1
|
Chen JP, Zhou L, Gong JS, Wang NK, Miao FF, Su C, Gao XL, Xu GQ, Shi JS, Xu ZH. Semiautomated design and soluble expression of a chimeric antigen TbpAB01 from Glaesserella parasuis. Biotechnol Bioeng 2024; 121:2163-2174. [PMID: 38595326 DOI: 10.1002/bit.28710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Pathogenic bacterial membrane proteins (MPs) are a class of vaccine and antibiotic development targets with widespread clinical application. However, the inherent hydrophobicity of MPs poses a challenge to fold correctly in living cells. Herein, we present a comprehensive method to improve the soluble form of MP antigen by rationally designing multi-epitope chimeric antigen (ChA) and screening two classes of protein-assisting folding element. The study uses a homologous protein antigen as a functional scaffold to generate a ChA possessing four epitopes from transferrin-binding protein A of Glaesserella parasuis. Our engineered strain, which co-expresses P17 tagged-ChA and endogenous chaperones groEL-ES, yields a 0.346 g/L highly soluble ChA with the property of HPS-positive serum reaction. Moreover, the protein titer of ChA reaches 4.27 g/L with >90% soluble proportion in 5-L bioreactor, which is the highest titer reported so far. The results highlight a timely approach to design and improve the soluble expression of MP antigen in industrially viable applications.
Collapse
Affiliation(s)
- Jin-Ping Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Lin Zhou
- Jiangsu Nannong High-Tech Co., Ltd., Jiangyin, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Nan-Kai Wang
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Fen-Fang Miao
- Jiangsu Nannong High-Tech Co., Ltd., Jiangyin, People's Republic of China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Xin-Le Gao
- Jiangsu Nannong High-Tech Co., Ltd., Jiangyin, People's Republic of China
| | - Guo-Qiang Xu
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People's Republic of China
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
| | - Zheng-Hong Xu
- Institute of Future Food Technology, JITRI, Yixing, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
- College of Biomass Science and Engineering, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Ewasechko NF, Chaudhuri S, Schryvers AB. Insights from targeting transferrin receptors to develop vaccines for pathogens of humans and food production animals. Front Cell Infect Microbiol 2023; 12:1083090. [PMID: 36683691 PMCID: PMC9853020 DOI: 10.3389/fcimb.2022.1083090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
While developing vaccines targeting surface transferrin receptor proteins in Gram-negative pathogens of humans and food production animals, the common features derived from their evolutionary origins has provided us with insights on how improvements could be implemented in the various stages of research and vaccine development. These pathogens are adapted to live exclusively on the mucosal surfaces of the upper respiratory or genitourinary tract of their host and rely on their receptors to acquire iron from transferrin for survival, indicating that there likely are common mechanisms for delivering transferrin to the mucosal surfaces that should be explored. The modern-day receptors are derived from those present in bacteria that lived over 320 million years ago. The pathogens represent the most host adapted members of their bacterial lineages and may possess factors that enable them to have strong association with the mucosal epithelial cells, thus likely reside in a different niche than the commensal members of the bacterial lineage. The bacterial pathogens normally lead a commensal lifestyle which presents challenges for development of relevant infection models as most infection models either exclude the early stages of colonization or subsequent disease development, and the immune mechanisms at the mucosal surface that would prevent disease are not evident. Development of infection models emulating natural horizontal disease transmission are also lacking. Our aim is to share our insights from the study of pathogens of humans and food production animals with individuals involved in vaccine development, maintaining health or regulation of products in the human and animal health sectors.
Collapse
Affiliation(s)
- Nikolas F Ewasechko
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Somshukla Chaudhuri
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, AB, Canada
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Karale A, Lokhande KB, Shende N, Swamy KV, Dhere R, Nawani N, Mallya A. Transferrin binding protein-B from Neisseria meningitidis C as a novel carrier protein in glycoconjugate preparation: an in silico approach. J Biomol Struct Dyn 2022; 40:13812-13822. [PMID: 34726113 DOI: 10.1080/07391102.2021.1994878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The linking of polysaccharide in glycoconjugate vaccine with carrier protein is an imperative step to develop a strong memory response. The excessive use of similar carrier protein known to result in bystander immunity warrants an urgent need for new carrier protein. The preparation of the glycoconjugate vaccine using cyanylation chemistry is to link the active cyanate ester site of polysaccharide with the carrier protein. In the present study, transferrin binding protein-B (Tbp-B) has been explored as a new carrier protein to develop in silico pneumococcal polysaccharide serotype-5 (PnPs-5) conjugate vaccine. The homology model of Tbp-B was constructed using the Prime module and stereochemically validated using ProSA, PDBsum and ProQ. The selected model revealed a Z-score of -5.6 within the X-ray region in ProSA analysis, LGscore: 9.776, and MaxSub: 0.8 in protein quality predictor suggesting its preferred use. Loop modeling and active site analysis followed by in silico PnPs-5 activation with cyanalyting agent CDAP was docked with Tbp-B using Glide module. The complex stability of cyanate esters with Tbp-B, analyzed by molecular dynamics (MD) simulation, revealed an average RMSD of 2.49 Å for its binding to the receptor. The RMSF values of cyanate ester-1, -2, and -3 were observed to be 1.06, 1.39 and 0.79 Å, respectively. The higher RMSF of 1.39 Å of cyanate ester-2 was further found unstable which corroborates its non-binding to the protein and also incurring conformational changes to a carrier protein. Molecular simulations revealed that cyanate ester-1 and cyanate ester-3 formed stable conjugates with carrier protein Tbp-B. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhijeet Karale
- Department of Research and Development, Serum Institute of India Pvt Ltd, Pune, India.,Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Niraj Shende
- Department of Research and Development, Serum Institute of India Pvt Ltd, Pune, India
| | - K V Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India.,Bioinformatics and drug Discovery Group, MIT School of Bioengineering Science and Research, MIT Art, Design and Technology University, Pune, India
| | - Rajeev Dhere
- Department of Research and Development, Serum Institute of India Pvt Ltd, Pune, India
| | - Neelu Nawani
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Asha Mallya
- Department of Research and Development, Serum Institute of India Pvt Ltd, Pune, India
| |
Collapse
|
4
|
Schryvers AB. Targeting bacterial transferrin and lactoferrin receptors for vaccines. Trends Microbiol 2022; 30:820-830. [PMID: 35232609 PMCID: PMC9378453 DOI: 10.1016/j.tim.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/19/2022]
Abstract
A substantial disease burden in vertebrates is due to Gram-negative bacteria that exclusively inhabit the upper respiratory or genitourinary tracts of their hosts and rely on directly acquiring iron from the host iron-binding glycoproteins through surface receptor proteins. The receptors enable these bacteria to proliferate independently from their neighbors on the mucosal surface and during invasive infection of the host. The diversity in these receptors evolved over millions of years of evolution, which thus bodes well for long-lasting vaccine coverage. Experiments in food production animals provide proof of concept for the use of engineered antigens derived from the receptor proteins to prevent colonization and invasive infection in the natural host, strongly supporting development of these vaccines for use in humans.
Collapse
Affiliation(s)
- Anthony B Schryvers
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Viviani V, Biolchi A, Pizza M. Synergistic activity of antibodies in the multicomponent 4CMenB vaccine. Expert Rev Vaccines 2022; 21:645-658. [PMID: 35257644 DOI: 10.1080/14760584.2022.2050697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Vaccines based on multiple antigens often induce an immune response which is higher than that triggered by each single component, with antibodies acting cooperatively and synergistically in tackling the infection. AREAS COVERED An interesting example is the antibody response induced by the 4CMenB vaccine, currently licensed for the prevention of Neisseria meningitidis serogroup B (MenB). It contains four antigenic components: Factor H binding protein (fHbp), Neisseria adhesin A (NadA), Neisserial Heparin Binding Antigen (NHBA) and Outer Membrane Vesicles (OMV). Monoclonal and polyclonal antibodies raised by vaccination with 4CMenB show synergistic activity in complement-dependent bacterial killing. This review summarizes published and unpublished data and provides evidence of the added value of multicomponent vaccines. EXPERT OPINION : The ability of 4CMenB vaccine to elicit antibodies targeting multiple surface-exposed antigens is corroborated by the recent data on real world evidences. Bactericidal activity is generally mediated by antibodies that bind to antigens highly expressed on the bacterial surface and immunologically related. However, simultaneous binding of antibodies to various surface-exposed antigens can overcome the threshold density of antigen-antibody complexes needed for complement activation. The data discussed in this review highlight the interplay between antibodies targeting major and minor antigens and their effect on functionality. Clinical trial registration: www.clinicaltrials.gov identifiers of studies with original data mentioned in the article: NCT00937521, NCT00433914, NCT02140762 and NCT02285777.
Collapse
Affiliation(s)
| | | | - Mariagrazia Pizza
- Bacterial Vaccines, GSK, Siena, Italy.,GVGH, GSK Vaccine Institute for Global Health, Siena, Italy
| |
Collapse
|
6
|
Fegan JE, Calmettes C, Islam EA, Ahn SK, Chaudhuri S, Yu RH, Gray-Owen SD, Moraes TF, Schryvers AB. Utility of Hybrid Transferrin Binding Protein Antigens for Protection Against Pathogenic Neisseria Species. Front Immunol 2019; 10:247. [PMID: 30837995 PMCID: PMC6389628 DOI: 10.3389/fimmu.2019.00247] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 01/03/2023] Open
Abstract
The surface transferrin receptor proteins from Neisseria gonorrhoeae have been recognized as ideal vaccine targets due to their critical role in survival in the human male genitourinary tract. Recombinant forms of the surface lipoprotein component of the receptor, transferrin binding protein B (TbpB), can be readily produced at high levels in the Escherichia coli cytoplasm and is suitable for commercial vaccine production. In contrast, the integral outer membrane protein, transferrin binding protein A (TbpA), is produced at relatively low levels in the outer membrane and requires detergents for solubilization and stabilization, processes not favorable for commercial applications. Capitalizing on the core β-barrel structural feature common to the lipoprotein and integral outer membrane protein we engineered the lipoprotein as a scaffold for displaying conserved surface epitopes from TbpA. A stable version of the C-terminal domain of TbpB was prepared by replacing four larger exposed variable loops with short linking peptide regions. Four surface regions from the plug and barrel domains of Neisseria TbpA were transplanted onto this TbpB C-lobe scaffold, generating stable hybrid antigens. Antisera generated in mice and rabbits against the hybrid antigens recognized TbpA at the surface of Neisseria meningitidis and inhibited transferrin-dependent growth at levels comparable or better than antisera directed against the native TbpA protein. Two of the engineered hybrid antigens each elicited a TbpA-specific bactericidal antibody response comparable to that induced by TbpA. A hybrid antigen generated using a foreign scaffold (TbpB from the pig pathogen Haemophilus parasuis) displaying neisserial TbpA loop 10 was evaluated in a model of lower genital tract colonization by N. gonorrhoeae and a model of invasive infection by N. meningitidis. The loop 10 hybrid antigen was as effective as full length TbpA in eliminating N. gonorrhoeae from the lower genital tract of female mice and was protective against the low dose invasive infection by N. meningitidis. These results demonstrate that TbpB or its derivatives can serve as an effective scaffold for displaying surface epitopes of integral outer membrane antigens and these antigens can elicit protection against bacterial challenge.
Collapse
Affiliation(s)
- Jamie E Fegan
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Charles Calmettes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Epshita A Islam
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Somshukla Chaudhuri
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Rong-Hua Yu
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Chan C, Andisi VF, Ng D, Ostan N, Yunker WK, Schryvers AB. Are lactoferrin receptors in Gram-negative bacteria viable vaccine targets? Biometals 2018; 31:381-398. [PMID: 29767396 DOI: 10.1007/s10534-018-0105-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/28/2018] [Indexed: 10/16/2022]
Abstract
A number of important Gram-negative pathogens that reside exclusively in the upper respiratory or genitourinary tract of their mammalian host rely on surface receptors that specifically bind host transferrin and lactoferrin as a source of iron for growth. The transferrin receptors have been targeted for vaccine development due to their critical role in acquiring iron during invasive infection and for survival on the mucosal surface. In this study, we focus on the lactoferrin receptors, determining their prevalence in pathogenic bacteria and comparing their prevalence in commensal Neisseria to other surface antigens targeted for vaccines; addressing the issue of a reservoir for vaccine escape and impact of vaccination on the microbiome. Since the selective release of the surface lipoprotein lactoferrin binding protein B by the NalP protease in Neisseria meningitidis argues against its utility as a vaccine target, we evaluated the release of outer membrane vesicles, and transferrin and lactoferrin binding in N. meningitidis and Moraxella catarrhalis. The results indicate that the presence of NalP reduces the binding of transferrin and lactoferrin by cells and native outer membrane vesicles, suggesting that NalP may impact all lipoprotein targets, thus this should not exclude lactoferrin binding protein B as a target.
Collapse
Affiliation(s)
- Clement Chan
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vahid F Andisi
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Dixon Ng
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Nick Ostan
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Warren K Yunker
- Department of Surgery, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
8
|
Guizzo JA, Chaudhuri S, Prigol SR, Yu RH, Dazzi CC, Balbinott N, Frandoloso GP, Kreutz LC, Frandoloso R, Schryvers AB. The amino acid selected for generating mutant TbpB antigens defective in binding transferrin can compromise the in vivo protective capacity. Sci Rep 2018; 8:7372. [PMID: 29743502 PMCID: PMC5943581 DOI: 10.1038/s41598-018-25685-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/26/2018] [Indexed: 02/08/2023] Open
Abstract
Haemophilus parasuis is the causative agent of the Glässer's disease (GD), one of the most important bacterial diseases that affect young pigs worldwide. GD prevention based on vaccination is a major concern due to the limited cross-protection conferred by the inactivated whole cell vaccines used currently. In this study, vaccines based on two mutant recombinant proteins derived from transferrin binding protein B of H. parasuis (Y167A-TbpB and W176A-TbpB) were formulated and evaluated in terms of protection against lethal challenge using a serovar 7 (SV7) H. parasuis in a high susceptibility pig model. Our results showed that H. parasuis strain 174 (SV7) is highly virulent in conventional and colostrum-deprived pigs. The Y167A-TbpB and W176A-TbpB antigens were immunogenic in pigs, however, differences in terms of antigenicity and functional immune response were observed. In regard to protection, animals immunized with Y167A-TbpB antigen displayed 80% survival whereas the W176A-TbpB protein was not protective. In conjunction with previous studies, our results demonstrate, (a) the importance of testing engineered antigens in an in vivo pig challenge model, and, (b) that the Y167A-TbpB antigen is a promising antigen for developing a broad-spectrum vaccine against H. parasuis infection.
Collapse
Affiliation(s)
- João Antônio Guizzo
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Somshukla Chaudhuri
- Department of Microbiology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Simone Ramos Prigol
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Rong-Hua Yu
- Department of Microbiology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Cláudia Cerutti Dazzi
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Natalia Balbinott
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Gabriela Paraboni Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Luiz Carlos Kreutz
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil
| | - Rafael Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, 99052-900, Brazil.
| | - Anthony Bernard Schryvers
- Department of Microbiology & Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
9
|
Christodoulides M, Heckels J. Novel approaches to Neisseria meningitidis vaccine design. Pathog Dis 2018; 75:3078540. [PMID: 28369428 DOI: 10.1093/femspd/ftx033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
A range of vaccines is available for preventing life-threatening diseases caused by infection with Neisseria meningitidis (meningococcus, Men). Capsule polysaccharide (CPS)-conjugate vaccines are successful prophylactics for serogroup MenA, MenC, MenW and MenY infections, and outer membrane vesicle (OMV) vaccines have been used successfully for controlling clonal serogroup MenB infections. MenB vaccines based on recombinant proteins identified by reverse vaccinology (Bexsero™) and proteomics (Trumenba™) approaches have recently been licensed and Bexsero™ has been introduced into the UK infant immunisation programme. In this review, we chart the development of these licensed vaccines. In addition, we discuss the plethora of novel vaccinology approaches that have been applied to the meningococcus with varying success in pre-clinical studies, but which provide technological platforms for application to other pathogens. These strategies include modifying CPS, lipooligosaccharide and OMV; the use of recombinant proteins; structural vaccinology approaches of designing synthetic peptide/mimetope vaccines, DNA vaccines and engineered proteins; epitope presentation on biological and synthetic particles; through vaccination with live-attenuated pathogen(s), or with heterologous bacteria expressing vaccine antigens, or to competitive occupation of the nasopharyngeal niche by commensal bacterial spp. After close to a century of vaccine research, it is possible that meningococcal disease may be added, shortly, to the list of diseases to have been eradicated worldwide by rigorous vaccination campaigns.
Collapse
|
10
|
Cornelissen CN. Subversion of nutritional immunity by the pathogenic Neisseriae. Pathog Dis 2018; 76:4553517. [PMID: 29045638 PMCID: PMC6251569 DOI: 10.1093/femspd/ftx112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
The pathogenic Neisseria species, including Neisseria meningitidis and Neisseria gonorrhoeae, are obligate human pathogens that cause significant morbidity and mortality. The success of these pathogens, with regard to causing disease in humans, is inextricably linked to their ability to acquire necessary nutrients in the hostile environment of the host. Humans deploy a significant arsenal of weaponry to defend against bacterial pathogens, not least of which are the metal-sequestering proteins that entrap and withhold transition metals, including iron, zinc and manganese, from invaders. This review will discuss the general strategies that bacteria employ to overcome these metal-sequestering attempts by the host, and then will focus on the relatively uncommon 'metal piracy' approaches utilized by the pathogenic Neisseria for this purpose. Because acquiring metals from the environment is critical to microbial survival, interfering with this process could impede growth and therefore disease initiation or progression. This review will also discuss how interfering with metal uptake by the pathogenic Neisseriae could be deployed in the development of novel or improved preventative or therapeutic measures against these important pathogens.
Collapse
Affiliation(s)
- Cynthia Nau Cornelissen
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Box 980678, Richmond, VA 23298-0678, USA
| |
Collapse
|
11
|
Hooda Y, Lai CCL, Judd A, Buckwalter CM, Shin HE, Gray-Owen SD, Moraes TF. Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria. Nat Microbiol 2016; 1:16009. [DOI: 10.1038/nmicrobiol.2016.9] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/19/2016] [Indexed: 11/09/2022]
|
12
|
Investigation into the Antigenic Properties and Contributions to Growth in Blood of the Meningococcal Haemoglobin Receptors, HpuAB and HmbR. PLoS One 2015. [PMID: 26208277 PMCID: PMC4514712 DOI: 10.1371/journal.pone.0133855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acquisition of iron from host complexes is mediated by four surface-located receptors of Neisseria meningitidis. The HmbR protein and heterodimeric HpuAB complex bind to haemoglobin whilst TbpBA and LbpBA bind iron-loaded transferrin and lactoferrin complexes, respectively. The haemoglobin receptors are unevenly distributed; disease-causing meningococcal isolates encode HmbR or both receptors while strains with only HpuAB are rarely-associated with disease. Both these receptors are subject to phase variation and 70–90% of disease isolates have one or both of these receptors in an ON expression state. The surface-expression, ubiquity and association with disease indicate that these receptors could be potential virulence factors and vaccine targets. To test for a requirement during disease, an hmbR deletion mutant was constructed in a strain (MC58) lacking HpuAB and in both a wild-type and TbpBA deletion background. The hmbR mutant exhibited an identical growth pattern to wild-type in whole blood from healthy human donors whereas growth of the tbpBA mutant was impaired. These results suggest that transferrin is the major source of iron for N. meningitidis during replication in healthy human blood. To examine immune responses, polyclonal antisera were raised against His-tagged purified-recombinant variants of HmbR, HpuA and HpuB in mice using monolipopolysaccharide as an adjuvant. Additionally, monoclonal antibodies were raised against outer membrane loops of HmbR presented on the surface of EspA, an E. coli fimbrial protein. All antisera exhibited specific reactivity in Western blots but HmbR and HpuA polyclonal sera were reactive against intact meningococcal cells. None of the sera exhibited bactericidal activity against iron-induced wild-type meningococci. These findings suggest that the HmbR protein is not required during the early stages of disease and that immune responses against these receptors may not be protective.
Collapse
|
13
|
Russell MW, Whittum-Hudson J, Fidel PL, Hook EW, Mestecky J. Immunity to Sexually Transmitted Infections. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Nonbinding site-directed mutants of transferrin binding protein B exhibit enhanced immunogenicity and protective capabilities. Infect Immun 2014; 83:1030-8. [PMID: 25547790 DOI: 10.1128/iai.02572-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host-adapted Gram-negative bacterial pathogens from the Pasteurellaceae, Neisseriaceae, and Moraxellaceae families normally reside in the upper respiratory or genitourinary tracts of their hosts and rely on utilizing iron from host transferrin (Tf) for growth and survival. The surface receptor proteins that mediate this critical iron acquisition pathway have been proposed as ideal vaccine targets due to the critical role that they play in survival and disease pathogenesis in vivo. In particular, the surface lipoprotein component of the receptor, Tf binding protein B (TbpB), had received considerable attention as a potential antigen for vaccines in humans and food production animals but this has not translated into the series of successful vaccine products originally envisioned. Preliminary immunization experiments suggesting that host Tf could interfere with development of the immune response prompted us to directly address this question with site-directed mutant proteins defective in binding Tf. Site-directed mutants with dramatically reduced binding of porcine transferrin and nearly identical structure to the native proteins were prepared. A mutant Haemophilus parasuis TbpB was shown to induce an enhanced B-cell and T-cell response in pigs relative to native TbpB and provide superior protection from infection than the native TbpB or a commercial vaccine product. The results indicate that binding of host transferrin modulates the development of the immune response against TbpBs and that strategies designed to reduce or eliminate binding can be used to generate superior antigens for vaccines.
Collapse
|
15
|
Brooks CL, Arutyunova E, Lemieux MJ. The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences. Acta Crystallogr F Struct Biol Commun 2014; 70:1312-7. [PMID: 25286931 PMCID: PMC4188071 DOI: 10.1107/s2053230x14019372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
Pathogens have evolved a range of mechanisms to acquire iron from the host during infection. Several Gram-negative pathogens including members of the genera Neisseria and Moraxella have evolved two-component systems that can extract iron from the host glycoproteins lactoferrin and transferrin. The homologous iron-transport systems consist of a membrane-bound transporter and an accessory lipoprotein. While the mechanism behind iron acquisition from transferrin is well understood, relatively little is known regarding how iron is extracted from lactoferrin. Here, the crystal structure of the N-terminal domain (N-lobe) of the accessory lipoprotein lactoferrin-binding protein B (LbpB) from the pathogen Neisseria meningitidis is reported. The structure is highly homologous to the previously determined structures of the accessory lipoprotein transferrin-binding protein B (TbpB) and LbpB from the bovine pathogen Moraxella bovis. Docking the LbpB structure with lactoferrin reveals extensive binding interactions with the N1 subdomain of lactoferrin. The nature of the interaction precludes apolactoferrin from binding LbpB, ensuring the specificity of iron-loaded lactoferrin. The specificity of LbpB safeguards proper delivery of iron-bound lactoferrin to the transporter lactoferrin-binding protein A (LbpA). The structure also reveals a possible secondary role for LbpB in protecting the bacteria from host defences. Following proteolytic digestion of lactoferrin, a cationic peptide derived from the N-terminus is released. This peptide, called lactoferricin, exhibits potent antimicrobial effects. The docked model of LbpB with lactoferrin reveals that LbpB interacts extensively with the N-terminal lactoferricin region. This may provide a venue for preventing the production of the peptide by proteolysis, or directly sequestering the peptide, protecting the bacteria from the toxic effects of lactoferricin.
Collapse
Affiliation(s)
- Cory L. Brooks
- Department of Chemistry, California State University Fresno, Fresno, CA 93710, USA
| | - Elena Arutyunova
- Department of Biochemistry, University of Alberta, Edmonton, AB T6J 2H7, Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, AB T6J 2H7, Canada
| |
Collapse
|
16
|
Williams JN, Weynants V, Poolman JT, Heckels JE, Christodoulides M. Immuno-proteomic analysis of human immune responses to experimental Neisseria meningitidis outer membrane vesicle vaccines identifies potential cross-reactive antigens. Vaccine 2014; 32:1280-6. [DOI: 10.1016/j.vaccine.2013.12.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/25/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
|
17
|
ZnuD, a potential candidate for a simple and universal Neisseria meningitidis vaccine. Infect Immun 2013; 81:1915-27. [PMID: 23509142 DOI: 10.1128/iai.01312-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis serogroup B (MenB) is a major cause of bacterial sepsis and meningitis, with the highest disease burden in young children. Available vaccines are based on outer membrane vesicles (OMVs) obtained from wild-type strains. However, particularly in toddlers and infants, they confer protection mostly against strains expressing the homologous protein PorA, a major and variable outer membrane protein. In the quest for alternative vaccine antigens able to provide broad MenB strain coverage in younger populations, but potentially also across all age groups, ZnuD, a protein expressed under zinc-limiting conditions, may be considered a promising candidate. Here, we have investigated the potential value of ZnuD and show that it is a conserved antigen expressed by all MenB strains tested except for some strains of clonal complex ST-8. In mice and guinea pigs immunized with ZnuD-expressing OMVs, antibodies were elicited that were able to trigger complement-mediated killing of all the MenB strains and serogroup A, C, and Y strains tested when grown under conditions of zinc limitation. ZnuD is also expressed during infection, since anti-ZnuD antibodies were detected in sera from patients. In conclusion, we confirm the potential of ZnuD-bearing OMVs as a component of an effective MenB vaccine.
Collapse
|
18
|
Noinaj N, Buchanan SK, Cornelissen CN. The transferrin-iron import system from pathogenic Neisseria species. Mol Microbiol 2012; 86:246-57. [PMID: 22957710 PMCID: PMC3468669 DOI: 10.1111/mmi.12002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2012] [Indexed: 11/30/2022]
Abstract
Two pathogenic species within the genus Neisseria cause the diseases gonorrhoea and meningitis. While vaccines are available to protect against four N. meningitidis serogroups, there is currently no commercial vaccine to protect against serogroup B or against N. gonorrhoeae. Moreover, the available vaccines have significant limitations and with antibiotic resistance becoming an alarming issue, the search for effective vaccine targets to elicit long-lasting protection against Neisseria species is becoming more urgent. One strategy for vaccine development has targeted the neisserial iron import systems. Without iron, the Neisseriae cannot survive and, therefore, these iron import systems tend to be relatively well conserved and are promising vaccine targets, having the potential to offer broad protection against both gonococcal and meningococcal infections. These efforts have been boosted by recent reports of the crystal structures of the neisserial receptor proteins TbpA and TbpB, each solved in complex with human transferrin, an iron binding protein normally responsible for delivering iron to human cells. Here, we review the recent structural reports and put them into perspective with available functional studies in order to derive the mechanism(s) for how the pathogenic Neisseriae are able to hijack human iron transport systems for their own survival and pathogenesis.
Collapse
Affiliation(s)
- Nicholas Noinaj
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Susan K. Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Cynthia Nau Cornelissen
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, PO Box 980678, Richmond, VA 23298
| |
Collapse
|
19
|
Improvement of immunogenicity of meningococcal lipooligosaccharide by coformulation with lipidated transferrin-binding protein B in liposomes: implications for vaccine development. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:711-22. [PMID: 22441387 DOI: 10.1128/cvi.05683-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Among various meningococcal antigens, lipooligosaccharide (LOS) and recombinant lipidated transferrin-binding protein B (rlip-TbpB) are considered to be putative vaccine candidates against group B Neisseria meningitidis. In the present work, we report the development of a new liposome-based vaccine formulation containing both rlip-TbpB and L8 LOS. The endotoxic activity of the liposomal LOS was evaluated in vitro using the Limulus Amebocyte Lysate assay and compared to the endotoxic activity of free LOS. Above a 250:1 lipid/LOS molar ratio, liposomes were shown to effectively detoxify the LOS as the endotoxic activity of the LOS was reduced by more than 99%. Immunogenicity studies in rabbits showed that the presence of rlip-TbpB dramatically increased the immunogenicity of the LOS. While the formulation raised a strong anti-TbpB response, it elicited a higher anti-LOS IgG level than the liposomal LOS alone. Sera from rabbits immunized with rlip-TbpB/liposomal LOS displayed increased ability to recognize LOS on live bacteria expressing the L8 immunotype and increased anti-LOS-specific bactericidal activity compared to sera from rabbits immunized with liposomal LOS alone. Measurement of interleukin-8 (IL-8) produced by HEK293 cells transfected with Toll-like receptor (TLR) after stimulation with rlip-TbpB showed that the protein is a TLR2 agonist, which is in accordance with the structure of its lipid. Furthermore, an in vivo study demonstrated that the lipid moiety is not only required for its adjuvant effect but also has to be linked to the protein. Overall, the rlip-TbpB/LOS liposomal formulation was demonstrated to induce an effective anti-LOS response due to the adjuvant effect of rlip-TbpB on LOS.
Collapse
|
20
|
Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P, Tajkhorshid E, Evans RW, Gorringe AR, Mason AB, Steven AC, Buchanan SK. Structural basis for iron piracy by pathogenic Neisseria. Nature 2012; 483:53-8. [PMID: 22327295 PMCID: PMC3292680 DOI: 10.1038/nature10823] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/09/2012] [Indexed: 11/20/2022]
Abstract
Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee I, Davies RL. Evidence for a common gene pool and frequent recombinational exchange of the tbpBA operon in Mannheimia haemolytica, Mannheimia glucosida and Bibersteinia trehalosi. MICROBIOLOGY (READING, ENGLAND) 2011; 157:123-135. [PMID: 20884693 PMCID: PMC3387554 DOI: 10.1099/mic.0.041236-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The tbpBA operon was sequenced in 42 representative isolates of Mannheimia haemolytica (32), Mannheimia glucosida (6) and Bibersteinia trehalosi (4). A total of 27 tbpB and 20 tbpA alleles were identified whilst the tbpBA operon was represented by 28 unique alleles that could be assigned to seven classes. There were 1566 (34.8% variation) polymorphic nucleotide sites and 482 (32.1% variation) variable inferred amino acid positions among the 42 tbpBA sequences. The tbpBA operons of serotype A2 M. haemolytica isolates are, with one exception, substantially more diverse than those of the other M. haemolytica serotypes and most likely have a different ancestral origin. The tbpBA phylogeny has been severely disrupted by numerous small- and large-scale intragenic recombination events. In addition, assortative (entire gene) recombination events, involving either the entire tbpBA operon or the individual tbpB and tbpA genes, have played a major role in shaping tbpBA structure and it's distribution in the three species. Our findings indicate that a common gene pool exists for tbpBA in M. haemolytica, M. glucosida and B. trehalosi. In particular, B. trehalosi, M. glucosida and ovine M. haemolytica isolates share a large portion of the tbpA gene, and this probably reflects selection for a conserved TbpA protein that provides effective iron uptake in sheep. Bovine and ovine serotype A2 lineages have very different tbpBA alleles. Bovine-like tbpBA alleles have been partially, or completely, replaced by ovine-like tbpBA alleles in ovine serotype A2 isolates, suggesting that different transferrin receptors are required by serotype A2 isolates for optimum iron uptake in cattle and sheep. Conversely, the tbpBA alleles of bovine-pathogenic serotype A1 and A6 isolates are very similar to those of closely related ovine isolates, suggesting a recent and common evolutionary origin.
Collapse
Affiliation(s)
- Inkyoung Lee
- Institute of Infection, Immunology and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, UK
| | - Robert L. Davies
- Institute of Infection, Immunology and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
22
|
Development and characterization of protective Haemophilus parasuis subunit vaccines based on native proteins with affinity to porcine transferrin and comparison with other subunit and commercial vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:50-8. [PMID: 20926701 DOI: 10.1128/cvi.00314-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Haemophilus parasuis is the agent responsible for causing Glässer's disease, which is characterized by fibrinous polyserositis, polyarthritis, and meningitis in pigs. In this study, we have characterized native outer membrane proteins with affinity to porcine transferrin (NPAPT) from H. parasuis serovar 5, Nagasaki strain. This pool of proteins was used as antigen to developed two vaccine formulations: one was adjuvanted with a mineral oil (Montanide IMS 2215 VG PR), while the other was potentiated with a bacterial neuraminidase from Clostridium perfringens. The potential protective effect conferred by these two vaccines was compared to that afforded by two other vaccines, consisting of recombinant transferrin-binding protein (rTbp) A or B fragments from H. parasuis, Nagasaki strain, and by a commercially available inactivated vaccine. Five groups of colostrum-deprived piglets immunized with the vaccines described above, one group per each vaccine, and a group of nonvaccinated control animals were challenged intratracheally with a lethal dose (3 × 10⁸ CFU) of H. parasuis, Nagasaki strain. The two vaccines containing rTbps yielded similar results with minimal protection against death, clinical signs, gross and microscopic lesions, and H. parasuis invasion. In contrast, the two vaccines composed of NPAPT antigen and commercial bacterin resulted in a strong protection against challenge (without deaths and clinical signs), mild histopathological changes, and no recovery of H. parasuis, thus suggesting their effectiveness in preventing Glässer's disease outbreaks caused by serovar 5.
Collapse
|
23
|
Ling JML, Shima CH, Schriemer DC, Schryvers AB. Delineating the regions of human transferrin involved in interactions with transferrin binding protein B from Neisseria meningitidis. Mol Microbiol 2010; 77:1301-14. [DOI: 10.1111/j.1365-2958.2010.07289.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Abstract
No broadly effective vaccines are available for prevention of group B meningococcal disease, which accounts for >50% of all cases. The group B capsule is an autoantigen and is not a suitable vaccine target. Outer-membrane vesicle vaccines appear to be safe and effective, but serum bactericidal responses in infants are specific for a porin protein, PorA, which is antigenically variable. To broaden protection, outer-membrane vesicle vaccines have been prepared from >1 strain, from mutants with >1 PorA, or from mutants with genetically detoxified endotoxin and overexpressed desirable antigens, such as factor H binding protein. Also, recombinant protein vaccines such as factor H binding protein, given alone or in combination with other antigens, are in late-stage clinical development and may be effective against the majority of group B strains. Thus, the prospects have never been better for developing vaccines for prevention of meningococcal disease, including that caused by group B strains.
Collapse
Affiliation(s)
- Dan M Granoff
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, USA.
| |
Collapse
|
25
|
Martínez S, Frandoloso R, Rodríguez-Ferri EF, González-Zorn B, Gutiérrez-Martín CB. Characterization of a recombinant transferrin-binding protein A (TbpA) fragment from Haemophilus parasuis serovar 5. FEMS Microbiol Lett 2010; 307:142-50. [DOI: 10.1111/j.1574-6968.2010.01970.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Beddek AJ, Schryvers AB. The lactoferrin receptor complex in gram negative bacteria. Biometals 2010; 23:377-86. [DOI: 10.1007/s10534-010-9299-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
|
27
|
Evans NJ, Harrison OB, Clow K, Derrick JP, Feavers IM, Maiden MCJ. Variation and molecular evolution of HmbR, the Neisseria meningitidis haemoglobin receptor. MICROBIOLOGY-SGM 2010; 156:1384-1393. [PMID: 20150237 PMCID: PMC3068627 DOI: 10.1099/mic.0.036475-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Meningococcal disease caused by serogroup B Neisseria meningitidis remains an important health problem in many parts of the world, and there are currently no comprehensive vaccines. Poor immunogenicity, combined with immunological identity to human sialic acids, have hindered the development of a serogroup B conjugate vaccine, resulting in the development of alternative vaccine candidates, including many outer-membrane protein (OMP)-based formulations. However, the design of protein-based meningococcal vaccines is complicated by the high level of genetic and antigenic diversity of the meningococcus. Knowledge of the extent and structuring of this diversity can have implications for the use of particular proteins as potential vaccine candidates. With this in mind, the diversity of the meningococcal OMP HmbR was investigated among N. meningitidis isolates representative of major hyper-invasive lineages. In common with other meningococcal antigens, the genetic diversity of hmbR resulted from a combination of intraspecies horizontal genetic exchange and de novo mutation. Furthermore, genealogical analysis showed an association of hmbR genes with clonal complexes and the occurrence of two hmbR families, A and B. Three variable regions (VR1–VR3), located in loops 2, 3 and 4, were observed with clonal complex structuring of VR types. A minority of codons (3.9 %), located within putative surface-exposed loop regions of a 2D model, were under diversifying selection, indicating regions of the protein likely to be subject to immune attack.
Collapse
Affiliation(s)
- Nicholas J. Evans
- Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Odile B. Harrison
- The Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Kirsten Clow
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Jeremy P. Derrick
- Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Ian M. Feavers
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Martin C. J. Maiden
- The Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
28
|
Sadarangani M, Pollard AJ. Serogroup B meningococcal vaccines—an unfinished story. THE LANCET. INFECTIOUS DISEASES 2010; 10:112-24. [DOI: 10.1016/s1473-3099(09)70324-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Sardiñas G, Climent Y, Rodríguez Y, González S, García D, Cobas K, Caballero E, Pérez Y, Brookes C, Taylor S, Gorringe A, Delgado M, Pajón R, Yero D. Assessment of vaccine potential of the Neisseria-specific protein NMB0938. Vaccine 2009; 27:6910-7. [PMID: 19751688 DOI: 10.1016/j.vaccine.2009.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/19/2009] [Accepted: 09/01/2009] [Indexed: 11/17/2022]
Abstract
The availability of complete genome sequence of Neisseria meningitidis serogroup B strain MC58 and reverse vaccinology has allowed the discovery of several novel antigens. Here, we have explored the potential of N. meningitidis lipoprotein NMB0938 as a vaccine candidate, based on investigation of gene sequence conservation and the antibody response elicited after immunization in mice. This antigen was previously identified by a genome-based approach as an outer membrane lipoprotein unique to the Neisseria genus. The nmb0938 gene was present in all 37 Neisseria isolates analyzed in this study. Based on amino acid sequence identity, 16 unique sequences were identified which clustered into three variants with identities ranging from 92 to 99%, with one cluster represented by the Neisseria lactamica strains. Recombinant protein NMB0938 (rNMB0938) was expressed in Escherichia coli and purified after solubilization of the insoluble fraction. Antisera produced in mice against purified rNMB0938 reacted with a range of meningococcal strains in whole-cell ELISA and western blotting. Using flow cytometry, it was also shown that anti-rNMB0938 antibodies bound to the surface of the homologous meningococcal strain and activated complement deposition. Moreover, antibodies against rNMB0938 elicited complement-mediated killing of meningococcal strains from both sequence variants and conferred passive protection against meningococcal bacteremia in infant rats. According to our results, NMB0938 represents a promising candidate to be included in a vaccine to prevent meningococcal disease.
Collapse
Affiliation(s)
- Gretel Sardiñas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Cubanacan, Habana 10600, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Moraes TF, Yu RH, Strynadka NCJ, Schryvers AB. Insights into the bacterial transferrin receptor: the structure of transferrin-binding protein B from Actinobacillus pleuropneumoniae. Mol Cell 2009; 35:523-33. [PMID: 19716795 DOI: 10.1016/j.molcel.2009.06.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/09/2009] [Accepted: 06/11/2009] [Indexed: 11/17/2022]
Abstract
Pathogenic bacteria from the Neisseriaceae and Pasteurellacea families acquire iron directly from the host iron-binding glycoprotein, transferrin (Tf), in a process mediated by surface receptor proteins that directly bind host Tf, extract the iron, and transport it across the outer membrane. The bacterial Tf receptor is comprised of a surface exposed lipoprotein, Tf-binding protein B (TbpB), and an integral outer-membrane protein, Tf-binding protein A (TbpA), both of which are essential for survival in the host. In this study, we report the 1.98 A resolution structure of TbpB from the porcine pathogen Actinobacillus pleuropneumoniae, providing insights into the mechanism of Tf binding and the role of TbpB. A model for the complex of TbpB bound to Tf is proposed. Mutation of a single surface-exposed Phe residue on TbpB within the predicted interface completely abolishes binding to Tf, suggesting that the TbpB N lobe comprises the sole high-affinity binding region for Tf.
Collapse
Affiliation(s)
- Trevor F Moraes
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
31
|
Effect of Different Vaccine Formulations on the Development of Glässer's Disease Induced in Pigs by Experimental Haemophilus parasuis Infection. J Comp Pathol 2009; 140:169-76. [DOI: 10.1016/j.jcpa.2008.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 10/27/2008] [Indexed: 11/18/2022]
|
32
|
Noto JM, Cornelissen CN. Identification of TbpA residues required for transferrin-iron utilization by Neisseria gonorrhoeae. Infect Immun 2008; 76:1960-9. [PMID: 18347046 PMCID: PMC2346694 DOI: 10.1128/iai.00020-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/15/2008] [Accepted: 03/06/2008] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae requires iron for survival in the human host and therefore expresses high-affinity receptors for iron acquisition from host iron-binding proteins. The gonococcal transferrin-iron uptake system is composed of two transferrin binding proteins, TbpA and TbpB. TbpA is a TonB-dependent, outer membrane transporter critical for iron acquisition, while TbpB is a surface-exposed lipoprotein that increases the efficiency of iron uptake. The precise mechanism by which TbpA mediates iron acquisition has not been elucidated; however, the process is distinct from those of characterized siderophore transporters. Similar to these TonB-dependent transporters, TbpA is proposed to have two distinct domains, a beta-barrel and a plug domain. We hypothesize that the TbpA plug coordinates iron and therefore potentially functions in multiple steps of transferrin-mediated iron acquisition. To test this hypothesis, we targeted a conserved motif within the TbpA plug domain and generated single, double, and triple alanine substitution mutants. Mutagenized TbpAs were expressed on the gonococcal cell surface and maintained wild-type transferrin binding affinity. Single alanine substitution mutants internalized iron at wild-type levels, while the double and triple mutants showed a significant decrease in iron uptake. Moreover, the triple alanine substitution mutant was unable to grow on transferrin as a sole iron source; however, expression of TbpB compensated for this defect. These data indicate that the conserved motif between residues 120 and 122 of the TbpA plug domain is critical for transferrin-iron utilization, suggesting that this region plays a role in iron acquisition that is shared by both TbpA and TbpB.
Collapse
Affiliation(s)
- Jennifer M Noto
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0678, USA
| | | |
Collapse
|
33
|
Thomas CE, Zhu W, Van Dam CN, Davis NL, Johnston RE, Sparling PF. Vaccination of mice with gonococcal TbpB expressed in vivo from Venezuelan equine encephalitis viral replicon particles. Infect Immun 2006; 74:1612-20. [PMID: 16495532 PMCID: PMC1418633 DOI: 10.1128/iai.74.3.1612-1620.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the immunogenicity of gonococcal transferrin binding protein B (TbpB) expressed with and without a eukaryotic secretion signal from a nonpropagating Venezuelan equine encephalitis virus replicon particle (VRP) delivery system. TbpB was successfully expressed in baby hamster kidney (BHK) cells, and the presence of the eukaryotic secretion signal not only apparently increased the protein's expression but also allowed for extracellular localization and glycosylation. Mice immunized with VRPs produced significant amounts of serum antibody although less than the amounts produced by mice immunized with recombinant protein. The response of mice immunized with VRPs encoding TbpB was consistently more Th1 biased than the response of mice immunized with recombinant protein alone. Boosting with recombinant protein following immunization with TbpB VRPs resulted in higher specific-antibody levels without altering the Th1/Th2 bias. Most of the immunization groups produced significant specific antibody binding to the intact surface of the homologous Neisseria gonorrhoeae strain. Immunization with TbpB VRPs without a eukaryotic secretion signal generated no measurable specific antibodies on the genital mucosal surface, but inclusion of a eukaryotic secretion signal or boosting with recombinant protein resulted in specific immunoglobulin G (IgG) and IgA in mucosal secretions after TbpB VRP immunization. The TbpB VRP system has potential for an N. gonorrhoeae vaccine.
Collapse
Affiliation(s)
- Christopher E Thomas
- University of North Carolina at Chapel Hill, Dept. of Medicine, Div. of Infectious Disease Research, 8341 Medical Biomolecular Research Bldg., 103 Mason Farm Road, CB 7031, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Koeberling O, Welsch JA, Granoff DM. Improved immunogenicity of a H44/76 group B outer membrane vesicle vaccine with over-expressed genome-derived Neisserial antigen 1870. Vaccine 2006; 25:1912-20. [PMID: 16677743 DOI: 10.1016/j.vaccine.2006.03.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/25/2006] [Accepted: 03/27/2006] [Indexed: 11/16/2022]
Abstract
A broadly protective vaccine against meningococcal group B disease is not available. We previously reported that an outer membrane vesicle (OMV) vaccine containing over-expressed genome-derived antigen (GNA) 1870 elicited broader protective antibody responses than recombinant GNA1870 or conventional OMV vaccines prepared from a strain that naturally expresses low amounts of GNA1870. Certain wildtype strains such as H44/76 naturally express larger amounts of GNA1870 and, potentially, could be used to prepare an improved OMV vaccine without genetic over-expression of the antigen. We transformed H44/76 with a shuttle vector to over-express variant 1 (v.1) GNA1870 and compared the immunogenicity in mice of OMV vaccines prepared from wildtype H44/76 (v.1), the mutant, and a recombinant v.1 GNA1870 vaccine. Mice immunized with OMV with over-expressed GNA1870 developed broader serum bactericidal and/or greater C3 deposition activity on the surface of encapsulated strains of N. meningitidis than control mice immunized with the OMV vaccine prepared from the wildtype strain, or the rGNA1870 vaccine. When a panel of group B strains from patients in California was tested, sera from mice immunized with the OMV vaccine containing over-expressed GNA1870 were bactericidal against 100% of the v.1 strains. In contrast, only 20% of isolates that expressed subvariants of the v.1 GNA1870 protein were susceptible to bactericidal activity of antibodies elicited by the rGNA1870 or conventional OMV vaccines. Thus, even a modest increase in GNA1870 expression in a strain that naturally is a high producer of GNA1870 results in an OMV vaccine that elicits broader protection against meningococcal disease.
Collapse
Affiliation(s)
- Oliver Koeberling
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | | | | |
Collapse
|
35
|
Zarantonelli ML, Antignac A, Lancellotti M, Guiyoule A, Alonso JM, Taha MK. Immunogenicity of meningococcal PBP2 during natural infection and protective activity of anti-PBP2 antibodies against meningococcal bacteraemia in mice. J Antimicrob Chemother 2006; 57:924-30. [PMID: 16513914 DOI: 10.1093/jac/dkl066] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To evaluate the immunogenicity of the meningococcal penicillin-binding protein 2 (PBP2) and its potential as a vaccine candidate. METHODS The immunogenicity of meningococcal PBP2 was investigated using acute and convalescent sera from patients who recovered from meningococcal disease. Sera were tested against purified recombinant PBP2s corresponding to meningococcal isolates of different genetic lineages, of different serogroups and with various susceptibility levels to penicillin G. Mice were vaccinated with recombinant PBP2 and challenged with Neisseria meningitidis. A purified anti-PBP2 rabbit IgG was also used for passive protection experiments in mice. RESULTS Convalescent patients' sera recognized PBP2s from different strains, showing that this protein is immunogenic in meningococcal disease. Vaccination with purified recombinant PBP2 and purified anti-PBP2 rabbit IgG antibody conferred protection against experimental meningococcaemia in mice. CONCLUSION These data argue for considering meningococcal PBP2 as a vaccine candidate.
Collapse
Affiliation(s)
- Maria Leticia Zarantonelli
- Neisseria Unit, National Reference Center for Meningococci, Department of Molecular Medicine, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
36
|
Stein DM, Robbins J, Miller MA, Lin FYC, Schneerson R. Are antibodies to the capsular polysaccharide of Neisseria meningitidis group B and Escherichia coli K1 associated with immunopathology? Vaccine 2006; 24:221-8. [PMID: 16125824 DOI: 10.1016/j.vaccine.2005.07.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
As polysialic acid (PSA), the capsule of Group B meningococcus (GBM) and Escherichia coli K1, is a component of mammalian glycopeptides, there is concern that vaccines against PSA could induce immunopathology. Purified PSA is not immunogenic; however, as a component of bacteria or bound to proteins, it induces protective antibodies. In this review, we did not unearth data indicating an association of IgG anti-PSA with immunopathology in experimental animals or humans. We found no increased incidence of autoimmunity from GBM infections in our review of the natural history/sequellae of Neisseria meningitis infections. Accordingly, we propose that clinical trials of PSA conjugate vaccines, be considered.
Collapse
Affiliation(s)
- Daniel M Stein
- Laboratory of Developmental and Molecular Immunity, National Institute of Child Health and Human Development, Bethesda, USA
| | | | | | | | | |
Collapse
|
37
|
Hanks TS, Liu M, McClure MJ, Lei B. ABC transporter FtsABCD of Streptococcus pyogenes mediates uptake of ferric ferrichrome. BMC Microbiol 2005; 5:62. [PMID: 16225685 PMCID: PMC1276799 DOI: 10.1186/1471-2180-5-62] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Accepted: 10/14/2005] [Indexed: 11/10/2022] Open
Abstract
Background The Streptococcus pyogenes or Group A Streptococcus (GAS) genome encodes three ABC transporters, namely, FtsABCD, MtsABC, and HtsABC, which share homology with iron transporters. MtsABC and HtsABC are believed to take up ferric (Fe3+) and manganese ions and heme, respectively, while the specificity of FtsABCD is unknown. Results Recombinant FtsB, the lipoprotein component of FtsABCD, was found to bind Fe3+ ferrichrome in a 1:1 stoichiometry. To investigate whether FtsABCD transports Fe3+ ferrichrome, GAS isogenic strains defective in lipoprotein gene ftsB and permease gene ftsC were generated, and the effects of the mutations on uptake of Fe3+ ferrichrome were examined using radioactive 55Fe3+ ferrichrome. FtsB was produced in the wild-type strain but not in the ftsB mutant, confirming the ftsB inactivation. While wild-type GAS took up 3.6 × 104 Fe3+ ferrichrome molecules per bacterium per min at room temperature, the ftsB and ftsC mutants did not have a detectable rate of Fe3+ ferrichrome uptake. The inactivation of ftsB or ftsC also decreased 55Fe3+ ferrichrome uptake by >90% under growth conditions in the case of limited uptake time. Complementation of the ftsB mutant with a plasmid carrying the ftsB gene restored FtsB production and 55Fe3+ ferrichrome association at higher levels compared with the parent strain. The inactivation of mtsA and htsA and Fe-restricted conditions enhanced the production of FtsB and Fe3+ ferrichrome uptake. Conclusion The FtsB protein bound Fe3+ ferrichrome, and inactivation of ftsB or ftsC, but not htsA or mtsA, diminished Fe3+ ferrichrome uptake, indicating that FtsABCD, but not HtsABC and MtsABC, is the transporter that takes up Fe3+ ferrichrome in GAS. Fe acquisition systems are virulence factors in many bacterial pathogens and are attractive vaccine candidates. The elucidation of the FtsABCD specificity advances the understanding of Fe acquisition processes in GAS and may help evaluating the GAS Fe acquisition systems as vaccine candidates.
Collapse
Affiliation(s)
- Tracey S Hanks
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Mengyao Liu
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Michael J McClure
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| | - Benfang Lei
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
38
|
del Río ML, Gutiérrez-Martín CB, Rodríguez-Barbosa JI, Navas J, Rodríguez-Ferri EF. Identification and characterization of the TonB region and its role in transferrin-mediated iron acquisition in Haemophilus parasuis. ACTA ACUST UNITED AC 2005; 45:75-86. [PMID: 15985226 DOI: 10.1016/j.femsim.2005.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/11/2005] [Accepted: 02/16/2005] [Indexed: 11/22/2022]
Abstract
Haemophilus parasuis is the causative agent of Glässer's disease, which is responsible for considerable economic losses in the pig-rearing industry. The aim of the study reported here was the identification, sequencing and molecular characterization of the TonB region that includes tonB, exbBD, and tbpBA genes in H. parasuis. In addition, two fusion proteins were generated. One of them (pGEX-6P-1-GST-TbpB) contained the first 501 amino acids of H. parasuis TbpB protein, while the second (pBAD-Thio-TbpB-V5-His) included the first 102 amino acids of H. parasuis TbpB N-terminus domain. A panel of 14 hybridomas secreting monoclonal antibodies was raised against the two recombinant TbpB fusion proteins. Furthermore, to assess whether the expression of the H. parasuis ExbB, TbpB, and TbpA proteins was upregulated under conditions of restricted availability of iron, a rabbit polyclonal antibody against H. parasuis TbpB-His fusion protein was produced. A rabbit polyclonal antibody against serotype 7 of Actinobacillus pleuropneumoniae ExbB and TbpA proteins was also used for the detection of the homologous proteins in H. parasuis. Overall, the data indicate that H. parasuis, like other members of the Pasteurellaceae family, possesses the genetic elements of the TonB region for iron acquisition and the transferrin-binding proteins encoded under this region are upregulated under restricted iron availability.
Collapse
Affiliation(s)
- María Luisa del Río
- Microbiology and Immunology Section, Department of Animal Health, School of Veterinary Medicine, University of Leon, Campus de Vegazana s/n, 24071 Leon, Spain
| | | | | | | | | |
Collapse
|
39
|
Norheim G, Arne Høiby E, Caugant DA, Namork E, Tangen T, Fritzsønn E, Rosenqvist E. Immunogenicity and bactericidal activity in mice of an outer membrane protein vesicle vaccine against Neisseria meningitidis serogroup A disease. Vaccine 2005; 22:2171-80. [PMID: 15149774 DOI: 10.1016/j.vaccine.2003.11.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 11/26/2003] [Accepted: 11/27/2003] [Indexed: 11/23/2022]
Abstract
Serogroup A Neisseria meningitidis organisms of the subgroup III have caused epidemics of meningitis in sub-Saharan Africa since their introduction into the continent in 1987. The population structure of these bacteria is basically clonal, and these meningococci are strikingly similar in their major outer membrane antigens PorA and PorB. Protein-based vaccines might be an alternative to prevent epidemics caused by these meningococci; thus, we developed an outer membrane vesicle (OMV) vaccine from a serogroup A meningococcal strain of subgroup III. The serogroup A OMV vaccine was highly immunogenic in mice and elicited significant bactericidal activity towards several other serogroup A meningococci of subgroup III. The IgG antibodies generated were in immunoblot shown to be mainly directed towards the PorA outer membrane protein. The results presented demonstrate the potential of an OMV vaccine as an optional strategy to protect against meningococcal disease caused by serogroup A in Africa.
Collapse
Affiliation(s)
- Gunnstein Norheim
- Division of Infectious Disease Control, Norwegian Institute of Public Health (NIPH), PO Box 4404 Nydalen, NO-0403 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Renauld-Mongénie G, Poncet D, Mignon M, Fraysse S, Chabanel C, Danve B, Krell T, Quentin-Millet MJ. Role of transferrin receptor from a Neisseria meningitidis tbpB isotype II strain in human transferrin binding and virulence. Infect Immun 2004; 72:3461-70. [PMID: 15155653 PMCID: PMC415691 DOI: 10.1128/iai.72.6.3461-3470.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 01/02/2004] [Accepted: 01/28/2004] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis acquires iron through the action of the transferrin (Tf) receptor, which is composed of the Tf-binding proteins A and B (TbpA and TbpB). Meningococci can be classified into isotype I and II strains depending on whether they harbor a type I or II form of TbpB. Both types of TbpB have been shown to differ in their genomic, biochemical, and antigenic properties. Here we present a comparative study of isogenic mutants deficient in either or both Tbps from the isotype I strain B16B6 and isotype II strain M982. We show that TbpA is essential in both strains for iron uptake and growth with iron-loaded human Tf as a sole iron source. No growth has also been observed for the TbpB- mutant of strain B16B6, as shown previously, whereas the growth of the analogous mutant in M982 was similar to that in the wild type. This indicates that TbpB in the latter strain plays a facilitating but not essential role in iron uptake, which has been observed previously in similar studies of other bacteria. These data are discussed in relation to the fact that isotype II strains represent more than 80% of serogroup B meningococcal strains. The contribution of both subunits in the bacterial virulence of strain M982 has been assessed in a murine model of bacteremia. Both the TbpB- TbpA- mutant and the TbpA- mutant are shown to be nonvirulent in mice, whereas the virulence of the TbpB- mutant is similar to that of the wild type.
Collapse
|
42
|
Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I. Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 2004; 68:154-71. [PMID: 15007100 PMCID: PMC362107 DOI: 10.1128/mmbr.68.1.154-171.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquisition of iron and iron complexes has long been recognized as a major determinant in the pathogenesis of Neisseria meningitidis. In this review, high-affinity iron uptake systems, which allow meningococci to utilize the human host proteins transferrin, lactoferrin, hemoglobin, and haptoglobin-hemoglobin as sources of essential iron, are described. Classic features of bacterial iron transport systems, such as regulation by the iron-responsive repressor Fur and TonB-dependent transport activity, are discussed, as well as more specific features of meningococcal iron transport. Our current understanding of how N. meningitidis acquires iron from the human host and the vaccine potentials of various components of these iron transport systems are also reviewed.
Collapse
Affiliation(s)
- Donna Perkins-Balding
- Rollins Research Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
43
|
Renauld-Mongénie G, Lins L, Krell T, Laffly L, Mignon M, Dupuy M, Delrue RM, Guinet-Morlot F, Brasseur R, Lissolo L. Transferrin-binding protein B of Neisseria meningitidis: sequence-based identification of the transferrin-Binding site confirmed by site-directed mutagenesis. J Bacteriol 2004; 186:850-7. [PMID: 14729713 PMCID: PMC321495 DOI: 10.1128/jb.186.3.850-857.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 10/24/2003] [Indexed: 11/20/2022] Open
Abstract
A sequence-based prediction method was employed to identify three ligand-binding domains in transferrin-binding protein B (TbpB) of Neisseria meningitidis strain B16B6. Site-directed mutagenesis of residues located in these domains has led to the identification of two domains, amino acids 53 to 57 and 240 to 245, which are involved in binding to human transferrin (htf). These two domains are conserved in an alignment of different TbpB sequences from N. meningitidis and Neisseria gonorrhoeae, indicating a general functional role of the domains. Western blot analysis and BIAcore and isothermal titration calorimetry experiments demonstrated that site-directed mutations in both binding domains led to a decrease or abolition of htf binding. Analysis of mutated proteins by circular dichroism did not provide any evidence for structural alterations due to the amino acid replacements. The TbpB mutant R243N was devoid of any htf-binding activity, and antibodies elicited by the mutant showed strong bactericidal activity against the homologous strain, as well as against several heterologous tbpB isotype I strains.
Collapse
|
44
|
Lei B, Smoot LM, Menning HM, Voyich JM, Kala SV, Deleo FR, Reid SD, Musser JM. Identification and characterization of a novel heme-associated cell surface protein made by Streptococcus pyogenes. Infect Immun 2002; 70:4494-500. [PMID: 12117961 PMCID: PMC128137 DOI: 10.1128/iai.70.8.4494-4500.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the genome sequence of a serotype M1 group A Streptococcus (GAS) strain identified a gene encoding a previously undescribed putative cell surface protein. The gene was cloned from a serotype M1 strain, and the recombinant protein was overexpressed in Escherichia coli and purified to homogeneity. The purified protein was associated with heme in a 1:1 stoichiometry. This streptococcal heme-associated protein, designated Shp, was produced in vitro by GAS, located on the bacterial cell surface, and accessible to specific antibody raised against the purified recombinant protein. Mice inoculated subcutaneously with GAS and humans with invasive infections and pharyngitis caused by GAS seroconverted to Shp, indicating that Shp was produced in vivo. The blood of mice actively immunized with Shp had significantly higher bactericidal activity than the blood of unimmunized mice. The shp gene was cotranscribed with eight contiguous genes, including homologues of an ABC transporter involved in iron uptake in gram-negative bacteria. Our results indicate that Shp is a novel cell surface heme-associated protein.
Collapse
Affiliation(s)
- Benfang Lei
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The past century has seen the use of a number of vaccines for prevention and control of meningococcal disease with varied success. The use of polysaccharide vaccines for the control of outbreaks of serogroup C infections in teenagers and young adults and epidemic serogroup A disease has been established for 30 years and an effective protein-polysaccharide conjugate vaccine against serogroup C was introduced into the UK infant immunisation schedule in 2000. The next generation of these glycoconjugate vaccines will be on the shelf soon, eventually offering the prospect of eradication of serogroups A, C, Y and W135 through routine infant immunisation. Despite these exciting prospects, serogroup B meningococci still account for a majority of infections in industrialised nations but development of safe, immunogenic and effective serogroup B meningococcal vaccines has been an elusive goal. Outer membrane vesicle vaccines for B disease are already used in some countries, and will likely be used more widely in the next few years, but efficacy for endemic disease in children has so far been disappointing. However, the innovations arising from the availability of the meningococcal genome sequence, public and scientific interest in the disease and recent pharmaceutical company investment in development of serogroup B vaccines may have started the countdown to the end of meningococcal infection in children.
Collapse
Affiliation(s)
- S L Morley
- Department of Paediatrics, Imperial College School of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
| | | |
Collapse
|
46
|
Abstract
Global control and prevention of meningococcal disease depends on the further development of vaccines that overcome the limitations of the current polysaccharide vaccines. Protein-polysaccharide conjugate vaccines likely will address the marginal protective antibody responses and short duration of immunity in young children derived from the A, C, Y, and W-135 capsular polysaccharides, but they will be expensive to produce and purchase, and may not offer a practical solution to the countries with greatest need. In addition, OMP vaccines have been tested extensively in humans and hold some promise in the development of a serogroup B vaccine, but are limited by the antigenic variability of these subcapsular antigens and the resulting strain-specific protection. Elimination of meningococcal disease likely will require a novel approach to vaccine development, ideally incorporating a safe and effective antigen or antigens common to all meningoccocal serogroups. As a solely human pathogen, however, N. meningitidis has developed many tools with which to evade the human immune system, and likely will pose a formidable challenge for years to come.
Collapse
Affiliation(s)
- N E Rosenstein
- Meningitis and Special Pathogens Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | |
Collapse
|
47
|
Abstract
Although meningococcal disease is rare in industrialized nations, Neisseria meningitidis holds a prominent position amongst pediatric infections because of the dramatic clinical presentation of the disease, high mortality, epidemic potential and the recent disappearance of many other important infectious diseases in developed countries through improvements in public health and vaccination. The precise nature of natural immunity to meningococci remains unknown, although a complex interaction between the organism and nasopharyngeal mucosal barrier, innate immune mechanisms and acquired immunity is involved. Study of the mechanisms of natural immunity may provide the key to development of vaccines that can reduce the burden of disease in early childhood.
Collapse
Affiliation(s)
- A J Pollard
- Division of Infectious Diseases and Immunology, British Columbia's Children's Hospital, British Columbia Research Institute for Children's and Women's Health, 950, West 28th Avenue, Room 375, BC V5Z 4H4, Vancouver,
| | | |
Collapse
|
48
|
Rokbi B, Renauld-Mongenie G, Mignon M, Danve B, Poncet D, Chabanel C, Caugant DA, Quentin-Millet MJ. Allelic diversity of the two transferrin binding protein B gene isotypes among a collection of Neisseria meningitidis strains representative of serogroup B disease: implication for the composition of a recombinant TbpB-based vaccine. Infect Immun 2000; 68:4938-47. [PMID: 10948108 PMCID: PMC101705 DOI: 10.1128/iai.68.9.4938-4947.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of the two isotypes of tbpB in a collection of 108 serogroup B meningococcal strains belonging to the four major clonal groups associated with epidemic and hyperendemic disease (the ET-37 complex, the ET-5 complex, lineage III, and cluster A4) was determined. Isotype I strains (with a 1.8-kb tbpB gene) was less represented than isotype II strains (19.4 versus 80.6%). Isotype I was restricted to the ET-37 complex strains, while isotype II was found in all four clonal complexes. The extent of the allelic diversity of tbpB in these two groups was studied by PCR restriction analysis and sequencing of 10 new tbpB genes. Four major tbpB gene variants were characterized: B16B6 (representative of isotype I) and M982, BZ83, and 8680 (representative of isotype II). The relevance of these variants was assessed at the antigenic level by the determination of cross-bactericidal activity of purified immunoglobulin G preparations raised to the corresponding recombinant TbpB (rTbpB) protein against a panel of 27 strains (5 of isotype I and 22 of isotype II). The results indicated that rTbpB corresponding to each variant was able to induce cross-bactericidal antibodies. However, the number of strains killed with an anti-rTbpB serum was slightly lower than that obtained with an anti-TbpA(+)B complex. None of the sera tested raised against an isotype I strain was able to kill an isotype II strain and vice versa. None of the specific antisera tested (anti-rTbpB or anti-TbpA(+)B complex) was able to kill all of the 22 isotype II strains tested. Moreover, using sera raised against the C-terminus domain of TbpB M982 (amino acids 352 to 691) or BZ83 (amino acids 329 to 669) fused to the maltose-binding protein, cross-bactericidal activity was detected against 12 and 7 isotype II strains, respectively, of the 22 tested. These results suggest surface accessibility of the C-terminal end of TbpB. Altogether, these results show that although more than one rTbpB will be required in the composition of a TbpB-based vaccine to achieve a fully cross-bactericidal activity, rTbpB and its C terminus were able by themselves to induce cross-bactericidal antibodies.
Collapse
Affiliation(s)
- B Rokbi
- Aventis Pasteur, Marcy-L'Etoile, France.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cornelissen CN, Anderson JE, Boulton IC, Sparling PF. Antigenic and sequence diversity in gonococcal transferrin-binding protein A. Infect Immun 2000; 68:4725-35. [PMID: 10899879 PMCID: PMC98422 DOI: 10.1128/iai.68.8.4725-4735.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is a gram-negative pathogen that is capable of satisfying its iron requirement with human iron-binding proteins such as transferrin and lactoferrin. Transferrin-iron utilization involves specific binding of human transferrin at the cell surface to what is believed to be a complex of two iron-regulated, transferrin-binding proteins, TbpA and TbpB. The genes encoding these proteins have been cloned and sequenced from a number of pathogenic, gram-negative bacteria. In the current study, we sequenced four additional tbpA genes from other N. gonorrhoeae strains to begin to assess the sequence diversity among gonococci. We compared these sequences to those from other pathogenic bacteria to identify conserved regions that might be important for the structure and function of these receptors. We generated polyclonal mouse sera against synthetic peptides deduced from the TbpA sequence from gonococcal strain FA19. Most of these synthetic peptides were predicted to correspond to surface-exposed regions of TbpA. We found that, while most reacted with denatured TbpA in Western blots, only one antipeptide serum reacted with native TbpA in the context of intact gonococci, consistent with surface exposure of the peptide to which this serum was raised. In addition, we evaluated a panel of gonococcal strains for antigenic diversity using these antipeptide sera.
Collapse
Affiliation(s)
- C N Cornelissen
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | |
Collapse
|
50
|
Linz B, Schenker M, Zhu P, Achtman M. Frequent interspecific genetic exchange between commensal Neisseriae and Neisseria meningitidis. Mol Microbiol 2000; 36:1049-58. [PMID: 10844690 DOI: 10.1046/j.1365-2958.2000.01932.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Natural sequence variation was investigated among serogroup A subgroup IV-1 Neisseria meningitidis isolated from diseased patients and healthy carriers in The Gambia, West Africa. The frequencies of DNA import were analysed by sequencing fragments of four linked genes encoding the immunogenic outer membrane proteins TbpB (transferrin binding protein B) and OpaA (an adhesin) plus two housekeeping enzymes. Seventeen foreign tbpB alleles were independently imported into the 98 strains tested, apparently due to immune selection. The median size of the imported DNA fragments was 5 kb, resulting in the occasional concurrent import of linked housekeeping genes by hitchhiking. Sequences of tbpB from other strains of N. meningitidis as well as commensal Neisseria lactamica and Neisseria spp. isolated from the same geographical area revealed that these species share a common tbpB gene pool and identified several examples of interspecific genetic exchange. These observations indicate that recombination can be more frequent between related species than within a species and indicate that effective vaccination against serogroup B meningococcal disease may be difficult to achieve.
Collapse
Affiliation(s)
- B Linz
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | | | |
Collapse
|