1
|
Marzano-Miranda A, Pereira Cardoso-Oliveira G, Carla de Oliveira I, Carvalho Mourão L, Reis Cussat L, Gomes Fraga V, Delfin Chávez Olórtegui C, Jesus Fernandes Fontes C, Castanheira Bartholomeu D, Braga EM. Identification and serological responses to a novel Plasmodium vivax merozoite surface protein 1 ( PvMSP-1) derived synthetic peptide: a putative biomarker for malaria exposure. PeerJ 2024; 12:e17632. [PMID: 38948214 PMCID: PMC11212635 DOI: 10.7717/peerj.17632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Background The integration of diagnostic methods holds promise for advancing the surveillance of malaria transmission in both endemic and non-endemic regions. Serological assays emerge as valuable tools to identify and delimit malaria transmission, serving as a complementary method to rapid diagnostic tests (RDT) and thick smear microscopy. Here, we evaluate the potential of antibodies directed against peptides encompassing the entire amino acid sequence of the PvMSP-1 Sal-I strain as viable serological biomarkers for P. vivax exposure. Methods We screened peptides encompassing the complete amino acid sequence of the Plasmodium vivax Merozoite Surface Protein 1 (PvMSP-1) Sal-I strain as potential biomarkers for P. vivax exposure. Here, immunodominant peptides specifically recognized by antibodies from individuals infected with P. vivax were identified using the SPOT-synthesis technique followed by immunoblotting. Two 15-mer peptides were selected based on their higher and specific reactivity in immunoblotting assays. Subsequently, peptides p70 and p314 were synthesized in soluble form using SPPS (Solid Phase Peptide Synthesis) and tested by ELISA (IgG, and subclasses). Results This study unveils the presence of IgG antibodies against the peptide p314 in most P. vivax-infected individuals from the Brazilian Amazon region. In silico B-cell epitope prediction further supports the utilization of p314 as a potential biomarker for evaluating malaria transmission, strengthened by its amino acid sequence being part of a conserved block of PvMSP-1. Indeed, compared to patients infected with P. falciparum and uninfected individuals never exposed to malaria, P. vivax-infected patients have a notably higher recognition of p314 by IgG1 and IgG3.
Collapse
Affiliation(s)
- Aline Marzano-Miranda
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Luiza Carvalho Mourão
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Letícia Reis Cussat
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vanessa Gomes Fraga
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Erika M. Braga
- Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
de Assis GMP, de Alvarenga DAM, Souza LBE, Sánchez-Arcila JC, Silva EFE, de Pina-Costa A, Gonçalves GHP, Souza JCDJ, Nunes AJD, Pissinatti A, Moreira SB, Torres LDM, Costa HL, Tinoco HDP, Pereira VDS, Soares IDS, de Sousa TN, Ntumngia FB, Adams JH, Kano FS, Hirano ZMB, Pratt-Riccio LR, Daniel-Ribeiro CT, Ferreira JO, Carvalho LH, Alves de Brito CF. IgM antibody responses against Plasmodium antigens in neotropical primates in the Brazilian Atlantic Forest. Front Cell Infect Microbiol 2023; 13:1169552. [PMID: 37829607 PMCID: PMC10565664 DOI: 10.3389/fcimb.2023.1169552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/11/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Zoonotic transmission is a challenge for the control and elimination of malaria. It has been recorded in the Atlantic Forest, outside the Amazon which is the endemic region in Brazil. However, only very few studies have assessed the antibody response, especially of IgM antibodies, in Neotropical primates (NP). Therefore, in order to contribute to a better understanding of the immune response in different hosts and facilitate the identification of potential reservoirs, in this study, naturally acquired IgM antibody responses against Plasmodium antigens were evaluated, for the first time, in NP from the Atlantic Forest. Methods The study was carried out using 154 NP samples from three different areas of the Atlantic Forest. IgM antibodies against peptides of the circumsporozoite protein (CSP) from different Plasmodium species and different erythrocytic stage antigens were detected by ELISA. Results Fifty-nine percent of NP had IgM antibodies against at least one CSP peptide and 87% against at least one Plasmodium vivax erythrocytic stage antigen. Levels of antibodies against PvAMA-1 were the highest compared to the other antigens. All families of NP showed IgM antibodies against CSP peptides, and, most strikingly, against erythrocytic stage antigens. Generalized linear models demonstrated that IgM positivity against PvCSP and PvAMA-1 was associated with PCR-detectable blood-stage malaria infection and the host being free-living. Interestingly, animals with IgM against both PvCSP and PvAMA-1 were 4.7 times more likely to be PCR positive than animals that did not have IgM for these two antigens simultaneously. Discussion IgM antibodies against different Plasmodium spp. antigens are present in NP from the Atlantic Forest. High seroprevalence and antibody levels against blood-stage antigens were observed, which had a significant association with molecular evidence of infection. IgM antibodies against CSP and AMA-1 may be used as a potential marker for the identification of NP infected with Plasmodium, which are reservoirs of malaria in the Brazilian Atlantic Forest.
Collapse
Affiliation(s)
- Gabriela Maíra Pereira de Assis
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | | | - Luisa Braga e Souza
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Juan Camilo Sánchez-Arcila
- School of Natural Sciences, Molecular and Cell Biology Department, University of California, Merced, Merced, CA, United States
| | | | - Anielle de Pina-Costa
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
- Escola de Enfermagem Aurora de Afonso Costa, Departamento de Doenças infecciosas e Parasitárias, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | - Ana Julia Dutra Nunes
- Fundação Universidade Regional de Blumenau (FURB), Blumenau, Brazil
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Programa de conservação do Bugio Ruivo, Perini Business Park, Joinville, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro (CPRJ), Instituto Estadual do Ambiente (INEA), Guapimirim, Brazil
- Centro Universitário Serra dos Órgãos (Unifeso), Teresópolis, Brazil
| | - Silvia Bahadian Moreira
- Centro de Primatologia do Rio de Janeiro (CPRJ), Instituto Estadual do Ambiente (INEA), Guapimirim, Brazil
| | - Leticia de Menezes Torres
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Helena Lott Costa
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | | | | | - Irene da Silva Soares
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Taís Nóbrega de Sousa
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Francis Babila Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Flora Satiko Kano
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | - Zelinda Maria Braga Hirano
- Fundação Universidade Regional de Blumenau (FURB), Blumenau, Brazil
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Programa de conservação do Bugio Ruivo, Perini Business Park, Joinville, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
| | - Joseli Oliveira Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil
| | - Luzia Helena Carvalho
- Grupo de Pesquisa em Biologia Molecular e Imunologia da malária, Instituto René Rachou/Fiocruz Minas, Belo Horizonte, Brazil
| | | |
Collapse
|
3
|
Gonzalez-Ceron L, Dema B, Palomeque-Culebro OL, Santillan-Valenzuela F, Montoya A, Reyes-Sandoval A. Plasmodium vivax MSP1-42 kD Variant Proteins Detected Naturally Induced IgG Antibodies in Patients Regardless of the Infecting Parasite Phenotype in Mesoamerica. Life (Basel) 2023; 13:life13030704. [PMID: 36983859 PMCID: PMC10058798 DOI: 10.3390/life13030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background: The serological tests using blood stage antigens might be helpful for detecting recent exposure to Plasmodium parasites, and seroepidemiological studies would aid in the elimination of malaria. This work produced recombinant proteins of PvMSP142 variants and evaluated their capacity to detect IgG antibodies in symptomatic patients from Mesoamerica. Methods: Three variant Pvmsp142 genes were cloned in the pHL-sec plasmid, expressed in the Expi293F™ eukaryotic system, and the recombinant proteins were purified by affinity chromatography. Using an ELISA, 174 plasma or eluted samples from patients infected with different P. vivax haplotypes were evaluated against PvMSP142 proteins and to a native blood stage antigen (NBSA). Results: The antibody IgG OD values toward PvMSP142 variants (v88, v21, and v274) were heterogeneous (n = 178; median = 0.84 IQR 0.28–1.64). The correlation of IgG levels among all proteins was very high (spearman’s rho = 0.96–0.98; p < 0.0001), but was lower between them and the NBSA (rho = 0.771; p < 0.0001). In only a few samples, higher reactivity to the homologous protein was evident. Patients with a past infection who were seropositive had higher IgG levels and lower parasitemia levels than those who did not (p < 0.0001). Conclusions: The PvMSP142 variants were similarly efficient in detecting specific IgG antibodies in P. vivax patients from Mesoamerica, regardless of the infecting parasite’s haplotype, and might be good candidates for malaria surveillance and epidemiological studies in the region.
Collapse
Affiliation(s)
- Lilia Gonzalez-Ceron
- Regional Centre of Public Health Research, National Institute for Public Health Research, Tapachula 30700, Mexico
- Correspondence: (L.G.-C.); (A.R.-S.); Tel.: +52-9626262219 (L.G.-C.); +52-5557296000 (A.R.-S.)
| | - Barbara Dema
- Pandemic Science Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Olga L. Palomeque-Culebro
- Regional Centre of Public Health Research, National Institute for Public Health Research, Tapachula 30700, Mexico
| | - Frida Santillan-Valenzuela
- Regional Centre of Public Health Research, National Institute for Public Health Research, Tapachula 30700, Mexico
| | - Alberto Montoya
- Parasitology Department, National Centre for Diagnosis Reference, Ministry of Health, Managua 11165, Nicaragua
| | - Arturo Reyes-Sandoval
- Instituto Politécnico Nacional (IPN), Unidad Adolfo López Mateos, Av. Luis Enrique Erro s/n., Mexico City 07738, Mexico
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Unidad Morelos, Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya 62790, Mexico
- Correspondence: (L.G.-C.); (A.R.-S.); Tel.: +52-9626262219 (L.G.-C.); +52-5557296000 (A.R.-S.)
| |
Collapse
|
4
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
5
|
Gimenez AM, Marques RF, Regiart M, Bargieri DY. Diagnostic Methods for Non-Falciparum Malaria. Front Cell Infect Microbiol 2021; 11:681063. [PMID: 34222049 PMCID: PMC8248680 DOI: 10.3389/fcimb.2021.681063] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a serious public health problem that affects mostly the poorest countries in the world, killing more than 400,000 people per year, mainly children under 5 years old. Among the control and prevention strategies, the differential diagnosis of the Plasmodium-infecting species is an important factor for selecting a treatment and, consequently, for preventing the spread of the disease. One of the main difficulties for the detection of a specific Plasmodium sp is that most of the existing methods for malaria diagnosis focus on detecting P. falciparum. Thus, in many cases, the diagnostic methods neglect the other non-falciparum species and underestimate their prevalence and severity. Traditional methods for diagnosing malaria may present low specificity or sensitivity to non-falciparum spp. Therefore, there is high demand for new alternative methods able to differentiate Plasmodium species in a faster, cheaper and easier manner to execute. This review details the classical procedures and new perspectives of diagnostic methods for malaria non-falciparum differential detection and the possibilities of their application in different circumstances.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matías Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
7
|
Almeida-de-Oliveira NK, Abreu-Fernandes R, Lavigne AR, Pina-Costa A, Perce-da-Silva DDS, Catanho M, Rossi ÁD, Brasil P, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Exploration of Plasmodium vivax merozoite surface proteins 1 and 7 genetic diversity in Brazilian Amazon and Rio de Janeiro Atlantic Forest. INFECTION GENETICS AND EVOLUTION 2020; 86:104592. [PMID: 33059085 DOI: 10.1016/j.meegid.2020.104592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Plasmodium vivax merozoite surface proteins (PvMSP) 1 and 7 are considered vaccine targets. Genetic diversity knowledge is crucial to assess their potential as immunogens and to provide insights about population structure in different epidemiological contexts. Here, we investigate the variability of pvmsp-142, pvmsp-7E, and pvmsp-7F genes in 227 samples from the Brazilian Amazon (BA) and Rio de Janeiro Atlantic Forest (AF). pvmsp-142 has 63 polymorphisms - 57 nonsynonymous - generating a nucleotide diversity of π = 0.009 in AF, and π = 0.018 in BA. In pvmsp-7E, 134 polymorphisms - 103 nonsynonymous - generate the nucleotide diversity of π = 0.027 in AF, and π = 0.042 in BA. The pvmsp-7F has only two SNPs - A610G and A1054T -, with nucleotide diversity of π = 0.0004 in AF, and π = 0.0007 in BA. The haplotype diversity of pvmsp-142, pvmsp-7E, and pvmsp-7F genes is 0.997, 1.00, and 0.649, respectively. None of the pvmsp-142 or pvmsp-7E sequences are identical to the Salvador 1 strain's sequence. Conversely, most of pvmsp-7F sequences (94/48%) are identical to Sal-1. We evaluated eight B-cell epitopes in pvmsp-7E, four of them showed higher nucleotide diversity compared to pvmsp-7E's epitopes. Positive selection was detected in pvmsp-142, pvmsp-7E central region, and pvmsp-7F with Tajima's D. In pvmsp-7E, the significant nucleotide and haplotype diversities with low genetic differentiation, could be indicative of balancing selection. The genetic differentiation of pvmsp-142 (0.315) and pvmsp-7F (0.354) genes between AF and BA regions is significant, which is not the case for pvmsp-7E (0.193). We conclude that pvmsp-142 and pvmsp-7E have great genetic diversity even in AF region, an enclosure area with deficient transmission levels of P. vivax zoonotic malaria. In both Brazilian regions, pvmsp-119, pvmsp-7E, and pvmsp-7F are conserved, most likely due to their roles in parasite survival, and could be considered potential targets for a "blood-stage vaccine".
Collapse
Affiliation(s)
- Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil.
| | - Rebecca Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Aline Rosa Lavigne
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Anielle Pina-Costa
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil; Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, Brazil; Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis, RJ, Brazil
| | - Daiana de Souza Perce-da-Silva
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil; Laboratório de Imunologia Básica e Aplicada, Faculdade de Medicina de Petrópolis - FMP/FASE, Petrópolis, RJ, Brazil
| | - Marcos Catanho
- Laboratório de Genética Molecular de Microrganismos, IOC, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Átila Duque Rossi
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil; Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, Brazil.
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Reference Laboratory for Malaria in the Extra-Amazonian Region for the Brazilian Ministry of Health, SVS & Fiocruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Costa EMF, Amador ECC, Silva ES, Alvarenga CO, Pereira PE, Póvoa MM, Cunha MG. Malaria transmission and individual variability of the naturally acquired IgG antibody against the Plasmodium vivax blood-stage antigen in an endemic area in Brazil. Acta Trop 2020; 209:105537. [PMID: 32454033 DOI: 10.1016/j.actatropica.2020.105537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022]
Abstract
Plasmodium vivax remains an important cause of malaria in South America and Asia, and analyses of the antibody immune response are being used to identify biomarker of parasite exposure. The IgG antibody naturally acquired predominantly occurs against targets on blood-stage parasites, including C-terminal of the merozoite surface protein 1 (MSP1-19). Epidemiological and immunological evidence has been showed that antibodies to malaria parasite antigens are lost in the absence of ongoing exposure. We describe the IgG antibody response in individuals living in an unstable malaria transmission area in Pará state, Amazon region, Brazil, where an epidemic of P. vivax malaria was recorded and monitored over time. As indicated by epidemiological data, the number of P. vivax-caused malaria cases decreased by approximately 90% after three years and the prevalence of IgG positive to PvMSP1-19 decreased significantly over time, in 2010 (93.4%), 2012 (78.3%), and 2013 (85.1%). Acquisition and decay of the IgG antibody against P. vivax MSP1-19 showed variability among individuals living in areas with recent circulating parasites, where the malaria epidemic was being monitored until transmission had been completely controlled. We also found that previous malaria episodes were associated with an increased in the IgG positivity . Our results showed epidemiological, spatial, temporal and individual variability. The understanding on dynamics of antibodies may have implications for the design of serosurveillance tools for monitoring parasite circulation, especially in a context with spatial and temporal changes in P. vivax malaria transmission.
Collapse
Affiliation(s)
- Edna Maria F Costa
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil
| | | | - Eliane S Silva
- Fundação Centro de Hemoterapia e Hematologia do Pará, CEP: 660033-000, Belém, Pará, Brazil
| | - Cassiana O Alvarenga
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil
| | - Pedro Elias Pereira
- Fundação Centro de Hemoterapia e Hematologia do Pará, CEP: 660033-000, Belém, Pará, Brazil
| | - Marinete M Póvoa
- Instituto Evandro Chagas, CEP: 66087-082, Ananindeua, Pará, Brazil
| | - Maristela G Cunha
- Universidade Federal do Pará, Instituto de Ciências Biológicas, CEP: 66075-110, Belém, Pará, Brazil.
| |
Collapse
|
9
|
Monteiro EF, Fernandez-Becerra C, Araujo MDS, Messias MR, Ozaki LS, Duarte AMRDC, Bueno MG, Catao-Dias JL, Chagas CRF, Mathias BDS, dos Santos MG, Santos SV, Holcman MM, de Souza JC, Kirchgatter K. Naturally Acquired Humoral Immunity against Malaria Parasites in Non-Human Primates from the Brazilian Amazon, Cerrado and Atlantic Forest. Pathogens 2020; 9:pathogens9070525. [PMID: 32610598 PMCID: PMC7399928 DOI: 10.3390/pathogens9070525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
Non-human primates (NHPs) have been shown to be infected by parasites of the genus Plasmodium, the etiological agent of malaria in humans, creating potential risks of zoonotic transmission. Plasmodium brasilianum, a parasite species similar to P. malariae of humans, have been described in NHPs from Central and South America, including Brazil. The merozoite surface protein 1 (MSP1), besides being a malaria vaccine candidate, is highly immunogenic. Due to such properties, we tested this protein for the diagnosis of parasite infection. We used recombinant proteins of P. malariae MSP1, as well as of P. falciparum and P. vivax, for the detection of antibodies anti-MSP1 of these parasite species, in the sera of NHPs collected in different regions of Brazil. About 40% of the NHP sera were confirmed as reactive to the proteins of one or more parasite species. A relatively higher number of reactive sera was found in animals from the Atlantic Forest than those from the Amazon region, possibly reflecting the former more intense parasite circulation among NHPs due to their proximity to humans at a higher populational density. The presence of Plasmodium positive NHPs in the surveyed areas, being therefore potential parasite reservoirs, needs to be considered in any malaria surveillance program.
Collapse
Affiliation(s)
- Eliana Ferreira Monteiro
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain;
- Germans Trias i Pujol Health Science Research Institute (IGTP), 08916 Badalona, Spain
| | - Maisa da Silva Araujo
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil;
| | | | - Luiz Shozo Ozaki
- Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Ana Maria Ribeiro de Castro Duarte
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
| | - Marina Galvão Bueno
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fiocruz Rio de Janeiro, Rio de Janeiro, RJ 21040-900, Brazil;
| | - Jose Luiz Catao-Dias
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP 05508-270, Brazil;
| | - Carolina Romeiro Fernandes Chagas
- Departamento de Pesquisas Aplicadas, Fundação Parque Zoológico de São Paulo, São Paulo, SP 04301-905, Brazil;
- Institute of Ecology, Nature Research Centre, Vilnius 08412, Lithuania
| | - Bruno da Silva Mathias
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
| | - Mayra Gomes dos Santos
- Departamento de Patologia, Universidade Cruzeiro do Sul, São Paulo, SP 01311-925, Brazil; (M.G.d.S.); (S.V.S.)
| | - Stéfanie Vanessa Santos
- Departamento de Patologia, Universidade Cruzeiro do Sul, São Paulo, SP 01311-925, Brazil; (M.G.d.S.); (S.V.S.)
- Departamento de Anatomia Patológica, AC Camargo Cancer Center, São Paulo, SP 01525-001, Brazil
| | - Marcia Moreira Holcman
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
| | - Julio Cesar de Souza
- Departamento de Medicina Veterinária, Fundação Universidade Regional de Blumenau, Blumenau, SC 89012-900, Brazil;
- Projeto Bugio, Centro de Pesquisas Biológicas, Indaial, SC 89130-000, Brazil
| | - Karin Kirchgatter
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
- Correspondence:
| |
Collapse
|
10
|
Kale S, Yadav CP, Rao PN, Shalini S, Eapen A, Srivasatava HC, Sharma SK, Pande V, Carlton JM, Singh OP, Mallick PK. Antibody responses within two leading Plasmodium vivax vaccine candidate antigens in three geographically diverse malaria-endemic regions of India. Malar J 2019; 18:425. [PMID: 31842894 PMCID: PMC6916228 DOI: 10.1186/s12936-019-3066-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/08/2019] [Indexed: 01/28/2023] Open
Abstract
Background Identifying highly immunogenic blood stage antigens which can work as target for naturally acquired antibodies in different eco-epidemiological settings is an important step for designing malaria vaccine. Blood stage proteins of Plasmodium vivax, apical membrane antigen-1 (PvAMA-1) and 19 kDa fragment of merozoite surface protein (PvMSP-119) are such promising vaccine candidate antigens. This study determined the naturally-acquired antibody response to PvAMA-1 and PvMSP-119 antigens in individuals living in three geographically diverse malaria endemic regions of India. Methods A total of 234 blood samples were collected from individuals living in three different eco-epidemiological settings, Chennai, Nadiad, and Rourkela of India. Indirect ELISA was performed to measure human IgG antibodies against recombinant PvAMA-1 and PvMSP-119 antigens. The difference in seroprevalence and factors associated with antibody responses at each site was statistically analysed. Results The overall seroprevalence was 40.6% for PvAMA-1 and 62.4% for PvMSP-119. Seroprevalence to PvAMA-1 was higher in Chennai (47%) followed by Nadiad (46.7%) and Rourkela (27.6%). For PvMSP-119, seroprevalence was higher in Chennai (80.3%) as compared to Nadiad (53.3%) and Rourkela (57.9%). Seroprevalence for both the antigens were found to be higher in Chennai where P. vivax is the dominant malaria species. In addition, heterogeneous antibody response was observed for PvAMA-1 and PvMSP-119 antigens at each of the study sites. Two factors, age and malaria positivity were significantly associated with seropositivity for both the antigens PvAMA-1 and PvMSP-119. Conclusion These data suggest that natural acquired antibody response is higher for PvMSP-119 antigen as compared to PvAMA-1 antigen in individuals living in three geographically diverse malaria endemic regions in India. PvMSP-119 appears to be highly immunogenic in Indian population and has great potential as a malaria vaccine candidate. The differences in immune response against vaccine candidate antigens in different endemic settings should be taken into account for development of asexual stage based P. vivax malaria vaccine, which in turn can enhance malaria control efforts.
Collapse
Affiliation(s)
- Sonal Kale
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Chander P Yadav
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
| | - Pavitra N Rao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, USA
| | - Sneh Shalini
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India
| | - Alex Eapen
- National Institute of Malaria Research Field Unit, Indian Council of Medical Research, National Institute of Epidemiology Campus, Ayapakkam, Chennai, Tamil Nadu, India
| | - Harish C Srivasatava
- National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, Gujarat, India
| | - Surya K Sharma
- Jigyansha, International Center of Excellence for Malaria Research, Sector 1, Rourkela, Odisha, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, USA
| | - Om P Singh
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.
| | - Prashant K Mallick
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, India.
| |
Collapse
|
11
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Farias E, Bezerra F, Baia-da-Silva DC, Chaves YO, Cardoza TB, de Almeida MEM, Oliveira LB, Lalwani P, Orlandi PP, Lacerda MVG, Lopes SCP, Nogueira PA. A simple, ex vivo phagocytosis assay of Plasmodium vivax merozoites by flow cytometry. Mem Inst Oswaldo Cruz 2019; 114:e190158. [PMID: 31596312 PMCID: PMC6783134 DOI: 10.1590/0074-02760190158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 11/22/2022] Open
Abstract
As phagocytosis is the first line of defense against malaria, we developed a
phagocytosis assay with Plasmodium vivax (P.
vivax) merozoites that can be applied to evaluate vaccine
candidates. Briefly, after leukocyte removal with loosely packed cellulose
powder in a syringe, P. vivax trophozoites matured to the
merozoite-rich schizont stages in the presence of the E64 protease inhibitor.
The Percoll gradient-enriched schizonts were chemically disrupted to release
merozoites that were submitted to merozoite opsonin-dependent phagocytosis in
two phagocytic lines with human and mouse antibodies against the N- and
C-terminus of P. vivax Merozoite Surface Protein-1
(Nterm-PvMSP1 and MSP119). The resulting assay is simple and
efficient for use as a routine phagocytic assay for the evaluation of merozoite
stage vaccine candidates.
Collapse
Affiliation(s)
- Elizangela Farias
- Universidade Federal do Amazonas, Programa de Pós-Graduação Stricto Sensu em Imunologia Básica e Aplicada, Manaus, AM, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação Stricto Sensu em Biologia da Interação Patógeno Hospedeiro, Manaus, AM, Brasil
| | - Fhabiane Bezerra
- Universidade Federal do Amazonas, Programa de Pós-Graduação Stricto Sensu em Imunologia Básica e Aplicada, Manaus, AM, Brasil
| | | | - Yury Oliveira Chaves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação Stricto Sensu em Biologia da Interação Patógeno Hospedeiro, Manaus, AM, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária, Rio de Janeiro, RJ, Brasil
| | - Tatiana Bacry Cardoza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação Stricto Sensu em Biologia da Interação Patógeno Hospedeiro, Manaus, AM, Brasil
| | - Maria Edilene Martins de Almeida
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação Stricto Sensu em Biologia da Interação Patógeno Hospedeiro, Manaus, AM, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular, Rio de Janeiro, RJ, Brasil
| | - Lucas Barbosa Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação Stricto Sensu em Biologia da Interação Patógeno Hospedeiro, Manaus, AM, Brasil
| | - Pritesh Lalwani
- Universidade Federal do Amazonas, Programa de Pós-Graduação Stricto Sensu em Imunologia Básica e Aplicada, Manaus, AM, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação Stricto Sensu em Biologia da Interação Patógeno Hospedeiro, Manaus, AM, Brasil
| | - Patrícia Puccinelli Orlandi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação Stricto Sensu em Biologia da Interação Patógeno Hospedeiro, Manaus, AM, Brasil
| | - Marcus Vinicius Guimaraes Lacerda
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação Stricto Sensu em Biologia da Interação Patógeno Hospedeiro, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM, Brasil
| | - Stefanie Costa Pinto Lopes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação Stricto Sensu em Biologia da Interação Patógeno Hospedeiro, Manaus, AM, Brasil
| | - Paulo Afonso Nogueira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação Stricto Sensu em Biologia da Interação Patógeno Hospedeiro, Manaus, AM, Brasil
| |
Collapse
|
13
|
Elizardez YB, Fotoran WL, Junior AJG, Curado I, Junior NK, Monteiro EF, Romero Neto I, Wunderlich G, Kirchgatter K. Recombinant proteins of Plasmodium malariae merozoite surface protein 1 (PmMSP1): Testing immunogenicity in the BALB/c model and potential use as diagnostic tool. PLoS One 2019; 14:e0219629. [PMID: 31344067 PMCID: PMC6657842 DOI: 10.1371/journal.pone.0219629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023] Open
Abstract
Background Plasmodium malariae is the third most prevalent human malaria-causing species and has a patchy, but ample distribution in the world. Humans can host the parasite for years without presenting significant symptoms, turning its diagnosis and control into a difficult task. Here, we investigated the immunogenicity of recombinant proteins of P. malariae MSP1. Methods Five regions of PmMSP1 were expressed in Escherichia coli as GST-fusion proteins and immunized in BALB/c mice. The specificity, subtyping, and affinity of raised antibodies were evaluated by enzyme-linked immunosorbent assays. Cellular immune responses were analyzed by lymphoproliferation assays and cytokine levels produced by splenocytes were detected by cytometry. Results We found that N-terminal, central regions, and PmMSP119 are strongly immunogenic in mice. After three doses, the induced immune responses remained high for 70 days. While antibodies induced after immunization with N-terminal and central regions showed similar affinities to the target antigens, affinities of IgG against PmMSP119 were higher. All proteins induced similar antibody subclass patterns (predominantly IgG1, IgG2a, and IgG2b), characterizing a mixed Th1/Th2 response. Further, autologous stimulation of splenocytes from immunized mice led to the secretion of IL2 and IL4, independently of the antigen used. Importantly, IgG from P. malariae-exposed individuals reacted against PmMSP1 recombinant proteins with a high specificity. On the other hand, sera from P. vivax or P. falciparum-infected individuals did not react at all against recombinant PmMSP1 proteins. Conclusion Recombinant PmMSP1 proteins are very useful diagnostic markers of P. malariae in epidemiological studies or in the differential diagnosis of malaria caused by this species. Immunization with recombinant PmMSP1 proteins resulted in a significant humoral immune response, which may turn them potential component candidates for a vaccine against P. malariae.
Collapse
Affiliation(s)
- Yelina B. Elizardez
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias/Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Wesley L. Fotoran
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Andrés J. Galisteo Junior
- Laboratório de Protozoologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Izilda Curado
- Laboratório de Imunoepidemiologia, Superintendência de Controle de Endemias, São Paulo, Brazil
| | - Norival Kesper Junior
- Laboratório de Protozoologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Eliana F. Monteiro
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias/Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Irineu Romero Neto
- Laboratório de Protozoologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Karin Kirchgatter
- Núcleo de Estudos em Malária, Superintendência de Controle de Endemias/Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
14
|
Cheng Y, Wang B, Lu F, Ahmed MA, Han JH, Na SH, Ha KS, Park WS, Hong SH, Han ET. Identification and characterization of Pv50, a novel Plasmodium vivax merozoite surface protein. Parasit Vectors 2019; 12:176. [PMID: 30999945 PMCID: PMC6474066 DOI: 10.1186/s13071-019-3434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/04/2019] [Indexed: 11/27/2022] Open
Abstract
Background Plasmodium vivax contains approximately 5400 coding genes, more than 40% of which code for hypothetical proteins that have not been functionally characterized. In a previous preliminary screening using pooled serum samples, numerous hypothetical proteins were selected from among those that were highly transcribed in the schizont-stage of parasites, and highly antigenic P. vivax candidates including hypothetical proteins were identified. However, their immunological and functional activities in P. vivax remain unclear. From these candidates, we investigated a P. vivax 50-kDa protein (Pv50, PVX_087140) containing a highly conserved signal peptide that shows high transcription levels in blood-stage parasites. Results Recombinant Pv50 was expressed in a cell-free expression system and used for IgG prevalence analysis of patients with vivax malaria and healthy individuals. Immune responses were analyzed in immunized mice and mouse antibodies were used to detect the subcellular localization of the protein in blood-stage parasites by immunofluorescence assay. A protein array method was used to evaluate protein-protein interactions to predict protein functional activities during the invasion of parasites into erythrocytes. Recombinant Pv50 showed IgG prevalence in patient samples with a sensitivity of 42.9% and specificity of 93.8% compared to that in healthy individuals. The non-cytophilic antibodies IgG1 and IgG3 were the major components involved in the antibody response in Pv50-immunized mice. Pv50 localized on the surface of merozoites and a specific interaction between Pv50 and PvMSP1 was detected, suggesting that Pv50-PvMSP1 forms a heterodimeric complex in P. vivax. Conclusions Increased immune responses caused by native P. vivax parasites were detected, confirming its immunogenic effects. This study provides a method for detecting new malaria antigens, and Pv50 may be a vivax malaria vaccine candidate with PvMSP1. Electronic supplementary material The online version of this article (10.1186/s13071-019-3434-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China. .,Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Feng Lu
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Md Atique Ahmed
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.
| |
Collapse
|
15
|
Specificity of the IgG antibody response to Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale MSP1 19 subunit proteins in multiplexed serologic assays. Malar J 2018; 17:417. [PMID: 30413163 PMCID: PMC6230236 DOI: 10.1186/s12936-018-2566-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/01/2018] [Indexed: 11/21/2022] Open
Abstract
Background Multiplex bead assays (MBA) that measure IgG antibodies to the carboxy-terminal 19-kDa sub-unit of the merozoite surface protein 1 (MSP119) are currently used to determine malaria seroprevalence in human populations living in areas with both stable and unstable transmission. However, the species specificities of the IgG antibody responses to the malaria MSP119 antigens have not been extensively characterized using MBA. Methods Recombinant Plasmodium falciparum (3D7), Plasmodium malariae (China I), Plasmodium ovale (Nigeria I), and Plasmodium vivax (Belem) MSP119 proteins were covalently coupled to beads for MBA. Threshold cut-off values for the assays were estimated using sera from US citizens with no history of foreign travel and by receiver operator characteristic curve analysis using diagnostic samples. Banked sera from experimentally infected chimpanzees, sera from humans from low transmission regions of Haiti and Cambodia (N = 12), and elutions from blood spots from humans selected from a high transmission region of Mozambique (N = 20) were used to develop an antigen competition MBA for antibody cross-reactivity studies. A sub-set of samples was further characterized using antibody capture/elution MBA, IgG subclass determination, and antibody avidity measurement. Results Total IgG antibody responses in experimentally infected chimpanzees were species specific and could be completely suppressed by homologous competitor protein at a concentration of 10 μg/ml. Eleven of 12 samples from the low transmission regions and 12 of 20 samples from the high transmission area had antibody responses that were completely species specific. For 7 additional samples, the P. falciparum MSP119 responses were species specific, but various levels of incomplete heterologous competition were observed for the non-P. falciparum assays. A pan-malaria MSP119 cross-reactive antibody response was observed in elutions of blood spots from two 20–30 years old Mozambique donors. The antibody response from one of these two donors had low avidity and skewed almost entirely to the IgG3 subclass. Conclusions Even when P. falciparum, P. malariae, P. ovale, and P. vivax are co-endemic in a high transmission setting, most antibody responses to MSP119 antigens are species-specific and are likely indicative of previous infection history. True pan-malaria cross-reactive responses were found to occur rarely. Electronic supplementary material The online version of this article (10.1186/s12936-018-2566-0) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Evaluation of Plasmodium vivax isolates in Thailand using polymorphic markers Plasmodium merozoite surface protein (PvMSP) 1 and PvMSP3. Parasitol Res 2018; 117:3965-3978. [DOI: 10.1007/s00436-018-6106-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/01/2018] [Indexed: 12/27/2022]
|
17
|
Cheng Y, Wang B, Lu F, Han JH, Ahmed MA, Han ET. Immunological characterization of Plasmodium vivax Pv32, a novel predicted GPI-anchored merozoite surface protein. Malar J 2018; 17:273. [PMID: 30053874 PMCID: PMC6062930 DOI: 10.1186/s12936-018-2401-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/26/2018] [Indexed: 01/30/2023] Open
Abstract
Background The development of an effective malarial vaccine is an urgent need. Most glycosylphosphatidylinositol (GPI)-anchored proteins of Plasmodium parasites are exposed to neutralizing antibodies, and several are advanced vaccine candidates. In the present study, Plasmodium vivax Pv32 (PVX_084815) as a hypothetical, predicted GPI-anchored and cysteine-rich motif was identified from our previous findings with a focus on its antigenic profiling. The orthologue gene pv32, a predicted GPI anchor of P. falciparum PF3D7_1434400, has still not been well studied. Methods The gene information of pv32 was obtained from PlasmoDB. Recombinant Pv32 protein was expressed and purified using a wheat germ cell-free expression system and a glutathione-Sepharose column. Naturally acquired immune response to recombinant Pv32 protein was evaluated using a protein microarray with 96 parasite-infected patients and 96 healthy individuals. Antibodies against recombinant Pv32 proteins from immune animals were produced, used and analyzed for the subcellular localization of native Pv32 protein by an immunofluorescence assay. A total of 48 pv32 sequences from 11 countries retrieved from PlasmoDB were used to determine the genetic diversity, polymorphisms and genealogical relationships with DNAsp and NETWORK software packages. Results Pv32 is encoded by a conserved gene with two introns that are located on chromosome 13 and expressed as a 32 kDa protein in mature asexual stage parasites. Immunofluorescence data showed that Pv32 localized on the merozoite surface in schizont-stage parasites. The recombinant Pv32 was recognized by 39.6% of antibodies from P. vivax-infected individuals compared with healthy individuals. Low levels of nucleotide diversity (π = 0.0028) and polymorphisms of pv32 were detected within worldwide isolates. Conclusions This study shows the identification and characterization of the hypothetical protein, Pv32. Pv32 provides important characteristics, including a merozoite surface protein, a predicted GPI motif and Cysteine-rich motif among Plasmodium species. These results suggested that Pv32 is immunogenic with a merozoite surface pattern to antibodies during natural infection in humans. Electronic supplementary material The online version of this article (10.1186/s12936-018-2401-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Public Health and Preventive Medicine; Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.,Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24341, Republic of Korea.,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Feng Lu
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24341, Republic of Korea.,Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Md Atique Ahmed
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
18
|
Menezes RADO, Gomes MDSM, Mendes AM, Couto ÁARDA, Nacher M, Pimenta TS, de Sousa ACP, Baptista ARDS, de Jesus MI, Enk MJ, Cunha MG, Machado RLD. Enteroparasite and vivax malaria co-infection on the Brazil-French Guiana border: Epidemiological, haematological and immunological aspects. PLoS One 2018; 13:e0189958. [PMID: 29293589 PMCID: PMC5749708 DOI: 10.1371/journal.pone.0189958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022] Open
Abstract
Malaria-enteroparasitic co-infections are known for their endemicity. Although they are prevalent, little is known about their epidemiology and effect on the immune response. This study evaluated the effect of enteroparasite co-infections with malaria caused by Plasmodium vivax in a border area between Brazil and French Guiana. The cross sectional study took place in Oiapoque, a municipality of Amapá, on the Amazon border. Malaria was diagnosed using thick blood smears, haemoglobin dosage by an automated method and coproparasitology by the Hoffman and Faust methods. The anti-PvMSP-119 IgG antibodies in the plasma were evaluated using ELISA and Th1 (IFN-γ, TNF-α and IL-2), and Th2 (IL-4, IL-5 and IL-10) cytokine counts were performed by flow cytometry. The participants were grouped into those that were monoinfected with vivax malaria (M), vivax malaria-enteroparasite co-infected (CI), monoinfected with enteroparasite (E) and endemic controls (EC), who were negative for both diseases. 441 individuals were included and grouped according to their infection status: [M 6.9% (30/441)], [Cl 26.5% (117/441)], [E 32.4% (143/441)] and [EC 34.2% (151/441)]. Males prevailed among the (M) 77% (23/30) and (CI) 60% (70/117) groups. There was a difference in haemoglobin levels among the different groups under study for [EC-E], [EC-Cl], [E-M] and [Cl-M], with (p < 0.01). Anaemia was expressed as a percentage between individuals [CI-EC (p < 0.05)]. In terms of parasitaemia, there were differences for the groups [CI-M (p < 0.05)]. Anti-PvMSP-119 antibodies were detected in 51.2% (226/441) of the population. The level of cytokines evaluation revealed a large variation in TNF-α and IL-10 concentrations in the co-infected group. In this study we did not observe any influence of coinfection on the acquisition of IgG antibodies against PvMSP119, as well as on the profile of the cytokines that characterize the Th1 and Th2 patterns. However, co-infection increased TNF-α and IL-10 levels.
Collapse
Affiliation(s)
- Rubens Alex de Oliveira Menezes
- Postgraduate Program in the Biology of Infectious and Parasitic Agents, Federal University of Pará (UFPA), Belém, Pará State, Brazil
- Laboratory of morphofunctional and parasitic studies with impact on health (LEMPIS), Federal University of Amapá (UNIFAP), Macapa, Amapá State, Brazil
- * E-mail:
| | | | - Anapaula Martins Mendes
- UNIFAP/Oiapoque Binational Campus, Federal University of Amapá, Oiapoque, Amapá State, Brazil
| | | | - Mathieu Nacher
- Centre d’Investigation Clinique, CIC INSERM 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Tamirys Simão Pimenta
- Postgraduate Program in Neuroscience and Cell Biology, UFPA, Belém, Pará State, Brazil
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | - Aline Collares Pinheiro de Sousa
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | | | - Maria Izabel de Jesus
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | - Martin Johannes Enk
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
| | - Maristela Gomes Cunha
- Postgraduate Program in the Biology of Infectious and Parasitic Agents, Federal University of Pará (UFPA), Belém, Pará State, Brazil
- Laboratory of Microbiology and Immunology, Federal University of Pará (UFPA), Belém, Pará State, Brazil
| | - Ricardo Luiz Dantas Machado
- Postgraduate Program in the Biology of Infectious and Parasitic Agents, Federal University of Pará (UFPA), Belém, Pará State, Brazil
- Evandro Chagas Institute/Brazilian Secretariat of Health Surveillance (SVS)/Brazilian Ministry of Health (MS), Ananindeua, Pará State, Brazil
- Fluminense Federal University, Niterói, Rio de Janeiro State, Brazil
| |
Collapse
|
19
|
López C, Yepes-Pérez Y, Hincapié-Escobar N, Díaz-Arévalo D, Patarroyo MA. What Is Known about the Immune Response Induced by Plasmodium vivax Malaria Vaccine Candidates? Front Immunol 2017; 8:126. [PMID: 28243235 PMCID: PMC5304258 DOI: 10.3389/fimmu.2017.00126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Malaria caused by Plasmodium vivax continues being one of the most important infectious diseases around the world; P. vivax is the second most prevalent species and has the greatest geographic distribution. Developing an effective antimalarial vaccine is considered a relevant control strategy in the search for means of preventing the disease. Studying parasite-expressed proteins, which are essential in host cell invasion, has led to identifying the regions recognized by individuals who are naturally exposed to infection. Furthermore, immunogenicity studies have revealed that such regions can trigger a robust immune response that can inhibit sporozoite (hepatic stage) or merozoite (erythrocyte stage) invasion of a host cell and induce protection. This review provides a synthesis of the most important studies to date concerning the antigenicity and immunogenicity of both synthetic peptide and recombinant protein candidates for a vaccine against malaria produced by P. vivax.
Collapse
Affiliation(s)
- Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Natalia Hincapié-Escobar
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC) , Bogotá , Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia; Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
20
|
Amorim KNS, Rampazo EV, Antonialli R, Yamamoto MM, Rodrigues MM, Soares IS, Boscardin SB. The presence of T cell epitopes is important for induction of antibody responses against antigens directed to DEC205 + dendritic cells. Sci Rep 2016; 6:39250. [PMID: 28000705 PMCID: PMC5175286 DOI: 10.1038/srep39250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/22/2016] [Indexed: 11/08/2022] Open
Abstract
In vivo antigen targeting to dendritic cells (DCs) has been used as a way to improve immune responses. Targeting is accomplished with the use of monoclonal antibodies (mAbs) to receptors present on the DC surface fused with the antigen of interest. An anti-DEC205 mAb has been successfully used to target antigens to the DEC205+CD8α+ DC subset. The administration of low doses of the hybrid mAb together with DC maturation stimuli is able to activate specific T cells and induce production of high antibody titres for a number of different antigens. However, it is still not known if this approach would work with any fused protein. Here we genetically fused the αDEC205 mAb with two fragments (42-kDa and 19-kDa) derived from the ~200 kDa Plasmodium vivax merozoite surface protein 1 (MSP1), known as MSP142 and MSP119, respectively. The administration of two doses of αDEC-MSP142, but not of αDEC-MSP119 mAb, together with an adjuvant to two mouse strains induced high anti-MSP119 antibody titres that were dependent on CD4+ T cells elicited by peptides present in the MSP133 sequence, indicating that the presence of T cell epitopes in antigens targeted to DEC205+ DCs increases antibody responses.
Collapse
Affiliation(s)
- Kelly N. S. Amorim
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Eline V. Rampazo
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Renan Antonialli
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Marcio M. Yamamoto
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Mauricio M. Rodrigues
- CTCMol, Federal University of São Paulo, São Paulo, 04044-010, Brazil
- National Institute for Science and Technology in Vaccines, Belo Horizonte, 31270-910, Brazil
| | - Irene S. Soares
- National Institute for Science and Technology in Vaccines, Belo Horizonte, 31270-910, Brazil
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Silvia B. Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
- National Institute for Science and Technology in Vaccines, Belo Horizonte, 31270-910, Brazil
| |
Collapse
|
21
|
Sepúlveda N, Morais CG, Mourão LC, Freire MF, Fontes CJF, Lacerda MVG, Drakeley CJ, Braga ÉM. Allele-specific antibodies to Plasmodium vivax merozoite surface protein-1: prevalence and inverse relationship to haemoglobin levels during infection. Malar J 2016; 15:559. [PMID: 27852258 PMCID: PMC5112628 DOI: 10.1186/s12936-016-1612-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Antigenic polymorphisms are considered as one of the main strategies employed by malaria parasites to escape from the host immune responses after infections. Merozoite surface protein-1 (MSP-1) of Plasmodium vivax, a promising vaccine candidate, is a highly polymorphic protein whose immune recognition is not well understood. Methods and results The IgG responses to conserved (MSP-119) and polymorphic (block 2 and block 10) epitopes of PvMSP-1 were evaluated in 141 P. vivax infected patients. Ten recombinant proteins corresponding to block 2 (variants BR07, BP29, BP39, BP30, BEL) and block 10 (BR07, BP29, BP39, BP01, BP13) often observed in Brazilian P. vivax isolates were assessed by ELISA in order to determine levels of specific antibodies and their respective seroprevalence. The magnitude and the frequency of variant-specific responses were very low, except for BR07 variant (>40%), which was the predominant haplotype as revealed by block 10 PvMSP-1 gene sequencing. By contrast, 89% of patients had IgG against the C-terminal conserved domain (PvMSP-119), confirming the high antigenicity of this protein. Using multiple linear and logistic regression models, there was evidence for a negative association between levels of haemoglobin and several IgG antibodies against block 2 variant antigens, with the strongest association being observed for BP39 allelic version. This variant was also found to increase the odds of anaemia in these patients. Conclusions These findings may have implications for vaccine development and represent an important step towards a better understanding of the polymorphic PvMSP-1 domain as potential targets of vaccine development. These data highlight the importance of extending the study of these polymorphic epitopes of PvMSP-1 to different epidemiological settings. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1612-z) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
A chimeric protein-based malaria vaccine candidate induces robust T cell responses against Plasmodium vivax MSP1 19. Sci Rep 2016; 6:34527. [PMID: 27708348 PMCID: PMC5052570 DOI: 10.1038/srep34527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023] Open
Abstract
The most widespread Plasmodium species, Plasmodium vivax, poses a significant public health threat. An effective vaccine is needed to reduce global malaria burden. Of the erythrocytic stage vaccine candidates, the 19 kDa fragment of the P. vivax Merozoite Surface Protein 1 (PvMSP119) is one of the most promising. Our group has previously defined several promiscuous T helper epitopes within the PvMSP1 protein, with features that allow them to bind multiple MHC class II alleles. We describe here a P. vivax recombinant modular chimera based on MSP1 (PvRMC-MSP1) that includes defined T cell epitopes genetically fused to PvMSP119. This vaccine candidate preserved structural elements of the native PvMSP119 and elicited cytophilic antibody responses, and CD4+ and CD8+ T cells capable of recognizing PvMSP119. Although CD8+ T cells that recognize blood stage antigens have been reported to control blood infection, CD8+ T cell responses induced by P. falciparum or P. vivax vaccine candidates based on MSP119 have not been reported. To our knowledge, this is the first time a protein based subunit vaccine has been able to induce CD8+ T cell against PvMSP119. The PvRMC-MSP1 protein was also recognized by naturally acquired antibodies from individuals living in malaria endemic areas with an antibody profile associated with protection from infection. These features make PvRMC-MSP1 a promising vaccine candidate.
Collapse
|
23
|
Dinzouna-Boutamba SD, Lee S, Son UH, Song SM, Yun HS, Joo SY, Kwak D, Rhee MH, Chung DI, Hong Y, Goo YK. Distribution of Antibodies Specific to the 19-kDa and 33-kDa Fragments of Plasmodium vivax Merozoite Surface Protein 1 in Two Pathogenic Strains Infecting Korean Vivax Malaria Patients. Osong Public Health Res Perspect 2016; 7:213-9. [PMID: 27635370 PMCID: PMC5014746 DOI: 10.1016/j.phrp.2016.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 11/04/2022] Open
Abstract
Objectives Plasmodium vivax merozoite surface protein 1 (PvMSP1) is the most intensively studied malaria vaccine candidate. Although high antibody response-inducing two C-terminal fragments of PvMSP1 (PvMSP1-19 and PvMSP1-42) are currently being developed as candidate malaria vaccine antigens, their high genetic diversity in various isolates is a major hurdle. The sequence polymorphism of PvMSP1 has been investigated; however, the humoral immune responses induced by different portions of this protein have not been evaluated in Korea. Methods Two fragments of PvMSP1 were selected for this study: (1) PvMSP1-19, which is genetically conserved; and (2) PvMSP1-33, which corresponds to a variable portion. For the latter, two representative strains, Sal 1 and Belem, were included. Thus, three recombinant proteins, PvMSP1-19, PvMSP1-33 Sal 1, and PvMSP1-33 Belem, were produced in Escherichia coli and then tested by enzyme-linked immunosorbent assays using sera from 221 patients with vivax malaria. Results Of the 221 samples, 198, 142, and 106 samples were seropositive for PvMSP1-19, PvMSP1-33 Sal 1, and PvMSP1-33 Belem, respectively. Although 100 samples were simultaneously seropositive for antibodies specific to all the recombinant proteins, 39 and six samples were respectively seropositive for antibodies specific to MSP1-33 Sal 1 and MSP1-33 Belem. Antibodies specific to PvMSP1-19 were the most prevalent. Conclusion Monitoring seroprevalence is essential for the selection of promising vaccine candidates as most of the antigenic proteins in P. vivax are highly polymorphic.
Collapse
|
24
|
Cassiano GC, Furini AAC, Capobianco MP, Storti-Melo LM, Almeida ME, Barbosa DRL, Póvoa MM, Nogueira PA, Machado RLD. Immunogenetic markers associated with a naturally acquired humoral immune response against an N-terminal antigen of Plasmodium vivax merozoite surface protein 1 (PvMSP-1). Malar J 2016; 15:306. [PMID: 27255376 PMCID: PMC4891883 DOI: 10.1186/s12936-016-1350-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/17/2016] [Indexed: 01/13/2023] Open
Abstract
Background Humoral immune responses against proteins of asexual blood-stage malaria parasites have been associated with clinical immunity. However, variations in the antibody-driven responses may be associated with a genetic component of the human host. The objective of the present study was to evaluate the influence of co-stimulatory molecule gene polymorphisms of the immune system on the magnitude of the humoral immune response against a Plasmodium vivax vaccine candidate antigen. Methods Polymorphisms in the CD28, CTLA4, ICOS, CD40, CD86 and BLYS genes of 178 subjects infected with P. vivax in an endemic area of the Brazilian Amazon were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The levels of IgM, total IgG and IgG subclasses specific for ICB2-5, i.e., the N-terminal portion of P. vivax merozoite surface protein 1 (PvMSP-1), were determined by enzyme-linked immuno assay. The associations between the polymorphisms and the antibody response were assessed by means of logistic regression models. Results After correcting for multiple testing, the IgG1 levels were significantly higher in individuals recessive for the single nucleotide polymorphism rs3116496 in CD28 (p = 0.00004). Furthermore, the interaction between CD28 rs35593994 and BLYS rs9514828 had an influence on the IgM levels (p = 0.0009). Conclusions The results of the present study support the hypothesis that polymorphisms in the genes of co-stimulatory components of the immune system can contribute to a natural antibody-driven response against P. vivax antigens. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1350-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Capatti Cassiano
- Department of Biology, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil. .,Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil.
| | - Adriana A C Furini
- Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil
| | - Marcela P Capobianco
- Department of Biology, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil.,Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil
| | - Luciane M Storti-Melo
- Department of Biology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Maria E Almeida
- Leônidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas, Brazil
| | - Danielle R L Barbosa
- Laboratory of Malaria Basic Research, Division of Parasitology, Evandro Chagas Institute, Belém, Pará, Brazil
| | - Marinete M Póvoa
- Laboratory of Malaria Basic Research, Division of Parasitology, Evandro Chagas Institute, Belém, Pará, Brazil
| | - Paulo A Nogueira
- Leônidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas, Brazil
| | - Ricardo L D Machado
- Department of Biology, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil.,Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil.,Laboratory of Malaria Basic Research, Division of Parasitology, Evandro Chagas Institute, Belém, Pará, Brazil
| |
Collapse
|
25
|
Cho SJ, Lee J, Lee HJ, Jo HY, Sinniah M, Kim HY, Chong CK, Song HO. A Novel Malaria Pf/Pv Ab Rapid Diagnostic Test Using a Differential Diagnostic Marker Identified by Network Biology. Int J Biol Sci 2016; 12:824-35. [PMID: 27313496 PMCID: PMC4910601 DOI: 10.7150/ijbs.14408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/06/2016] [Indexed: 11/05/2022] Open
Abstract
Rapid diagnostic tests (RDTs) can detect anti-malaria antibodies in human blood. As they can detect parasite infection at the low parasite density, they are useful in endemic areas where light infection and/or re-infection of parasites are common. Thus, malaria antibody tests can be used for screening bloods in blood banks to prevent transfusion-transmitted malaria (TTM), an emerging problem in malaria endemic areas. However, only a few malaria antibody tests are available in the microwell-based assay format and these are not suitable for field application. A novel malaria antibody (Ab)-based RDT using a differential diagnostic marker for falciparum and vivax malaria was developed as a suitable high-throughput assay that is sensitive and practical for blood screening. The marker, merozoite surface protein 1 (MSP1) was discovered by generation of a Plasmodium-specific network and the hierarchical organization of modularity in the network. Clinical evaluation revealed that the novel Malaria Pf/Pv Ab RDT shows improved sensitivity (98%) and specificity (99.7%) compared with the performance of a commercial kit, SD BioLine Malaria P.f/P.v (95.1% sensitivity and 99.1% specificity). The novel Malaria Pf/Pv Ab RDT has potential for use as a cost-effective blood-screening tool for malaria and in turn, reduces TTM risk in endemic areas.
Collapse
Affiliation(s)
- Sung Jin Cho
- 1. Department of Bioinformatics, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jihoo Lee
- 2. Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyun Jae Lee
- 1. Department of Bioinformatics, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyun-Young Jo
- 3. Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Chungbuk, Republic of Korea
| | | | - Hak-Yong Kim
- 2. Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Chom-Kyu Chong
- 5. GenBody Inc., Dankook Biotech Business IC, Cheonan, Chungnam, Republic of Korea
| | - Hyun-Ok Song
- 6. Department of Infection Biology, Wonkwang University School of Medicine, Iksan, Jeonbuk, Republic of Korea
| |
Collapse
|
26
|
Wang Q, Zhao Z, Zhang X, Li X, Zhu M, Li P, Yang Z, Wang Y, Yan G, Shang H, Cao Y, Fan Q, Cui L. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia. PLoS One 2016; 11:e0151900. [PMID: 26999435 PMCID: PMC4801383 DOI: 10.1371/journal.pone.0151900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/29/2016] [Indexed: 12/24/2022] Open
Abstract
Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a marker of recent exposure to P. vivax in epidemiological studies.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Amino Acid Sequence
- Antibodies, Protozoan/immunology
- Antibody Formation/immunology
- Asia, Southeastern/epidemiology
- Child
- Child, Preschool
- Demography
- Follow-Up Studies
- Humans
- Immunoglobulin G/immunology
- Infant
- Logistic Models
- Malaria, Falciparum/blood
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/transmission
- Malaria, Vivax/blood
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/transmission
- Merozoite Surface Protein 1/chemistry
- Merozoite Surface Protein 1/immunology
- Molecular Weight
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Protein Structure, Tertiary
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Xuexing Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Min Zhu
- School of Humanities and Social Science, China Medical University, Shenyang, Liaoning, China
| | - Peipei Li
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Ying Wang
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, China
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, United States of America
| | - Hong Shang
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- * E-mail: (YC); (QF); (LC)
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
- * E-mail: (YC); (QF); (LC)
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, United States of America
- * E-mail: (YC); (QF); (LC)
| |
Collapse
|
27
|
Polymorphisms in B Cell Co-Stimulatory Genes Are Associated with IgG Antibody Responses against Blood-Stage Proteins of Plasmodium vivax. PLoS One 2016; 11:e0149581. [PMID: 26901523 PMCID: PMC4763038 DOI: 10.1371/journal.pone.0149581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/01/2016] [Indexed: 11/27/2022] Open
Abstract
The development of an effective immune response can help decrease mortality from malaria and its clinical symptoms. However, this mechanism is complex and has significant inter-individual variation, most likely owing to the genetic contribution of the human host. Therefore, this study aimed to investigate the influence of polymorphisms in genes involved in the costimulation of B-lymphocytes in the naturally acquired humoral immune response against proteins of the asexual stage of Plasmodium vivax. A total of 319 individuals living in an area of malaria transmission in the Brazilian Amazon were genotyped for four SNPs in the genes CD40, CD40L, BLYS and CD86. In addition, IgG antibodies against P. vivax apical membrane antigen 1 (PvAMA–1), Duffy binding protein (PvDBP) and merozoite surface protein 1 (PvMSP–119) were detected by ELISA. The SNP BLYS –871C>T was associated with the frequency of IgG responders to PvAMA–1 and PvMSP–119. The SNP CD40 –1C>T was associated with the IgG response against PvDBP, whereas IgG antibody titers against PvMSP–119 were influenced by the polymorphism CD86 +1057G>A. These data may help to elucidate the immunological aspects of vivax malaria and consequently assist in the design of malaria vaccines.
Collapse
|
28
|
Mirahmadi H, Fallahi S, Seyyed Tabaei SJ. Soluble recombinant merozoite surface antigen-142kDa of Plasmodium vivax: An improved diagnostic antigen for vivax malaria. J Microbiol Methods 2016; 123:44-50. [PMID: 26851675 DOI: 10.1016/j.mimet.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 11/29/2022]
Abstract
Enzyme Linked Immunosorbent Assay (ELISA), as a serological test, can be a beneficial tool for epidemiological studies by screening blood donors and diagnosis of specific antibodies from Plasmodium vivax (P. vivax) infected cases. Since P. vivax cannot easily be acquired in vitro, ELISA assays using total or semi-purified antigens are seldom used. On the basis of this restriction, we examined whether recombinant protein 42 kDa related to C-terminal region of the merozoite surface antigen-1 of P. vivax (MSA-1(42)) could be suitable for serological detection of vivax malaria infection. Purified recombinant protein produced in Escherichia coli (E. coli) (GST-MSA-1(42)) was examined for its ability to bind to IgG antibodies of individuals with patent P. vivax infection. The method was tested with 262 serum samples collected from individuals living in the south and southeastern regions of Iran where malaria is endemic. Samples exposed to Plasmodium falciparum (P. falciparum) infection and patients with other infectious disease (toxoplasmosis, Leishmania infantum infection, echinococcosis and FUO (fever with unknown origin)) except for P. falciparum were residing in non- malaria endemic areas in Iran. Generally, the sensitivity of ELISA evaluated with sera from naturally infected individuals was 86.9%. The specificity value of the ELISA determined with sera from healthy individuals and from individuals with other infectious diseases was 94.05%. The positive predictive value (PPV), negative predictive value (NPV) provided, and the diagnostic efficiency of anti-rPvMSA-1(42) antibody using indirect ELISA were determined 93.58, 87.77 and 91.06% respectively. Our study demonstrated that, because MSA-1(42) kDa contains both the 33 and 19 kDa fragments in its structure, it can serve as the basis for the development of a sensitive serological test which can be used for epidemiological studies, screening blood donors and diagnosis of P. vivax malaria.
Collapse
Affiliation(s)
- Hadi Mirahmadi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shirzad Fallahi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Parasitology and Mycology, Facultyof Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Lima-Junior JDC, Pratt-Riccio LR. Major Histocompatibility Complex and Malaria: Focus on Plasmodium vivax Infection. Front Immunol 2016; 7:13. [PMID: 26858717 PMCID: PMC4728299 DOI: 10.3389/fimmu.2016.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/12/2016] [Indexed: 01/13/2023] Open
Abstract
The importance of host and parasite genetic factors in malaria resistance or susceptibility has been investigated since the middle of the last century. Nowadays, of all diseases that affect man, malaria still plays one of the highest levels of selective pressure on human genome. Susceptibility to malaria depends on exposure profile, epidemiological characteristics, and several components of the innate and adaptive immune system that influences the quality of the immune response generated during the Plasmodium lifecycle in the vertebrate host. But it is well known that the parasite's enormous capacity of genetic variation in conjunction with the host genetics polymorphism is also associated with a wide spectrum of susceptibility degrees to complicated or severe forms of the disease. In this scenario, variations in genes of the major histocompatibility complex (MHC) associated with host resistance or susceptibility to malaria have been identified and used as markers in host-pathogen interaction studies, mainly those evaluating the impact on the immune response, acquisition of resistance, or increased susceptibility to infection or vulnerability to disease. However, due to the intense selective pressure, number of cases, and mortality rates, the majority of the reported associations reported concerned Plasmodium falciparum malaria. Studies on the MHC polymorphism and its association with Plasmodium vivax, which is the most widespread Plasmodium and the most prevalent species outside the African continent, are less frequent but equally important. Despite punctual contributions, there are accumulated evidences of human genetic control in P. vivax infection and disease. Herein, we review the current knowledge in the field of MHC and derived molecules (HLA Class I, Class II, TNF-α, LTA, BAT1, and CTL4) regarding P. vivax malaria. We discuss particularly the results of P. vivax studies on HLA class I and II polymorphisms in relation to host susceptibility, naturally acquired immune response against specific antigens and the implication of this knowledge to overcome the parasite immune evasion. Finally, the potential impact of such polymorphisms on the development of vaccine candidate antigens against P. vivax will be studied.
Collapse
|
31
|
Abstract
SUMMARYPlasmodium vivaxis the most geographically widespread of the malaria parasites causing human disease, yet it is comparatively understudied compared withPlasmodium falciparum.In this article we review what is known about naturally acquired immunity toP. vivax, and importantly, how this differs to that acquired againstP. falciparum.Immunity to clinicalP. vivaxinfection is acquired more quickly than toP. falciparum, and evidence suggests humans in endemic areas also have a greater capacity to mount a successful immunological memory response to this pathogen. Both of these factors give promise to the idea of a successfulP. vivaxvaccine. We review what is known about both the cellular and humoral immune response, including the role of cytokines, antibodies, immunoregulation, immune memory and immune dysfunction. Furthermore, we discuss where the future lies in terms of advancing our understanding of naturally acquired immunity toP. vivax, through the use of well-designed longitudinal epidemiological studies and modern tools available to immunologists.
Collapse
|
32
|
Population-Based Seroprevalence of Malaria in Hormozgan Province, Southeastern Iran: A Low Transmission Area. Malar Res Treat 2015; 2015:174570. [PMID: 26543662 PMCID: PMC4620240 DOI: 10.1155/2015/174570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/13/2015] [Accepted: 09/21/2015] [Indexed: 11/18/2022] Open
Abstract
The seroepidemiological condition of malaria in three main districts of Hormozgan Province, a low transmission area in southeast of Iran, was investigated. Methods. Sera samples (803) were collected from healthy volunteers from the three main districts (Bandar Lengeh in the west, Bandar Abbas in the center, and Bandar Jask in the east) of Hormozgan Province. A questionnaire was used to record the sociodemographic features of the participants during sample collecting. An in-house ELISA test, using crude antigens obtained from cell culture of Plasmodium falciparum, was adapted and used to detect anti-malaria antibodies in the sera. Results. The overall seroprevalence of malaria was 8.7% (70 out of 803 samples). A significant correlation was found between seropositivity and place of residence, where the highest rate of seropositivity was seen in Bandar Lengeh (west of the province). The highest seroprevalence of malaria (13.2%) was seen in the age group of 11-20 years and also in low educated individuals. Correlation between seropositivity and gender, age, and educational levels of the participants was statistically significant (P < 0.05). Conclusion. Findings of this study indicate that the rate of seropositivity to malaria in this area is not high and this might be linked to the success of malaria control programs during the last decades in the region.
Collapse
|
33
|
Xia H, Fang Q, Jangpatarapongsa K, Zhiyong T, Cui L, Li B, Udomsangpetch R. A comparative study of natural immune responses against Plasmodium vivax C-terminal merozoite surface protein-1 (PvMSP-1) and apical membrane antigen-1 (PvAMA-1) in two endemic settings. EXCLI JOURNAL 2015; 14:926-34. [PMID: 26713085 PMCID: PMC4677636 DOI: 10.17179/excli2015-388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/13/2015] [Indexed: 11/10/2022]
Abstract
The mechanisms of cellular and humoral immune responses against P. vivax parasite remain poorly understood. Several malaria immunological studies have been conducted in endemic regions where both P. falciparum and P. vivax parasites co-exist. In this study, a comparative analysis of immunity to Plasmodium vivax antigens in different geography and incidence of Plasmodium spp. infection was performed. We characterised antibodies against two P. vivax antigens, PvMSP-1 and PvAMA-1, and the cross-reactivity between these antigens using plasma from acute malaria infected patients living in the central region of China and in the western border of Thailand. P. vivax endemicity is found in central China whereas both P. vivax and P. falciparum are endemic in Thailand. There was an increased level of anti-PvMSP-1/anti-PvAMA-1 in both populations. An elevated level of antibodies to total P. vivax proteins and low level of antibodies to total P. falciparum proteins was found in acute P. vivax infected Chinese, suggesting antibody cross-reactivity between the two species. P. vivax infected Thai patients had both anti-P. vivax and anti-P. falciparum antibodies as expected since both species are present in Thailand. More information on humoral and cell mediated immunity during acute P. vivax-infection in the area where only single P. vivax species existed is of great interest in the relation of building up anti-disease severity caused by P. falciparum. This knowledge will support vaccine development in the future.
Collapse
Affiliation(s)
- Hui Xia
- Department of Parasitology, Bengbu Medical College, Anhui 233030, China ; Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui 233030, China
| | - Qiang Fang
- Department of Parasitology, Bengbu Medical College, Anhui 233030, China ; Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui 233030, China
| | - Kulachart Jangpatarapongsa
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand ; Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tao Zhiyong
- Department of Parasitology, Bengbu Medical College, Anhui 233030, China
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, PA 16802, USA
| | - Baiqing Li
- Department of Immunology, Bengbu Medical College, Anhui 233030, China
| | - Rachanee Udomsangpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
34
|
Sonaimuthu P, Cheong FW, Chin LC, Mahmud R, Fong MY, Lau YL. Detection of human malaria using recombinant Plasmodium knowlesi merozoire surface protein-1 (MSP-1₁₉) expressed in Escherichia coli. Exp Parasitol 2015; 153:118-22. [PMID: 25812552 DOI: 10.1016/j.exppara.2015.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/10/2015] [Accepted: 03/20/2015] [Indexed: 01/30/2023]
Abstract
Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Human infection with Plasmodium knowlesi is widely distributed in Southeast Asia. Merozoite surface protein-1₁₉ (MSP-1₁₉), which plays an important role in protective immunity against asexual blood stage malaria parasites, appears as a leading immunogenic antigen of Plasmodium sp. We evaluated the sensitivity and specificity of recombinant P. knowlesi MSP-1₁₉ (rMSP-1₁₉) for detection of malarial infection. rMSP-1₁₉ was expressed in Escherichia coli expression system and the purified rMSP-1₁₉ was evaluated with malaria, non-malaria and healthy human serum samples (n = 215) in immunoblots. The sensitivity of rMSP-1₁₉ for detection of P. knowlesi, Plasmodium falciparum, Plasmodium vivax and Plasmodium ovale infection was 95.5%, 75.0%, 85.7% and 100%, respectively. rMSP-1₁₉ did not react with all the non-malaria and healthy donor sera, which represents 100% specificity. The rMSP-1₁₉ could be used as a potential antigen in serodiagnosis of malarial infection in humans.
Collapse
Affiliation(s)
| | - Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lit Chein Chin
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rohela Mahmud
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Tropical Disease Research and Education Centre (TIDREC), Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Tropical Disease Research and Education Centre (TIDREC), Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Tropical Disease Research and Education Centre (TIDREC), Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
35
|
MIRAHMADI H, FALLAHI S, FALLAH OMRANI V, KAZEMI B, HAGHIGHI A, SEYYED TABAEI SJ. High-Level Expression of Immunogenic Recombinant Plasmodium vivax Merozoite Surface Protein (Pvmsp-142 kDa) in pGEX 6P1 Vector. IRANIAN JOURNAL OF PUBLIC HEALTH 2015; 44:89-99. [PMID: 26060780 PMCID: PMC4450018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/11/2014] [Indexed: 11/01/2022]
Abstract
BACKGROUND Detection of Plasmodium vivax specific antibodies with serological tests could be a valuable tool for epidemiological researches. Whereas P. vivax cannot be simply obtained in vitro, serological tests using total or semi-purified antigens are infrequently used. Given this restriction, the present study investigated whether recombinant P. vivax merozoite surface protein 1 (PvMSP-1 42 kDa) could be useful in detection of antibodies from the serums of a P. vivax infected person using serological tests. METHODS Parasite DNA was extracted from blood sample of an Iranian P. vivax-infected patient. The region of PvMSP-142 kDa was amplified by PCR then cloned into pTZ57R/T vector and sequenced. The insert was sub cloned into pGEX 6P1 expression vector. Afterwards, it was transformed into E. coli BL21 and cultured massively. Sub cloning of gene was confirmed by PCR and enzyme digestion and sequencing finally. Production of recombinant protein was confirmed by SDS-PAGE. Western blot was performed by human sera to appraisal binding ability to the IgG antibodies of P. vivax infected patients. Recombinant protein was purified and estimated by Bradford assay. RESULTS The specialty values of the Western blot determined with 10 sera from naturally infected individuals, 10 sera from healthy individuals and 7 sera from individuals with other infectious diseases. CONCLUSION For the Iranian population, using a Western blot assay for MSP-142 recombinant protein can be used as the foundation for promotion of serological assay for the detection of P. vivax malaria such as ELISA.
Collapse
Affiliation(s)
- Hadi MIRAHMADI
- 1. Dept. of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,2. Dept. of Parasitology and Mycology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shirzad FALLAHI
- 3. Dept. of Parasitology and Mycology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Vahid FALLAH OMRANI
- 1. Dept. of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram KAZEMI
- 1. Dept. of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali HAGHIGHI
- 1. Dept. of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad SEYYED TABAEI
- 1. Dept. of Parasitology and Mycology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,* Corresponding Author:
| |
Collapse
|
36
|
Serologically defined variations in malaria endemicity in Pará state, Brazil. PLoS One 2014; 9:e113357. [PMID: 25419900 PMCID: PMC4242530 DOI: 10.1371/journal.pone.0113357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/25/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Measurement of malaria endemicity is typically based on vector or parasite measures. A complementary approach is the detection of parasite specific IgG antibodies. We determined the antibody levels and seroconversion rates to both P. vivax and P. falciparum merozoite antigens in individuals living in areas of varying P. vivax endemicity in Pará state, Brazilian Amazon region. METHODOLOGY/PRINCIPAL FINDINGS The prevalence of antibodies to recombinant antigens from P. vivax and P. falciparum was determined in 1,330 individuals. Cross sectional surveys were conducted in the north of Brazil in Anajás, Belém, Goianésia do Pará, Jacareacanga, Itaituba, Trairão, all in the Pará state, and Sucuriju, a free-malaria site in the neighboring state Amapá. Seroprevalence to any P. vivax antigens (MSP1 or AMA-1) was 52.5%, whereas 24.7% of the individuals were seropositive to any P. falciparum antigens (MSP1 or AMA-1). For P. vivax antigens, the seroconversion rates (SCR) ranged from 0.005 (Sucuriju) to 0.201 (Goianésia do Pará), and are strongly correlated to the corresponding Annual Parasite Index (API). We detected two sites with distinct characteristics: Goianésia do Pará where seroprevalence curve does not change with age, and Sucuriju where seroprevalence curve is better described by a model with two SCRs compatible with a decrease in force of infection occurred 14 years ago (from 0.069 to 0.005). For P. falciparum antigens, current SCR estimates varied from 0.002 (Belém) to 0.018 (Goianésia do Pará). We also detected a putative decrease in disease transmission occurred ∼29 years ago in Anajás, Goianésia do Pará, Itaituba, Jacareacanga, and Trairão. CONCLUSIONS We observed heterogeneity of serological indices across study sites with different endemicity levels and temporal changes in the force of infection in some of the sites. Our study provides further evidence that serology can be used to measure and monitor transmission of both major species of malaria parasite.
Collapse
|
37
|
Sheikh IH, Kaushal DC, Singh V, Kumar N, Chandra D, Kaushal NA. Cloning, overexpression and characterization of soluble 42kDa fragment of merozoite surface protein-1 of Plasmodium vivax. Protein Expr Purif 2014; 103:64-74. [PMID: 25195175 DOI: 10.1016/j.pep.2014.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 11/24/2022]
Abstract
Plasmodium vivax represents the second most prevalent malaria species of major public health importance and the global eradication of malaria requires the development of vaccines to prevent infection. The lack of in vitro culture and a suitable animal model for P. vivax malaria are the major problems for the delay in developing a functional vivax vaccine. A number of antigens have been identified for P. vivax as potential malaria vaccine candidates and among these 42kDa fragment of merozoite surface protein-1 (MSP-142) is one of most promising antigen of asexual blood stage. In most of the earlier studies, the MSP-142 of malaria parasites was expressed as insoluble protein in inclusion bodies and it is difficult to get purified protein in conformation form. In the present study, we have cloned, overexpressed and characterized the 42kDa fragment of P. vivax MSP-1 as soluble protein in Escherichiacoli. The 42kDa gene fragment of P. vivax MSP-1 was PCR amplified using specific primers, sequenced and subcloned into pTriEx-4 expression vector. The optimum expression of recombinant P. vivax protein was obtained in SOC growth medium by inducing with 0.2mM IPTG at 37°C for 4h. The SDS-PAGE analysis showed a fusion protein of 55kDa and about 80% was present in soluble form. The purified P. vivax MSP-142 was characterized and found to be correctly folded and in conformation form as evident by CD spectroscopy, presence of 1 free -SH group and the reactivity with reduction sensitive conformational monoclonals against P. vivax MSP-142.
Collapse
Affiliation(s)
- Inayat Hussain Sheikh
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Department of Biochemistry, Lucknow University, Lucknow, India
| | - Deep C Kaushal
- Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226010, India
| | - Vandana Singh
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Niraj Kumar
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Deepak Chandra
- Department of Biochemistry, Lucknow University, Lucknow, India
| | - Nuzhat A Kaushal
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
38
|
Kim TS, Sohn Y, Kim JY, Lee WJ, Na BK, Kang YJ, Lee HW. Detection of antibodies against the CB9 to ICB10 region of merozoite surface protein-1 of Plasmodium vivax among the inhabitants in epidemic areas. Malar J 2014; 13:311. [PMID: 25113121 PMCID: PMC4251697 DOI: 10.1186/1475-2875-13-311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/03/2014] [Indexed: 11/16/2022] Open
Abstract
Background The purpose of this study was to examine the usefulness of the conserved block 9 (CB9) to interspecies conserved block (ICB10) region of Plasmodium vivax merozoite surface protein-1 (MSP-1 (ICB910)) as a serodiagnostic tool for understanding malaria transmission. Methods Antibody titre in the blood samples collected from the inhabitants of Gimpo city, Paju city and Yeoncheon county of Gyeonggi Province, as well as Cheorwon county of Gangwon Province, South Korea were determined by enzyme-linked immunosorbent assay (ELISA). Microscopic examination was performed to identify malarial parasites. Results MSP-1(ICB910) is encoded by a 1,212-bp sequence, which produced a recombinant protein with a molecular weight of approximately 46 kDa. Antibody titres in 1,774 blood samples were determined with the help of ELISA using purified recombinant MSP-1(ICB910). The overall ELISA-positive rate was 8.08% (n = 146). The annual parasite incidences (APIs) in the regions where the blood sampling was carried out gradually decreased from 2004 to 2005 (1.09 and 0.80, respectively). Yeoncheon county had the highest ELISA-positive rate (10.20%, 46/451). Yeoncheon county also had the highest API both in 2004 and 2005, followed by Cheorwon county, Paju city and Gimpo city. Conclusions The MSP-1 (ICB910)-ELISA-positive rates were closely related to API in the geographic areas studied. These results suggest that sero-epidemiological studies employing MSP-1 (ICB910)-ELISA may be helpful in estimating the prevalence of malaria in certain geographic areas. MSP-1(ICB910)-ELISA can be effectively used to establish and evaluate malaria control and eradication programmes in the affected areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoon-Joong Kang
- Department of Biomedical Science, Jungwon University, Goesan, Chungbuk 367-805, Republic of Korea.
| | | |
Collapse
|
39
|
Cheng Y, Wang B, Sattabongkot J, Lim CS, Tsuboi T, Han ET. Immunogenicity and antigenicity of Plasmodium vivax merozoite surface protein 10. Parasitol Res 2014; 113:2559-68. [PMID: 24764159 DOI: 10.1007/s00436-014-3907-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/09/2014] [Indexed: 11/26/2022]
Abstract
Among the proteins involved in the invasion by merozoite, the glycosylphosphatidylinositol-anchored proteins (GPI-APs) are suggested as potential vaccine candidates because of their localization to apical organelles and the surface; these candidates are predicted to play essential roles during invasion. As a GPI-AP, Plasmodium vivax merozoite surface protein 10 (PvMSP-10) induces high antibody titers. However, such high antibody titers have shown no protective efficacy for animals challenged with P. vivax parasites in a previous study. To adequately evaluate the immunogenicity and further characterize PvMSP-10 in order to understand its vaccine potential, we assessed its immunogenicity by immunizing BALB/c mice with cell-free expressed recombinant PvMSP-10 protein. The antigenicity of MSP-10 was analyzed, and we found 42% sensitivity and 95% specificity using serum samples from P. vivax-infected Korean patients. The IgG1 and IgG3 were the predominant immunoreactive antibodies against PvMSP-10 in vivax patient sera, and IgG1 and IgG3 and Th1-type cytokines were predominantly secreted in PvMSP-10-immunized mice. We conclude that the immunogenicity and antigenicity of MSP-10 may serve as a potential vaccine against vivax malaria.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Hyoja2-dong, Chuncheon, Gangwon-do, 200-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
40
|
Genetic diversity of MSP1 Block 2 of Plasmodium vivax isolates from Manaus (central Brazilian Amazon). J Immunol Res 2014; 2014:671050. [PMID: 24741614 PMCID: PMC3987980 DOI: 10.1155/2014/671050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/09/2014] [Indexed: 11/25/2022] Open
Abstract
The diversity of MSP1 in both Plasmodium falciparum and P. vivax is presumed be associated to parasite immune evasion. In this study, we assessed genetic diversity of the most variable domain of vaccine candidate N-terminal PvMSP1 (Block 2) in field isolates of Manaus. Forty-seven blood samples the polymorphism of PvMSP1 Block 2 generates four fragment sizes. In twenty-eight of them, sequencing indicated seven haplotypes of PvMSP1 Block 2 circulating among field isolates. Evidence of striking exchanges was observed with two stretches flanking the repeat region and two predicted recombination sites were described. Single nucleotide polymorphisms determined with concurrent infections per patient indicated that nonsynonymous substitutions occurred preferentially in the repeat-rich regions which also were predicted as B-cell epitopes. The comprehensive understanding of the genetic diversity of the promising Block 2 associated with clinical immunity and a reduced risk of infection by Plasmodium vivax would be important for the rationale of malaria vaccine designs.
Collapse
|
41
|
Cheng Y, Shin EH, Lu F, Wang B, Choe J, Tsuboi T, Han ET. Antigenicity studies in humans and immunogenicity studies in mice: an MSP1P subdomain as a candidate for malaria vaccine development. Microbes Infect 2014; 16:419-28. [PMID: 24560875 DOI: 10.1016/j.micinf.2014.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 01/13/2014] [Accepted: 02/11/2014] [Indexed: 11/29/2022]
Abstract
The newly identified GPI-anchored Plasmodium vivax merozoite surface protein 1 paralog (MSP1P) has a highly antigenic C-terminus that binds erythrocytes. To characterize the antigenicity and immunogenicity of two regions (PvMSP1P-19 and -33) of the highly conserved C-terminus of MSP1P relative to PvMSP1-19, 30 P. vivax malaria-infected patients and two groups of mice (immunized with PvMSP1P-19 or -33) were tested for IgG subclass antibodies against PvMSP1P-19 and -33 antigens. In the patients infected with P. vivax, IgG1 and IgG3 levels were significantly higher than those levels in healthy individuals, and were the predominant response to the two C-terminal fragments of PvMSP1P (p < 0.05). In mice immunized with PvMSP1P-19, IgG1 levels were the highest while IgG2b levels were similar to IgG1 levels. The levels of Th1 cytokines in mice immunized with PvMSP1P-19 or -33 were significantly higher than those in mice immunized with PvMSP1-19 (p < 0.05). Our results indicate that: (i) IgG1 and IgG3 (IgG2b in mice) are predominant IgG subclasses in both patients infected with P. vivax and mice immunized with PvMSP1P-19 or -33; (ii) the C-terminus of MSP1P induces a Th1-cytokine response. This immune profiling study provides evidence that MSP1P may be a potential candidate for vivax vaccine.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea; Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea
| | - Feng Lu
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Jongseon Choe
- Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea.
| |
Collapse
|
42
|
N-terminal Plasmodium vivax merozoite surface protein-1, a potential subunit for malaria vivax vaccine. Clin Dev Immunol 2013; 2013:965841. [PMID: 24187566 PMCID: PMC3804292 DOI: 10.1155/2013/965841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022]
Abstract
The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1), which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.
Collapse
|
43
|
Riccio EKP, Totino PRR, Pratt-Riccio LR, Ennes-Vidal V, Soares IS, Rodrigues MM, de Souza JM, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Cellular and humoral immune responses against the Plasmodium vivax MSP-1₁₉ malaria vaccine candidate in individuals living in an endemic area in north-eastern Amazon region of Brazil. Malar J 2013; 12:326. [PMID: 24041406 PMCID: PMC3850502 DOI: 10.1186/1475-2875-12-326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plasmodium vivax merozoite surface protein-1 (MSP-1) is an antigen considered to be one of the leading malaria vaccine candidates. PvMSP-1 is highly immunogenic and evidences suggest that it is target for protective immunity against asexual blood stages of malaria parasites. Thus, this study aims to evaluate the acquired cellular and antibody immune responses against PvMSP-1 in individuals naturally exposed to malaria infections in a malaria-endemic area in the north-eastern Amazon region of Brazil. METHODS The study was carried out in Paragominas, Pará State, in the Brazilian Amazon. Blood samples were collected from 35 individuals with uncomplicated malaria. Peripheral blood mononuclear cells were isolated and the cellular proliferation and activation was analysed in presence of 19 kDa fragment of MSP-1 (PvMSP-1₁₉) and Plasmodium falciparum PSS1 crude antigen. Antibodies IgE, IgM, IgG and IgG subclass and the levels of TNF, IFN-γ and IL-10 were measured by enzyme-linked immunosorbent assay. RESULTS The prevalence of activated CD4+ was greater than CD8+ T cells, in both ex-vivo and in 96 h culture in presence of PvMSP-1₁₉ and PSS1 antigen. A low proliferative response against PvMSP-1₁₉ and PSS1 crude antigen after 96 h culture was observed. High plasmatic levels of IFN-γ and IL-10 as well as lower TNF levels were also detected in malaria patients. However, in the 96 h supernatant culture, the dynamics of cytokine responses differed from those depicted on plasma assays; in presence of PvMSP-1₁₉ stimulus, higher levels of TNF were noted in supernatant 96 h culture of malaria patient's cells while low levels of IFN-γ and IL-10 were verified. High frequency of malaria patients presenting antibodies against PvMSP-1₁₉ was evidenced, regardless class or IgG subclass.PvMSP-119-induced antibodies were predominantly on non-cytophilic subclasses. CONCLUSIONS The results presented here shows that PvMSP-1₁₉ was able to induce a high cellular activation, leading to production of TNF and emphasizes the high immunogenicity of PvMSP-1₁₉ in naturally exposed individuals and, therefore, its potential as a malaria vaccine candidate.
Collapse
Affiliation(s)
- Evelyn K P Riccio
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil CEP: 21040-900.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Versiani FG, Almeida MEM, Melo GC, Versiani FOL, Orlandi PP, Mariúba LAM, Soares LA, Souza LP, da Silva Balieiro AA, Monteiro WM, Costa FTM, del Portillo HA, Lacerda MVG, Nogueira PA. High levels of IgG3 anti ICB2-5 in Plasmodium vivax-infected individuals who did not develop symptoms. Malar J 2013; 12:294. [PMID: 23977965 PMCID: PMC3844576 DOI: 10.1186/1475-2875-12-294] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/19/2013] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium vivax has the potential to infect 2.85 billion individuals worldwide. Nevertheless, the limited number of studies investigating the immune status of individuals living in malaria-endemic areas, as well as the lack of reports investigating serological markers associated with clinical protection, has hampered development of vaccines for P. vivax. It was previously demonstrated that naturally total IgG against the N-terminus of P. vivax merozoite surface protein 1 (Pv-MSP1) was associated with reduced risk of malarial infection. Methods Immune response against Pv-MSP1 (N-terminus) of 313 residents of the Rio Pardo rural settlement (Amazonas State, Brazil) was evaluated in a cross-sectional and longitudinal follow up over two months (on site) wherein gold standard diagnosis by thick blood smear and rRNA gene-based nested real-time PCR were used to discriminate symptomless Plasmodium vivax-infected individuals who did not develop clinical symptoms during a 2-months from those uninfected ones or who have had acute malaria. The acquisition of antibodies against Pv-MSP1 was also evaluated as survival analysis by prospective study over a year collecting information of new malaria infections in surveillance database. Results The majority of P. vivax-infected individuals (52-67%) showed immune recognition of the N-terminus of Pv-MSP1. Interesting data on infected individuals who have not developed symptoms, total IgG levels against the N-terminus Pv-MSP1 were age-dependent and the IgG3 levels were significantly higher than levels of subjects had acute malaria or those uninfected ones. The total IgG anti ICB2-5 was detected to be an important factor of protection against new malaria vivax attacks in survival analysis in a prospective survey (p = 0.029). Conclusions The study findings illustrate the importance of IgG3 associated to 2-months of symptomless in P. vivax infected individuals and open perspectives for the rationale of malaria vaccine designs capable to sustain high levels of IgG3 against polymorphic malaria antigens.
Collapse
Affiliation(s)
- Fernanda G Versiani
- Instituto Leônidas e Maria Deane - Fiocruz, Rua Teresina 476, 69057-070 Manaus, AM, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. ADVANCES IN PARASITOLOGY 2013; 81:77-131. [PMID: 23384622 DOI: 10.1016/b978-0-12-407826-0.00003-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Population studies show that individuals acquire immunity to Plasmodium vivax more quickly than Plasmodium falciparum irrespective of overall transmission intensity, resulting in the peak burden of P. vivax malaria in younger age groups. Similarly, actively induced P. vivax infections in malaria therapy patients resulted in faster and generally more strain-transcending acquisition of immunity than P. falciparum infections. The mechanisms behind the more rapid acquisition of immunity to P. vivax are poorly understood. Natural acquired immune responses to P. vivax target both pre-erythrocytic and blood-stage antigens and include humoral and cellular components. To date, only a few studies have investigated the association of these immune responses with protection, with most studies focussing on a few merozoite antigens (such as the Pv Duffy binding protein (PvDBP), the Pv reticulocyte binding proteins (PvRBPs), or the Pv merozoite surface proteins (PvMSP1, 3 & 9)) or the circumsporozoite protein (PvCSP). Naturally acquired transmission-blocking (TB) immunity (TBI) was also found in several populations. Although limited, these data support the premise that developing a multi-stage P. vivax vaccine may be feasible and is worth pursuing.
Collapse
Affiliation(s)
- Ivo Mueller
- Walter + Eliza Hall Institute, Infection & Immunity Division, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
46
|
The Plasmodium vivax merozoite surface protein 1 paralog is a novel erythrocyte-binding ligand of P. vivax. Infect Immun 2013; 81:1585-95. [PMID: 23460511 DOI: 10.1128/iai.01117-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merozoite surface protein 1 of Plasmodium vivax (PvMSP1), a glycosylphosphatidylinositol-anchored protein (GPI-AP), is a malaria vaccine candidate for P. vivax. The paralog of PvMSP1, named P. vivax merozoite surface protein 1 paralog (PvMSP1P; PlasmoDB PVX_099975), was recently identified and predicted as a GPI-AP. The similarities in genetic structural characteristics between PvMSP1 and PvMSP1P (e.g., size of open reading frames, two epidermal growth factor-like domains, and GPI anchor motif in the C terminus) led us to study this protein. In the present study, different regions of the PvMSP1P protein, demarcated based on the processed forms of PvMSP1, were expressed successfully as recombinant proteins [i.e., 83 (A, B, and C), 30, 38, 42, 33, and 19 fragments]. We studied the naturally acquired immune response against each fragment of recombinant PvMSP1P and the potential ability of each fragment to bind erythrocytes. The N-terminal fragment (83A) and two C-terminal fragments (33 and 19) reacted strongly with sera from P. vivax-infected patients, with 50 to 68% sensitivity and 95 to 96% specificity, respectively. Due to colocalization of PvMSP1P with PvMSP1, we supposed that PvMSP1P plays a similar role as PvMSP1 during erythrocyte invasion. An in vitro cytoadherence assay showed that PvMSP1P, especially the 19-kDa C-terminal region, could bind to erythrocytes. We also found that human sera from populations naturally exposed to vivax malaria and antisera obtained by immunization using the recombinant molecule PvMSP1P-19 inhibited in vitro binding of human erythrocytes to PvMSP1P-19. These results provide further evidence that the PvMSP1P might be an essential parasite adhesion molecule in the P. vivax merozoite and is a potential vaccine candidate against P. vivax.
Collapse
|
47
|
Antigenicity and immunogenicity of Plasmodium vivax merozoite surface protein-3. PLoS One 2013; 8:e56061. [PMID: 23457498 PMCID: PMC3573074 DOI: 10.1371/journal.pone.0056061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022] Open
Abstract
A recent clinical trial in African children demonstrated the potential utility of merozoite surface protein (MSP)-3 as a vaccine against Plasmodium falciparum malaria. The present study evaluated the use of Plasmodium vivax MSP-3 (PvMSP-3) as a target antigen in vaccine formulations against malaria caused by P. vivax. Recombinant proteins representing MSP-3α and MSP-3β of P. vivax were expressed as soluble histidine-tagged bacterial fusions. Antigenicity during natural infection was evaluated by detecting specific antibodies using sera from individuals living in endemic areas of Brazil. A large proportion of infected individuals presented IgG antibodies to PvMSP-3α (68.2%) and at least 1 recombinant protein representing PvMSP-3β (79.1%). In spite of the large responder frequency, reactivity to both antigens was significantly lower than was observed for the immunodominant epitope present on the 19-kDa C-terminal region of PvMSP-1. Immunogenicity of the recombinant proteins was studied in mice in the absence or presence of different adjuvant formulations. PvMSP-3β, but not PvMSP-3α, induced a TLR4-independent humoral immune response in the absence of any adjuvant formulation. The immunogenicity of the recombinant antigens were also tested in formulations containing different adjuvants (Alum, Salmonella enterica flagellin, CpG, Quil A,TiterMax® and incomplete Freunds adjuvant) and combinations of two adjuvants (Alum plus flagellin, and CpG plus flagellin). Recombinant PvMSP-3α and PvMSP-3β elicited higher antibody titers capable of recognizing P. vivax-infected erythrocytes harvested from malaria patients. Our results confirm that P. vivax MSP-3 antigens are immunogenic during natural infection, and the corresponding recombinant proteins may be useful in elucidating their vaccine potential.
Collapse
|
48
|
de Carvalho GB, de Carvalho GB. Duffy Blood Group System and the malaria adaptation process in humans. Rev Bras Hematol Hemoter 2013; 33:55-64. [PMID: 23284245 PMCID: PMC3521437 DOI: 10.5581/1516-8484.20110016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 02/04/2011] [Indexed: 11/27/2022] Open
Abstract
Malaria is an acute infectious disease caused by the protozoa of the genus
Plasmodium. The antigens of the Duffy Blood Group System, in addition to
incompatibilities in transfusions and hemolytic disease of the newborn, are of great
interest in medicine due to their association with the invasion of red blood cells by
the parasite Plasmodium vivax. For invasions to occur an interaction between the
parasites and antigens of the Duffy Blood Group System is necessary. In Caucasians
six antigens are produced by the Duffy locus (Fya, Fyb, F3, F4, F5 and F6). It has
been observed that Fy(a-b-) individuals are resistant to Plasmodium knowlesi and P.
vivax infection, because the invasion requires at least one of these antigens. The P.
vivax Duffy Binding Protein (PvDBP) is functionally important in the invasion process
of these parasites in Duffy / DARC positive humans. The proteins or fractions may be
considered, therefore, an important and potential inoculum to be used in immunization
against malaria.
Collapse
|
49
|
Ntumngia FB, King CL, Adams JH. Finding the sweet spots of inhibition: understanding the targets of a functional antibody against Plasmodium vivax Duffy binding protein. Int J Parasitol 2012; 42:1055-62. [PMID: 23068913 DOI: 10.1016/j.ijpara.2012.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 11/26/2022]
Abstract
Plasmodium vivax Duffy binding protein region II (DBPII) is an essential ligand for reticulocyte invasion, thereby making this molecule an attractive vaccine candidate against asexual blood-stage P. vivax. Similar to other Plasmodium blood-stage vaccine candidates, strain-specific immunity due to DBPII allelic variation may complicate vaccine efficacy. Targeting immune responses to more conserved epitopes that are potential targets of strain-transcending neutralising immunity is necessary to avoid induction of strain-specific responses to dominant variant epitopes. In this article, we focus on different approaches to optimise the design of DBP immunogenicity to target conserved epitopes, which is important for developing a broadly effective vaccine against P. vivax.
Collapse
Affiliation(s)
- Francis B Ntumngia
- Department of Global Health, University of South Florida, Tampa, FL, USA
| | | | | |
Collapse
|
50
|
Kang JM, Ju HL, Kang YM, Lee DH, Moon SU, Sohn WM, Park JW, Kim TS, Na BK. Genetic polymorphism and natural selection in the C-terminal 42 kDa region of merozoite surface protein-1 among Plasmodium vivax Korean isolates. Malar J 2012; 11:206. [PMID: 22709605 PMCID: PMC3487983 DOI: 10.1186/1475-2875-11-206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022] Open
Abstract
Background The carboxy-terminal 42 kDa region of Plasmodium vivax merozoite surface protein-1 (PvMSP-142) is a leading candidate antigen for blood stage vaccine development. However, this region has been observed to be highly polymorphic among filed isolates of P. vivax. Therefore it is important to analyse the existing diversity of this antigen in the field isolates of P. vivax. In this study, the genetic diversity and natural selection in PvMSP-142 among P. vivax Korean isolates were analysed. Methods A total of 149 P. vivax-infected blood samples collected from patients in Korea were used. The region flanking PvMSP-142 was amplified by PCR, cloned into Escherichia coli, and then sequenced. The polymorphic characteristic and natural selection of PvMSP-142 were analysed using the DNASTAR, MEGA4 and DnaSP programs. Results A total of 11 distinct haplotypes of PvMSP-142 with 40 amino acid changes, as compared to the reference Sal I sequence, were identified in the Korean P. vivax isolates. Most of the mutations were concentrated in the 33 kDa fragment (PvMSP-133), but a novel mutation was found in the 19 kDa fragment (PvMSP-119). PvMSP-142 of Korean isolates appeared to be under balancing selection. Recombination may also play a role in the resulting genetic diversity of PvMSP-142. Conclusions PvMSP-142 of Korean P. vivax isolates displayed allelic polymorphisms caused by mutation, recombination and balancing selection. These results will be useful for understanding the nature of the P. vivax population in Korea and for development of a PvMSP-142 based vaccine against P. vivax.
Collapse
|