1
|
Hernandez-Morfa M, Olivero NB, Zappia VE, Piñas GE, Reinoso-Vizcaino NM, Cian MB, Nuñez-Fernandez M, Cortes PR, Echenique J. The oxidative stress response of Streptococcus pneumoniae: its contribution to both extracellular and intracellular survival. Front Microbiol 2023; 14:1269843. [PMID: 37789846 PMCID: PMC10543277 DOI: 10.3389/fmicb.2023.1269843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Streptococcus pneumoniae is a gram-positive, aerotolerant bacterium that naturally colonizes the human nasopharynx, but also causes invasive infections and is a major cause of morbidity and mortality worldwide. This pathogen produces high levels of H2O2 to eliminate other microorganisms that belong to the microbiota of the respiratory tract. However, it also induces an oxidative stress response to survive under this stressful condition. Furthermore, this self-defense mechanism is advantageous in tolerating oxidative stress imposed by the host's immune response. This review provides a comprehensive overview of the strategies employed by the pneumococcus to survive oxidative stress. These strategies encompass the utilization of H2O2 scavengers and thioredoxins, the adaptive response to antimicrobial host oxidants, the regulation of manganese and iron homeostasis, and the intricate regulatory networks that control the stress response. Here, we have also summarized less explored aspects such as the involvement of reparation systems and polyamine metabolism. A particular emphasis is put on the role of the oxidative stress response during the transient intracellular life of Streptococcus pneumoniae, including coinfection with influenza A and the induction of antibiotic persistence in host cells.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - German E. Piñas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas M. Reinoso-Vizcaino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina B. Cian
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Nuñez-Fernandez
- Centro de Química Aplicada, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jose Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Violo T, Lambert A, Pillot A, Fanuel M, Mac-Béar J, Broussard C, Grandjean C, Camberlein E. Site-Selective Unnatural Amino Acid Incorporation at Single or Multiple Positions to Control Sugar-Protein Connectivity in Glycoconjugate Vaccine Candidates. Chemistry 2023; 29:e202203497. [PMID: 36533568 DOI: 10.1002/chem.202203497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In cellulo site-specific unnatural amino acid incorporation based on amber stop codon reassignment is a powerful tool to modify proteins at defined positions. This technique is herein applied to the selective functionalization of the Pneumococcal surface adhesin A protein at three distinct positions. Nϵ -propargyloxycarbonyl-l-lysine residues were incorporated and their alkyne groups reacted using click-chemistry with a synthetic azido-functionalized tetrasaccharide representative of one repeat unit of the Streptococcus pneumoniae serotype 14 capsular polysaccharide. Anti-PsaA antibody response induced in mice by the trivalent glycoconjugate was determined in comparison with corresponding monovalent and randomly functionalized conjugates. Our results suggest that controlled was superior to random conjugation for preserving antigenicity. In definitive, the reported strategy offers a unique opportunity to study the impact of carbohydrate antigen-carrier protein connectivity on immunogenicity.
Collapse
Affiliation(s)
- Typhaine Violo
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Annie Lambert
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Aline Pillot
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Mathieu Fanuel
- INRAE, UR1268 BIA, F-44300, Nantes, France.,INRAE, PROBE Research Infrastructure BIBS facility, F-44300, Nantes, France
| | - Jessica Mac-Béar
- INRAE, UR1268 BIA, F-44300, Nantes, France.,INRAE, PROBE Research Infrastructure BIBS facility, F-44300, Nantes, France
| | - Cédric Broussard
- Protéom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Cyrille Grandjean
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Emilie Camberlein
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| |
Collapse
|
3
|
Dao TH, Iverson A, Neville SL, Johnson MDL, McDevitt CA, Rosch JW. The role of CopA in Streptococcus pyogenes copper homeostasis and virulence. J Inorg Biochem 2023; 240:112122. [PMID: 36639322 PMCID: PMC10161136 DOI: 10.1016/j.jinorgbio.2023.112122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Maintenance of intracellular metal homeostasis during interaction with host niches is critical to the success of bacterial pathogens. To prevent infection, the mammalian innate immune response employs metal-withholding and metal-intoxication mechanisms to limit bacterial propagation. The first-row transition metal ion copper serves critical roles at the host-pathogen interface and has been associated with antimicrobial activity since antiquity. Despite lacking any known copper-utilizing proteins, streptococci have been reported to accumulate significant levels of copper. Here, we report that loss of CopA, a copper-specific exporter, confers increased sensitivity to copper in Streptococcus pyogenes strain HSC5, with prolonged exposure to physiological levels of copper resulting in reduced viability during stationary phase cultivation. This defect in stationary phase survival was rescued by supplementation with exogeneous amino acids, indicating the pathogen had altered nutritional requirements during exposure to copper stress. Furthermore, S. pyogenes HSC5 ΔcopA was substantially attenuated during murine soft-tissue infection, demonstrating the importance of copper efflux at the host-pathogen interface. Collectively, these data indicate that copper can severely reduce the viability of stationary phase S. pyogenes and that active efflux mechanisms are required to survive copper stress in vitro and during infection.
Collapse
Affiliation(s)
- Tina H Dao
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Amy Iverson
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Michael D L Johnson
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunobiology, BIO5 Institute, Valley Fever Center for Excellence, and Asthma and Airway Disease Research Center, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jason W Rosch
- St. Jude Children's Research Hospital, Department of Infectious Diseases, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
4
|
Aggarwal S, Kumaraswami M. Managing Manganese: The Role of Manganese Homeostasis in Streptococcal Pathogenesis. Front Cell Dev Biol 2022; 10:921920. [PMID: 35800897 PMCID: PMC9253540 DOI: 10.3389/fcell.2022.921920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic streptococci require manganese for survival in the host. In response to invading pathogens, the host recruits nutritional immune effectors at infection sites to withhold manganese from the pathogens and control bacterial growth. The manganese scarcity impairs several streptococcal processes including oxidative stress defenses, de novo DNA synthesis, bacterial survival, and virulence. Emerging evidence suggests that pathogens also encounter manganese toxicity during infection and manganese excess impacts streptococcal virulence by manganese mismetallation of non-cognate molecular targets involved in bacterial antioxidant defenses and cell division. To counter host-imposed manganese stress, the streptococcal species employ a sophisticated sensory system that tightly coordinates manganese stress-specific molecular strategies to negate host induced manganese stress and proliferate in the host. Here we review the molecular details of host-streptococcal interactions in the battle for manganese during infection and the significance of streptococcal effectors involved to bacterial pathophysiology.
Collapse
Affiliation(s)
- Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, United States
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
5
|
Hu Y, Park N, Seo KS, Park JY, Somarathne RP, Olivier AK, Fitzkee NC, Thornton JA. Pneumococcal surface adhesion A protein (PsaA) interacts with human Annexin A2 on airway epithelial cells. Virulence 2021; 12:1841-1854. [PMID: 34233589 PMCID: PMC8274441 DOI: 10.1080/21505594.2021.1947176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a normal colonizer of the human nasopharynx capable of causing serious invasive disease. Since colonization of the nasopharynx is a prerequisite for progression to invasive diseases, the development of future protein-based vaccines requires an understanding of the intimate interaction of bacterial adhesins with host receptors. In this study, we identified that pneumococcal surface adhesin A (PsaA), a highly conserved pneumococcal protein known to play an important role in colonization of pneumococcus, can interact with Annexin A2 (ANXA2) on Detroit 562 nasopharyngeal epithelial cells. Lentiviral expression of ANXA2 in HEK 293 T/17 cells, which normally express minimal ANXA2, significantly increased pneumococcal adhesion. Blocking of ANXA2 with recombinant PsaA negatively impacted pneumococcal adherence to ANXA2-transduced HEK cells. These results suggest that ANXA2 is an important host cellular receptor for pneumococcal colonization.
Collapse
Affiliation(s)
- Yoonsung Hu
- Department of Biological Sciences, Mississippi State University, Mississippi State, USA
| | - Nogi Park
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Keun Seok Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Joo Youn Park
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Radha P Somarathne
- Department of Chemistry, Mississippi State University, Mississippi State, USA
| | - Alicia K Olivier
- Department of Population and Pathobiology, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, USA
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Mississippi State, USA
| |
Collapse
|
6
|
Ramos-Sevillano E, Ercoli G, Guerra-Assunção JA, Felgner P, Ramiro de Assis R, Nakajima R, Goldblatt D, Tetteh KKA, Heyderman RS, Gordon SB, Ferreria DM, Brown JS. Protective Effect of Nasal Colonisation with ∆cps/piaA and ∆cps/proABCStreptococcus pneumoniae Strains against Recolonisation and Invasive Infection. Vaccines (Basel) 2021; 9:vaccines9030261. [PMID: 33804077 PMCID: PMC8000150 DOI: 10.3390/vaccines9030261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Nasopharyngeal administration of live virulence-attenuated Streptococcus pneumoniae strains is a potential novel preventative strategy. One target for creating reduced virulence S. pneumoniae strains is the capsule, but loss of the capsule reduces the duration of S. pneumoniae colonisation in mice which could impair protective efficacy against subsequent infection. OBJECTIVES To assess protective efficacy of nasopharyngeal administration of unencapsulated S. pneumoniae strains in murine infection models. METHODS Strains containing cps locus deletions combined with the S. pneumoniae virulence factors psaA (reduces colonisation) or proABC (no effect on colonisation) were constructed and their virulence phenotypes and ability to prevent recolonisation or invasive infection assessed using mouse infection models. Serological responses to colonisation were compared between strains using ELISAs, immunoblots and 254 S. pneumoniae protein antigen array. MEASUREMENTS AND MAIN RESULTS The ∆cps/piaA and ∆cps/proABC strains were strongly attenuated in virulence in both invasive infection models and had a reduced ability to colonise the nasopharynx. ELISAs, immunoblots and protein arrays showed colonisation with either strain stimulated weaker serological responses than the wild type strain. Mice previously colonised with these strains were protected against septicaemic pneumonia but, unlike mice colonised with the wild type strain, not against S. pneumoniae recolonisation. CONCLUSIONS Colonisation with the ∆cps/piaA and ∆cps/proABC strains prevented subsequent septicaemia, but in contrast, to published data for encapsulated double mutant strains they did not prevent recolonisation with S. pneumoniae. These data suggest targeting the cps locus is a less effective option for creating live attenuated strains that prevent S. pneumoniae infections.
Collapse
Affiliation(s)
- Elisa Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
| | | | - Philip Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697-4560, USA; (P.F.); (R.R.d.A.); (R.N.)
| | - David Goldblatt
- Immunobiology Section, UCL Great Ormond Street Institute of Child Health, NIHR Biomedical Research Centre, London WC1N 1EH, UK;
| | - Kevin Kweku Adjei Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, London WC1E 7HT, UK;
| | - Robert Simon Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, Rayne Institute, London WC1E 6JF, UK;
| | - Stephen Brian Gordon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 30096, Malawi;
| | - Daniela Mulari Ferreria
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Jeremy Stuart Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London, Rayne Institute, London WC1E 6JF, UK;
- Correspondence: (E.R.-S.); (J.S.B.); Tel.: +44-20-7679-6008 (J.S.B.); Fax: +44-20-7679-6973 (J.S.B.)
| |
Collapse
|
7
|
Abdullah MR, Batuecas MT, Jennert F, Voß F, Westhoff P, Kohler TP, Molina R, Hirschmann S, Lalk M, Hermoso JA, Hammerschmidt S. Crystal Structure and Pathophysiological Role of the Pneumococcal Nucleoside-binding Protein PnrA. J Mol Biol 2020; 433:166723. [PMID: 33242497 DOI: 10.1016/j.jmb.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Nucleotides are important for RNA and DNA synthesis and, despite a de novo synthesis by bacteria, uptake systems are crucial. Streptococcus pneumoniae, a facultative human pathogen, produces a surface-exposed nucleoside-binding protein, PnrA, as part of an ABC transporter system. Here we demonstrate the binding affinity of PnrA to nucleosides adenosine, guanosine, cytidine, thymidine and uridine by microscale thermophoresis and indicate the consumption of adenosine and guanosine by 1H NMR spectroscopy. In a series of five crystal structures we revealed the PnrA structure and provide insights into how PnrA can bind purine and pyrimidine ribonucleosides but with preference for purine ribonucleosides. Crystal structures of PnrA:nucleoside complexes unveil a clear pattern of interactions in which both the N- and C- domains of PnrA contribute. The ribose moiety is strongly recognized through a conserved network of H-bond interactions, while plasticity in loop 27-36 is essential to bind purine- or pyrimidine-based nucleosides. Further, we deciphered the role of PnrA in pneumococcal fitness in infection experiments. Phagocytosis experiments did not show a clear difference in phagocytosis between PnrA-deficient and wild-type pneumococci. In the acute pneumonia infection model the deficiency of PnrA attenuated moderately virulence of the mutant, which is indicated by a delay in the development of severe lung infections. Importantly, we confirmed the loss of fitness in co-infections, where the wild-type out-competed the pnrA-mutant. In conclusion, we present the PnrA structure in complex with individual nucleosides and show that the consumption of adenosine and guanosine under infection conditions is required for virulence.
Collapse
Affiliation(s)
- Mohammed R Abdullah
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany; Present Address: Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsmedizin Greifswald, Germany
| | - María T Batuecas
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain
| | - Franziska Jennert
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany; Present Address: Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Philipp Westhoff
- Cellular Metabolism/Metabolomics, Institute of Biochemistry, University of Greifswald, D-17487 Greifswald, Germany; Present Address: Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain; Present Address: Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Blegdamsvej 3-B, Copenhagen, 2200, Denmark
| | - Stephanie Hirschmann
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Michael Lalk
- Cellular Metabolism/Metabolomics, Institute of Biochemistry, University of Greifswald, D-17487 Greifswald, Germany
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain.
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany.
| |
Collapse
|
8
|
Briles DE, Paton JC, Mukerji R, Swiatlo E, Crain MJ. Pneumococcal Vaccines. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0028-2018. [PMID: 31858954 PMCID: PMC10921951 DOI: 10.1128/microbiolspec.gpp3-0028-2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-Positive pathogen that is a major causative agent of pneumonia, otitis media, sepsis and meningitis across the world. The World Health Organization estimates that globally over 500,000 children are killed each year by this pathogen. Vaccines offer the best protection against S. pneumoniae infections. The current polysaccharide conjugate vaccines have been very effective in reducing rates of invasive pneumococcal disease caused by vaccine type strains. However, the effectiveness of these vaccines have been somewhat diminished by the increasing numbers of cases of invasive disease caused by non-vaccine type strains, a phenomenon known as serotype replacement. Since, there are currently at least 98 known serotypes of S. pneumoniae, it may become cumbersome and expensive to add many additional serotypes to the current 13-valent vaccine, to circumvent the effect of serotype replacement. Hence, alternative serotype independent strategies, such as vaccination with highly cross-reactive pneumococcal protein antigens, should continue to be investigated to address this problem. This chapter provides a comprehensive discussion of pneumococcal vaccines past and present, protein antigens that are currently under investigation as vaccine candidates, and other alternatives, such as the pneumococcal whole cell vaccine, that may be successful in reducing current rates of disease caused by S. pneumoniae.
Collapse
Affiliation(s)
- D E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - R Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - E Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA
| | - M J Crain
- Department of Pediatrics and Microbiology, University of Alabama at Birmingham
| |
Collapse
|
9
|
Dual RNA-seq in Streptococcus pneumoniae Infection Reveals Compartmentalized Neutrophil Responses in Lung and Pleural Space. mSystems 2019; 4:4/4/e00216-19. [PMID: 31409659 PMCID: PMC6697439 DOI: 10.1128/msystems.00216-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The factors that regulate the passage of bacteria between different anatomical compartments are unclear. We have used an experimental model of infection with Streptococcus pneumoniae to examine the host and bacterial factors involved in the passage of bacteria from the lung to the pleural space. The transcriptional profile of host and bacterial cells within the pleural space and lung was analyzed using deep sequencing of the entire transcriptome using the technique of dual RNA-seq. We found significant differences in the host and bacterial RNA profiles in infection, which shed light on the key factors that allow passage of this bacterium into the pleural space. Streptococcus pneumoniae is the dominant cause of community-acquired pneumonia worldwide. Invasion of the pleural space is common and results in increased mortality. We set out to determine the bacterial and host factors that influence invasion of the pleural space. In a murine model of pneumococcal infection, we isolated neutrophil-dominated samples of bronchoalveolar and pleural fluid containing bacteria 48 hours after infection. Using dual RNA sequencing (RNA-seq), we characterized bacterial and host transcripts that were differentially regulated between these compartments and bacteria in broth and resting neutrophils, respectively. Pleural and lung samples showed upregulation of genes involved in the positive regulation of neutrophil extravasation but downregulation of genes mediating bacterial killing. Compared to the lung samples, cells within the pleural space showed marked upregulation of many genes induced by type I interferons, which are cytokines implicated in preventing bacterial transmigration across epithelial barriers. Differences in the bacterial transcripts between the infected samples and bacteria grown in broth showed the upregulation of genes in the bacteriocin locus, the pneumococcal surface adhesin PsaA, and the glycopeptide resistance gene vanZ; the gene encoding the ClpP protease was downregulated in infection. One hundred sixty-nine intergenic putative small bacterial RNAs were also identified, of which 43 (25.4%) small RNAs had been previously described. Forty-two of the small RNAs were upregulated in pleura compared to broth, including many previously identified as being important in virulence. Our results have identified key host and bacterial responses to invasion of the pleural space that can be potentially exploited to develop alternative antimicrobial strategies for the prevention and treatment of pneumococcal pleural disease. IMPORTANCE The factors that regulate the passage of bacteria between different anatomical compartments are unclear. We have used an experimental model of infection with Streptococcus pneumoniae to examine the host and bacterial factors involved in the passage of bacteria from the lung to the pleural space. The transcriptional profile of host and bacterial cells within the pleural space and lung was analyzed using deep sequencing of the entire transcriptome using the technique of dual RNA-seq. We found significant differences in the host and bacterial RNA profiles in infection, which shed light on the key factors that allow passage of this bacterium into the pleural space.
Collapse
|
10
|
David SC, Laan Z, Minhas V, Chen AY, Davies J, Hirst TR, McColl SR, Alsharifi M, Paton JC. Enhanced safety and immunogenicity of a pneumococcal surface antigen A mutant whole-cell inactivated pneumococcal vaccine. Immunol Cell Biol 2019; 97:726-739. [PMID: 31050022 DOI: 10.1111/imcb.12257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/21/2019] [Accepted: 04/29/2019] [Indexed: 01/14/2023]
Abstract
Existing capsular polysaccharide-based vaccines against pneumococcal disease are highly effective against vaccine-included serotypes, but they are unable to combat serotype replacement. We have developed a novel pneumococcal vaccine that confers serotype-independent protection, and could therefore constitute a "universal" vaccine formulation. This preparation is comprised of whole un-encapsulated pneumococci inactivated with gamma irradiation (γ-PN), and we have previously reported induction of cross-reactive immunity after nonadjuvanted intranasal vaccination. To further enhance vaccine immunogenicity and safety, we modified the pneumococcal vaccine strain to induce a stressed state during growth. Specifically, the substrate binding component of the psaBCA operon for manganese import was mutated to create a pneumococcal surface antigen A (psaA) defective vaccine strain. psaA mutation severely attenuated the growth of the vaccine strain in vitro without negatively affecting pneumococcal morphology, thereby enhancing vaccine safety. In addition, antibodies raised against vaccine preparations based on the modified strain [γ-PN(ΔPsaA)] showed more diversified reactivity to wild-type pneumococcal challenge strains compared to those induced by the original formulation. The modified vaccine also induced comparable protective TH 17 responses in the lung, and conferred greater protection against lethal heterologous pneumococcal challenge. Overall, the current study demonstrates successful refinement of a serotype-independent pneumococcal vaccine candidate to enhance safety and immunogenicity.
Collapse
Affiliation(s)
- Shannon C David
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Zoe Laan
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Vikrant Minhas
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Austen Y Chen
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Timothy R Hirst
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,GPN Vaccines Pty Ltd, Yarralumla, ACT, Australia.,Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| | - Shaun R McColl
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,GPN Vaccines Pty Ltd, Yarralumla, ACT, Australia.,Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.,GPN Vaccines Pty Ltd, Yarralumla, ACT, Australia
| |
Collapse
|
11
|
Voß F, Kohler TP, Meyer T, Abdullah MR, van Opzeeland FJ, Saleh M, Michalik S, van Selm S, Schmidt F, de Jonge MI, Hammerschmidt S. Intranasal Vaccination With Lipoproteins Confers Protection Against Pneumococcal Colonisation. Front Immunol 2018; 9:2405. [PMID: 30405609 PMCID: PMC6202950 DOI: 10.3389/fimmu.2018.02405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/28/2018] [Indexed: 12/29/2022] Open
Abstract
Streptococcus pneumoniae is endowed with a variety of surface-exposed proteins representing putative vaccine candidates. Lipoproteins are covalently anchored to the cell membrane and highly conserved among pneumococcal serotypes. Here, we evaluated these lipoproteins for their immunogenicity and protective potential against pneumococcal colonisation. A multiplex-based immunoproteomics approach revealed the immunogenicity of selected lipoproteins. High antibody titres were measured in sera from mice immunised with the lipoproteins MetQ, PnrA, PsaA, and DacB. An analysis of convalescent patient sera confirmed the immunogenicity of these lipoproteins. Examining the surface localisation and accessibility of the lipoproteins using flow cytometry indicated that PnrA and DacB were highly abundant on the surface of the bacteria. Mice were immunised intranasally with PnrA, DacB, and MetQ using cholera toxin subunit B (CTB) as an adjuvant, followed by an intranasal challenge with S. pneumoniae D39. PnrA protected the mice from pneumococcal colonisation. For the immunisation with DacB and MetQ, a trend in reducing the bacterial load could be observed, although this effect was not statistically significant. The reduction in bacterial colonisation was correlated with the increased production of antigen-specific IL-17A in the nasal cavity. Immunisation induced high systemic IgG levels with a predominance for the IgG1 isotype, except for DacB, where IgG levels were substantially lower compared to MetQ and PnrA. Our results indicate that lipoproteins are interesting targets for future vaccine strategies as they are highly conserved, abundant, and immunogenic.
Collapse
Affiliation(s)
- Franziska Voß
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Tanja Meyer
- Department of Functional Genomics, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Mohammed R Abdullah
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Fred J van Opzeeland
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Malek Saleh
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Department of Functional Genomics, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Saskia van Selm
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Schmidt
- Department of Functional Genomics, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,ZIK-FunGene, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Marien I de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Meyburgh CM, Bragg RR, Boucher CE. Detection of virulence factors of South African Lactococcus garvieae isolated from rainbow trout, Oncorhynchus mykiss (Walbaum). Onderstepoort J Vet Res 2018; 85:e1-e9. [PMID: 30326716 PMCID: PMC6324078 DOI: 10.4102/ojvr.v85i1.1568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 11/25/2022] Open
Abstract
Lactococcus garvieae is a Gram-positive bacterium that causes mortalities in freshwater and marine fish worldwide and therefore results in severe economic losses in the aquaculture industry. Apart from the apparent integral role of the exopolysaccharide (EPS) capsule in pathogenesis, factors associated with virulence of this bacterium are poorly understood. However, recent studies have indicated that the ability of L. garvieae to cause disease does not depend on the presence of the EPS capsule. Lack of knowledge of virulence factors, pathogenesis and serology of L. garvieae is an impediment to the development of effective typing methods and control measures. This study, therefore, aimed to detect the presence of EPS capsules and other putative virulence factors in South African L. garvieae fish pathogenic isolates and a non-virulent isolate, and to identify possible candidates for subunit vaccine development. No indication of the presence of the EPS capsule was detected by negative staining or amplification of the EPS biosynthesis gene cluster in the virulent isolates or the avirulent strain, discrediting the notion that the EPS capsule is the sole determinant of virulence. However, a set of putative virulence factor genes was detected in all isolates, and candidates for subunit vaccine development (enolase, lactate dehydrogenase phosphoenolpyruvate-protein phosphotransferase) were identified by identification of extracellular proteins of virulent strains.
Collapse
Affiliation(s)
- Cornelia M Meyburgh
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State.
| | | | | |
Collapse
|
13
|
Bricio-Moreno L, Sheridan VH, Goodhead I, Armstrong S, Wong JKL, Waters EM, Sarsby J, Panagiotou S, Dunn J, Chakraborty A, Fang Y, Griswold KE, Winstanley C, Fothergill JL, Kadioglu A, Neill DR. Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa. Nat Commun 2018; 9:2635. [PMID: 29980663 PMCID: PMC6035264 DOI: 10.1038/s41467-018-04996-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa colonises the upper airway of cystic fibrosis (CF) patients, providing a reservoir of host-adapted genotypes that subsequently establish chronic lung infection. We previously experimentally-evolved P. aeruginosa in a murine model of respiratory tract infection and observed early-acquired mutations in pmrB, encoding the sensor kinase of a two-component system that promoted establishment and persistence of infection. Here, using proteomics, we show downregulation of proteins involved in LPS biosynthesis, antimicrobial resistance and phenazine production in pmrB mutants, and upregulation of proteins involved in adherence, lysozyme resistance and inhibition of the chloride ion channel CFTR, relative to wild-type strain LESB65. Accordingly, pmrB mutants are susceptible to antibiotic treatment but show enhanced adherence to airway epithelial cells, resistance to lysozyme treatment, and downregulate host CFTR expression. We propose that P. aeruginosa pmrB mutations in CF patients are subject to an evolutionary trade-off, leading to enhanced colonisation potential, CFTR inhibition, and resistance to host defences, but also to increased susceptibility to antibiotics.
Collapse
Affiliation(s)
- Laura Bricio-Moreno
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Victoria H Sheridan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Ian Goodhead
- School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - Stuart Armstrong
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 3GL, UK
| | - Janet K L Wong
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Elaine M Waters
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
- Department of Microbiology, School of Natural Science, National University of Ireland, Galway, H91 TK33, Ireland
| | - Joscelyn Sarsby
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Stavros Panagiotou
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - James Dunn
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Adrita Chakraborty
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Yongliang Fang
- Thayer School of Engineering, Dartmouth, Hanover, NH, 03755, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH, 03755, USA
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
| | - Aras Kadioglu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Daniel R Neill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
| |
Collapse
|
14
|
Brooks LRK, Mias GI. Streptococcus pneumoniae's Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Front Immunol 2018; 9:1366. [PMID: 29988379 PMCID: PMC6023974 DOI: 10.3389/fimmu.2018.01366] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae is an infectious pathogen responsible for millions of deaths worldwide. Diseases caused by this bacterium are classified as pneumococcal diseases. This pathogen colonizes the nasopharynx of its host asymptomatically, but overtime can migrate to sterile tissues and organs and cause infections. Pneumonia is currently the most common pneumococcal disease. Pneumococcal pneumonia is a global health concern and vastly affects children under the age of five as well as the elderly and individuals with pre-existing health conditions. S. pneumoniae has a large selection of virulence factors that promote adherence, invasion of host tissues, and allows it to escape host immune defenses. A clear understanding of S. pneumoniae's virulence factors, host immune responses, and examining the current techniques available for diagnosis, treatment, and disease prevention will allow for better regulation of the pathogen and its diseases. In terms of disease prevention, other considerations must include the effects of age on responses to vaccines and vaccine efficacy. Ongoing work aims to improve on current vaccination paradigms by including the use of serotype-independent vaccines, such as protein and whole cell vaccines. Extending our knowledge of the biology of, and associated host immune response to S. pneumoniae is paramount for our improvement of pneumococcal disease diagnosis, treatment, and improvement of patient outlook.
Collapse
Affiliation(s)
- Lavida R. K. Brooks
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
15
|
Popowicz ND, Lansley SM, Cheah HM, Kay ID, Carson CF, Waterer GW, Paton JC, Brown JS, Lee YCG. Human pleural fluid is a potent growth medium for Streptococcus pneumoniae. PLoS One 2017; 12:e0188833. [PMID: 29190798 PMCID: PMC5708656 DOI: 10.1371/journal.pone.0188833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/14/2017] [Indexed: 12/03/2022] Open
Abstract
Empyema is defined by the presence of bacteria and/or pus in pleural effusions. However, the biology of bacteria within human pleural fluid has not been studied. Streptococcus pneumoniae is the most common cause of pediatric and frequent cause of adult empyema. We investigated whether S. pneumoniae can proliferate within human pleural fluid and if growth is affected by the cellular content of the fluid and/or characteristics of pneumococcal surface proteins. Invasive S. pneumoniae isolates (n = 24) and reference strain recovered from human blood or empyema were inoculated (1.5×106CFU/mL) into sterile human malignant pleural fluid samples (n = 11). All S. pneumoniae (n = 25) strains proliferated rapidly, increasing by a median of 3009 (IQR 1063–9846) from baseline at 24hrs in all pleural effusions tested. Proliferation was greater than in commercial pneumococcal culture media and concentrations were maintained for 48hrs without autolysis. A similar magnitude of proliferation was observed in pleural fluid before and after removal of its cellular content, p = 0.728. S. pneumoniae (D39 strain) wild-type, and derivatives (n = 12), each with mutation(s) in a different gene required for full virulence were inoculated into human pleural fluid (n = 8). S. pneumoniae with pneumococcal surface antigen A (ΔpsaA) mutation failed to grow (2207-fold lower than wild-type), p<0.001, however growth was restored with manganese supplementation. Growth of other common respiratory pathogens (n = 14) across pleural fluid samples (n = 7) was variable and inconsistent, with some strains failing to grow. We establish for the first time that pleural fluid is a potent growth medium for S. pneumoniae and proliferation is dependent on the PsaA surface protein and manganese.
Collapse
Affiliation(s)
- Natalia D. Popowicz
- Pharmacy Department, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Division of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia
| | - Sally M. Lansley
- Institute for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia
| | - Hui M. Cheah
- Institute for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia
| | - Ian D. Kay
- Department of Microbiology and Infectious Diseases, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Christine F. Carson
- Division of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Grant W. Waterer
- Division of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Respiratory Department, Royal Perth Hospital, Perth, Western Australia, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, South Australia, Australia
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, Respiratory Medicine, University College London, London, England
| | - Y. C. Gary Lee
- Division of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Institute for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia
- Respiratory Department, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
16
|
Quantum chemical calculations of the active site of the solute-binding protein PsaA from Streptococcus pneumoniae explain electronic selectivity of metal binding. Struct Chem 2017. [DOI: 10.1007/s11224-017-1036-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Rasmussen LH, Højholt K, Dargis R, Christensen JJ, Skovgaard O, Justesen US, Rosenvinge FS, Moser C, Lukjancenko O, Rasmussen S, Nielsen XC. In silico assessment of virulence factors in strains of Streptococcus oralis and Streptococcus mitis isolated from patients with Infective Endocarditis. J Med Microbiol 2017; 66:1316-1323. [PMID: 28874232 DOI: 10.1099/jmm.0.000573] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose. Streptococcus oralis and Streptococcus mitis belong to the Mitis group, which are mostly commensals in the human oral cavity. Even though S. oralis and S. mitis are oral commensals, they can be opportunistic pathogens causing infective endocarditis. A recent taxonomic re-evaluation of the Mitis group has embedded the species Streptococcus tigurinus and Streptococcus dentisani into the species S. oralis as subspecies. In this study, the distribution of virulence factors that contribute to bacterial immune evasion, colonization and adhesion was assessed in clinical strains of S. oralis (subsp. oralis, subsp. tigurinus and subsp. dentisani) and S. mitis. Methodology. Forty clinical S. oralis (subsp. oralis, subsp. dentisani and subsp. tigurinus) and S. mitis genomes were annotated with the pipeline PanFunPro and aligned against the VFDB database for assessment of virulence factors.Results/Key findings. Three homologues of pavA, psaA and lmb, encoding adhesion proteins, were present in all strains. Seven homologues of nanA, nanB, ply, lytA, lytB, lytC and iga, of importance regarding survival in blood and modulation of the human immune system, were variously present in the genomes. Few S. oralis subspecies specific differences were observed. iga homologues were identified in S. oralis subsp. oralis, whereas lytA homologues were identified in S. oralis subsp. oralis and subsp. tigurinus. Conclusion. Differences in the presence of virulence factors among the three S. oralis subspecies were observed. The virulence gene profiles of the 40 S. mitis and S. oralis (subsp. oralis, subsp. dentisani and subsp. tigurinus) contribute with important new knowledge regarding these species and new subspecies.
Collapse
Affiliation(s)
- Louise H Rasmussen
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark.,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Katrine Højholt
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark.,Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kgs Lyngby, Denmark
| | - Rimtas Dargis
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark
| | - Jens Jørgen Christensen
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark.,Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ulrik S Justesen
- Department of Clinical Microbiology, Odense University Hospital, J. B. Winsløws Vej 21, 2, 5000 Odense C, Denmark.,Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Flemming S Rosenvinge
- Department of Clinical Microbiology, Vejle Hospital, Kabbeltoft 25, 7100 Vejle, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Oksana Lukjancenko
- National Food Institute, Technical University of Denmark, Søltofts plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Simon Rasmussen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kgs Lyngby, Denmark
| | - Xiaohui C Nielsen
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark
| |
Collapse
|
18
|
Desheva YA, Leontieva GF, Kramskaya TA, Smolonogina TA, Grabovskaya KB, Landgraf GO, Karev VE, Suvorov AN, Rudenko LG. Prevention of Influenza A(H7N9) and Bacterial Infections in Mice Using Intranasal Immunization With Live Influenza Vaccine and the Group B Streptococcus Recombinant Polypeptides. Virology (Auckl) 2017; 8:1178122X17710949. [PMID: 28615930 PMCID: PMC5462492 DOI: 10.1177/1178122x17710949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023] Open
Abstract
We investigate the protective effect of combined vaccination based on live attenuated influenza vaccine (LAIV) and group B streptococcus (GBS) recombinant polypeptides against potential pandemic H7N9 influenza infection followed by GBS burden. Mice were intranasally immunized using 107 50% egg infectious dose (EID50) of H7N3 LAIV, the mix of the 4 GBS peptides (group B streptococcus vaccine [GBSV]), or combined LAIV + GBSV vaccine. The LAIV raised serum hemagglutination-inhibition antibodies against H7N9 in higher titers than against H7N3. Combined vaccination provided advantageous protection against infections with A/Shanghai/2/2013(H7N9)CDC-RG influenza and serotype II GBS. Combined vaccine significantly improved bacterial clearance from the lungs after infection compared with other vaccine groups. The smallest lung lesions due to combined LAIV + GBSV vaccination were associated with a prevalence of lung interferon-γ messenger RNA expression. Thus, combined viral and bacterial intranasal immunization using H7N3 LAIV and recombinant bacterial polypeptides induced balanced adaptive immune response, providing protection against potential pandemic influenza H7N9 and bacterial complications.
Collapse
Affiliation(s)
- Yulia A Desheva
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation.,Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Galina F Leontieva
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Tatiana A Kramskaya
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Tatiana A Smolonogina
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Kornelia B Grabovskaya
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Galina O Landgraf
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Vadim E Karev
- Laboratory of Pathomorphology, Children's Scientific and Clinical Center of Infectious Diseases Saint Petersburg, Russian Federation
| | - Alexander N Suvorov
- Molecular Microbiology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation.,Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Larisa G Rudenko
- Virology Department, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| |
Collapse
|
19
|
Turner AG, Ong CLY, Walker MJ, Djoko KY, McEwan AG. Transition Metal Homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. Adv Microb Physiol 2017; 70:123-191. [PMID: 28528647 DOI: 10.1016/bs.ampbs.2017.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trace metals such as Fe, Mn, Zn and Cu are essential for various biological functions including proper innate immune function. The host immune system has complicated and coordinated mechanisms in place to either starve and/or overload invading pathogens with various metals to combat the infection. Here, we discuss the roles of Fe, Mn and Zn in terms of nutritional immunity, and also the roles of Cu and Zn in metal overload in relation to the physiology and pathogenesis of two human streptococcal species, Streptococcus pneumoniae and Streptococcus pyogenes. S. pneumoniae is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the population; however, transition to internal sites can cause a range of diseases such as pneumonia, otitis media, meningitis and bacteraemia. S. pyogenes is a human pathogen responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Both species have overlapping capacity with respect to metal acquisition, export and regulation and how metal homeostasis relates to their virulence and ability to invade and survive within the host. It is becoming more apparent that metals have an important role to play in the control of infection, and with further investigations, it could lead to the potential use of metals in novel antimicrobial therapies.
Collapse
Affiliation(s)
- Andrew G Turner
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Cheryl-Lynn Y Ong
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Karrera Y Djoko
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
20
|
Barwinska-Sendra A, Waldron KJ. The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Adv Microb Physiol 2017; 70:315-379. [PMID: 28528650 DOI: 10.1016/bs.ampbs.2017.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The metals manganese, iron, cobalt, nickel, copper and zinc are essential for almost all bacteria, but their precise metal requirements vary by species, by ecological niche and by growth condition. Bacteria thus must acquire each of these essential elements in sufficient quantity to satisfy their cellular demand, but in excess these same elements are toxic. Metal toxicity has been exploited by humanity for centuries, and by the mammalian immune system for far longer, yet the mechanisms by which these elements cause toxicity to bacteria are not fully understood. There has been a resurgence of interest in metal toxicity in recent decades due to the problematic spread of antibiotic resistance amongst bacterial pathogens, which has led to an increased research effort to understand these toxicity mechanisms at the molecular level. A recurring theme from these studies is the role of intermetal competition in bacterial metal toxicity. In this review, we first survey biological metal usage and introduce some fundamental chemical concepts that are important for understanding bacterial metal usage and toxicity. Then we introduce a simple model by which to understand bacterial metal homeostasis in terms of the distribution of each essential metal ion within cellular 'pools', and dissect how these pools interact with each other and with key proteins of bacterial metal homeostasis. Finally, using a number of key examples from the recent literature, we look at specific metal toxicity mechanisms in model bacteria, demonstrating the role of metal-metal competition in the toxicity mechanisms of diverse essential metals.
Collapse
Affiliation(s)
- Anna Barwinska-Sendra
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin J Waldron
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
21
|
Novick S, Shagan M, Blau K, Lifshitz S, Givon-Lavi N, Grossman N, Bodner L, Dagan R, Mizrachi Nebenzahl Y. Adhesion and invasion of Streptococcus pneumoniae to primary and secondary respiratory epithelial cells. Mol Med Rep 2016; 15:65-74. [PMID: 27922699 PMCID: PMC5355668 DOI: 10.3892/mmr.2016.5996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/30/2016] [Indexed: 11/06/2022] Open
Abstract
The interaction between Streptococcus pneumoniae (S. pneumoniae) and the mucosal epithelial cells of its host is a prerequisite for pneumococcal disease development, yet the specificity of this interaction between different respiratory cells is not fully understood. In the present study, three areas were examined: i) The capability of the encapsulated S. pneumoniae serotype 3 strain (WU2) to adhere to and invade primary nasal‑derived epithelial cells in comparison to primary oral‑derived epithelial cells, A549 adenocarcinoma cells and BEAS‑2B viral transformed bronchial cells; ii) the capability of the unencapsulated 3.8DW strain (a WU2 derivative) to adhere to and invade the same cells over time; and iii) the ability of various genetically‑unrelated encapsulated and unencapsulated S. pneumoniae strains to adhere to and invade A549 lung epithelial cells. The results of the present study demonstrated that the encapsulated WU2 strain adhesion to and invasion of primary nasal epithelial cells was greatest, followed by BEAS‑2B, A549 and primary oral epithelial cells. By contrast, the unencapsulated 3.8‑DW strain invaded oral epithelial cells significantly more efficiently when compared to the nasal epithelial cells. In addition, unencapsulated S. pneumoniae strains adhered to and invaded the A459 cells significantly more efficiently than the encapsulated strains; this is consistent with previously published data. In conclusion, the findings presented in the current study indicated that the adhesion and invasion of the WU2 strain to primary nasal epithelial cells was more efficient compared with the other cultured respiratory epithelial cells tested, which corresponds to the natural course of S. pneumoniae infection and disease development. The target cell preference of unencapsulated strains was different from that of the encapsulated strains, which may be due to the exposure of cell wall proteins.
Collapse
Affiliation(s)
- Sara Novick
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Marilous Shagan
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Karin Blau
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Sarit Lifshitz
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Noga Givon-Lavi
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Nili Grossman
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Lipa Bodner
- Oral and Maxillofacial Surgery Unit, Soroka University Medical Center, Beer Sheva 84105, Israel
| | - Ron Dagan
- Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| | - Yaffa Mizrachi Nebenzahl
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben‑Gurion University of The Negev, Beer Sheva 84101, Israel
| |
Collapse
|
22
|
Ogra PL, Barenkamp SJ, DeMaria TF, Bakaletz LO, Chonmaitree T, Heikkinen T, Hurst DS, Kawauchi H, Kurono Y, Patel JA, Sih TM, Stenfors LE, Suzuki M. 6. Microbiology and Immunology. Ann Otol Rhinol Laryngol 2016. [DOI: 10.1177/00034894021110s309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
The Two-Component System ArlRS and Alterations in Metabolism Enable Staphylococcus aureus to Resist Calprotectin-Induced Manganese Starvation. PLoS Pathog 2016; 12:e1006040. [PMID: 27902777 PMCID: PMC5130280 DOI: 10.1371/journal.ppat.1006040] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022] Open
Abstract
During infection the host imposes manganese and zinc starvation on invading pathogens. Despite this, Staphylococcus aureus and other successful pathogens remain capable of causing devastating disease. However, how these invaders adapt to host-imposed metal starvation and overcome nutritional immunity remains unknown. We report that ArlRS, a global staphylococcal virulence regulator, enhances the ability of S. aureus to grow in the presence of the manganese-and zinc-binding innate immune effector calprotectin. Utilization of calprotectin variants with altered metal binding properties revealed that strains lacking ArlRS are specifically more sensitive to manganese starvation. Loss of ArlRS did not alter the expression of manganese importers or prevent S. aureus from acquiring metals. It did, however, alter staphylococcal metabolism and impair the ability of S. aureus to grow on amino acids. Further studies suggested that relative to consuming glucose, the preferred carbon source of S. aureus, utilizing amino acids reduced the cellular demand for manganese. When forced to use glucose as the sole carbon source S. aureus became more sensitive to calprotectin compared to when amino acids are provided. Infection experiments utilizing wild type and calprotectin-deficient mice, which have defects in manganese sequestration, revealed that ArlRS is important for disease when manganese availability is restricted but not when this essential nutrient is freely available. In total, these results indicate that altering cellular metabolism contributes to the ability of pathogens to resist manganese starvation and that ArlRS enables S. aureus to overcome nutritional immunity by facilitating this adaptation. The ubiquitous pathogen Staphylococcus aureus is a serious threat to human health due to the continued spread of antibiotic resistance. This spread has made it challenging to treat staphylococcal infections and led to the call for new approaches to treat this devastating pathogen. One approach is to disrupt the ability of S. aureus to adapt to nutrient availability during infection. During infection, the host imposes manganese and zinc starvation on invading pathogens. However, the mechanisms utilized by Staphylococcus aureus to overcome this host defense are unknown. We report that ArlRS, a global staphylococcal virulence regulator, is important for resisting manganese starvation during infection. Loss of ArlRS does not prevent S. aureus from acquiring metals but instead renders the bacterium incapable of adapting to limited manganese availability. ArlRS mutants also have metabolic defects and a reduced ability to grow on amino acids. When using glucose as a carbon source S. aureus is more sensitive to manganese starvation and increases the expression of manganese transporters relative to when amino acids are provided suggesting a higher demand for manganese. These observations indicate that ArlRS contributes to resisting nutritional immunity by altering metabolism to reduce the staphylococcal demand for manganese.
Collapse
|
24
|
Desheva YA, Leontieva GF, Kramskaya TA, Smolonogina TA, Grabovskaya KB, Kiseleva IV, Rudenko LG, Suvorov AN. Evaluation in Mouse Model of Combined Virus-bacterial Vaccine Based on Attenuated Influenza A(H7N3) Virus and the Group B Streptococcus Recombinant Polypeptides. Open Microbiol J 2016; 10:168-175. [PMID: 27867430 PMCID: PMC5101632 DOI: 10.2174/1874285801610010168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Secondary bacterial influenza complications are a common cause of excesses morbidity and mortality, which determines the need to develop means for specific prophylaxis. Group B streptococcal infection is especially common cause of pneumonia among children and the elderly with underlying conditions. Here we investigate in a mouse model the effects of combined intranasal immunization using live attenuated influenza vaccine and recombinant polypeptides based on group B Streptococcus surface proteins. METHODS Groups of outbred mice received two doses of the following preparations: 1) the reassortant A/17/Mallard/Netherlands/00/95 (H7N3) influenza virus; 2) a mixture of P6, ScaAB, ScpB1 and Stv recombinant GBS proteins (20 µg total); 3) the A(H7N3) influenza vaccine pooled with the four bacterial peptide preparation; 4) control animals were treated with PBS. RESULTS Intranasal vaccination using LAIV in combination with GBS polypeptides provided advantageous protection against infections with homologous A/Mallard/Netherlands/12/00 (H7N3) wild type virus or heterologous A/Puerto Rico/8/34 (H1N1) followed by serotype II GBS infection. Also, combined vaccination improved bacterial clearance from the lungs of mice. CONCLUSION Intranasal immunization with LAIV+GBSV was safe and enabled to induce the antibody response to each of vaccine components. Thus, the combined vaccine increased the protective effect against influenza and its bacterial complications in mice compared to LAIV-only.
Collapse
Affiliation(s)
- Yulia A Desheva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation; Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Galina F Leontieva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Tatiana A Kramskaya
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Tatiana A Smolonogina
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Kornelia B Grabovskaya
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Irina V Kiseleva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation; Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Larisa G Rudenko
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation
| | - Alexander N Suvorov
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", Saint Petersburg, Russian Federation; Saint Petersburg State University, Saint Petersburg, Russian Federation
| |
Collapse
|
25
|
Kohler S, Voß F, Gómez Mejia A, Brown JS, Hammerschmidt S. Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion. FEBS Lett 2016; 590:3820-3839. [DOI: 10.1002/1873-3468.12352] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sylvia Kohler
- Department Genetics of Microorganisms; Interfaculty Institute for Genetics and Functional Genomics; University of Greifswald; Germany
| | - Franziska Voß
- Department Genetics of Microorganisms; Interfaculty Institute for Genetics and Functional Genomics; University of Greifswald; Germany
| | - Alejandro Gómez Mejia
- Department Genetics of Microorganisms; Interfaculty Institute for Genetics and Functional Genomics; University of Greifswald; Germany
| | - Jeremy S. Brown
- Department of Medicine; Centre for Inflammation and Tissue Repair; University College Medical School; London UK
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms; Interfaculty Institute for Genetics and Functional Genomics; University of Greifswald; Germany
| |
Collapse
|
26
|
Competition for Manganese at the Host-Pathogen Interface. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:1-25. [PMID: 27571690 DOI: 10.1016/bs.pmbts.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria.
Collapse
|
27
|
Streptococcus pneumoniae Cell-Wall-Localized Phosphoenolpyruvate Protein Phosphotransferase Can Function as an Adhesin: Identification of Its Host Target Molecules and Evaluation of Its Potential as a Vaccine. PLoS One 2016; 11:e0150320. [PMID: 26990554 PMCID: PMC4798226 DOI: 10.1371/journal.pone.0150320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/11/2016] [Indexed: 11/23/2022] Open
Abstract
In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development.
Collapse
|
28
|
Brown LR, Gunnell SM, Cassella AN, Keller LE, Scherkenbach LA, Mann B, Brown MW, Hill R, Fitzkee NC, Rosch JW, Tuomanen EI, Thornton JA. AdcAII of Streptococcus pneumoniae Affects Pneumococcal Invasiveness. PLoS One 2016; 11:e0146785. [PMID: 26752283 PMCID: PMC4709005 DOI: 10.1371/journal.pone.0146785] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022] Open
Abstract
Across bacterial species, metal binding proteins can serve functions in pathogenesis in addition to regulating metal homeostasis. We have compared and contrasted the activities of zinc (Zn2+)-binding lipoproteins AdcA and AdcAII in the Streptococcus pneumoniae TIGR4 background. Exposure to Zn2+-limiting conditions resulted in delayed growth in a strain lacking AdcAII (ΔAdcAII) when compared to wild type bacteria or a mutant lacking AdcA (ΔAdcA). AdcAII failed to interact with the extracellular matrix protein laminin despite homology to laminin-binding proteins of related streptococci. Deletion of AdcA or AdcAII led to significantly increased invasion of A549 human lung epithelial cells and a trend toward increased invasion in vivo. Loss of AdcAII, but not AdcA, was shown to negatively impact early colonization of the nasopharynx. Our findings suggest that expression of AdcAII affects invasiveness of S. pneumoniae in response to available Zn2+ concentrations.
Collapse
Affiliation(s)
- Lindsey R. Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, United States of America
| | - Steven M. Gunnell
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, United States of America
| | - Adam N. Cassella
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, United States of America
| | - Lance E. Keller
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, 39216, United States of America
| | - Lisa A. Scherkenbach
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
| | - Beth Mann
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
| | - Matthew W. Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, United States of America
| | - Rebecca Hill
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, United States of America
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
| | - Elaine I. Tuomanen
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, 38105, United States of America
| | - Justin A. Thornton
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, United States of America
- * E-mail:
| |
Collapse
|
29
|
Pandey R, Russo R, Ghanny S, Huang X, Helmann J, Rodriguez GM. MntR(Rv2788): a transcriptional regulator that controls manganese homeostasis in Mycobacterium tuberculosis. Mol Microbiol 2015; 98:1168-83. [PMID: 26337157 DOI: 10.1111/mmi.13207] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 12/23/2022]
Abstract
The pathogenic mycobacterium Mycobacterium tuberculosis encodes two members of the DtxR/MntR family of metalloregulators, IdeR and SirR. IdeR represses gene expression in response to ferrous iron, and we here demonstrate that SirR (Rv2788), although also annotated as an iron-dependent repressor, functions instead as a manganese-dependent transcriptional repressor and is therefore renamed MntR. MntR regulates transporters that promote manganese import and genes that respond to metal ion deficiency such as the esx3 system. Repression of manganese import by MntR is essential for survival of M. tuberculosis under conditions of high manganese availability, but mntR is dispensable during infection. In contrast, manganese import by MntH and MntABCD was found to be indispensable for replication of M. tuberculosis in macrophages. These results suggest that manganese is limiting in the host and that interfering with import of this essential metal may be an effective strategy to attenuate M. tuberculosis.
Collapse
Affiliation(s)
- Ruchi Pandey
- Public Health Research Institute at New Jersey Medical School, Rutgers State University of New Jersey, 225 Warren Street, Newark, NJ, 07103, USA
| | - Riccardo Russo
- New Jersey Medical School, Rutgers State University of New Jersey, 185 South Orange Avenue, Newark, NJ, 07103, USA
| | - Saleena Ghanny
- Genomics Research Program, NJMS, Rutgers State University of New Jersey, 185 South Orange Avenue, Newark, NJ, USA
| | - Xiaojuan Huang
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - John Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - G Marcela Rodriguez
- Public Health Research Institute at New Jersey Medical School, Rutgers State University of New Jersey, 225 Warren Street, Newark, NJ, 07103, USA
| |
Collapse
|
30
|
Deplazes E, Begg SL, van Wonderen JH, Campbell R, Kobe B, Paton JC, MacMillan F, McDevitt CA, O'Mara ML. Characterizing the conformational dynamics of metal-free PsaA using molecular dynamics simulations and electron paramagnetic resonance spectroscopy. Biophys Chem 2015; 207:51-60. [PMID: 26379256 DOI: 10.1016/j.bpc.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022]
Abstract
Prokaryotic metal-ion receptor proteins, or solute-binding proteins, facilitate the acquisition of metal ions from the extracellular environment. Pneumococcal surface antigen A (PsaA) is the primary Mn(2+)-recruiting protein of the human pathogen Streptococcus pneumoniae and is essential for its in vivo colonization and virulence. The recently reported high-resolution structures of metal-free and metal-bound PsaA have provided the first insights into the mechanism of PsaA-facilitated metal binding. However, the conformational dynamics of metal-free PsaA in solution remain unknown. Here, we use continuous wave electron paramagnetic resonance (EPR) spectroscopy and molecular dynamics (MD) simulations to study the relative flexibility of the structural domains in metal-free PsaA and its distribution of conformations in solution. The results show that the crystal structure of metal-free PsaA is a good representation of the dominant conformation in solution, but the protein also samples structurally distinct conformations that are not captured by the crystal structure. Further, these results suggest that the metal binding site is both larger and more solvent exposed than indicated by the metal-free crystal structure. Collectively, this study provides atomic-resolution insight into the conformational dynamics of PsaA prior to metal binding and lays the groundwork for future EPR and MD based studies of PsaA in solution.
Collapse
Affiliation(s)
- Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Stephanie L Begg
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Jessica H van Wonderen
- Henry Wellcome Unit for Biological EPR, School of Chemistry, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Rebecca Campbell
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Fraser MacMillan
- Henry Wellcome Unit for Biological EPR, School of Chemistry, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| | - Megan L O'Mara
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia; Research School of Chemistry, The Australian National University, Canberra, Australia. megan.o'
| |
Collapse
|
31
|
Lu J, Sun T, Wang D, Dong Y, Xu M, Hou H, Kong FT, Liang C, Gu T, Chen P, Sun S, Lv X, Jiang C, Kong W, Wu Y. Protective Immune Responses Elicited by Fusion Protein Containing PsaA and PspA Fragments. Immunol Invest 2015; 44:482-96. [DOI: 10.3109/08820139.2015.1037956] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Bajaj M, Mamidyala SK, Zuegg J, Begg SL, Ween MP, Luo Z, Huang JX, McEwan AG, Kobe B, Paton JC, McDevitt CA, Cooper MA. Discovery of novel pneumococcal surface antigen A (PsaA) inhibitors using a fragment-based drug design approach. ACS Chem Biol 2015; 10:1511-20. [PMID: 25786639 DOI: 10.1021/cb501032x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus pneumoniae is a leading cause of life-threatening bacterial infections, especially in young children in developing countries. Pneumococcal infections can be treated with β-lactam antibiotics, but rapid emergence of multidrug-resistant strains of S. pneumoniae over the past two decades has emphasized the need to identify novel drug targets. Pneumococcal surface antigen A (PsaA) is one such target, found on the cell surface of S. pneumoniae. It functions as a high-affinity substrate-binding protein, facilitating acquisition of Mn(2+), which has an important role in protecting S. pneumoniae from reactive oxygen species and, hence, oxidative stress. Consequently, PsaA is essential for bacterial survival and an important virulence factor, which makes it a promising target for antibiotic drug development. To design novel PsaA inhibitors, we used a combination of de novo fragment-based drug discovery and in silico virtual screening methods. We profiled a collection of low molecular weight compounds that were selected based on their structural diversity and ability to bind to apo-PsaA in a virtual docking experiment. The screening resulted in two initial hits that were further optimized by structural variation to improve their potency while maintaining their ligand efficiency and favorable physicochemical properties. The optimized hits were validated using a cell-based assay and molecular dynamics simulations. We found that virtual screening substantially augmented fragment-based drug design approaches, leading to the identification of novel pneumococcal PsaA inhibitors.
Collapse
Affiliation(s)
- Megha Bajaj
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
| | - Sreeman K. Mamidyala
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
| | - Johannes Zuegg
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
| | - Stephanie L. Begg
- Research
Centre for Infectious Diseases, School of Molecular and Biomedical
Science, University of Adelaide, Adelaide 5005, Australia
| | - Miranda P. Ween
- Research
Centre for Infectious Diseases, School of Molecular and Biomedical
Science, University of Adelaide, Adelaide 5005, Australia
| | - Zhenyao Luo
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia
| | - Johnny X. Huang
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
| | - Alastair G. McEwan
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia
- Australian
Infectious Diseases Research Centre, The University of Queensland, St. Lucia, 4072, Australia
| | - Bostjan Kobe
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, 4072, Australia
- Australian
Infectious Diseases Research Centre, The University of Queensland, St. Lucia, 4072, Australia
| | - James C. Paton
- Research
Centre for Infectious Diseases, School of Molecular and Biomedical
Science, University of Adelaide, Adelaide 5005, Australia
| | - Christopher A. McDevitt
- Research
Centre for Infectious Diseases, School of Molecular and Biomedical
Science, University of Adelaide, Adelaide 5005, Australia
| | - Matthew A. Cooper
- Institute
for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia
| |
Collapse
|
33
|
Morey JR, McDevitt CA, Kehl-Fie TE. Host-imposed manganese starvation of invading pathogens: two routes to the same destination. Biometals 2015; 28:509-19. [PMID: 25836716 PMCID: PMC4430393 DOI: 10.1007/s10534-015-9850-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/24/2015] [Indexed: 01/07/2023]
Abstract
During infection invading pathogens must acquire all essential nutrients, including first row transition metals, from the host. To combat invaders, the host exploits this fact and restricts the availability of these nutrients using a defense mechanism known as nutritional immunity. While iron sequestration is the most well-known aspect of this defense, recent work has revealed that the host restricts the availability of other essential elements, notably manganese (Mn), during infection. Furthermore, these studies have revealed that the host utilizes multiple strategies that extend beyond metal sequestration to prevent bacteria from obtaining these metals. This review will discuss the mechanisms by which bacteria attempt to obtain the essential first row transition metal ion Mn during infection, and the approaches utilized by the host to prevent this occurrence. In addition, this review will discuss the impact of host-imposed Mn starvation on invading bacteria.
Collapse
Affiliation(s)
- Jacqueline R. Morey
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher A. McDevitt
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana IL, USA
| |
Collapse
|
34
|
Saxena S, Khan N, Dehinwal R, Kumar A, Sehgal D. Conserved surface accessible nucleoside ABC transporter component SP0845 is essential for pneumococcal virulence and confers protection in vivo. PLoS One 2015; 10:e0118154. [PMID: 25689507 PMCID: PMC4331430 DOI: 10.1371/journal.pone.0118154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia, sepsis and meningitis. Surface accessible proteins of S. pneumoniae are being explored for the development of a protein-based vaccine in order to overcome the limitations of existing polysaccharide-based pneumococcal vaccines. To identify a potential vaccine candidate, we resolved surface-associated proteins of S. pneumoniae TIGR4 strain using two-dimensional gel electrophoresis followed by immunoblotting with antisera generated against whole heat-killed TIGR4. Ten immunoreactive spots were identified by mass spectrometric analysis that included a putative lipoprotein SP0845. Analysis of the inferred amino acid sequence of sp0845 homologues from 36 pneumococcal strains indicated that SP0845 was highly conserved (>98% identity) and showed less than 11% identity with any human protein. Our bioinformatic and functional analyses demonstrated that SP0845 is the substrate-binding protein of an ATP-binding cassette (ABC) transporter that is involved in nucleoside uptake with cytidine, uridine, guanosine and inosine as the preferred substrates. Deletion of the gene encoding SP0845 renders pneumococci avirulent suggesting that it is essential for virulence. Immunoblot analysis suggested that SP0845 is expressed in in vitro grown pneumococci and during mice infection. Immunofluorescence microscopy and flow cytometry data indicated that SP0845 is surface exposed in encapsulated strains and accessible to antibodies. Subcutaneous immunization with recombinant SP0845 induced high titer antibodies in mice. Hyperimmune sera raised against SP0845 promoted killing of encapsulated pneumococcal strains in a blood bactericidal assay. Immunization with SP0845 protected mice from intraperitoneal challenge with heterologous pneumococcal serotypes. Based on its surface accessibility, role in virulence and ability to elicit protective immunity, we propose that SP0845 may be a potential candidate for a protein-based pneumococcal vaccine.
Collapse
Affiliation(s)
- Sneha Saxena
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Naeem Khan
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ruchika Dehinwal
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ajay Kumar
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Devinder Sehgal
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
35
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
36
|
Manganese uptake and streptococcal virulence. Biometals 2015; 28:491-508. [PMID: 25652937 DOI: 10.1007/s10534-015-9826-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/27/2015] [Indexed: 02/06/2023]
Abstract
Streptococcal solute-binding proteins (SBPs) associated with ATP-binding cassette transporters gained widespread attention first as ostensible adhesins, next as virulence determinants, and finally as metal ion transporters. In this mini-review, we will examine our current understanding of the cellular roles of these proteins, their contribution to metal ion homeostasis, and their crucial involvement in mediating streptococcal virulence. There are now more than 35 studies that have collected structural, biochemical and/or physiological data on the functions of SBPs across a broad range of bacteria. This offers a wealth of data to clarify the formerly puzzling and contentious findings regarding the metal specificity amongst this group of essential bacterial transporters. In particular we will focus on recent findings related to biological roles for manganese in streptococci. These advances will inform efforts aimed at exploiting the importance of manganese and manganese acquisition for the design of new approaches to combat serious streptococcal diseases.
Collapse
|
37
|
Bright fluorescent Streptococcus pneumoniae for live-cell imaging of host-pathogen interactions. J Bacteriol 2014; 197:807-18. [PMID: 25512311 DOI: 10.1128/jb.02221-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the major limitations for research on pneumococcal-host interactions is the lack of suitable tools for live-cell imaging. To address this issue, we developed a generally applicable strategy to create genetically stable, highly fluorescent bacteria. Our strategy relies on fusing superfolder green fluorescent protein (GFP) or a far-red fluorescent protein (RFP) to the abundant histone-like protein HlpA. Due to efficient translation and limited cellular diffusion of these fusions, the cells are 25-fold brighter than those of the currently best available imaging S. pneumoniae strain. These novel bright pneumococcal strains are fully virulent, and the GFP reporter can be used for in situ imaging in mouse tissue. We used our reporter strains to study the effect of the polysaccharide capsule, a major pneumococcal virulence factor, on different stages of infection. By dual-color live-cell imaging experiments, we show that unencapsulated pneumococci adhere significantly better to human lung epithelial cells than encapsulated strains, in line with previous data obtained by classical approaches. We also confirm with live-cell imaging that the capsule protects pneumococci from neutrophil phagocytosis, demonstrating the versatility and usability of our reporters. The described imaging tools will pave the way for live-cell imaging of pneumococcal infection and help further understanding of the mechanisms of pneumococcal pathogenesis.
Collapse
|
38
|
Human antibodies to PhtD, PcpA, and Ply reduce adherence to human lung epithelial cells and murine nasopharyngeal colonization by Streptococcus pneumoniae. Infect Immun 2014; 82:5069-75. [PMID: 25245804 DOI: 10.1128/iai.02124-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae adherence to human epithelial cells (HECs) is the first step in pathogenesis leading to infections. We sought to determine the role of human antibodies against S. pneumoniae protein vaccine candidates PhtD, PcpA, and Ply in preventing adherence to lung HECs in vitro and mouse nasopharyngeal (NP) colonization in vivo. Human anti-PhtD, -PcpA, and -Ply antibodies were purified and Fab fragments generated. Fabs were used to test inhibition of adherence of TIGR4 and nonencapsulated strain RX1 to A549 lung HECs. The roles of individual proteins in adherence were tested using isogenic mutants of strain TIGR4. Anti-PhtD, -PcpA, and -Ply human antibodies were assessed for their ability to inhibit NP colonization in vivo by passive transfer of human antibody in a murine model. Human antibodies generated against PhtD and PcpA caused a decrease in adherence to A549 cells (P < 0.05). Anti-PhtD but not anti-PcpA antibodies showed a protective role against mouse NP colonization. To our surprise, anti-Ply antibodies also caused a significant (P < 0.05) reduction in S. pneumoniae colonization. Our results support the potential of PhtD, PcpA, and Ply protein vaccine candidates as alternatives to conjugate vaccines to prevent non-serotype-specific S. pneumoniae colonization and invasive infection.
Collapse
|
39
|
Mahdi LK, Deihimi T, Zamansani F, Fruzangohar M, Adelson DL, Paton JC, Ogunniyi AD, Ebrahimie E. A functional genomics catalogue of activated transcription factors during pathogenesis of pneumococcal disease. BMC Genomics 2014; 15:769. [PMID: 25196724 PMCID: PMC4171566 DOI: 10.1186/1471-2164-15-769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/03/2014] [Indexed: 11/11/2022] Open
Abstract
Background Streptococcus pneumoniae (the pneumococcus) is the world’s foremost microbial pathogen, killing more people each year than HIV, TB or malaria. The capacity to penetrate deeper host tissues contributes substantially to the ability of this organism to cause disease. Here we investigated, for the first time, functional genomics modulation of 3 pneumococcal strains (serotype 2 [D39], serotype 4 [WCH43] and serotype 6A [WCH16]) during transition from the nasopharynx to lungs to blood and to brain of mice at both promoter and domain activation levels. Results We found 7 highly activated transcription factors (TFs) [argR, codY, hup, rpoD, rr02, scrR and smrC] capable of binding to a large number of up-regulated genes, potentially constituting the regulatory backbone of pneumococcal pathogenesis. Strain D39 showed a distinct profile in employing a large number of TFs during blood infection. Interestingly, the same highly activated TFs used by D39 in blood are also used by WCH16 and WCH43 during brain infection. This indicates that different pneumococcal strains might activate a similar set of TFs and regulatory elements depending on the final site of infection. Hierarchical clustering analysis showed that all the highly activated TFs, except rpoD, clustered together with a high level of similarity in all 3 strains, which might suggest redundancy in the regulatory roles of these TFs during infection. Discriminant function analysis of the TFs in various niches highlights differential regulatory backgrounds of the 3 strains, and pathogenesis data confirms codY as the most significant predictor discriminating between these strains in various niches, particularly in the blood. Moreover, the predicted TF and domain activation profiles of the 3 strains correspond with their distinct pathogenicity characteristics. Conclusions Our findings suggest that the pneumococcus changes the short binding sites in the promoter regions of genes in a niche-specific manner to enhance its ability to disseminate from one host niche to another. This study provides a framework for an improved understanding of the dynamics of pneumococcal pathogenesis, and opens a new avenue into similar investigations in other pathogenic bacteria. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-769) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Abiodun D Ogunniyi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia.
| | | |
Collapse
|
40
|
Achouiti A, Vogl T, Endeman H, Mortensen BL, Laterre PF, Wittebole X, van Zoelen MAD, Zhang Y, Hoogerwerf JJ, Florquin S, Schultz MJ, Grutters JC, Biesma DH, Roth J, Skaar EP, van 't Veer C, de Vos AF, van der Poll T. Myeloid-related protein-8/14 facilitates bacterial growth during pneumococcal pneumonia. Thorax 2014; 69:1034-42. [PMID: 25179663 DOI: 10.1136/thoraxjnl-2014-205668] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Streptococcus pneumoniae is the most commonly identified pathogen in community-acquired pneumonia (CAP). Myeloid-related protein (MRP) 8/14 is a major component of neutrophils that is released upon infection or injury. MRP8/14 is essential for protective immunity during infection by a variety of micro-organisms through its capacity to chelate manganese and zinc. Here, we aimed to determine the role of MRP8/14 in pneumococcal pneumonia. METHODS MRP8/14 was determined in bronchoalveolar lavage fluid (BALF) and serum of CAP patients, in lung tissue of patients who had succumbed to pneumococcal pneumonia, and in BALF of healthy subjects challenged with lipoteichoic acid (a component of the gram-positive bacterial cell wall) via the airways. Pneumonia was induced in MRP14 deficient and normal wildtype mice. The effect of MRP8/14 on S. pneumoniae growth was studied in vitro. RESULTS CAP patients displayed high MRP8/14 levels in BALF, lung tissue and serum. Healthy subjects challenged with lipoteichoic acid demonstrated elevated MRP8/14 in BALF. Likewise, mice with pneumococcal pneumonia had high MRP8/14 levels in lungs and the circulation. MRP14 deficiency, however, was associated with reduced bacterial growth and lethality, in the absence of notable effects on the inflammatory response. High zinc levels strongly inhibited growth of S. pneumoniae in vitro, which was partially reversed by MRP8/14. CONCLUSIONS In sharp contrast to its previously reported host-protective role in several infections, the present results reveal that in a model of CAP, MRP8/14 is misused by S. pneumoniae, facilitating bacterial growth by attenuating zinc toxicity toward the pathogen.
Collapse
Affiliation(s)
- Ahmed Achouiti
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Vogl
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Henrik Endeman
- Intensive Care Department, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Brittany L Mortensen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Pierre-Francois Laterre
- Department of Critical Care Medicine, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Xavier Wittebole
- Department of Critical Care Medicine, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Marieke A D van Zoelen
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yaofang Zhang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jacobien J Hoogerwerf
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, University of Amsterdam, Amsterdam, The Netherlands Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan C Grutters
- Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Douwe H Biesma
- Department of Internal Medicine, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
41
|
Crump KE, Bainbridge B, Brusko S, Turner LS, Ge X, Stone V, Xu P, Kitten T. The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis. Mol Microbiol 2014; 92:1243-59. [PMID: 24750294 DOI: 10.1111/mmi.12625] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2014] [Indexed: 01/16/2023]
Abstract
Streptococcus sanguinis colonizes teeth and is an important cause of infective endocarditis. Our prior work showed that the lipoprotein SsaB is critical for S. sanguinis virulence for endocarditis and belongs to the LraI family of conserved metal transporters. In this study, we demonstrated that an ssaB mutant accumulates less manganese and iron than its parent. A mutant lacking the manganese-dependent superoxide dismutase, SodA, was significantly less virulent than wild-type in a rabbit model of endocarditis, but significantly more virulent than the ssaB mutant. Neither the ssaB nor the sodA mutation affected sensitivity to phagocytic killing or efficiency of heart valve colonization. Animal virulence results for all strains could be reproduced by growing bacteria in serum under physiological levels of O(2). SodA activity was reduced, but not eliminated in the ssaB mutant in serum and in rabbits. Growth of the ssaB mutant in serum was restored upon addition of Mn(2+) or removal of O(2). Antioxidant supplementation experiments suggested that superoxide and hydroxyl radicals were together responsible for the ssaB mutant's growth defect. We conclude that manganese accumulation mediated by the SsaB transport system imparts virulence by enabling cell growth in oxygen through SodA-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Katie E Crump
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Li N, Yang XY, Guo Z, Zhang J, Cao K, Han J, Zhang G, Liu L, Sun X, He QY. Varied metal-binding properties of lipoprotein PsaA in Streptococcus pneumoniae. J Biol Inorg Chem 2014; 19:829-38. [PMID: 24553956 DOI: 10.1007/s00775-014-1114-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/28/2014] [Indexed: 11/29/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive pathogen responsible for pneumonia, otitis media, and meningitis. Manganese and zinc ions are essential for this bacterium, playing regulatory, structural, or catalytic roles as the critical cofactors in the bacterial proteins and metabolic enzymes. Lipoprotein PsaA has been found to mediate Mn(2+) and Zn(2+) transportation in Streptococcus pneumoniae. In the present work, we conducted a systemic study on the contributions from key amino acids in the metal-binding site of PsaA using various spectroscopic and biochemical methods. Our experimental data indicate that four metal-binding residues contribute unequally to the Mn(2+) and Zn(2+) binding, and His139 is most important for both the structural stability and metal binding of the protein. PsaA-Mn(2+) has a lower thermal stability than PsaA-Zn(2+), possibly due to the different coordination preferences of the metals. Kinetics analysis revealed that PsaA-Mn(2+) binding is a fast first-order reaction, whereas PsaA-Zn(2+) binding is a slow second-order reaction, implying that PsaA kinetically prefers binding Mn(2+) to Zn(2+). The present results provide complementary information for understanding the mechanisms of metal transport and bacterial virulence via lipoproteins in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Role of Pht proteins in attachment of Streptococcus pneumoniae to respiratory epithelial cells. Infect Immun 2014; 82:1683-91. [PMID: 24491577 DOI: 10.1128/iai.00699-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pneumococcal adherence to mucosal surfaces is a critical step in nasopharyngeal colonization, but so far few pneumococcal adhesins involved in the interaction with host cells have been identified. PhtA, PhtB, PhtD, and PhtE are conserved pneumococcal surface proteins that have proven promising as vaccine candidates. One suggested virulence function of Pht proteins is to mediate adherence at the respiratory mucosa. In this study, we assessed the role of Pht proteins in pneumococcal binding to respiratory epithelial cells. Pneumococci were incubated with human nasopharyngeal epithelial cells (Detroit-562) and lung epithelial cells (A549 and NCI-H292), and the proportion of bound bacteria was measured by plating viable counts. Strains R36A (unencapsulated), D39 (serotype 2), 43 (serotype 3), 4-CDC (serotype 4), and 2737 (serotype 19F) with one or more of the four homologous Pht proteins deleted were compared with their wild-type counterparts. Also, the effect of anti-PhtD antibodies on the adherence of strain 2737 to the respiratory epithelial cells was studied. Our results suggest that Pht proteins play a role in pneumococcal adhesion to the respiratory epithelium. We also found that antibody to PhtD is able to inhibit bacterial attachment to the cells, suggesting that antibodies against PhtD present at mucosal surfaces might protect from pneumococcal attachment and subsequent colonization. However, the relative significance of Pht proteins to the ability of pneumococci to bind in vitro to epithelial cells depends on the genetic background and the capsular serotype of the strain.
Collapse
|
44
|
Plumptre CD, Eijkelkamp BA, Morey JR, Behr F, Couñago RM, Ogunniyi AD, Kobe B, O'Mara ML, Paton JC, McDevitt CA. AdcA and AdcAII employ distinct zinc acquisition mechanisms and contribute additively to zinc homeostasis inStreptococcus pneumoniae. Mol Microbiol 2014; 91:834-51. [DOI: 10.1111/mmi.12504] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Charles D. Plumptre
- Research Centre for Infectious Diseases; School of Molecular and Biomedical Science; University of Adelaide; Adelaide South Australia Australia
| | - Bart A. Eijkelkamp
- Research Centre for Infectious Diseases; School of Molecular and Biomedical Science; University of Adelaide; Adelaide South Australia Australia
| | - Jacqueline R. Morey
- Research Centre for Infectious Diseases; School of Molecular and Biomedical Science; University of Adelaide; Adelaide South Australia Australia
| | - Felix Behr
- Research Centre for Infectious Diseases; School of Molecular and Biomedical Science; University of Adelaide; Adelaide South Australia Australia
| | - Rafael M. Couñago
- School of Chemistry and Molecular Biosciences; University of Queensland; Brisbane Queensland Australia
- Australian Infectious Diseases Research Centre; University of Queensland; Brisbane Queensland Australia
- Institute for Molecular Bioscience; University of Queensland; Brisbane Queensland Australia
| | - Abiodun D. Ogunniyi
- Research Centre for Infectious Diseases; School of Molecular and Biomedical Science; University of Adelaide; Adelaide South Australia Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences; University of Queensland; Brisbane Queensland Australia
- Australian Infectious Diseases Research Centre; University of Queensland; Brisbane Queensland Australia
- Institute for Molecular Bioscience; University of Queensland; Brisbane Queensland Australia
| | - Megan L. O'Mara
- School of Chemistry and Molecular Biosciences; University of Queensland; Brisbane Queensland Australia
- School of Mathematics and Physics; University of Queensland; Brisbane Queensland Australia
| | - James C. Paton
- Research Centre for Infectious Diseases; School of Molecular and Biomedical Science; University of Adelaide; Adelaide South Australia Australia
| | - Christopher A. McDevitt
- Research Centre for Infectious Diseases; School of Molecular and Biomedical Science; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
45
|
Rhodes DV, Crump KE, Makhlynets O, Snyder M, Ge X, Xu P, Stubbe J, Kitten T. Genetic characterization and role in virulence of the ribonucleotide reductases of Streptococcus sanguinis. J Biol Chem 2013; 289:6273-87. [PMID: 24381171 DOI: 10.1074/jbc.m113.533620] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Streptococcus sanguinis is a cause of infective endocarditis and has been shown to require a manganese transporter called SsaB for virulence and O2 tolerance. Like certain other pathogens, S. sanguinis possesses aerobic class Ib (NrdEF) and anaerobic class III (NrdDG) ribonucleotide reductases (RNRs) that perform the essential function of reducing ribonucleotides to deoxyribonucleotides. The accompanying paper (Makhlynets, O., Boal, A. K., Rhodes, D. V., Kitten, T., Rosenzweig, A. C., and Stubbe, J. (2014) J. Biol. Chem. 289, 6259-6272) indicates that in the presence of O2, the S. sanguinis class Ib RNR self-assembles an essential diferric-tyrosyl radical (Fe(III)2-Y(•)) in vitro, whereas assembly of a dimanganese-tyrosyl radical (Mn(III)2-Y(•)) cofactor requires NrdI, and Mn(III)2-Y(•) is more active than Fe(III)2-Y(•) with the endogenous reducing system of NrdH and thioredoxin reductase (TrxR1). In this study, we have shown that deletion of either nrdHEKF or nrdI completely abolishes virulence in an animal model of endocarditis, whereas nrdD mutation has no effect. The nrdHEKF, nrdI, and trxR1 mutants fail to grow aerobically, whereas anaerobic growth requires nrdD. The nrdJ gene encoding an O2-independent adenosylcobalamin-cofactored RNR was introduced into the nrdHEKF, nrdI, and trxR1 mutants. Growth of the nrdHEKF and nrdI mutants in the presence of O2 was partially restored. The combined results suggest that Mn(III)2-Y(•)-cofactored NrdF is required for growth under aerobic conditions and in animals. This could explain in part why manganese is necessary for virulence and O2 tolerance in many bacterial pathogens possessing a class Ib RNR and suggests NrdF and NrdI may serve as promising new antimicrobial targets.
Collapse
Affiliation(s)
- DeLacy V Rhodes
- From the Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23298 and
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Honsa ES, Johnson MDL, Rosch JW. The roles of transition metals in the physiology and pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol 2013; 3:92. [PMID: 24364001 PMCID: PMC3849628 DOI: 10.3389/fcimb.2013.00092] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/19/2013] [Indexed: 01/01/2023] Open
Abstract
For bacterial pathogens whose sole environmental reservoir is the human host, the acquisition of essential nutrients, particularly transition metals, is a critical aspect of survival due to tight sequestration and limitation strategies deployed to curtail pathogen outgrowth. As such, these bacteria have developed diverse, specialized acquisition mechanisms to obtain these metals from the niches of the body in which they reside. To oppose the spread of infection, the human host has evolved multiple mechanisms to counter bacterial invasion, including sequestering essential metals away from bacteria and exposing bacteria to lethal concentrations of metals. Hence, to maintain homeostasis within the host, pathogens must be able to acquire necessary metals from host proteins and to export such metals when concentrations become detrimental. Furthermore, this acquisition and efflux equilibrium must occur in a tissue-specific manner because the concentration of metals varies greatly within the various microenvironments of the human body. In this review, we examine the functional roles of the metal import and export systems of the Gram-positive pathogen Streptococcus pneumoniae in both signaling and pathogenesis.
Collapse
Affiliation(s)
- Erin S Honsa
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Michael D L Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| |
Collapse
|
47
|
Couñago RM, Ween MP, Begg SL, Bajaj M, Zuegg J, O'Mara ML, Cooper MA, McEwan AG, Paton JC, Kobe B, McDevitt CA. Imperfect coordination chemistry facilitates metal ion release in the Psa permease. Nat Chem Biol 2013; 10:35-41. [DOI: 10.1038/nchembio.1382] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/19/2013] [Indexed: 12/21/2022]
|
48
|
Multiple antigen-presenting system (MAPS) to induce comprehensive B- and T-cell immunity. Proc Natl Acad Sci U S A 2013; 110:13564-9. [PMID: 23898212 DOI: 10.1073/pnas.1307228110] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vaccines are among the most effective approaches to prevent and control many infectious diseases. Because of safety and reproducibility concerns, whole-cell vaccines (WCVs), made from live or killed microorganisms and including hundreds of antigenic components, have been mostly replaced by acellular or subunit vaccines composed of well-defined, purified antigen components. The efficacy of acellular vaccines is inferior to that of WCVs, however, for two major reasons: limited antigen diversity and reduced immunogenicity, especially in a lack of activation of antigen-specific T-cell immunity, which plays an important role in protection against mucosal and intracellular pathogens. Here we present the multiple antigen-presenting system (MAPS), which enables the creation of a macromolecular complex that mimics the properties of WCVs by integrating various antigen components, including polysaccharides and proteins, in the same construct and that induces multipronged immune responses, including antibody, Th1, and Th17 responses. Using antigens from various pathogens (Streptococcus pneumoniae, Salmonella typhi, and Mycobacterium tuberculosis), we demonstrate the versatility of the MAPS system and its feasibility for the design of unique defined-structure subunit vaccines to confer comprehensive protection via multiple immune mechanisms. Moreover, MAPS can serve as a tool for structure-activity analysis of cellular immunogens.
Collapse
|
49
|
Darrieux M, Goulart C, Briles D, Leite LCDC. Current status and perspectives on protein-based pneumococcal vaccines. Crit Rev Microbiol 2013; 41:190-200. [DOI: 10.3109/1040841x.2013.813902] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Gribenko A, Mosyak L, Ghosh S, Parris K, Svenson K, Moran J, Chu L, Li S, Liu T, Woods VL, Jansen KU, Green BA, Anderson AS, Matsuka YV. Three-dimensional structure and biophysical characterization of Staphylococcus aureus cell surface antigen-manganese transporter MntC. J Mol Biol 2013; 425:3429-45. [PMID: 23827136 DOI: 10.1016/j.jmb.2013.06.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 01/21/2023]
Abstract
MntC is a metal-binding protein component of the Mn²⁺-specific mntABC transporter from the pathogen Staphylococcus aureus. The protein is expressed during the early stages of infection and was proven to be effective at reducing both S. aureus and Staphylococcus epidermidis infections in a murine animal model when used as a vaccine antigen. MntC is currently being tested in human clinical trials as a component of a multiantigen vaccine for the prevention of S. aureus infections. To better understand the biological function of MntC, we are providing structural and biophysical characterization of the protein in this work. The three-dimensional structure of the protein was solved by X-ray crystallography at 2.2Å resolution and suggests two potential metal binding modes, which may lead to reversible as well as irreversible metal binding. Precise Mn²⁺-binding affinity of the protein was determined from the isothermal titration calorimetry experiments using a competition approach. Differential scanning calorimetry experiments confirmed that divalent metals can indeed bind to MntC reversibly as well as irreversibly. Finally, Mn²⁺-induced structural and dynamics changes have been characterized using spectroscopic methods and deuterium-hydrogen exchange mass spectroscopy. Results of the experiments show that these changes are minimal and are largely restricted to the structural elements involved in metal coordination. Therefore, it is unlikely that antibody binding to this antigen will be affected by the occupancy of the metal-binding site by Mn²⁺.
Collapse
Affiliation(s)
- Alexey Gribenko
- Pfizer Vaccine Research, 401 North Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|