1
|
Abril AG, Carrera M, Pazos M. Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy. Nutrients 2024; 16:2592. [PMID: 39203729 PMCID: PMC11357426 DOI: 10.3390/nu16162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Food allergy, referred to as the atypical physiological overreaction of the immune system after exposure to specific food components, is considered one of the major concerns in food safety. The prevalence of this emerging worldwide problem has been increasing during the last decades, especially in industrialized countries, being estimated to affect 6-8% of young children and about 2-4% of adults. Marine organisms are an important source of bioactive substances with the potential to functionally improve the immune system, reduce food allergy sensitization and development, and even have an anti-allergic action in food allergy. The present investigation aims to be a comprehensive report of marine bioactive compounds with verified actions to improve food allergy and identified mechanisms of actions rather than be an exhaustive compilation of all investigations searching beneficial effects of marine compounds in FA. Particularly, this research highlights the capacity of bioactive components extracted from marine microbial, animal, algae, and microalgae sources, such as n-3 long-chain polyunsaturated fatty acids (LC-PUFA), polysaccharide, oligosaccharide, chondroitin, vitamin D, peptides, pigments, and polyphenols, to regulate the immune system, epigenetic regulation, inflammation, and gut dysbiosis that are essential factors in the sensitization and effector phases of food allergy. In conclusion, the marine ecosystem is an excellent source to provide foods with the capacity to improve the hypersensitivity induced against specific food allergens and also bioactive compounds with a potential pharmacological aptitude to be applied as anti-allergenic in food allergy.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Mónica Carrera
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Manuel Pazos
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| |
Collapse
|
2
|
Zhao H, Huang M, Jiang L. Potential Roles and Future Perspectives of Chitinase 3-like 1 in Macrophage Polarization and the Development of Diseases. Int J Mol Sci 2023; 24:16149. [PMID: 38003338 PMCID: PMC10671302 DOI: 10.3390/ijms242216149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neurological disorders, including diabetes, atherosclerosis, and Alzheimer's disease. Aberrant CHI3L1 expression is also reportedly associated with tumor migration and metastasis, as well as contributions to immune escape, playing important roles in tumor progression. However, the physiological and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1 and macrophages is crucial for disease progression. Recent research has uncovered the complex mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage functional polarization. In this article, we review recent findings regarding the various disease types and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1 and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases, neurodegenerative diseases, and cancers.
Collapse
Affiliation(s)
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| |
Collapse
|
3
|
Braden LM, Michaud D, Groman D, Byrne P, Hori TS, Fast MD. Rejection of Lepeophtheirus salmonis driven in part by chitin sensing is not impacted by seawater acclimitization in Coho salmon (Oncorhynchus kisutch). Sci Rep 2023; 13:9685. [PMID: 37322246 PMCID: PMC10272145 DOI: 10.1038/s41598-023-36632-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
There is tremendous variation in life-history strategies among anadromous salmonids. Species that enter the ocean environment at small sizes (< 20 g) are likely under more physiological pressure from pathogens; however, little data is available on responses at these early stages. With this in mind, we performed salmon louse challenges with Coho salmon either immediately after seawater entry (SW; ca. 10 g) or after 30 days in SW (ca. 20 g). Irrespective of size or time in SW, parasites were rapidly rejected by the host, with > 90% of all parasites lost by 16 days post-infection (dpi). Rejection was concomitant with host epithelial granulomatous infiltrations that initially targeted the embedded frontal filament (4 dpi) and the entire parasite by 10 dpi. Illumina sequencing, followed by functional enrichment analysis, revealed a concerted defense response in the fin within 1 dpi that included multiple innate and adaptive immunity components. Strikingly, early indications of an allergic-type inflammatory response were associated with chitin sensing pathways orchestrated by early overexpression of the IgE-receptor, fcer1g. Additionally, there was profound overexpression of several classes of c-type lectin receptors, including dectin-2, mincle, and dc-sign at 1 dpi onward. These profiles and upregulation of cellular effector markers were corroborated by histopathological evaluation, revealing the simultaneous presence of mast cell/eosinophilic granular cells, sacciform cells, macrophages/histiocytes, and granulocytes in fin. At 10 dpi and concurrent with parasite expulsion, there was evidence of immunoregulation in addition to tissue remodelling pathways. At 16 dpi, the response was effectively abrogated. Simultaneous profiling of the parasite transcriptome revealed early induction of chitin metabolism and immunomodulation, toxin production and ECM degradation; however, after 7 dpi, these were replaced with overexpression of stress and immune defense genes. These data present the first evidence for Coho salmon demonstrating chitin- and sugar moiety-sensing as key drivers of salmon louse rejection.
Collapse
Affiliation(s)
- Laura M Braden
- Department of Pathology and Microbiology, Atlantic Veterinary College, Charlottetown, PE, Canada
- Department of Fish Health and Molecular Biology, AquaBounty Canada, Souris, PE, Canada
| | - Dylan Michaud
- Department of Pathology and Microbiology, Atlantic Veterinary College, Charlottetown, PE, Canada
| | - David Groman
- Aquatic Diagnostic Services, Atlantic Veterinary College, Charlottetown, PE, Canada
| | - Phil Byrne
- Department of Fisheries and Oceans Canada, Charlottetown, PE, Canada
| | | | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, Charlottetown, PE, Canada.
| |
Collapse
|
4
|
Declercq J, Hammad H, Lambrecht BN, Smole U. Chitinases and chitinase-like proteins in asthma. Semin Immunol 2023; 67:101759. [PMID: 37031560 DOI: 10.1016/j.smim.2023.101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Despite the lack of endogenous chitin synthesis, mammalian genomes encode two enzymatically active true chitinases (chitotriosidase and acidic mammalian chitinase) and a variable number of chitinase-like proteins (CLPs) that have no enzyme activity but bind chitin. Chitinases and CLPs are prominent components of type-2 immune response-mediated respiratory diseases. However, despite extensive research into their role in allergic airway disease, there is still no agreement on whether they are mere biomarkers of disease or actual disease drivers. Functions ascribed to chitinases and CLPs include, but are not limited to host defense against chitin-containing pathogens, directly promoting inflammation, and modulating tissue remodeling and fibrosis. Here, we discuss in detail the chitin-dependent and -independent roles of chitinases and CLPs in the context of allergic airway disease, and recent advances and emerging concepts in the field that might identify opportunities for new therapies.
Collapse
Affiliation(s)
- Jozefien Declercq
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands.
| | - Ursula Smole
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Ait Hamdan Y, El Amerany F, Desbrières J, Aghrinane A, Oudadesse H, Rhazi M. The evolution of the global COVID-19 epidemic in Morocco and understanding the different therapeutic approaches of chitosan in the control of the pandemic. Polym Bull (Berl) 2022; 80:1-27. [PMID: 36466080 PMCID: PMC9685138 DOI: 10.1007/s00289-022-04579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
In 2020, Coronavirus disease (COVID-19), a new viral respiratory disease caused by a virus that belongs to Coronaviridae family, has been identified. It is a very severe flu that negatively affects the functions of the lung and other respiratory organs. COVID-19 virus can be transmitted between people either by touching an infected person or by direct contact with their respiratory droplets. Therefore, the COVID-19 virus has become a global concern due to its rapid spread and severity. Based on the World Health Organization report from 2 March 2020 to 24 October 2022, the total infected cases and deaths in Morocco are around 1,265,389 (3.46%) and 16,280 (0.04%), respectively. Recently, some scientists have found that chitosan, a polymer existed in nature, can inhibit COVID-19 infection and repair damaged tissue. Therefore, understanding chitosan mechanisms in controlling COVID-19, might lead to innovative strategies in the medical field, such as developing drugs against SARS-CoV-2, and replacing vaccines, which have negative side effects. This review aims to show the evolution of the COVID-19 pandemic worldwide, specifically in Morocco, its pathophysiology, and its ability to silence the immune system. This review also provides an overview of the treatments and measures applied to protect human beings and how chitosan acts and controls COVID-19.
Collapse
Affiliation(s)
- Youssef Ait Hamdan
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Department of Biology, Cadi Ayyad University, 40000 Marrakech, Morocco
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Fatima El Amerany
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Department of Biology, Cadi Ayyad University, 40000 Marrakech, Morocco
- Laboratory of Sustainable Development and Health Research, Department of Chemistry, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, PO Box 549, 40000 Marrakech, Morocco
| | - Jacques Desbrières
- IPREM, University of Pau and Adour Countries (UPPA), Hélioparc Pau Pyrénées, 2 Avenue P. Angot, 64053 PAU Cedex 09, France
| | - Abdessadek Aghrinane
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences, University Chouaib Doukkali, 24000 El Jadida, Morocco
| | | | - Mohammed Rhazi
- Interdisciplinary Laboratory in Bio-Resources, Environment and Materials, Higher Normal School, Department of Biology, Cadi Ayyad University, 40000 Marrakech, Morocco
| |
Collapse
|
6
|
Akbari A, Bigham A, Rahimkhoei V, Sharifi S, Jabbari E. Antiviral Polymers: A Review. Polymers (Basel) 2022; 14:1634. [PMID: 35566804 PMCID: PMC9101550 DOI: 10.3390/polym14091634] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Polymers, due to their high molecular weight, tunable architecture, functionality, and buffering effect for endosomal escape, possess unique properties as a carrier or prophylactic agent in preventing pandemic outbreak of new viruses. Polymers are used as a carrier to reduce the minimum required dose, bioavailability, and therapeutic effectiveness of antiviral agents. Polymers are also used as multifunctional nanomaterials to, directly or indirectly, inhibit viral infections. Multifunctional polymers can interact directly with envelope glycoproteins on the viral surface to block fusion and entry of the virus in the host cell. Polymers can indirectly mobilize the immune system by activating macrophages and natural killer cells against the invading virus. This review covers natural and synthetic polymers that possess antiviral activity, their mechanism of action, and the effect of material properties like chemical composition, molecular weight, functional groups, and charge density on antiviral activity. Natural polymers like carrageenan, chitosan, fucoidan, and phosphorothioate oligonucleotides, and synthetic polymers like dendrimers and sialylated polymers are reviewed. This review discusses the steps in the viral replication cycle from binding to cell surface receptors to viral-cell fusion, replication, assembly, and release of the virus from the host cell that antiviral polymers interfere with to block viral infections.
Collapse
Affiliation(s)
- Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials—National Research Council (IPCB-CNR), Viale J.F. Kennedy 54—Mostra d’Oltremare Pad. 20, 80125 Naples, Italy;
| | - Vahid Rahimkhoei
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran; (A.A.); (V.R.)
| | - Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA;
| | - Esmaiel Jabbari
- Biomaterials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
7
|
Nano Drug Delivery Platforms for Dental Application: Infection Control and TMJ Management-A Review. Polymers (Basel) 2021; 13:polym13234175. [PMID: 34883678 PMCID: PMC8659450 DOI: 10.3390/polym13234175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
The oral cavity is an intricate environment subjected to various chemical, physical, and thermal injuries. The effectiveness of the local and systemically administered drugs is limited mainly due to their toxicities and poor oral bioavailability that leads to the limited effectiveness of the drugs in the target tissues. To address these issues, nanoparticle drug delivery systems based on metals, liposomes, polymeric particles, and core shells have been developed in recent years. Nano drug delivery systems have applications in the treatment of patients suffering from temporomandibular joint disorders such as preventing degeneration of cartilage in patients suffering from rheumatoid arthritis and osteoarthritis and alleviating the pain along with it. The antibacterial dental applications of nano-drug delivery systems such as silver and copper-based nanoparticles include these agents used to arrest dental caries, multiple steps in root canal treatment, and patients suffering from periodontitis. Nanoparticles have been used in adjunct with antifungals to treat oral fungal infections such as candida albicans in denture wearers. Acyclovir being the most commonly used antiviral has been used in combination with nanoparticles against an array of viral infections such as the herpes simplex virus. Nanoparticles based combination agents offer more favorable drug release in a controlled manner along with efficient delivery at the site of action. This review presents an updated overview of the recently developed nanoparticles delivery systems for the management of temporomandibular joint disorders along with the treatment of different oral infections.
Collapse
|
8
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
9
|
Sadeghi S, Bandehpour M, Haji Molla Hoseini M, Sharifnia Z. Intranasal administration of immunogenic poly-epitope from influenza H1N1 and H3N2 viruses adjuvanted with chitin and chitosan microparticles in BALB/c mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1126-1137. [PMID: 34804430 PMCID: PMC8591766 DOI: 10.22038/ijbms.2021.58087.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Prevalence of influenza virus, creates the need to achieve an efficient vaccine against it. We examined whether the predicted antigenic epitopes of HA, NP, and M2 proteins of the influenza H1N1 and H3N2 viruses accompanied by chitin and chitosan biopolymers might be relevant to the induction of effective proper mucosal responses. MATERIALS AND METHODS The construct was prepared using B and T cell predicted epitopes of HA, NP, and M2 proteins from the influenza H1N1 and H3N2 viruses by considering haplotype "d" as a dominant allele in the BALB/c mice. Intranasal immunization with purified LPS free recombinant protein together with chitin and chitosan microparticles as adjuvants was administered at an interval of 2 weeks in thirty-five BALB/c female mice which were divided into seven groups. Ten days after the last immunization, humoral and cellular immune responses were examined. RESULTS Elevated systemic IgG2a, IgA, and mucosal IgA revealed a humoral response to the construct. An increase in the number of IFN-γ-producing cells in re-stimulation of splenocytes in the culture medium by poly-tope as well as rise in the concentrations of IL-6, IL-17, and TNF-α along with the regulatory response of IL-10, presented the capacity of the designed protein to provoke significant immune responses. The neutralization test ultimately confirmed the high efficacy of the protein in inhibiting the virus. CONCLUSION The results support the fact that immunogenic poly-tope protein in the presence of chitin and chitosan microparticles as mucosal adjuvants is able to induce humoral and cell-mediated responses in BALB/c mice.
Collapse
Affiliation(s)
- Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zarin Sharifnia
- Cellular and Molecular Biology Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Rahbar MR, Gouvarchin Galeh HE, Khalili S, Jahangiri A. Chitosan: A Promising Protective Component Against SARS-CoV-2 and Influenza Virus. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201110114446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recent pandemic caused by a novel coronavirus known as SARS-CoV-2 has caught
the international community by surprise. There is still no effective vaccine or treatment option
against this virus. In this perspective, we discussed the potential protective and therapeutic effects
of chitosan, as an FDA-approved biomolecule, against COVID-19 and influenza viruses.
Collapse
Affiliation(s)
- Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Elkady OA, Saleh LM, Tadros MI, El-laithy HM. Nebulization of Risedronate Sodium Microspheres for Potential Attenuation of Pulmonary Emphysema: a Promising New Insight of Alveolar Macrophage Apoptosis. AAPS PharmSciTech 2021; 22:202. [PMID: 34235597 DOI: 10.1208/s12249-021-02078-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Risedronate sodium (RS) is a potent nitrogen-containing bisphosphonate which is known to induce osteoclast apoptosis. As a drug repurposing approach, the current work explored the potential of nebulizable RS-chitosan (CS) microspheres to induce alveolar macrophage apoptosis. RS-CS microspheres were assessed for lung deposition, cytotoxicity, and cellular uptake percentage in Calu-3 cells. The potential of nebulizable microspheres for treating elastase-induced emphysema in rats was investigated, compared to RS marketed oral tablets®, with respect to histopathological, immunohistochemical, and flow cytometric studies. The in vitro lung deposition pattern suggested deep alveolar deposition of RS microspheres, with respect to high FPF% and suitable MMAD (66% and 1.506 μm, respectively, at a flow rate of 28.3 L min-1). No apparent cytotoxicity was observed, with a cell viability > 90%. The inhalation of RS-CS microspheres was suggested to inhibit airspace enlargement and lung rarefaction after elastase instillation and reduce the macrophage accumulation in alveolar parenchyma. Immunohistochemical and cytometric analyses revealed significant low expression levels of CD68 and CD11b surface markers, respectively, with significantly (P < 0.05) lower detected numbers of intact alveolar macrophages following inhalation of RS-CS microspheres. The nebulization of RS-CS microspheres could induce apoptosis in alveolar macrophages and be promisingly adopted for attenuation of pulmonary emphysema.
Collapse
|
12
|
Safarzadeh M, Sadeghi S, Azizi M, Rastegari-Pouyani M, Pouriran R, Haji Molla Hoseini M. Chitin and chitosan as tools to combat COVID-19: A triple approach. Int J Biol Macromol 2021; 183:235-244. [PMID: 33930442 PMCID: PMC8078037 DOI: 10.1016/j.ijbiomac.2021.04.157] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022]
Abstract
The progressive and fatal outbreak of the newly emerged coronavirus, SARS-CoV-2, necessitates rigorous collaboration of all health care systems and researchers from all around the world to bring such a devastating pandemic under control. As there is so far no officially approved drug or ideal vaccine for this disease, investigations on this infectious disease are actively pursued. Chitin and chitosan have shown promising results against viral infections. In this review, we first delve into the problematic consequences of viral pandemics followed by an introduction on SARS-CoV-2 taxonomical classification. Then, we elaborate on the immunology of COVID-19. Common antiviral therapies and their related limitations are described and finally, the potential applicability of chitin and chitosan to fight this overwhelming viral pandemic is addressed.
Collapse
Affiliation(s)
- Mehrnoush Safarzadeh
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi-Kolli M, Badehnoosh B, Ghandali M, Hamblin MR, Mirzaei H. Chitosan-Based Nanoparticles Against Viral Infections. Front Cell Infect Microbiol 2021; 11:643953. [PMID: 33816349 PMCID: PMC8011499 DOI: 10.3389/fcimb.2021.643953] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
Viral infections, in addition to damaging host cells, can compromise the host immune system, leading to frequent relapse or long-term persistence. Viruses have the capacity to destroy the host cell while liberating their own RNA or DNA in order to replicate within additional host cells. The viral life cycle makes it challenging to develop anti-viral drugs. Nanotechnology-based approaches have been suggested to deal effectively with viral diseases, and overcome some limitations of anti-viral drugs. Nanotechnology has enabled scientists to overcome the challenges of solubility and toxicity of anti-viral drugs, and can enhance their selectivity towards viruses and virally infected cells, while preserving healthy host cells. Chitosan is a naturally occurring polymer that has been used to construct nanoparticles (NPs), which are biocompatible, biodegradable, less toxic, easy to prepare, and can function as effective drug delivery systems (DDSs). Furthermore, chitosan is Generally Recognized as Safe (GRAS) by the US Food and Drug Administration (U.S. FDA). Chitosan NPs have been used in drug delivery by the oral, ocular, pulmonary, nasal, mucosal, buccal, or vaginal routes. They have also been studied for gene delivery, vaccine delivery, and advanced cancer therapy. Multiple lines of evidence suggest that chitosan NPs could be used as new therapeutic tools against viral infections. In this review we summarize reports concerning the therapeutic potential of chitosan NPs against various viral infections.
Collapse
Affiliation(s)
- Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Badie
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Wang F, Guo C, Yang Q, Li C, Zhao P, Xia Q, Kaplan DL. Protein composites from silkworm cocoons as versatile biomaterials. Acta Biomater 2021; 121:180-192. [PMID: 33249226 PMCID: PMC8268066 DOI: 10.1016/j.actbio.2020.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Silk is a naturally occurring biopolymer formed into fibers composed primarily of fibroin and sericin proteins. The outstanding mechanical properties of silk fibroin (SF) provides numerous applications for silk-based biomaterials. However, the canonical approaches for fabricating silk-based biomaterials typically involve degumming to remove the silk sericin (SS) to avoid adverse biological effects. Meanwhile, sericin has multiple biological functions including outstanding hydrophilicity, promoting cell attachment that are useful to exploit in new materials, inspiring the use of sericin-based biomaterials for biomedical applications. However, compared to fibroin, sericin is not a structural protein, thus sericin-based materials do not provide robust mechanical properties. To address this problem, we report an effective method for fabricating silk fibroin-sericin protein (SS-SF) composites directly from whole cocoons, negating the traditional extraction step to remove the sericin. This approach combines the material features from both fibroin as a structural unit and sericin as a biological functional unit, to achieve advantages regarding processing and materials properties, not only simplifying processing and maintaining the mechanical properties of the fibroin by avoiding degumming, but also endowing these SS-SF composite materials with enhanced hydrophilicity and cell adhesion performance to promote cell growth and proliferation. In addition, these protein composites could be fabricated into a variety of materials formats (e.g. films, sponges, monoliths) to fit different biomedical applications.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; School of Engineering, Westlake University, Hangzhou, Zhejiang, 310012, PR China
| | - Qianqian Yang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing, 400715, PR China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
15
|
Dong L, Ariëns RMC, Tomassen MM, Wichers HJ, Govers C. In Vitro Studies Toward the Use of Chitin as Nutraceutical: Impact on the Intestinal Epithelium, Macrophages, and Microbiota. Mol Nutr Food Res 2020; 64:e2000324. [PMID: 33067879 PMCID: PMC7757189 DOI: 10.1002/mnfr.202000324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/17/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Chitin, the most abundant polysaccharide found in nature after cellulose, is known for its ability to support wound healing and to lower plasma-oxidized low-density lipoprotein (LDL) levels. Studies have also revealed immunomodulatory potential but contradicting results are often impossible to coalesce through usage of chitin of different or unknown physicochemical consistency. In addition, only a limited set of cellular models have been used to test the bioactivity of chitin. METHODS AND RESULTS Chitin is investigated with well-defined physicochemical consistency for its immunomodulatory potency using THP-1 macrophages, impact on intestinal epithelial barrier using Caco-2 cells, and fermentation by fecal-derived microbiota. Results show that chitin with a degree of acetylation (DA) of ≈83%, regardless of size, does not affect the intestinal epithelial barrier integrity. Large-sized chitin significantly increases acetic acid production by gut microbiota without altering the composition. Exposure of small-sized chitin to THP-1 macrophages lead to significantly increased secretion of IL-1β, IL-8, IL-10, and CXCL10 in a multi-receptor and clathrin-mediated endocytosis dependent manner. CONCLUSIONS These findings indicate that small-sized chitin does not harm the intestinal barrier nor affects SCFA secretion and microbiota composition, but does impact immune activity which could be beneficial to subjects in need of immune support or activation.
Collapse
Affiliation(s)
- Liyou Dong
- Wageningen Food and Biobased ResearchWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
- Laboratory of Food ChemistryWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
| | - Renata M. C. Ariëns
- Wageningen Food and Biobased ResearchWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
| | - Monic M. Tomassen
- Wageningen Food and Biobased ResearchWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
| | - Harry J. Wichers
- Wageningen Food and Biobased ResearchWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
- Laboratory of Food ChemistryWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
| | - Coen Govers
- Wageningen Food and Biobased ResearchWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
| |
Collapse
|
16
|
The Application of Mucoadhesive Chitosan Nanoparticles in Nasal Drug Delivery. Mar Drugs 2020; 18:md18120605. [PMID: 33260406 PMCID: PMC7759871 DOI: 10.3390/md18120605] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Mucosal delivery of antigens can induce both humoral and cellular immune responses. Particularly, the nasal cavity is a strongly inductive site for mucosal immunity among several administration routes, as it is generally the first point of contact for inhaled antigens. However, the delivery of antigens to the nasal cavity has some disadvantages such as rapid clearance and disposition of inhaled materials. For these reasons, remarkable efforts have been made to develop antigen delivery systems which suit the nasal route. The use of nanoparticles as delivery vehicles enables protection of the antigen from degradation and sustains the release of the loaded antigen, eventually resulting in improved vaccine and/or drug efficacy. Chitosan, which exhibits low toxicity, biodegradability, good cost performance, and strong mucoadhesive properties, is a useful material for nanoparticles. The present review provides an overview of the mucosal immune response induced by nanoparticles, recent advances in the use of nanoparticles, and nasal delivery systems with chitosan nanoparticles.
Collapse
|
17
|
Mami S, Yeganeh F, Salari AA, Anissian A, Azizi M, Hajimollahoseini M. Oral chitin treatment improved demyelination in murine autoimmune encephalomyelitis model by inhibition of inflammatory responses. Int Immunopharmacol 2020; 84:106536. [PMID: 32361654 DOI: 10.1016/j.intimp.2020.106536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022]
Abstract
This study aimed to determine whether chitin microparticles (CMP), glucosamine-based polymers, have an anti-inflammatory response in a murine model of autoimmune encephalomyelitis. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by immunization with myelin antigens emulsified in complete Freund adjuvant. A standard clinical and histological method (Luxol Fast Blue staining) was used to validate the model and document the impact of CMP treatment. ELISA was used to determine the production of spleen cell cytokines and serum levels of anti-chitin antibodies. Flowcytometry was used to determine the percentage of regulatory lymphocytes. The relative expression of the breast regression protein 39 (BRP-39) gene was examined through real time-PCR amplification. Clinical signs were significantly improved in mice given CMP compared with untreated mice. Histological analysis of the spinal cord revealed that treatment significantly reduced demyelination. The levels of interferon-γ, interleukin-17, and tumor necrosis factor-α were also reduced; conversely, no significant change was detected in interleukin-10 level and regulatory T cell count. The CMP-fed mice showed lower BRP-39 expression compared with the control group. It was ultimately determined that CMP modulates immune responses which could indirectly alter the pathology of an injured central nervous system. The data suggests that CMP may be used as an effective and cheap oral therapeutic agent for multiple sclerosis.
Collapse
Affiliation(s)
- Sanaz Mami
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Yeganeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Alborz, Karaj, Iran
| | - Ali Anissian
- Department of Veterinary Pathology, Islamic Azad University, Abhar Branch, Abhar, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hajimollahoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Ibe MI, Odimegwu DC, Onuigbo EB. Alginate-coated chitosan microparticles encapsulating an oral plasmid-cured live Salmonella enterica serovar Gallinarum vaccine cause a higher expression of interferon-gamma in chickens compared to the parenteral live vaccine. Avian Pathol 2019; 48:423-428. [PMID: 31081347 DOI: 10.1080/03079457.2019.1616673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Salmonella enterica serovar Gallinarum causes a disease in chickens known as fowl typhoid. Interferon-gamma (IFN-γ) has been shown to be crucial in eliminating salmonellosis infection because of its strong association with T-cell responses. This study was undertaken to compare the expression of IFN-γ in chickens generated by different vaccine formulations. Eighty one-day-old Lohmann layer chicks were divided into four groups of 20 birds each for the experiment. This comprised an unvaccinated negative control group (NEG), a group vaccinated with the live 9R vaccine by the injection route (SC), a group vaccinated with alginate-coated chitosan microparticles encapsulating live plasmid-cured S. Gallinarum strain 9 (PC) by the oral route, and a group vaccinated with a weak attenuated live S. Gallinarum strain 9 encapsulated in alginate-coated chitosan microparticles (VM) given orally. Vaccinations were done at 10 and 14 weeks of age followed by challenge at 16 weeks of age. IgG was measured using ELISA. qRT-PCR was used to compare the mRNA fold expression of IFN-γ in the PC, VM and SC groups using the unvaccinated/unchallenged group as the control. There were significant differences in the IgG levels between each vaccinated group and the unvaccinated group (P < 0.05) after booster vaccination and post-challenge. There was 100% protection of the birds in SC and VM groups, 80% protection in PC group and 0% protection in the NEG group. Using 2-ΔΔCT calculation, IFN-γ was more highly expressed in the PC group than in the SC group or VM group. In conclusion, the IFN-γ was more highly expressed in the PC group (though not significantly higher) compared to the SC and VM groups and this could be attributed to the alginate-coated chitosan microparticles which acted as an adjuvant.
Collapse
Affiliation(s)
- M I Ibe
- Department of Biotechnology, Godfrey Okoye University , Enugu , Nigeria
| | - D C Odimegwu
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria , Nsukka , Nigeria
| | - E B Onuigbo
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria , Nsukka , Nigeria
| |
Collapse
|
19
|
Yousefi S, Abbassi-Daloii T, Tahmoorespur M, Sekhavati MH. Nanoparticle or conventional adjuvants: which one improves immune response against Brucellosis? IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:360-366. [PMID: 31168339 PMCID: PMC6535204 DOI: 10.22038/ijbms.2019.31748.7642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective(s): Brucellosis is a common infectious disease among animals and humans. While subunit vaccines could be used as an efficient strategy against pathogens, they usually seem to be less immunogenic than live or killed vaccines. However, the use of a suitable adjuvant accompanied by subunit vaccines can be a good alternative to enhance the immune response. Materials and Methods: To find a proper adjuvant against Brucellosis, the immune response of induced mice by Aluminum Hydroxide (AH), Incomplete Freund (IFA), and Chitosan Nanoparticle (CS) adjuvants in individuals and in combination with CS were assessed. Results: Immunization with CS stimulated higher interferon gamma (IFN-γ) immunity, while there were no significant differences between rOMP25 (IFA), rOMP25 (AH), rOMP25 (AH-CS) and rOMP25 (IFA-CS) recombinant proteins. Tumor necrosis factor alpha (TNF-α) analysis revealed there were no significant differencesbetween immunized groups and the positive control group, except for the treatment formulated in single IFA. Furthermore, unlike IFN-γ, there was a reverse interleukin-4 (IL-4) immune response trend for treatments, as rOMP25 (CS) displayed the lowest response. rOMP25 (CS) induced higher titer of total antibody than the other ones. Although the recombinant proteins emulsified in different adjuvants induced similar titer of IgG1 antibody, the ones that were formulated in CS, IFA and IFA-CS showed a higher titer of IgG2a. The cell proliferation assay demonstrating the antigen-specific cell proliferative response could be promoted after immunization with CS. Conclusion: CS whether single or in combination with IF adjuvants has potential to improve Th1-Th2 responses.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | | |
Collapse
|
20
|
de Jesus Carrion S, Abbondante S, Clark HL, Marshall ME, Mouyna I, Beauvais A, Sun Y, Taylor PR, Leal SM, Armstrong B, Carrera W, Latge JP, Pearlman E. Aspergillus fumigatus corneal infection is regulated by chitin synthases and by neutrophil-derived acidic mammalian chitinase. Eur J Immunol 2019; 49:918-927. [PMID: 30903663 PMCID: PMC6999821 DOI: 10.1002/eji.201847851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/24/2019] [Accepted: 03/19/2019] [Indexed: 01/14/2023]
Abstract
Aspergillus fumigatus is an important cause of pulmonary and systemic infections in immune compromised individuals, and of corneal ulcers and blindness in immune competent patients. To examine the role of chitin synthases in Aspergillus corneal infection, we analyzed Aspergillus mutants of chitin synthase family 1 and family 2, and found that compared with the parent strain, the quadruple mutants from both families were more readily killed by neutrophils in vitro, and that both also exhibited impaired hyphal growth in the cornea. Further, inhibition of chitin synthases using Nikkomycin Z enhanced neutrophil killing in vitro and in vivo in a murine model of A. fumigatus corneal infection. Acidic mammalian chitinase (AMCase) is mostly produced by macrophages in asthmatic lungs; however, we now demonstrate that neutrophils are a major source of AMCase, which inhibits hyphal growth. In A. fumigatus corneal infection, neutrophils are the major source of AMCase, and addition of AMCase inhibitors or adoptive transfer of neutrophils from AMCase-/- mice resulted in impaired hyphal killing. Together, these findings identify chitin synthases as important fungal virulence factors and neutrophil-derived AMCase as an essential mediator of host defense.
Collapse
Affiliation(s)
- Steven de Jesus Carrion
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Heather L. Clark
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | - Anne Beauvais
- Unité des Aspergillus, Institut Pasteur, Paris, France
| | - Yan Sun
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sixto M. Leal
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brittany Armstrong
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - William Carrera
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA,Department of Ophthalmology, University of California, Irvine, USA
| |
Collapse
|
21
|
Abdel-Tawwab M, Razek NA, Abdel-Rahman AM. Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). FISH & SHELLFISH IMMUNOLOGY 2019; 88:254-258. [PMID: 30836145 DOI: 10.1016/j.fsi.2019.02.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 05/08/2023]
Abstract
Feed supplements to fish are generally used to overcome any expected diseases and stressors and to sustain eco-friendly fish farming. One of these feed supplements is chitosan, which stimulated growth and immune properties for many aquatic organisms. It is expected that the nano-sized materials may have stronger immune activation in fish than the ordinary size. Therefore, the current study was conducted to evaluate the effect of dietary chitosan nanoparticles (CNP) on growth performance, antioxidant activity, and innate immunity of Nile tilapia, Oreochromis niloticus (L.). Fish (19.8 ± 0.59 g) were fed on diets enriched with 0.0, 0.25, 0.5, 1.0, and 2.0 g CNP/kg diet for 45 days. Fish performance was significantly improved with increasing CNP levels over the control diet with optimum level of 1.0 g CNP/kg diet. Antioxidant-stimulated activity was observed due to dietary CNP supplementation over the control diet in a dose-dependent manner. However, malondialdehyde level decreased significantly, whereas activities of catalase, superoxide dismutase, lysozyme, and respiratory burst increased significantly due to CNP supplementation in a dose-dependent manner. The current study evoked that dietary CNP showed strong immune modulatory properties and enhanced significantly the performance and health of Nile tilapia with optimum level of 1.0 g CNP/kg diet.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt.
| | - Nashwa Abdel Razek
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Azza M Abdel-Rahman
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| |
Collapse
|
22
|
Dietary Chitin Particles Called Mimetic Fungi Ameliorate Colitis in Toll-Like Receptor 2/CD14- and Sex-Dependent Manners. Infect Immun 2019; 87:IAI.00006-19. [PMID: 30782858 DOI: 10.1128/iai.00006-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
Chitin is a natural N-acetylglucosamine polymer and a major structural component of fungal cell walls. Dietary chitin is mucoadhesive; anti-inflammatory effects of chitin microparticles (CMPs; 1- to 10-μm diameters) have been demonstrated in models of inflammatory bowel disease (IBD). The goals of this study were to assess (i) whether CMPs among various chitin preparations are the most effective against colitis in male and female mice and (ii) whether host chitin-binding Toll-like receptor 2 (TLR2) and CD14 are required for the anti-inflammatory effect of chitin. We found that colitis in male mice was ameliorated by CMPs and large chitin beads (LCBs; 40 to 70 μm) but not by chitosan (deacetylated chitin) microparticles, oligosaccharide chitin, or glucosamine. In fact, LCBs were more effective than CMPs. In female colitis, on the other hand, CMPs and LCBs were equally and highly effective. Neither sex of TLR2-deficient mice showed anti-inflammatory effects when treated with LCBs. No anti-inflammatory effect of LCBs was seen in either CD14-deficient males or females. Furthermore, an in vitro study indicated that when LCBs and CMPs were digested with stomach acidic mammalian chitinase (AMC), their size-dependent macrophage activations were modified, at least in part, suggesting reduced particle sizes of dietary chitin in the stomach. Interestingly, stomach AMC activity was greater in males than females. Our results indicated that dietary LCBs were the most effective preparation for treating colitis in both sexes; these anti-inflammatory effects of LCBs were dependent on host TLR2 and CD14.
Collapse
|
23
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
24
|
Brown HE, Esher SK, Alspaugh JA. Chitin: A "Hidden Figure" in the Fungal Cell Wall. Curr Top Microbiol Immunol 2019; 425:83-111. [PMID: 31807896 DOI: 10.1007/82_2019_184] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chitin and chitosan are two related polysaccharides that provide important structural stability to fungal cell walls. Often embedded deeply within the cell wall structure, these molecules anchor other components at the cell surface. Chitin-directed organization of the cell wall layers allows the fungal cell to effectively monitor and interact with the external environment. For fungal pathogens, this interaction includes maintaining cellular strategies to avoid excessive detection by the host innate immune system. In turn, mammalian and plant hosts have developed their own strategies to process fungal chitin, resulting in chitin fragments of varying molecular size. The size-dependent differences in the immune activation behaviors of variably sized chitin molecules help to explain how chitin and related chitooligomers can both inhibit and activate host immunity. Moreover, chitin and chitosan have recently been exploited for many biomedical applications, including targeted drug delivery and vaccine development.
Collapse
Affiliation(s)
- Hannah E Brown
- Department of Medicine, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, 303 Sands Research Building, DUMC, 102359, Durham, 27710, NC, USA
| | - Shannon K Esher
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - J Andrew Alspaugh
- Department of Medicine, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, 303 Sands Research Building, DUMC, 102359, Durham, 27710, NC, USA.
| |
Collapse
|
25
|
|
26
|
Elieh Ali Komi D, Sharma L, Dela Cruz CS. Chitin and Its Effects on Inflammatory and Immune Responses. Clin Rev Allergy Immunol 2018; 54:213-223. [PMID: 28251581 DOI: 10.1007/s12016-017-8600-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chitin, a potential allergy-promoting pathogen-associated molecular pattern (PAMP), is a linear polymer composed of N-acetylglucosamine residues which are linked by β-(1,4)-glycosidic bonds. Mammalians are potential hosts for chitin-containing protozoa, fungi, arthropods, and nematodes; however, mammalians themselves do not synthetize chitin and thus it is considered as a potential target for recognition by mammalian immune system. Chitin is sensed primarily in the lungs or gut where it activates a variety of innate (eosinophils, macrophages) and adaptive immune cells (IL-4/IL-13 expressing T helper type-2 lymphocytes). Chitin induces cytokine production, leukocyte recruitment, and alternative macrophage activation. Intranasal or intraperitoneal administration of chitin (varying in size, degree of acetylation and purity) to mice has been applied as a routine approach to investigate chitin's priming effects on innate and adaptive immunity. Structural chitin present in microorganisms is actively degraded by host true chitinases, including acidic mammalian chitinases and chitotriosidase into smaller fragments that can be sensed by mammalian receptors such as FIBCD1, NKR-P1, and RegIIIc. Immune recognition of chitin also involves pattern recognition receptors, mainly via TLR-2 and Dectin-1, to activate immune cells to induce cytokine production and creation of an immune network that results in inflammatory and allergic responses. In this review, we will focus on various immunological aspects of the interaction between chitin and host immune system such as sensing, interactions with immune cells, chitinases as chitin degrading enzymes, and immunologic applications of chitin.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbayjan, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, East Azerbayjan, Iran
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA. .,Department of Microbial Pathogenesis, Yale School of Medicine, Cedar Street, New Haven, CT, TACS441D, USA.
| |
Collapse
|
27
|
Arae K, Morita H, Unno H, Motomura K, Toyama S, Okada N, Ohno T, Tamari M, Orimo K, Mishima Y, Suto H, Okumura K, Sudo K, Miyazawa H, Taguchi H, Saito H, Matsumoto K, Nakae S. Chitin promotes antigen-specific Th2 cell-mediated murine asthma through induction of IL-33-mediated IL-1β production by DCs. Sci Rep 2018; 8:11721. [PMID: 30082755 PMCID: PMC6079063 DOI: 10.1038/s41598-018-30259-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Chitin, which is a major component of house dust mites (HDM), fungi, crustaceans, etc., can activate immune cells, suggesting that it contributes to development of allergic disorders such as asthma. Although the pathophysiological sensitization route of asthmatic patients to allergens is considered via the respiratory tract, the roles of intranasally-administered chitin in development of asthma remain unclear. After ovalbumin (OVA) challenge, development of airway inflammation was profoundly exacerbated in mice sensitized with OVA in the presence of chitin. The exacerbation was dependent on IL-33, but not IL-25, thymic stromal lymphopoietin or IL-17A. Chitin enhanced IL-33-dependent IL-1β production by dendritic cells (DCs). Furthermore, chitin- and IL-33-stimulated DC-derived IL-1β promoted OVA-specific Th2 cell activation, resulting in aggravation of OVA-induced airway inflammation. These findings indicate the adjuvant activity of chitin via a new mechanism and provide important clues for development of therapeutics for allergic disorders caused by HDM, fungi and crustaceans.
Collapse
Grants
- Grants-in-Aid for Young Scientists (22790941 and 24791005) and Grants-in-Aid for Scientific Research (26461491) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The Grant for Joint Research Project of the Institute of Medical Science, the University of Tokyo (2024)
- Grants-in-Aid for Young Scientists (25860822) from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- Grants-in-Aid for Challenging Exploratory Research (15K15377 and 16K15515) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.A Health Labour Sciences Research Grant from the Ministry of Health, Labour and Welfare, Japan.
- Grants-in-Aid for Young Scientists (21790942 and 24688029) and the Program for Improvement of Research Environment for Young Researchers, The Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology, Japan. Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency. A Health Labour Sciences Research Grant from the Ministry of Health, Labour and Welfare, Japan
Collapse
Affiliation(s)
- Ken Arae
- Department of Immunology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hirotoshi Unno
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Sumika Toyama
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Naoko Okada
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Tatsukuni Ohno
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Keisuke Orimo
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Yuko Mishima
- Department of Immunology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
| | - Hajime Suto
- Atopy Research Center, Juntendo University, Tokyo, 113-0033, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University, Tokyo, 113-0033, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hiroshi Miyazawa
- Department of Medical technology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
| | - Haruhiko Taguchi
- Department of Immunology, Faculty of Health Sciences, Kyorin University, Tokyo, 181-8612, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Precursory Research for Embryonic Science and Technology (PREST), Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
28
|
Davis S, Cirone AM, Menzie J, Russell F, Dorey CK, Shibata Y, Wei J, Nan C. Phagocytosis-mediated M1 activation by chitin but not by chitosan. Am J Physiol Cell Physiol 2018; 315:C62-C72. [PMID: 29719169 PMCID: PMC6087726 DOI: 10.1152/ajpcell.00268.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Chitin particles have been used to understand host response to chitin-containing pathogens and allergens and are known to induce a wide range of polarized macrophage activations, depending, at least in part, on particle size. Nonphagocytosable particles larger than a macrophage induce tissue repair M2 activation. In contrast, phagocytosable chitin microparticles (CMPs, 1-10 μm diameters) induce M1 macrophages that kill intracellular microbes and damage tissues. However, chitosan (deacetylated) microparticles (de-CMPs, 1-10 µm) induce poor M1 activation. Toll-like receptor 2 (TLR2) and associated coreceptors in macrophages appear to be required for the M1 activation. To understand the exact mechanism of phagocytosis-mediated M1 activation by chitin, we isolated macrophage proteins that bind to CMPs during early phagocytosis and determined that TLR1, TLR2, CD14, late endosomal/lysosomal adaptor MAPK and mechanistic target of rapamycin activator 1 (LAMTOR1), Lck/Yes novel tyrosine kinase (Lyn), and β-actin formed phagosomal CMP-TLR2 clusters. These proteins were also detected in TLR2 phagosomal clusters in macrophages phagocytosing de-CMPs, but at relatively lower levels than in the CMP-TLR2 clusters. Importantly, CMP-TLR2 clusters further recruited myeloid differentiation primary response gene 88 (MyD88) and Toll-IL-1 receptor-containing adaptor protein (TIRAP) and phosphorylated Lyn, whereas neither the adaptors nor phosphorylated Lyn was detected in the de-CMP clusters. The results indicate that the acetyl group played an obligatory, phagocytosis-dependent role in the initiation of an integrated signal for TLR2-mediated M1 activation.
Collapse
Affiliation(s)
- Spring Davis
- Florida Atlantic University , Boca Raton, Florida
| | | | - Janet Menzie
- Florida Atlantic University , Boca Raton, Florida
| | | | - C Kathleen Dorey
- Virginia Tech Carilion School of Medicine and Research Institute , Roanoke, Virginia
| | | | - Jianning Wei
- Florida Atlantic University , Boca Raton, Florida
| | | |
Collapse
|
29
|
Breyne K, Steenbrugge J, Demeyere K, Lee CG, Elias JA, Petzl W, Smith DGE, Germon P, Meyer E. Immunomodulation of Host Chitinase 3-Like 1 During a Mammary Pathogenic Escherichia coli Infection. Front Immunol 2018; 9:1143. [PMID: 29892291 PMCID: PMC5985307 DOI: 10.3389/fimmu.2018.01143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/07/2018] [Indexed: 12/05/2022] Open
Abstract
Chitin is a N-acetyl-d-glucosamine biopolymer that can be recognized by chitin-binding proteins. Although mammals lack chitin synthase, they induce proteins responsible for detecting chitin in response to bacterial infections. Our aim was to investigate whether chitinase 3-like 1 (CHI3L1) has a potential role in the innate immunity of the Escherichia coli (E. coli) infected mammary gland. CHI3L1 protein was found to be secreted in whey of naturally coliform-affected quarters compared to whey samples isolated from healthy udders. In addition, gene expression of CHI3L1 was confirmed in udder tissue of cows experimentally infected with a mammary pathogenic E. coli (MPEC) strain. Despite the known anatomical differences, the bovine udders’ innate immune response was mimicked by applying an experimental mouse model using MPEC or non-MPEC isolates. The effect of CHI3L1 expression in the murine mammary gland in response to coliform bacteria was investigated through the use of CHI3L1−/− mice as well as through treatment with either a pan-caspase inhibitor or chitin particles in wild-type mice. The local induction of CHI3L1 postinfection with different E. coli strains was demonstrated to be independent of both bacterial growth and mammary interleukin (IL)-8 levels. Indeed, CHI3L1 emerged as a regulator impacting on the transcytosis of Ly6G-positive cells from the interstitial space into the alveolar lumen of the mammary tissue. Furthermore, CHI3L1 was found to be upstream regulated by caspase activity and had a major downstream effect on the local pro-inflammatory cytokine profile, including IL-1beta, IL-6, and RANTES/CCL5. In conclusion, CHI3L1 was demonstrated to play a key role in the cytokine and caspase signaling during E. coli triggered inflammation of the mammary gland.
Collapse
Affiliation(s)
- Koen Breyne
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chun Geun Lee
- Division of Biology and Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Jack A Elias
- Division of Biology and Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Wolfram Petzl
- Clinic for Ruminants with Ambulance and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - David G E Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Pierre Germon
- INRA UMR 1282 Infectiologie et Santé Publique (ISP), Université François Rabelais de Tours, Nouzilly, France
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
30
|
Halder SK, Mondal KC. Microbial Valorization of Chitinous Bioresources for Chitin Extraction and Production of Chito-Oligomers and N-Acetylglucosamine: Trends, Perspectives and Prospects. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
31
|
Mohamed SH, Arafa AS, Mady WH, Fahmy HA, Omer LM, Morsi RE. Preparation and immunological evaluation of inactivated avian influenza virus vaccine encapsulated in chitosan nanoparticles. Biologicals 2018; 51:46-53. [DOI: 10.1016/j.biologicals.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022] Open
|
32
|
Cupino TL, Watson BA, Cupino AC, Oda K, Ghamsary MG, Soriano S, Kirsch WM. Stability and bioactivity of chitosan as a transfection agent in primary human cell cultures: A case for chitosan-only controls. Carbohydr Polym 2017; 180:376-384. [PMID: 29103517 DOI: 10.1016/j.carbpol.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 10/04/2017] [Indexed: 01/04/2023]
Abstract
Chitosan polymers (Cs), from which microparticles (CsM) may be precipitated to deliver various intracellular payloads, are generally considered biologically inert. We examined the impact of cell culture conditions on CsM size and the effect of chitosan on CD59 expression in primary human smooth muscle cells. We found that particle concentration and incubation time in biological buffers augmented particle size. Between pH 7.0 and pH 7.5, CsM size increased abruptly. We utilized CsM containing a plasmid with a gene for CD59 (pCsM) to transfect cells. Both CD59 mRNA and the number of CD59-positive cells were increased after pCsM treatment. Unexpectedly, CsM also augmented the number of CD59-positive cells. Cs alone enhanced CD59 expression more potently than either pCSM or CsM. This observation strongly suggests that chitosan is in fact bioactive and that chitosan-only controls should be included to avoid misattributing the activity of the delivery agent with that of the payload.
Collapse
Affiliation(s)
- Tanya L Cupino
- Neurosurgery Center for Research, Training and Education, Loma Linda University School of Medicine, Loma Linda, CA, United States; Division of Microbiology and Molecular Genetics, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.
| | - Billy A Watson
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States; Division of Human Anatomy, Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Alan C Cupino
- Department of Epidemiology and Biostatistics, Loma Linda University School of Public Health, Loma Linda, CA, United States
| | - Keiji Oda
- Department of Epidemiology and Biostatistics, Loma Linda University School of Public Health, Loma Linda, CA, United States
| | - Mark G Ghamsary
- Department of Epidemiology and Biostatistics, Loma Linda University School of Public Health, Loma Linda, CA, United States (Retired)
| | - Salvador Soriano
- Division of Human Anatomy, Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Wolff M Kirsch
- Neurosurgery Center for Research, Training and Education, Loma Linda University School of Medicine, Loma Linda, CA, United States.
| |
Collapse
|
33
|
Leonard F, Ha NP, Sule P, Alexander JF, Volk DE, Lokesh GLR, Liu X, Cirillo JD, Gorenstein DG, Yuan J, Chatterjee S, Graviss EA, Godin B. Thioaptamer targeted discoidal microparticles increase self immunity and reduce Mycobacterium tuberculosis burden in mice. J Control Release 2017; 266:238-247. [PMID: 28987879 DOI: 10.1016/j.jconrel.2017.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022]
Abstract
Worldwide, tuberculosis (TB) remains one of the most prevalent infectious diseases causing morbidity and death in >1.5 million patients annually. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, usually resides in the alveolar macrophages. Current tuberculosis treatment methods require more than six months, and low compliance often leads to therapeutic failure and multidrug resistant strain development. Critical to improving TB-therapy is shortening treatment duration and increasing therapeutic efficacy. In this study, we sought to determine if lung hemodynamics and pathological changes in Mtb infected cells can be used for the selective targeting of microparticles to infected tissue(s). Thioaptamers (TA) with CD44 (CD44TA) targeting moiety were conjugated to discoidal silicon mesoporous microparticles (SMP) to enhance accumulation of these agents/carriers in the infected macrophages in the lungs. In vitro, CD44TA-SMP accumulated in macrophages infected with mycobacteria efficiently killing the infected cells and decreasing survival of mycobacteria. In vivo, increased accumulations of CD44TA-SMP were recorded in the lung of M. tuberculosis infected mice as compared to controls. TA-targeted carriers significantly diminished bacterial load in the lungs and caused recruitment of T lymphocytes. Proposed mechanism of action of the designed vector accounts for a combination of increased uptake of particles that leads to infected macrophage death, as well as, activation of cellular immunity by the TA, causing increased T-cell accumulation in the treated lungs. Based on our data with CD44TA-SMP, we anticipate that this drug carrier can open new avenues in TB management.
Collapse
Affiliation(s)
- Fransisca Leonard
- Department of Nanomedicine, Houston Methodist Research Institute, TX 77030, United States
| | - Ngan P Ha
- Department of Pathology and Genomic Medicine Houston, Houston Methodist Research Institute, TX 77030, United States
| | - Preeti Sule
- Texas A&M Health Science Center, Department of Microbial Pathogenesis and Immunology, Bryan, TX 77807, United States
| | - Jenolyn F Alexander
- Department of Nanomedicine, Houston Methodist Research Institute, TX 77030, United States
| | - David E Volk
- University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering, Institute of Molecular Medicine, Houston, TX 77030, United States
| | - Ganesh L R Lokesh
- University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering, Institute of Molecular Medicine, Houston, TX 77030, United States
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, TX 77030, United States
| | - Jeffrey D Cirillo
- Texas A&M Health Science Center, Department of Microbial Pathogenesis and Immunology, Bryan, TX 77807, United States
| | - David G Gorenstein
- University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering, Institute of Molecular Medicine, Houston, TX 77030, United States
| | - Jinyun Yuan
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, St. Louis, MO 63104, United States
| | - Soumya Chatterjee
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, St. Louis, MO 63104, United States
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine Houston, Houston Methodist Research Institute, TX 77030, United States
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, TX 77030, United States.
| |
Collapse
|
34
|
Rastegari B, Karbalaei-Heidari HR, Zeinali S, Sheardown H. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces 2017; 158:589-601. [DOI: 10.1016/j.colsurfb.2017.07.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 12/14/2022]
|
35
|
Zhang Z, Reponen T, Hershey GKK. Fungal Exposure and Asthma: IgE and Non-IgE-Mediated Mechanisms. Curr Allergy Asthma Rep 2017; 16:86. [PMID: 27943046 DOI: 10.1007/s11882-016-0667-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fungi are ubiquitous in indoor and outdoor environments and have been associated with respiratory disease including childhood and adult asthma. A growing body of evidence from human and animal studies has revealed a link between fungal exposure, especially indoor fungal exposure, with asthma initiation, persistence, and exacerbation. Despite the overwhelming evidence linking mold exposure and asthma, the mechanistic basis for the association has remained elusive. It is now clear that fungi need not be intact to impart negative health effects. Fungal components and fungal fragments are biologically active and contribute to asthma development and severity. Recent mechanistic studies have demonstrated that fungi are potent immunomodulators and have powerful effects on asthma independent of their potential to act as antigens. This paper will review the connection between fungal exposure and asthma with a focus on the immunological mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 7037, Cincinnati, OH, 45229, USA
| | - Tiina Reponen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 7037, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
36
|
Zhao X, Li X, Zhao Y, Cheng Y, Yang Y, Fang Z, Xie Y, Liu Y, Chen Y, Ouyang Y, Yuan W. Immune Activities of Polycationic Vectors for Gene Delivery. Front Pharmacol 2017; 8:510. [PMID: 28824434 PMCID: PMC5543280 DOI: 10.3389/fphar.2017.00510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/20/2017] [Indexed: 12/23/2022] Open
Abstract
Polycationic vectors are used widely in the field of gene delivery, while currently their immune activities in vivo are poorly understood. In this comprehensive review, we aim to present an overview of existing mechanisms of adverse immune responses induced by the polycation/gene complexes, which includes the polycations themselves, the gene sequences and the ROS produced by them. These causes can induce pro-inflammatory cytokines, hypersensitivity as well as the activation of toll-like receptors, and finally the immunostimulation occur. In addition, we introduce some different opinions and research results on the immunogenicity of classical polycations such as polylysine (PLL), polyethyleneimine (PEI), polyamidoamine dendrimers (PAMAM), chitosan and gelatin, most of which have immunogenicity and can induce immunoreactions in vivo. The methods now used to adjust their immunogenicity are shown in the final part of this review. Nowadays, there is still no accurate conclusion on immunogenicity of polycations, which confuses researchers seriously in in vivo test. We conclude that further research is needed in order to skillfully utilize or inhibit the immunogenicity of these polycationic vectors.
Collapse
Affiliation(s)
- Xiaotian Zhao
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiaoming Li
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Yi Zhao
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Yuan Cheng
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Yunqi Yang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Zhiwei Fang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China
| | - Yuanming Ouyang
- Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine and HealthShanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
37
|
Abdel-Latif M, El-Shahawi G, Aboelhadid SM, Abdel-Tawab H. Immunoprotective Effect of Chitosan Particles onHymenolepis nana- Infected Mice. Scand J Immunol 2017; 86:83-90. [DOI: 10.1111/sji.12568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/08/2017] [Indexed: 01/04/2023]
Affiliation(s)
- M. Abdel-Latif
- Department of Zoology; Faculty of Science; Beni-Suef University; Beni-Suef Egypt
| | - G. El-Shahawi
- Department of Zoology; Faculty of Science; Beni-Suef University; Beni-Suef Egypt
| | - S. M. Aboelhadid
- Department of Parasitology; Faculty of Veterinary Medicine; Beni-Suef University; Beni-Suef Egypt
| | - H. Abdel-Tawab
- Department of Zoology; Faculty of Science; Beni-Suef University; Beni-Suef Egypt
| |
Collapse
|
38
|
Huang Y, Fan CQ, Dong H, Wang SM, Yang XC, Yang SM. Current applications and future prospects of nanomaterials in tumor therapy. Int J Nanomedicine 2017; 12:1815-1825. [PMID: 28331307 PMCID: PMC5348070 DOI: 10.2147/ijn.s127349] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumors are one of the most serious human diseases and cause numerous global deaths per year. In spite of many strategies applied in tumor therapy, such as radiation therapy, chemotherapy, surgery, and a combination of these treatments, tumors are still the foremost killer worldwide among human diseases, due to their specific limitations, such as multidrug resistance and side effects. Therefore, it is urgent and necessary to develop new strategies for tumor therapy. Recently, the fast development of nanoscience has paved the way for designing new strategies to treat tumors. Nanomaterials have shown great potential in tumor therapy, due to their unique properties, including passive targeting, hyperthermia effects, and tumor-specific inhibition. This review summarizes the recent progress using the innate antitumor properties of metallic and nonmetallic nanomaterials to treat tumors, and related challenges and prospects are discussed.
Collapse
Affiliation(s)
- Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Chao-Qiang Fan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Su-Min Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiao-Chao Yang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, People's Republic of China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
39
|
Johnathan M, Gan SH, Ezumi MFW, Faezahtul AH, Nurul AA. Phytochemical profiles and inhibitory effects of Tiger Milk mushroom (Lignosus rhinocerus) extract on ovalbumin-induced airway inflammation in a rodent model of asthma. Altern Ther Health Med 2016; 16:167. [PMID: 27255587 PMCID: PMC4891846 DOI: 10.1186/s12906-016-1141-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
Abstract
Background Lignosus rhinocerus (L. rhinocerus), which is known locally as Tiger Milk mushroom, is traditionally used in the treatment of asthma by indigenous communities in Malaysia. However, to date, its efficacy on asthma has not been confirmed by scientific studies and there is also sparse information available on its active constituents. In this study, the volatile constituent of L. rhinocerus hot water extract was investigated using gas chromatography mass spectrometry (GC-MS). The potential effects of L. rhinocerus extract for anti-asthmatic activity was further investigated on ovalbumin (OVA)-sensitized asthmatic Sprague Dawley rats. Methods Sequential extraction using five solvents (petroleum ether, diethyl ether, hexane, ethyl acetate and methanol) was conducted prior to GC-MS analysis. Male Sprague Dawley rats were divided into the following four groups of five animals each: 1) normal rats, 2) sensitization plus OVA-challenged rats 3) sensitization plus OVA-challenged with L. rhinocerus treatment and 4) sensitization plus OVA-challenged with dexamethasone treatment. The levels of immunoglobulin E (IgE) in the serum and T-helper 2 cytokines, including interleukin (IL)-4, IL-5 and IL-13, in bronchoalveolar lavage fluid (BALF), as well as eosinophil infiltration in the lungs, were investigated. Results GC-MS analysis revealed the presence of five main groups (alkane, fatty acids, benzene, phenol and dicarboxylic acid) with a total of 18 constituents. Linoleic acid (21.35 %), octadecane (11.82 %) and 2,3-dihydroxypropyl elaidate (10.47 %) were present in high amounts. The extract significantly ameliorated the increase in total IgE in serum and IL-4, IL-5 and IL-13 levels in BALF and also effectively suppressed eosinophils numbers in BALF while attenuating eosinophil infiltrations in the lungs. Conclusion L. rhinocerus hot water extract has the potential to be used as an alternative for the treatment of acute asthma.
Collapse
|
40
|
Choi JP, Lee SM, Choi HI, Kim MH, Jeon SG, Jang MH, Jee YK, Yang S, Cho YJ, Kim YK. House Dust Mite-Derived Chitin Enhances Th2 Cell Response to Inhaled Allergens, Mainly via a TNF-α-Dependent Pathway. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:362-74. [PMID: 27126730 PMCID: PMC4853514 DOI: 10.4168/aair.2016.8.4.362] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/17/2015] [Accepted: 09/14/2015] [Indexed: 11/24/2022]
Abstract
Purpose Chitin is a potent adjuvant in the development of immune response to inhaled allergens in the airways. According to other studies, chitin is known as multi-faced adjuvants which can induce Th2 responses. Recently, we found that TNF-α is a key mediator in the development of Th2 cell response to inhaled allergens. Here, we evaluated the immunologic mechanisms in the development of airway hypersensitivity to inhaled allergens, enhanced by house dust mite (HDM)-derived chitin. Methods The role of TNF-α and TLRs was evaluated in an airway hypersensitivity mouse model induced by a sensitization with an allergen (ovalbumin, OVA) and HDM-derived chitin using mice with the null mutation of target genes. Results The present study showed that airway sensitization with HDM-derived chitin plus OVA enhanced OVA-induced airway inflammation v. OVA alone. This phenotype was associated with the increased expression of Th1, Th2, and Th17 cytokines and also with the enhanced production of OVA-specific IgE, IgG1, and IgG2a. As for T cell responses, OVA-specific Th2 cell response, enhanced by chitin, was abolished by the treatment of chitinase, whereas Th1 and Th17 cell responses enhanced by this treatment. Moreover, the null mutation of the TNF-α gene revealed similar effects as the chitinase treatment. In contrast, all the OVA-specific T cell responses, enhanced by chitin, were blocked by the absence of TLR2, but not of TLR1, TLR4, or TLR6. Conclusions In conclusion, these data suggest that HDM-derived chitin may enhance airway hypersensitivity to inhaled allergens, via the TLR2-dependent pathway, and that chitin-induced TNF-α can be a key mediator in the development of Th2 cell response to inhaled allergens.
Collapse
Affiliation(s)
- Jun Pyo Choi
- Institute of Convergence Medicine, Ewha Womans University School of Medicine and Medical Center, Seoul, Korea
| | - Sang Min Lee
- Department of Internal Medicine, Gacheon University College of Medicine, Incheon, Korea
| | - Hyun Il Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Min Hye Kim
- Institute of Convergence Medicine, Ewha Womans University School of Medicine and Medical Center, Seoul, Korea
| | - Seong Gyu Jeon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Myoung Ho Jang
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Korea
| | - Young Koo Jee
- Department of Internal Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Sanghwa Yang
- Institute of Convergence Medicine, Ewha Womans University School of Medicine and Medical Center, Seoul, Korea
| | - Young Joo Cho
- Institute of Convergence Medicine, Ewha Womans University School of Medicine and Medical Center, Seoul, Korea
| | - Yoon Keun Kim
- Institute of Convergence Medicine, Ewha Womans University School of Medicine and Medical Center, Seoul, Korea.
| |
Collapse
|
41
|
Immunomodulatory Effects of Chitotriosidase Enzyme. Enzyme Res 2016; 2016:2682680. [PMID: 26881065 PMCID: PMC4735922 DOI: 10.1155/2016/2682680] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 01/14/2023] Open
Abstract
Chitotriosidase enzyme (EC: 3.2.1.14) is the major active chitinase in the human body. It is produced mainly by activated macrophages, in which its expression is regulated by multiple intrinsic and extrinsic signals. Chitotriosidase was confirmed as essential element in the innate immunity against chitin containing organisms such as fungi and protozoa; however, its immunomodulatory effects extend far beyond innate immunity. In the current review, we will try to explore the expanding spectrum of immunological roles played by chitotriosidase enzyme in human health and disease and will discuss its up-to-date clinical value.
Collapse
|
42
|
Liu Z, Xing J, Huang Y, Bo R, Zheng S, Luo L, Niu Y, Zhang Y, Hu Y, Liu J, Wu Y, Wang D. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages. Int J Biol Macromol 2016; 82:973-8. [DOI: 10.1016/j.ijbiomac.2015.10.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022]
|
43
|
Renukaradhya GJ, Narasimhan B, Mallapragada SK. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation. J Control Release 2015; 219:622-631. [PMID: 26410807 PMCID: PMC4760633 DOI: 10.1016/j.jconrel.2015.09.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/14/2022]
Abstract
Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
44
|
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle Uptake: The Phagocyte Problem. NANO TODAY 2015; 10:487-510. [PMID: 26640510 PMCID: PMC4666556 DOI: 10.1016/j.nantod.2015.06.006] [Citation(s) in RCA: 858] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phagocytes are key cellular participants determining important aspects of host exposure to nanomaterials, initiating clearance, biodistribution and the tenuous balance between host tolerance and adverse nanotoxicity. Macrophages in particular are believed to be among the first and primary cell types that process nanoparticles, mediating host inflammatory and immunological biological responses. These processes occur ubiquitously throughout tissues where nanomaterials are present, including the host mononuclear phagocytic system (MPS) residents in dedicated host filtration organs (i.e., liver, kidney spleen, and lung). Thus, to understand nanomaterials exposure risks it is critical to understand how nanomaterials are recognized, internalized, trafficked and distributed within diverse types of host macrophages and how possible cell-based reactions resulting from nanomaterial exposures further inflammatory host responses in vivo. This review focuses on describing macrophage-based initiation of downstream hallmark immunological and inflammatory processes resulting from phagocyte exposure to and internalization of nanomaterials.
Collapse
Affiliation(s)
- Heather Herd Gustafson
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA ; University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA
| | - Dolly Holt-Casper
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
| | - David W Grainger
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA ; University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA ; University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, 30 South 2000 East, Rm 301, Salt Lake City, UT USA 84112
| | - Hamidreza Ghandehari
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA ; University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA ; University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, 30 South 2000 East, Rm 301, Salt Lake City, UT USA 84112
| |
Collapse
|
45
|
Mack I, Hector A, Ballbach M, Kohlhäufl J, Fuchs KJ, Weber A, Mall MA, Hartl D. The role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases. Mol Cell Pediatr 2015; 2:3. [PMID: 26542293 PMCID: PMC4530573 DOI: 10.1186/s40348-015-0014-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/09/2015] [Indexed: 01/27/2023] Open
Abstract
Chitin, after cellulose, the second most abundant biopolymer on earth, is a key component of insects, fungi, and house-dust mites. Lower life forms are endowed with chitinases to defend themselves against chitin-bearing pathogens. Unexpectedly, humans were also found to express chitinases as well as chitinase-like proteins that modulate immune responses. Particularly, increased levels of the chitinase-like protein YKL-40 have been associated with severe asthma, cystic fibrosis, and other inflammatory disease conditions. Here, we summarize and discuss the potential role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases.
Collapse
Affiliation(s)
- Ines Mack
- Department of Pediatrics/UKBB, University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
| | - Andreas Hector
- Children's Hospital, University of Tübingen, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany.
| | - Marlene Ballbach
- Children's Hospital, University of Tübingen, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany.
| | - Julius Kohlhäufl
- Children's Hospital, University of Tübingen, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany.
| | - Katharina J Fuchs
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Geschwister-Scholl-Platz, 72074, Tübingen, Germany.
| | - Alexander Weber
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Geschwister-Scholl-Platz, 72074, Tübingen, Germany.
| | - Marcus A Mall
- Department of Translational Pulmonology, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Grabengasse 1, 69117, Heidelberg, Germany.
| | - Dominik Hartl
- Children's Hospital, University of Tübingen, Hoppe-Seyler-Strasse 1, 72076, Tübingen, Germany.
| |
Collapse
|
46
|
Vo TS, Ngo DH, Kang KH, Jung WK, Kim SK. The beneficial properties of marine polysaccharides in alleviation of allergic responses. Mol Nutr Food Res 2014; 59:129-38. [PMID: 25379652 DOI: 10.1002/mnfr.201400412] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/03/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022]
Abstract
Marine polysaccharides have been found as the principle component in cell wall structures of seaweeds or exoskeletons of crustaceans. Due to numerous pharmaceutical properties of marine polysaccharides such as antioxidant, anti-inflammatory, antiallergic, antitumor, antiobesity, antidiabetes, anticoagulant, antiviral, immunomodulatory, cardioprotective, and antihepatopathy activities, they have been applied in many fields of biomaterials, food, cosmetic, and pharmacology. Recently, several marine polysaccharides such alginate, porphyran, fucoidan, and chitin and its derivatives have been evidenced as downregulators of allergic responses due to enhancement of innate immune system, alteration of Th1/Th2 balance forward to Th1 cells, inhibition of IgE production, and suppression of mast cell degranulation. This contribution, therefore, focuses on antiallergic properties of marine polysaccharides and emphasizes their potential application as bioactive food ingredients as well as nutraceuticals for prevention of allergic disorders.
Collapse
Affiliation(s)
- Thanh-Sang Vo
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
| | | | | | | | | |
Collapse
|
47
|
Arginine-based polyester amide/polysaccharide hydrogels and their biological response. Acta Biomater 2014; 10:2482-94. [PMID: 24530559 DOI: 10.1016/j.actbio.2014.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 11/24/2022]
Abstract
An advanced family of biodegradable cationic hybrid hydrogels was designed and fabricated from two precursors via a UV photocrosslinking in an aqueous medium: unsaturated arginine (Arg)-based functional poly(ester amide) (Arg-UPEA) and glycidyl methacrylate chitosan (GMA-chitosan). These Arg-UPEA/GMA-chitosan hybrid hydrogels were characterized in terms of their chemical structure, equilibrium swelling ratio (Qeq), compressive modulus, interior morphology and biodegradation properties. Lysozyme effectively accelerated the biodegradation of the hybrid hydrogels. The mixture of both precursors in an aqueous solution showed near non-cytotoxicity toward porcine aortic valve smooth muscle cells at total concentrations up to 6mgml(-1). The live/dead assay data showed that 3T3 fibroblasts were able to attach and grow on the hybrid hydrogel and pure GMA-chitosan hydrogel well. Arg-UPEA/GMA-chitosan hybrid hydrogels activated both TNF-α and NO production by RAW 264.7 macrophages, and the arginase activity was also elevated. The integration of the biodegradable Arg-UPEA into the GMA-chitosan can provide advantages in terms of elevated and balanced NO production and arginase activity that free Arg supplement could not achieve. The hybrid hydrogels may have potential application as a wound healing accelerator.
Collapse
|
48
|
Bueter CL, Lee CK, Wang JP, Ostroff GR, Specht CA, Levitz SM. Spectrum and mechanisms of inflammasome activation by chitosan. THE JOURNAL OF IMMUNOLOGY 2014; 192:5943-51. [PMID: 24829412 DOI: 10.4049/jimmunol.1301695] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan, the deacetylated derivative of chitin, can be found in the cell wall of some fungi and is used in translational applications. We have shown that highly purified preparations of chitosan, but not chitin, activate the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in primed mouse bone marrow-derived macrophages (BMMΦ), inducing a robust IL-1β response. In this article, we further define specific cell types that are activated and delineate mechanisms of activation. BMMΦ differentiated to promote a classically activated (M1) phenotype released more IL-1β in response to chitosan than intermediate or alternatively activated macrophages (M2). Chitosan, but not chitin, induced a robust IL-1β response in mouse dendritic cells, peritoneal macrophages, and human PBMCs. Three mechanisms for NLRP3 inflammasome activation may contribute: K(+) efflux, reactive oxygen species, and lysosomal destabilization. The contributions of these mechanisms were tested using a K(+) efflux inhibitor, high extracellular potassium, a mitochondrial reactive oxygen species inhibitor, lysosomal acidification inhibitors, and a cathepsin B inhibitor. These studies revealed that each of these pathways participated in optimal NLRP3 inflammasome activation by chitosan. Finally, neither chitosan nor chitin stimulated significant release from unprimed BMMΦ of any of 22 cytokines and chemokines assayed. This study has the following conclusions: 1) chitosan, but not chitin, stimulates IL-1β release from multiple murine and human cell types; 2) multiple nonredundant mechanisms appear to participate in inflammasome activation by chitosan; and 3) chitin and chitosan are relatively weak stimulators of inflammatory mediators from unprimed BMMΦ. These data have implications for understanding the nature of the immune response to microbes and biomaterials that contain chitin and chitosan.
Collapse
Affiliation(s)
- Chelsea L Bueter
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Chrono K Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Gary R Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Charles A Specht
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| |
Collapse
|
49
|
The effect of chitin size, shape, source and purification method on immune recognition. Molecules 2014; 19:4433-51. [PMID: 24727416 PMCID: PMC6271096 DOI: 10.3390/molecules19044433] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 12/28/2022] Open
Abstract
The animal immune response to chitin is not well understood and needs to be investigated further. However, this is a challenging topic to study because of the technical difficulties in purifying chitin, and because this material usually comes associated with contaminating components that can activate the immune system. In this study, improvements to previously described purification protocols were investigated for chitin obtained from different sources, including commercial shellfish, Candida albicans yeast and hyphal cell walls, as well as cell walls of the filamentous fungi Aspergillus fumigatus and Mucor circinelloides. The immune response to these different chitin preparations was tested using human peripheral blood mononuclear cells. In agreement with previous literature, small chitin particles of an average size of 0.2 µm were not immunogenic. On the other hand, bigger chitin particles induced in some cases a pro-inflammatory response. The results of this work suggest that not only the purity and size of the chitin particles, but also their shape can influence immune recognition.
Collapse
|
50
|
Vo TS, Kim SK. Marine-derived polysaccharides for regulation of allergic responses. ADVANCES IN FOOD AND NUTRITION RESEARCH 2014; 73:1-13. [PMID: 25300539 DOI: 10.1016/b978-0-12-800268-1.00001-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polysaccharides are macromolecules made up of many monosaccharides joined together by glycosidic bonds. Polysaccharides from marine sources are widely distributed as the principle component in cell wall structures of seaweeds or exoskeletons of crustaceans. So far, marine polysaccharides have been used in many fields of biomaterials, food, cosmetic, and pharmacology. Especially, numerous pharmaceutical properties of marine polysaccharides have been revealed such as antioxidant, anti-inflammatory, antiallergic, antitumor, antiobesity, antidiabetes, anticoagulant, antiviral, immunomodulatory, cardioprotective, antihepatopathy, antiuropathy, and antirenalpathy activities. Recently, several marine polysaccharides such alginate, porphyran, fucoidan, and chitin and its derivatives have been found as modulators of allergic responses due to enhancing innate immune system, altering Th1/Th2 balance, inhibiting IgE production, and suppressing mast cell degranulation. This contribution, therefore, focuses specially on the immunomodulatory effect of marine polysaccharides and emphasizes their potential application as candidates of pharmaceuticals as well as nutraceuticals to prevent allergic disorders.
Collapse
Affiliation(s)
- Thanh-Sang Vo
- Marine Bioprocess Research Center, Pukyong National University, Busan, South Korea
| | - Se-Kwon Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, South Korea; Department of Chemistry, Pukyong National University, Busan, South Korea.
| |
Collapse
|