unknown. METHODS We screened the bacterial colonies for gelatinolytic activity from fecal samples of 20 healthy controls, 23 patients with ulcerative colitis, and 18 with Crohn's disease (CD). In addition, the genes encoding metalloproteases were detected by conventional or real-time polymerase chain reaction (PCR). RESULTS Gelatinolytic activity was found in approximately one-quarter of samples regardless of the presence of inflammation and without any attempt to enhance the sensitivity of the culture-based screen. This was associated with a diversity of bacteria, particularly in CD, but was predominantly linked with Clostridium perfringens. Culture supernatants from C. perfringens degraded gelatin, azocoll, type I collagen, and basement membrane type IV collagen, but different isolates varied in the degree of proteolytic activity. Results were confirmed by detection of the C. perfringens colA gene (encoding collagenase) in fecal DNA, again regardless of the presence or absence of inflammation. However, the biologic significance and potential implications of microbial-derived proteolytic activity were confirmed by reduced transepithelial resistance (TER) after exposure of rat distal colon to culture supernatants of C. perfringens in Ussing chambers. CONCLUSIONS The study shows that microbial-derived proteolytic activity has the capacity to contribute to mucosal homeostasis and may participate in the pathogenesis of inflammatory bowel disease.
Collapse
|
24
|
Andrejko M, Mizerska-Dudka M. Elastase B of Pseudomonas aeruginosa stimulates the humoral immune response in the greater wax moth, Galleria mellonella. J Invertebr Pathol 2011; 107:16-26. [DOI: 10.1016/j.jip.2010.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/20/2010] [Accepted: 12/31/2010] [Indexed: 11/16/2022]
|
25
|
Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family. Proc Natl Acad Sci U S A 2010; 107:17569-74. [PMID: 20876133 DOI: 10.1073/pnas.1005681107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermolysin-like proteases (TLPs), a large group of zinc metalloproteases, are synthesized as inactive precursors. TLPs with a long propeptide (∼200 residues) undergo maturation following autoprocessing through an elusive molecular mechanism. We report the first two crystal structures for the autoprocessed complexes of a typical TLP, MCP-02. In the autoprocessed complex, Ala205 shifts upward by 33 Å from the previously covalently linked residue, His204, indicating that, following autocleavage of the peptide bond between His204 and Ala205, a large conformational change from the zymogen to the autoprocessed complex occurs. The eight N-terminal residues (residues Ala205-Gly212) of the catalytic domain form a new β-strand, nestling into two other β-strands. Simultaneously, the apparent T(m) of the autoprocessed complex increases 20 °C compared to that of the zymogen. The stepwise degradation of the propeptide begins with two sequential cuttings at Ser49-Val50 and Gly57-Leu58, which lead to the disassembly of the propeptide and the formation of mature MCP-02. Our findings give new insights into the molecular mechanism of TLP maturation.
Collapse
|
26
|
Purification and characterization of a clostripain-like protease from a recombinant Clostridium perfringens culture. Microbiology (Reading) 2010; 156:561-569. [DOI: 10.1099/mic.0.031609-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clostridium perfringens produces a homologue of clostripain (Clo), the arginine-specific endopeptidase of Clostridium histolyticum. To determine the biochemical and biological properties of the C. perfringens homologue (Clp), it was purified from the culture supernatant of a recombinant C. perfringens strain by cation-exchange chromatography and ultrafiltration. Analysis by SDS-PAGE, N-terminal amino acid sequencing and TOF mass spectrometry revealed that Clp consists of two polypeptides comprising heavy (38 kDa) and light (16 kDa or 15 kDa) chains, and that the two light chains differ in the N-terminal cleavage site. This difference in the light chain did not affect the enzymic activity toward N-benzoyl-l-arginine p-nitroanilide (Bz-l-arginine pNA), as demonstrated by assaying culture supernatants differing in the relative ratio of the two light chains. Although the purified Clp preferentially degraded Bz-dl-arginine pNA rather than Bz-dl-lysine pNA, it degraded the latter more efficiently than did Clo. Clp showed 2.3-fold higher caseinolytic activity than Clo, as expected from the difference in substrate specificity. Clp caused an increase in vascular permeability when injected intradermally into mice, implying a possible role of Clp in the pathogenesis of clostridial myonecrosis.
Collapse
|
27
|
Characterization of virulence plasmid diversity among Clostridium perfringens type B isolates. Infect Immun 2009; 78:495-504. [PMID: 19858300 DOI: 10.1128/iai.00838-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The important veterinary pathogen Clostridium perfringens type B is unique for producing the two most lethal C. perfringens toxins, i.e., epsilon-toxin and beta-toxin. Our recent study (K. Miyamoto, J. Li, S. Sayeed, S. Akimoto, and B. A. McClane, J. Bacteriol. 190:7178-7188, 2008) showed that most, if not all, type B isolates carry a 65-kb epsilon-toxin-encoding plasmid. However, this epsilon-toxin plasmid did not possess the cpb gene encoding beta-toxin, suggesting that type B isolates carry at least one additional virulence plasmid. Therefore, the current study used Southern blotting of pulsed-field gels to localize the cpb gene to approximately 90-kb plasmids in most type B isolates, although a few isolates carried a approximately 65-kb cpb plasmid distinct from their etx plasmid. Overlapping PCR analysis then showed that the gene encoding the recently discovered TpeL toxin is located approximately 3 kb downstream of the plasmid-borne cpb gene. As shown earlier for their epsilon-toxin-encoding plasmids, the beta-toxin-encoding plasmids of type B isolates were found to carry a tcp locus, suggesting that they are conjugative. Additionally, IS1151-like sequences were identified upstream of the cpb gene in type B isolates. These IS1151-like sequences may mobilize the cpb gene based upon detection of possible cpb-containing circular transposition intermediates. Most type B isolates also possessed a third virulence plasmid that carries genes encoding urease and lambda-toxin. Collectively, these findings suggest that type B isolates are among the most plasmid dependent of all C. perfringens isolates for virulence, as they usually carry three potential virulence plasmids.
Collapse
|
28
|
Adlerberth, Marina Cerquetti, Isabe I. Mechanisms of Colonisation and Colonisation Resistance of the Digestive Tract Part 1: Bacteria/host Interactions. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106000750060486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Ingegerd Adlerberth, Marina Cerquetti, Isabe
- Department of Clinical Immunology, Göteborg University, Göteborg, Sweden
- Laboratorio di Batteriologia e Micologia Medica, Istituto Superiore di Sanita, Roma, Italy
- Service de Microbiologie, Hôpital Jean Verdier, Bondy, France
| |
Collapse
|
29
|
Khan MTH, Fuskevåg OM, Sylte I. Discovery of potent thermolysin inhibitors using structure based virtual screening and binding assays. J Med Chem 2009; 52:48-61. [PMID: 19072688 DOI: 10.1021/jm8008019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present work, 22 compounds of the U.S. NCI compound library (size 273K) were identified as putative thermolysin binders by structure based virtual screening with the ICM software (ICM-VLS). In vitro competitive binding assays confirmed that 12 were thermolysin binders. Thermolysin binding modes of the 12 compounds were studied by docking using ICM and Molegro Virtual Docker (MVD). The most potent inhibitor had an IC(50) value of 6.4 x 10(-8) mM (NSC250686, 1 beta-D-arabinofuranosyl-N(4)-lauroylcytosine). The structure of this compound is quite different from the other 11 compounds. Nine out of the 12 compounds contained a similar chemical skeleton (3-nitrobenzamide derivatives) and have IC(50) values ranging from 697.48 to 0.047 mM. The ICM-VLS score and the activity profiles (pIC(50) values) were compared and found to be somewhat linearly correlated (R(2) = 0.78). Kinetic studies showed that, except for NSC285166 (oxyquinoline), the compounds are competitive thermolysin inhibitors.
Collapse
Affiliation(s)
- Mahmud Tareq Hassan Khan
- Department of Pharmacology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, N-9037, Tromsø, Norway
| | | | | |
Collapse
|
30
|
Adekoya OA, Sylte I. The Thermolysin Family (M4) of Enzymes: Therapeutic and Biotechnological Potential. Chem Biol Drug Des 2009; 73:7-16. [DOI: 10.1111/j.1747-0285.2008.00757.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Nickerson NN, Joag V, McGavin MJ. Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain. Mol Microbiol 2008; 69:1530-43. [DOI: 10.1111/j.1365-2958.2008.06384.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Tamai E, Miyata S, Tanaka H, Nariya H, Suzuki M, Matsushita O, Hatano N, Okabe A. High-level expression of his-tagged clostridial collagenase in Clostridium perfringens. Appl Microbiol Biotechnol 2008; 80:627-35. [PMID: 18629492 DOI: 10.1007/s00253-008-1592-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
Abstract
Clostridium histolyticum collagenase is used to isolate cells from various organs and tissues for tissue engineering, and also to treat destructive fibrosis; thus, the demand for high-grade enzyme preparations is increasing. In this study, we constructed a plasmid encoding C. histolyticum type II collagenase (ColH) with a C-terminal hexahistidine tag (ColH-his) to facilitate the purification of the enzyme through immobilized metal affinity chromatography (IMAC). When ColH-his was expressed in a protease-deficient mutant of Clostridium perfringens, it was produced in the culture supernatant more efficiently than the untagged ColH. ColH-his exhibited the same hydrolytic activity as ColH against 4-phenylazobenzyloxy-carbonyl-Pro-Leu-Gly-Pro-D-Arg (Pz peptide), a synthetic collagenase substrate. From 100 ml of the culture supernatant, approximately 1 mg of ColH-his was purified by ammonium sulfate precipitation, IMAC, and high-performance liquid chromatography on a MonoQ column. When IMAC was performed on chelating Sepharose charged with Zn(2+) instead of Ni(2+), a potential carcinogenic metal, the specific activities against Pz peptide and type I collagen decreased slightly. However, they were comparable to those reported for other recombinant ColHs and a commercial C. histolyticum collagenase preparation, suggesting that this expression system is useful for large-scale preparation of high-grade clostridial collagenases.
Collapse
Affiliation(s)
- Eiji Tamai
- Department of Infectious Diseases, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Construction and characterization of a clostripain-like protease-deficient mutant of Clostridium perfringens as a strain for clostridial gene expression. Appl Microbiol Biotechnol 2008; 77:1063-71. [DOI: 10.1007/s00253-007-1245-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/05/2007] [Accepted: 10/08/2007] [Indexed: 12/14/2022]
|
34
|
Porto TS, Pessôa-Filho PA, Neto BB, Filho JLL, Converti A, Porto ALF, Pessoa A. Removal of proteases from Clostridium perfringens fermented broth by aqueous two-phase systems (PEG/citrate). J Ind Microbiol Biotechnol 2007; 34:547-52. [PMID: 17566805 DOI: 10.1007/s10295-007-0230-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
In order to reduce the toxicity of Clostridium perfringens fermentation broths used in vaccine preparation, we developed two-phase aqueous systems for removal of toxin-activating proteases. Removal of the proteases inhibits the conversion of protoxin to active toxin. In order to establish the conditions under which the phase separation occurs, binodal curves, formed by poly(ethylene glycol) (PEG) and sodium citrate, were investigated at different values of pH and PEG molar mass. A 2(4)-experimental design was used to evaluate the influence of PEG molar mass and concentration, citrate concentration and pH on protease partition coefficient, removal.factor and protease removal yield. It has been found that simultaneous increase in PEG molar mass and decrease in citrate concentration remarkably improved the removal factor, whereas the protease removal yield showed an opposite trend. The best conditions for the system under consideration (removal factor of 2.69 and yield of 116%) were obtained at pH 8.0 using PEG molar mass of 8000 g mol(-1) and concentrations of PEG and citrate of 24 and 15%, respectively.
Collapse
Affiliation(s)
- Tatiana Souza Porto
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 Sio Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
35
|
Sayeed S, Li J, McClane BA. Virulence plasmid diversity in Clostridium perfringens type D isolates. Infect Immun 2007; 75:2391-8. [PMID: 17339362 PMCID: PMC1865775 DOI: 10.1128/iai.02014-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type D isolates are important in biodefense and also cause natural enterotoxemias in sheep, goats, and occasionally cattle. In these isolates, the gene (etx) encoding epsilon-toxin is thought to reside on poorly characterized large plasmids. Type D isolates sometimes also produce other potentially plasmid-encoded toxins, including C. perfringens enterotoxin and beta2 toxin, encoded by the cpe and cbp2 genes, respectively. In the current study we demonstrated that the etx, cpe, and cpb2 genes are carried on plasmids in type D isolates and characterized the toxin-encoding plasmids to obtain insight into their genetic organization, potential transferability, and diversity. Southern blotting of pulsed-field gels showed that the etx gene of type D isolates can be present on at least five different plasmids, whose sizes range from 48 to 110 kb. The etx plasmids also typically carried IS1151 and tcp open reading frames (ORFs) known to mediate conjugative transfer of C. perfringens plasmid pCW3. PCR studies revealed that other than their tcp ORFs, etx plasmids of type D isolates do not carry substantial portions of the conserved or variable regions in the cpe plasmids of type A isolates. Southern blotting also demonstrated that in type D isolates the cpe and cpb2 genes are sometimes present on the etx plasmid. Collectively, these findings confirmed that the virulence of type D isolates is heavily plasmid dependent and indicated that (i) a single type D isolate can carry multiple virulence plasmids, (ii) a single type D virulence plasmid can carry up to three different toxin genes, and (iii) many etx plasmids should be capable of conjugative transfer.
Collapse
Affiliation(s)
- Sameera Sayeed
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
36
|
Li J, Miyamoto K, McClane BA. Comparison of virulence plasmids among Clostridium perfringens type E isolates. Infect Immun 2007; 75:1811-9. [PMID: 17261608 PMCID: PMC1865703 DOI: 10.1128/iai.01981-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type E isolates produce iota-toxin, which is encoded by iap and ibp genes. Using Southern blot analyses, the current study identified iap/ibp plasmids of approximately 97 or approximately 135 kb among eight type E isolates. For most of these isolates, their iap/ibp plasmid also encoded urease and lambda-toxin. However, the beta2-toxin gene, if present, was on a different plasmid from the iap/ibp plasmid. For all isolates, the iap/ibp plasmid carried a tcp locus, strongly suggesting that these plasmids are conjugative. Overlapping PCR analyses demonstrated some similarity between the iap/ibp plasmids and enterotoxin-encoding plasmids of type A isolates. Additional PCR analyses demonstrated that the iap/ibp locus is located near dcm sequences, an apparent plasmid hot spot for toxin gene insertion, and that two IS1151-related sequences are present in the iap/ibp locus. To begin testing whether those IS1151-like sequences can mobilize iap/ibp genes, a PCR assay was performed that amplifies a product only from circular DNA forms that could represent transposition intermediates. This PCR assay detected circular forms containing iap/ibp genes and silent enterotoxin gene sequences, with or without an IS1151-like sequence. Collectively, these results suggest that a mobile genetic element carrying iap/ibp has inserted onto a tcp-carrying enterotoxin plasmid in a type A isolate, creating a progenitor iap/ibp plasmid. That plasmid then spread via conjugation to other isolates, converting them to type E. Further iap/ibp plasmid diversity occurred when either the iap/ibp genes later remobilized and inserted onto other conjugative plasmids or some iap/ibp plasmids acquired additional DNA sequences.
Collapse
Affiliation(s)
- Jihong Li
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
37
|
Altincicek B, Linder M, Linder D, Preissner KT, Vilcinskas A. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect Immun 2006; 75:175-83. [PMID: 17074843 PMCID: PMC1828416 DOI: 10.1128/iai.01385-06] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermolysin-like metalloproteinases such as aureolysin, pseudolysin, and bacillolysin represent virulence factors of diverse bacterial pathogens. Recently, we discovered that injection of thermolysin into larvae of the greater wax moth, Galleria mellonella, mediated strong immune responses. Thermolysin-mediated proteolysis of hemolymph proteins yielded a variety of small-sized (<3 kDa) protein fragments (protfrags) that are potent elicitors of innate immune responses. In this study, we report the activation of a serine proteinase cascade by thermolysin, as described for bacterial lipopolysaccharides (LPS), that results in subsequent prophenoloxidase activation leading to melanization, an elementary immune defense reaction of insects. Quantitative real-time reverse transcription-PCR analyses of the expression of immune-related genes encoding the inducible metalloproteinase inhibitor, gallerimycin, and lysozyme demonstrated increased transcriptional rates after challenge with purified protfrags similar to rates after challenge with LPS. Additionally, we determined the induction of a similar spectrum of immune-responsive proteins that were secreted into the hemolymph by using comparative proteomic analyses of hemolymph proteins from untreated larvae and from larvae that were challenged with either protfrags or LPS. Since G. mellonella was recently established as a valuable pathogenicity model for Cryptococcus neoformans infection, the present results add to our understanding of the mechanisms of immune responses in G. mellonella. The obtained results support the proposed danger model, which suggests that the immune system senses endogenous alarm signals during infection besides recognition of microbial pattern molecules.
Collapse
Affiliation(s)
- Boran Altincicek
- Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
38
|
Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 2004; 68:373-402, table of contents. [PMID: 15353562 PMCID: PMC515256 DOI: 10.1128/mmbr.68.3.373-402.2004] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Certain pathogenic species of Bacillus and Clostridium have developed unique methods for intoxicating cells that employ the classic enzymatic "A-B" paradigm for protein toxins. The binary toxins produced by B. anthracis, B. cereus, C. botulinum, C. difficile, C. perfringens, and C. spiroforme consist of components not physically associated in solution that are linked to various diseases in humans, animals, or insects. The "B" components are synthesized as precursors that are subsequently activated by serine-type proteases on the targeted cell surface and/or in solution. Following release of a 20-kDa N-terminal peptide, the activated "B" components form homoheptameric rings that subsequently dock with an "A" component(s) on the cell surface. By following an acidified endosomal route and translocation into the cytosol, "A" molecules disable a cell (and host organism) via disruption of the actin cytoskeleton, increasing intracellular levels of cyclic AMP, or inactivation of signaling pathways linked to mitogen-activated protein kinase kinases. Recently, B. anthracis has gleaned much notoriety as a biowarfare/bioterrorism agent, and of primary interest has been the edema and lethal toxins, their role in anthrax, as well as the development of efficacious vaccines and therapeutics targeting these virulence factors and ultimately B. anthracis. This review comprehensively surveys the literature and discusses the similarities, as well as distinct differences, between each Clostridium and Bacillus binary toxin in terms of their biochemistry, biology, genetics, structure, and applications in science and medicine. The information may foster future studies that aid novel vaccine and drug development, as well as a better understanding of a conserved intoxication process utilized by various gram-positive, spore-forming bacteria.
Collapse
Affiliation(s)
- Holger Barth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Otto-Krayer-Haus, Albertstrasse 25, D-79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
39
|
Smedley JG, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA. The enteric toxins of Clostridium perfringens. Rev Physiol Biochem Pharmacol 2004; 152:183-204. [PMID: 15517462 DOI: 10.1007/s10254-004-0036-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Gram-positive pathogen Clostridium perfringens is a major cause of human and veterinary enteric disease largely because this bacterium can produce several toxins when present inside the gastrointestinal tract. The enteric toxins of C. perfringens share two common features: (1) they are all single polypeptides of modest (approximately 25-35 kDa) size, although lacking in sequence homology, and (2) they generally act by forming pores or channels in plasma membranes of host cells. These enteric toxins include C. perfringens enterotoxin (CPE), which is responsible for the symptoms of a common human food poisoning and acts by forming pores after interacting with intestinal tight junction proteins. Two other C. perfringens enteric toxins, epsilon-toxin (a bioterrorism select agent) and beta-toxin, cause veterinary enterotoxemias when absorbed from the intestines; beta- and epsilon-toxins then apparently act by forming oligomeric pores in intestinal or extra-intestinal target tissues. The action of a newly discovered C. perfringens enteric toxin, beta2 toxin, has not yet been defined but precedent suggests it might also be a pore-former. Experience with other clostridial toxins certainly warrants continued research on these C. perfringens enteric toxins to develop their potential as therapeutic agents and tools for cellular biology.
Collapse
Affiliation(s)
- J G Smedley
- University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Bacteria belonging to the genus Clostridium, both glycolytic and proteolytic, and both pathogenic and non-pathogenic, produce a battery of hydrolytic enzymes to obtain nutrients from various biopolymers. The clostridial hydrolytic enzymes are diverse, and are used or are potentially useful for fundamental and applied research purposes. Among them, enzymes degrading the major components in the extracellular matrix or on the cell surface in vertebrates are herein reviewed with special emphasis on recent knowledge gained through molecular biology of clostridial collagenases, sialidases and hyaluronidases. This paper also reviews some literature on the biotechnological approach to the designing of new molecular tools and drug delivery systems involving clostridial hydrolytic enzymes.
Collapse
Affiliation(s)
- O Matsushita
- Department of Microbiology, Faculty of Medicine, Kagawa Medical University, 1750-1 Miki-cho, Kita-gun, 761-0793, Kagawa, Japan.
| | | |
Collapse
|
41
|
Miyata S, Matsushita O, Minami J, Katayama S, Shimamoto S, Okabe A. Cleavage of a C-terminal peptide is essential for heptamerization of Clostridium perfringens epsilon-toxin in the synaptosomal membrane. J Biol Chem 2001; 276:13778-83. [PMID: 11278924 DOI: 10.1074/jbc.m011527200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of Clostridium perfringens epsilon-protoxin by tryptic digestion is accompanied by removal of the 13 N-terminal and 22 C-terminal amino acid residues. In this study, we examined the toxicity of four constructs: an epsilon-protoxin derivative (PD), in which a factor Xa cleavage site was generated at the C-terminal trypsin-sensitive site; PD without the 13 N-terminal residues (DeltaN-PD); PD without the 23 C-terminal residues (DeltaC-PD); and PD without either the N- or C-terminal residues (DeltaNC-PD). A mouse lethality test showed that DeltaN-PD was inactive, as is PD, whereas DeltaC-PD and DeltaNC-PD were equally active. DeltaC-PD and DeltaNC-PD, but not the other constructs formed a large SDS-resistant complex in rat synaptosomal membranes as demonstrated by SDS-polyacrylamide gel electrophoresis. When DeltaNC-PD and DeltaC-PD, both labeled with (32)P and mixed in various ratios, were incubated with membranes, eight distinct high molecular weight bands corresponding to six heteropolymers and two homopolymers were detected on a SDS-polyacrylamide gel, indicating the active toxin forms a heptameric complex. These results indicate that C-terminal processing is responsible for activation of the toxin and that it is essential for its heptamerization within the membrane.
Collapse
Affiliation(s)
- S Miyata
- Department of Microbiology, Faculty of Medicine, Kagawa Medical University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Gibert M, Petit L, Raffestin S, Okabe A, Popoff MR. Clostridium perfringens iota-toxin requires activation of both binding and enzymatic components for cytopathic activity. Infect Immun 2000; 68:3848-53. [PMID: 10858193 PMCID: PMC101657 DOI: 10.1128/iai.68.7.3848-3853.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iota-toxin is produced by Clostridium perfringens type E strains and consists of two independent components, the enzymatic and binding components, referred to as Ia and Ib, respectively. A recombinant C. perfringens strain, strain 667/pMRP147, produced processed Ia and partially processed Ib, while a recombinant C. perfringens type A strain, strain TS133/pMRP147, in which the VirR-VirS two-component system is inactivated, produced only precursor forms of Ia and Ib. This suggests that iota-toxin is processed by a VirR-VirS-responsive protease, although not completely in the recombinant type A strain. The precursor forms of Ia and Ib were purified from cultures of the latter strain, and their proteolytic activation was examined. Treatment with proteases cleaved off small peptides (9 to 13 amino acid residues) and a 20-kDa peptide from the N termini of the Ia and Ib precursors, respectively, leading to their active forms. They were activated efficiently by alpha-chymotrypsin, pepsin, proteinase K, subtilisin, and thermolysin but only weakly by trypsin, as demonstrated by the cell-rounding assay. lambda-Protease from the C. perfringens type E strain, which was found to be a zinc-dependent protease related to thermolysin, activated iota-toxin as efficiently as did alpha-chymotrypsin. These results suggest that lambda-protease is most responsible for the activation of iota-toxin in type E strains.
Collapse
Affiliation(s)
- M Gibert
- Unité des Toxines Microbiennes, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
43
|
Katayama S, Matsushita O, Jung CM, Minami J, Okabe A. Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. EMBO J 1999; 18:3442-50. [PMID: 10369683 PMCID: PMC1171423 DOI: 10.1093/emboj/18.12.3442] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The phospholipase C gene (plc) of Clostridium perfringens possesses three phased A-tracts forming bent DNA upstream of the promoter. An in vitro transcription assay involving C.perfringens RNA polymerase (RNAP) showed that the phased A-tracts have a stimulatory effect on the plc promoter, and that the effect is proportional to the number of A-tracts, and more prominent at lower temperature. A gel retardation assay and hydroxyl radical footprinting revealed that the phased A-tracts facilitate the formation of the RNAP-plc promoter complex through extension of the contact region. The upstream (UP) element of the Escherichia coli rrnB P1 promoter stimulated the downstream promoter activity temperature independently, differing from the phased A-tracts. When the UP element was placed upstream of the plc promoter, low temperature-dependent stimulation was observed, although this effect was less prominent than that of the phased A-tracts. These results suggest that both the phased A-tracts and UP element cause low temperature-dependent activation of the plc promoter through a similar mechanism, and that the more efficient low temperature-dependent activation by the phased A-tracts may be due to an increase in the bending angle at a lower temperature.
Collapse
Affiliation(s)
- S Katayama
- Department of Microbiology, Faculty of Medicine, Kagawa Medical University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | |
Collapse
|
44
|
Abstract
Clostridium perfringens is a ubiquitous pathogen that produces many toxins and hydrolytic enzymes. Because the toxin-encoding genes can be located on extrachromosomal elements or in variable regions of the chromosome, several pathovars have arisen, each of which is involved in a specific disease. Pathovar identification is required for a precise diagnosis of associated pathologies and to define vaccine requirements. For these purposes, toxin genotyping is more reliable than the classical toxinotyping.
Collapse
Affiliation(s)
- L Petit
- Centre National de Reference des Anaérobies, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
45
|
Abstract
Clostridium perfringens causes human gas gangrene and food poisoning as well as several enterotoxemic diseases of animals. The organism is characterized by its ability to produce numerous extracellular toxins including alpha-toxin or phospholipase C, theta-toxin or perfringolysin O, kappa-toxin or collagenase, as well as a sporulation-associated enterotoxin. Although the genes encoding the alpha-toxin and theta-toxin are located on the chromosome, the genes encoding many of the other extracellular toxins are located on large plasmids. The enterotoxin gene can be either chromosomal or plasmid determined. Several of these toxin genes are associated with insertion sequences. The production of many of the extracellular toxins is regulated at the transcriptional level by the products of the virR and virS genes, which together comprise a two-component signal transduction system.
Collapse
Affiliation(s)
- J I Rood
- Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
46
|
Miyamoto O, Minami J, Toyoshima T, Nakamura T, Masada T, Nagao S, Negi T, Itano T, Okabe A. Neurotoxicity of Clostridium perfringens epsilon-toxin for the rat hippocampus via the glutamatergic system. Infect Immun 1998; 66:2501-8. [PMID: 9596708 PMCID: PMC108230 DOI: 10.1128/iai.66.6.2501-2508.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The neurotoxicity of epsilon-toxin, one of the major lethal toxins produced by Clostridium perfringens type B, was studied by histological examination of the rat brain. When the toxin was injected intravenously at a lethal dose (100 ng/kg), neuronal damage was observed in many areas of the brain. Injection of the toxin at a sublethal dose (50 ng/kg) caused neuronal damage predominantly in the hippocampus: pyramidal cells in the hippocampus showed marked shrinkage and karyopyknosis, or so-called dark cells. The dark cells lost the immunoreactivity to microtubule-associated protein-2, a postsynaptic somal and dendric marker, while acetylcholinesterase-positive fibers were not affected. Timm's zinc staining revealed that zinc ions were depleted in the mossy layers of the CA3 subfield containing glutamate as a synaptic transmitter. The cerebral blood flow in the hippocampus was not altered significantly before or after administration of the toxin, as measured by laser-Doppler flowmetry, excluding the possibility that the observed histological change was due to a secondary effect of ischemia in the hippocampus. Prior injection of either a glutamate release inhibitor or a glutamate receptor antagonist protected the hippocampus from the neuronal damage caused by epsilon-toxin. These results suggest that epsilon-toxin acts on the glutamatergic system and evokes excessive release of glutamate, leading to neuronal damage.
Collapse
Affiliation(s)
- O Miyamoto
- Departments of Biology, Kagawa Medical University, Ikenobe, Kagawa 761-0793, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Matsushita O, Jung CM, Minami J, Katayama S, Nishi N, Okabe A. A study of the collagen-binding domain of a 116-kDa Clostridium histolyticum collagenase. J Biol Chem 1998; 273:3643-8. [PMID: 9452493 DOI: 10.1074/jbc.273.6.3643] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Clostridium histolyticum 116-kDa collagenase consists of four segments, S1, S2a, S2b, and S3. A 98-kDa gelatinase, which can degrade denatured but not native collagen, lacks the C-terminal fragment containing a part of S2b and S3. In this paper we have investigated the function of the C-terminal segments using recombinant proteins. Full-length collagenase degraded both native type I collagen and a synthetic substrate, Pz-peptide, while an 88-kDa protein containing only S1 and S2a (S1S2a) degraded only Pz-peptide. Unlike the full-length enzyme, S1S2a did not bind to insoluble type I collagen. To determine the molecular determinant of collagen binding activity, various C-terminal regions were fused to the C terminus of glutathione S-transferase. S3 as well as S2bS3 conferred collagen binding. However, a glutathione S-transferase fusion protein with a region shorter than S3 exhibited reduced collagen binding activity. S3 liberated from the fusion protein also showed collagen binding activity, but not S2aS2b or S2b. S1 had 100% of the Pz-peptidase activity but only 5% of the collagenolytic activity of the full-length collagenase. These results indicate that S1 and S3 are the catalytic and binding domains, respectively, and that S2a and S2b form an interdomain structure.
Collapse
Affiliation(s)
- O Matsushita
- Department of Microbiology, Faculty of Medicine, Kagawa Medical University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Minami J, Katayama S, Matsushita O, Matsushita C, Okabe A. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiol Immunol 1997; 41:527-35. [PMID: 9272698 DOI: 10.1111/j.1348-0421.1997.tb01888.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of lambda-toxin, a thermolysin-like metalloprotease of Clostridium perfringens, on the inactive epsilon-prototoxin produced by the same organism was examined. When the purified epsilon-prototoxin was incubated with the purified lambda-toxin at 37 C for 2 hr, the 32.5-kDa epsilon-prototoxin was processed into a 30.5-kDa polypeptide, as determined by SDS-polyacrylamide gel electrophoresis. A mouse lethality test showed that the treatment activated the prototoxin: the 50% lethal doses (LD50) of the prototoxin with and without lambda-toxin treatment were 110 and 70,000 ng/kg of body weight, respectively. The lethal activity of the prototoxin activated by lambda-toxin was comparable to that with trypsin plus chymotrypsin and higher than that with trypsin alone: LD50 of the prototoxin treated with trypsin and trypsin plus chymotrypsin were 320 and 65 ng/kg of body weight, respectively. The epsilon-toxin gene was cloned and sequenced. Determination of the N-terminal amino acid sequence of each activated epsilon-prototoxin revealed that lambda-toxin cleaved between the 10th and 11th amino acid residues from the N-terminus of the prototoxin, while trypsin and trypsin plus chymotrypsin cleaved between the 13th and 14th amino acid residues. The molecular weight of each activated epsilon-prototoxin was also determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The C-terminus deduced from the molecular weight is located at the 23rd or 30th amino acid residue from the C-terminus of the prototoxin, suggesting that removal of not only N-terminal but also C-terminal peptide is responsible for activation of the prototoxin.
Collapse
Affiliation(s)
- J Minami
- Department of Microbiology, Faculty of Medicine, Kagawa Medical University, Japan
| | | | | | | | | |
Collapse
|
49
|
Katayama S, Dupuy B, Daube G, China B, Cole ST. Genome mapping of Clostridium perfringens strains with I-CeuI shows many virulence genes to be plasmid-borne. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:720-6. [PMID: 8757404 DOI: 10.1007/bf02174122] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The intron-encoded endonuclease I-CeuI from Chlamydomonas eugametos was shown to cleave the circular chromosomes of all Clostridium perfringens strains examined at single sites in the rRNA operons, thereby generating ten fragments suitable for the rapid mapping of virulence genes by pulsed-field gel electrophoresis (PFGE). This method easily distinguishes between plasmid and chromosomal localisations, as I-CeuI only cuts chromosomal DNA. Using this approach, the genes for three of the four typing toxins, beta, epsilon, and tau, in addition to the enterotoxin and lambda-toxin genes, were shown to be plasmid-borne. In a minority of strains, associated with food poisoning, where the enterotoxin toxin gene was located on the chromosome, genes for two of the minor toxins, theta and mu, were missing.
Collapse
Affiliation(s)
- S Katayama
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|