1
|
He H, Cai L, Lin Y, Zheng F, Liao W, Xue X, Pan W. Advances in the understanding of talaromycosis in HIV-negative patients (especially in children and patients with hematological malignancies): A comprehensive review. Med Mycol 2024; 62:myae094. [PMID: 39289007 DOI: 10.1093/mmy/myae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Talaromyces marneffei (T. marneffei) stands out as the sole thermobiphasic fungus pathogenic to mammals, including humans, within the fungal community encompassing Ascomycota, Eurotium, Eurotiumles, Fungiaceae, and Cyanobacteria. Thriving as a saprophytic fungus in its natural habitat, it transitions into a pathogenic yeast phase at the mammalian physiological temperature of 37°C. Historically, talaromycosis has been predominantly associated with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS), classified among the three primary opportunistic infections linked with AIDS, alongside tuberculosis and cryptococcosis. As advancements are made in HIV/AIDS treatment and control measures, the incidence of talaromycosis co-infection with HIV is declining annually, whereas the population of non-HIV-infected talaromycosis patients is steadily increasing. These patients exhibit diverse risk factors such as various types of immunodeficiency, malignant tumors, autoimmune diseases, and organ transplantation, among others. Yet, a limited number of retrospective studies have centered on the clinical characteristics and risk factors of HIV-negative talaromycosis patients, especially in children and patients with hematological malignancies, resulting in an inadequate understanding of this patient cohort. Consequently, we conducted a comprehensive review encompassing the epidemiology, pathogenesis, risk factors, clinical manifestations, diagnosis, treatment, and prognosis of HIV-negative talaromycosis patients, concluding with a prospectus of the disease's frontier research direction. The aim is to enhance comprehension, leading to advancements in the diagnosis and treatment rates for these patients, ultimately improving their prognosis.
Collapse
Affiliation(s)
- Haiyang He
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Liuyang Cai
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yusong Lin
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Fangwei Zheng
- Department of Dermatology, Linping District Traditional Chinese Medicine Hospital, Hangzhou 311103, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xiaochun Xue
- Department of Pharmacy, No. 905 Hospital of PLA Navy, Shanghai 200052, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology; The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
2
|
Santos ALS, Silva BA, da Cunha MML, Branquinha MH, Mello TP. Fibronectin-binding molecules of Scedosporium apiospermum: focus on adhesive events. Braz J Microbiol 2023; 54:2577-2585. [PMID: 37442880 PMCID: PMC10689634 DOI: 10.1007/s42770-023-01062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Scedosporium apiospermum is a widespread, emerging, and multidrug-resistant filamentous fungus that can cause localized and disseminated infections. The initial step in the infection process involves the adhesion of the fungus to host cells and/or extracellular matrix components. However, the mechanisms of adhesion involving surface molecules in S. apiospermum are not well understood. Previous studies have suggested that the binding of fungal receptors to fibronectin enhances its ability to attach to and infect host cells. The present study investigated the effects of fibronectin on adhesion events of S. apiospermum. The results revealed that conidial cells were able to bind to both immobilized and soluble human fibronectin in a typically dose-dependent manner. Moreover, fibronectin binding was virtually abolished in trypsin-treated conidia, suggesting the proteinaceous nature of the binding site. Western blotting assay, using fibronectin and anti-fibronectin antibody, evidenced 7 polypeptides with molecular masses ranging from 55 to 17 kDa in both conidial and mycelial extracts. Fibronectin-binding molecules were localized by immunofluorescence and immunocytochemistry microscopies at the cell wall and in intracellular compartments of S. apiospermum cells. Furthermore, a possible function for the fibronectin-like molecules of S. apiospermum in the interaction with host lung cells was assessed. Conidia pre-treated with soluble fibronectin showed a significant reduction in adhesion to either epithelial or fibroblast lung cells in a classically dose-dependent manner. Similarly, the pre-treatment of the lung cells with anti-fibronectin antibodies considerably diminished the adhesion. Collectively, the results demonstrated the presence of fibronectin-binding molecules in S. apiospermum cells and their role in adhesive events.
Collapse
Affiliation(s)
- André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), UFRJ, Rio de Janeiro, Brazil.
| | - Bianca A Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense (UFF), Nova Friburgo, Rio de Janeiro, Brazil
| | - Marcel M L da Cunha
- Núcleo Multidisciplinar de Pesquisa UFRJ-Xerém em Biologia (NUMPEX-BIO), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Thaís P Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
4
|
Shen LX, Yang D, Chen RF, Liu DH. Talaromyces marneffei Influences Macrophage Polarization and Sterilization Ability via the Arginine Metabolism Pathway in Vitro. Am J Trop Med Hyg 2022; 107:tpmd210568. [PMID: 35895344 PMCID: PMC9490654 DOI: 10.4269/ajtmh.21-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/07/2022] [Indexed: 11/26/2022] Open
Abstract
The opportunistic fungal pathogen Talaromyces marneffei, which is endemic across a narrow band of tropical Southeast Asia and southern China, is an intracellular pathogen that causes systemic and lethal infection through the mononuclear phagocyte system. The mechanisms by which T. marneffei successfully replicates and escapes the immune system remain unclear. To investigate the role of arginine metabolism in the escape of T. marneffei from killer macrophages, we assessed inducible nitric oxide synthase (iNOS) and arginase expression, nitric oxide (NO) production, arginase and phagocytic activity, and the killing of T. marneffei in a coculture system. Our results indicate that T. marneffei induced macrophage polarization toward the M2 phenotype and regulated the arginine metabolism pathway by prolonging infection, thereby reducing antimicrobial activity and promoting fungal survival. Moreover, inhibiting T. marneffei-induced macrophage arginase activity with Nω-hydroxy-nor-arginine restored NO synthesis and strengthened fungal killing. These findings indicate that T. marneffei affects macrophage polarization and inhibits macrophage antimicrobial function via the arginine metabolism pathway.
Collapse
Affiliation(s)
- Lin-xia Shen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- Department of Dermatology and Venereology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Di Yang
- Department of Dermatology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Ri-feng Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Dong-hua Liu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
5
|
Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J Fungi (Basel) 2022; 8:jof8020200. [PMID: 35205954 PMCID: PMC8880324 DOI: 10.3390/jof8020200] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Talaromycosis (Penicilliosis) is an opportunistic mycosis caused by the thermally dimorphic fungus Talaromyces (Penicillium) marneffei. Similar to other major causes of systemic mycoses, the extent of disease and outcomes are the results of complex interactions between this opportunistic human pathogen and a host’s immune response. This review will highlight the current knowledge regarding the dynamic interaction between T. marneffei and mammalian hosts, particularly highlighting important aspects of virulence factors, intracellular lifestyle and the mechanisms of immune defense as well as the strategies of the pathogen for manipulating and evading host immune cells.
Collapse
|
6
|
Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK. Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology 2021; 12:296-324. [PMID: 34900383 PMCID: PMC8654403 DOI: 10.1080/21501203.2021.1934176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aspergillosis, candidiasis, and cryptococcosis are the most common cause of mycoses-related disease and death among immune-compromised patients. Adhesins are cell-surface exposed proteins or glycoproteins of pathogens that bind to the extracellular matrix (ECM) constituents or mucosal epithelial surfaces of the host cells. The forces of interaction between fungal adhesins and host tissues are accompanied by ligand binding, hydrophobic interactions and protein-protein aggregation. Adherence is the primary and critical step involved in the pathogenesis; however, there is limited information on fungal adhesins compared to that on the bacterial adhesins. Except a few studies based on screening of proteome for adhesin identification, majority are based on characterization of individual adhesins. Recently, based on their characteristic signatures, many putative novel fungal adhesins have been predicted using bioinformatics algorithms. Some of these novel adhesin candidates have been validated by in-vitro studies; though, most of them are yet to be characterised experimentally. Morphotype specific adhesin expression as well as tissue tropism are the crucial determinants for a successful adhesion process. This review presents a comprehensive overview of various studies on fungal adhesins and discusses the targetability of the adhesins and adherence phenomenon, for combating the fungal infection in a preventive or therapeutic mode.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Ankita H Tripathi
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Poonam Gautam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Amit Pande
- Directorate of Coldwater Fisheries Research (DCFR), Nainital, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| |
Collapse
|
7
|
Ma H, Chan JFW, Tan YP, Kui L, Tsang CC, Pei SLC, Lau YL, Woo PCY, Lee PP. NLRP3 Inflammasome Contributes to Host Defense Against Talaromyces marneffei Infection. Front Immunol 2021; 12:760095. [PMID: 34912336 PMCID: PMC8666893 DOI: 10.3389/fimmu.2021.760095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Talaromyce marneffei is an important thermally dimorphic pathogen causing disseminated mycoses in immunocompromised individuals in southeast Asia. Previous studies have suggested that NLRP3 inflammasome plays a critical role in antifungal immunity. However, the mechanism underlying the role of NLRP3 inflammasome activation in host defense against T. marneffei remains unclear. We show that T. marneffei yeasts but not conidia induce potent IL-1β production. The IL-1β response to T. marneffei yeasts is differently regulated in different cell types; T. marneffei yeasts alone are able to induce IL-1β production in human PBMCs and monocytes, whereas LPS priming is essential for IL-1β response to yeasts. We also find that Dectin-1/Syk signaling pathway mediates pro-IL-1β production, and NLRP3-ASC-caspase-1 inflammasome is assembled to trigger the processing of pro-IL-1β into IL-1β. In vivo, mice deficient in NLRP3 or caspase-1 exhibit higher mortality rate and fungal load compared to wild-type mice after systemic T. marneffei infection, which correlates with the diminished recruitment of CD4 T cells into granulomas in knockout mice. Thus, our study first demonstrates that NLRP3 inflammasome contributes to host defense against T. marneffei infection.
Collapse
Affiliation(s)
- Haiyan Ma
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jasper F. W. Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yen Pei Tan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lin Kui
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Steven L. C. Pei
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu-Lung Lau
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Patrick C. Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pamela P. Lee
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Qiu X, Bajinka O, Wang L, Wu G, Tan Y. High-fat diet promotes epithelial-mesenchymal transition through enlarged growth of opportunistic pathogens and the intervention of saturated hydrogen. Am J Transl Res 2021; 13:6016-6030. [PMID: 34306341 PMCID: PMC8290812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/25/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES This study investigated the effects and mechanism of high-fat diet on the epithelial-mesenchymal transition (EMT) of respiratory tract and the intervention of saturated hydrogen on it. METHODS 80 five-week-old C57BL6/J male mice were randomly divided into normal control group, H2 group, high-fat (HF) group and HF+H2 group, making 20 mice in each group. The weights of the mice were measured on weekly basis. Six mice from each group were executed at every second week. Blood samples were collected for lipid testing. Lung tissues were collected for 16S rRNA gene sequencing, HE staining, immunofluorescence and quantitative real-time PCR (qPCR). RESULTS Compared with the control group, the mice in the HF group showed increased inflammatory cell infiltration, decreased expression of e-cadherin (E-cad) and increased expression of Twist. There were significant differences in the composition of bacteria in the lung, and the expression of isocitrate lyase (ICL) genes in Pseudomonas aeruginosa, Staphylococcus aureus and Acinetobacter baumannii, which were significantly associated with asthma were seen with a significant increasing trend. After the treatment of saturated hydrogen, the changes in lung microbial population, lung tissue infiltration of inflammatory cells and the transformation of epithelial stroma caused by high-fat diet were moderately alleviated. CONCLUSION High-fat diet can promote inflammation and EMT in the lung by enlarging the growth of glyoxylic acid cycle-dependent bacteria, and the pathological process are partly alleviated by saturated hydrogen.
Collapse
Affiliation(s)
- Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
| |
Collapse
|
9
|
Tsang CC, Lau SKP, Woo PCY. Sixty Years from Segretain’s Description: What Have We Learned and Should Learn About the Basic Mycology of Talaromyces marneffei? Mycopathologia 2019; 184:721-729. [DOI: 10.1007/s11046-019-00395-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Singh RS, Walia AK, Kennedy JF. Structural aspects and biomedical applications of microfungal lectins. Int J Biol Macromol 2019; 134:1097-1107. [DOI: 10.1016/j.ijbiomac.2019.05.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
|
11
|
|
12
|
Williamson PR. Role of laccase in the virulence of Talaromyces marneffei: A common link between AIDS-related fungal pathogens? Virulence 2016; 7:627-9. [PMID: 27282335 DOI: 10.1080/21505594.2016.1198867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Peter R Williamson
- a Laboratory of Clinical Infectious Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
13
|
Sapmak A, Kaewmalakul J, Nosanchuk JD, Vanittanakom N, Andrianopoulos A, Pruksaphon K, Youngchim S. Talaromyces marneffei laccase modifies THP-1 macrophage responses. Virulence 2016; 7:702-17. [PMID: 27224737 DOI: 10.1080/21505594.2016.1193275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Talaromyces (Penicillium) marneffei is an emerging opportunistic pathogen associated with HIV infection, particularly in Southeast Asia and southern China. The rapid uptake and killing of T. marneffei conidia by phagocytic cells along with the effective induction of an inflammatory response by the host is essential for disease control. T. marneffei produces a number of different laccases linked to fungal virulence. To understand the role of the various laccases in T. marneffei, laccase-encoding genes were investigated. Targeted single, double and triple gene deletions of laccases encoding lacA, lacB, and lacC showed no significant phenotypic effects suggesting redundancy of function. When a fourth laccase-encoding gene, pbrB, was deleted in the ΔlacA ΔlacB ΔlacC background, the quadruple mutant displayed delayed conidiation and the conidia were more sensitive to H2O2, sodium dodecyl sulfate (SDS), and antifungal agents than wild-type and other transformants. Conidia of the quadruple mutant showed marked differences in their interaction with the human monocyte cell line, THP-1 such that phagocytosis was significantly higher when compared with the wild-type at one and 2 hours of incubation while the phagocytic index was significantly different from 15 to 120 minutes. In addition, killing of the quadruple mutant by THP-1 cells was more efficient at 2 and 4 hours of incubation. The levels of the proinflammatory cytokines TNF-α, IL-1β and IL-6 from THP-1 cells infected with the quadruple mutant were also significantly increased in comparison with wild-type. The results demonstrate that production of laccases by T. marneffei actually promotes the pathogen's resistance to innate host defenses.
Collapse
Affiliation(s)
- Ariya Sapmak
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand.,b Faculty of Medical Technology, Nakhon Ratchasima College , Nakhon Ratchasima , Thailand
| | - Jutikul Kaewmalakul
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Joshua D Nosanchuk
- c Department of Medicine, Division of Infectious Diseases, and Department of Microbiology and Immunology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Nongnuch Vanittanakom
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Alex Andrianopoulos
- d Genetics, Genomics and Development, School of BioSciences, The University of Melbourne , Victoria , Australia
| | - Kritsada Pruksaphon
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Sirida Youngchim
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
14
|
Lectin activity in mycelial extracts of Fusarium species. Braz J Microbiol 2016; 47:775-80. [PMID: 27237111 PMCID: PMC4927685 DOI: 10.1016/j.bjm.2016.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022] Open
Abstract
Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to d-ribose, l-fucose, d-glucose, l-arabinose, d-mannitol, d-galactosamine hydrochloride, d-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-d-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age.
Collapse
|
15
|
Weerasinghe H, Payne M, Beard S, Andrianopoulos A. Organism-wide studies into pathogenicity and morphogenesis in Talaromyces marneffei. Future Microbiol 2016; 11:511-26. [PMID: 27073980 DOI: 10.2217/fmb.16.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Organism-wide approaches examining the genetic mechanisms controlling growth and proliferation have proven to be a powerful tool in the study of pathogenic fungi. For many fungal pathogens techniques to study transcription and protein expression are particularly useful, and offer insights into infection processes by these species. Here we discuss the use of approaches such as differential display, suppression subtractive hybridization, microarray, RNA-seq, proteomics, genetic manipulation and infection models for the AIDS-defining pathogen Talaromyces marneffei. Together these methods have broadened our understanding of the biological processes, and genes that underlie them, which are involved in switching between the saprophytic and pathogenic states of T. marneffei, the maintenance of these two specialized cell types and its ability to cause disease.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Michael Payne
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Sally Beard
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
16
|
Ye F, Luo Q, Zhou Y, Xie J, Zeng Q, Chen G, Su D, Chen R. Disseminated penicilliosis marneffei in immunocompetent patients: A report of two cases. Indian J Med Microbiol 2015; 33:161-5. [DOI: 10.4103/0255-0857.148433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Lau SKP, Tse H, Chan JSY, Zhou AC, Curreem SOT, Lau CCY, Yuen KY, Woo PCY. Proteome profiling of the dimorphic fungus Penicillium marneffei extracellular proteins and identification of glyceraldehyde-3-phosphate dehydrogenase as an important adhesion factor for conidial attachment. FEBS J 2013; 280:6613-26. [PMID: 24128375 DOI: 10.1111/febs.12566] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/26/2013] [Accepted: 10/04/2013] [Indexed: 12/18/2022]
Abstract
Despite being the most important thermal dimorphic fungus causing systemic mycosis in Southeast Asia, the pathogenic mechanisms of Penicillium marneffei remain largely unknown. By comparing the extracellular proteomes of P. marneffei in mycelial and yeast phases, we identified 12 differentially expressed proteins among which glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and heat shock protein 60 (HSP60) were found to be upregulated in mycelial and yeast phases respectively. Based on previous findings in other pathogens, we hypothesized that these two extracellular proteins may be involved in adherence during P. marneffei-host interaction. Using inhibition assays with recombinant GAPDH (rGAPDH) proteins and anti-rGAPDH sera, we demonstrated that adhesion of P. marneffei conidia to fibronectin and laminin was inhibited by rGAPDH or rabbit anti-rGAPDH serum in a dose-dependent manner. Similarly, a dose-dependent inhibition of conidial adherence to A549 pneumocytes by rGAPDH or rabbit anti-rGAPDH serum was observed, suggesting that P. marneffei GAPDH can mediate binding of conidia to human extracellular matrix proteins and pneumocytes. However, HSP60 did not exhibit similar inhibition on conidia adherence, and neither GAPDH norHSP60 exhibited inhibition on adherence to J774 or THP-1 macrophage cell lines. This report demonstrates GAPDH as an adherence factor in P. marneffei by mediating conidia adherence to host bronchoalveolar epithelium during the early establishment phase of infection.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Research Centre of Infection and Immunology and Carol Yu Centre for Infection, University of Hong Kong, China; Department of Microbiology, University of Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Purification and characterization of a thermostable mycelial lectin from basidiomycete Lentinus squarrosulus. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0273-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
|
20
|
A 32-kilodalton hydrolase plays an important role in Paracoccidioides brasiliensis adherence to host cells and influences pathogenicity. Infect Immun 2010; 78:5280-6. [PMID: 20876288 DOI: 10.1128/iai.00692-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the most crucial events during infection with the dimorphic fungus Paracoccidioides brasiliensis is adhesion to pulmonary epithelial cells, a pivotal step in the establishment of disease. In this study, we have evaluated the relevance of a 32-kDa protein, a putative adhesion member of the haloacid dehalogenase (HAD) superfamily of hydrolases, in the virulence of this fungus. Protein sequence analyses have supported the inclusion of PbHad32p as a hydrolase and have revealed a conserved protein only among fungal dimorphic and filamentous pathogens that are closely phylogenetically related. To evaluate its role during the host-pathogen interaction, we have generated mitotically stable P. brasiliensis HAD32 (PbHAD32) antisense RNA (aRNA) strains with consistently reduced gene expression. Knockdown of PbHAD32 did not alter cell vitality or viability but induced morphological alterations in yeast cells. Moreover, yeast cells with reduced PbHAD32 expression were significantly affected in their capacity to adhere to human epithelial cells and presented decreased virulence in a mouse model of infection. These data support the hypothesis that PbHad32p binds to extracellular matrix (ECM) proteins and modulates the initial immune response for evasion of host defenses. Our findings point to PbHAD32 as a novel virulence factor active during the initial interaction with host cells in P. brasiliensis.
Collapse
|
21
|
Singh RS, Bhari R, Kaur HP. Mushroom lectins: current status and future perspectives. Crit Rev Biotechnol 2010; 30:99-126. [PMID: 20105049 DOI: 10.3109/07388550903365048] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lectins are nonimmune proteins or glycoproteins that bind specifically to cell surface carbohydrates, culminating in cell agglutination. These are known to play key roles in host defense system and also in metastasis. Many new sources have been explored for the occurrence of lectins during the last few years. Numerous novel lectins with unique specificities and exploitable properties have been discovered. Mushrooms have attracted a number of researchers in food and pharmaceuticals. Many species have long been used in traditional Chinese medicines or functional foods in Japan and other Asian countries. A number of bioactive constituents have been isolated from mushrooms including polysaccharides, polysaccharopeptides, polysaccharide-protein complexes, proteases, ribonucleases, ribosome inactivating proteins, antifungal proteins, immunomodulatory proteins, enzymes, lectins, etc. Mushroom lectins are endowed with mitogenic, antiproliferative, antitumor, antiviral, and immune stimulating potential. In this review, an attempt has been made to collate the information on mushroom lectins, their blood group and sugar specificities, with an emphasis on their biomedical potential and future perspectives.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India.
| | | | | |
Collapse
|
22
|
Singh RS, Bhari R, Singh J, Tiwary AK. Purification and characterization of a mucin-binding mycelial lectin from Aspergillus nidulans with potent mitogenic activity. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0488-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Singh RS, Bhari R, Rai J. Further screening of Aspergillus
species for occurrence of lectins and their partial characterization. J Basic Microbiol 2010; 50:90-7. [DOI: 10.1002/jobm.200900299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Singh RS, Bhari R, Kaur HP, Vig M. Purification and Characterization of a Novel Thermostable Mycelial Lectin from Aspergillus terricola. Appl Biochem Biotechnol 2010; 162:1339-49. [DOI: 10.1007/s12010-009-8906-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/28/2009] [Indexed: 11/30/2022]
|
25
|
Singh RS, Sharma S, Kaur G, Bhari R. Screening of Penicillium species for occurrence of lectins and their characterization. J Basic Microbiol 2010; 49:471-6. [PMID: 19798656 DOI: 10.1002/jobm.200800282] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Out of 15 Penicillium species screened for lectin activities, P. griseofulvum and P. thomii were found to possess mycelial lectin activity. None of the species displayed extracellular or cell surface-bound lectin activity. Both species agglutinated rabbit erythrocytes. P. griseofulvum lectin showed specificity to human type O erythrocytes. While P. thomii lectin specifically agglutinated human type A erythrocytes. Highest lectin activities from P. thomii and P. griseofulvum were expressed after 8 and 7 days of growth, respectively. Lectins from both the species displayed a high binding affinity to chondroitin-6-sulphate, mucin, asialofetuin, D-sucrose, and D-trehalose. Ammonium sulphate at 50% saturation yielded 80% of the total lectin activity. Dialysis and ultrafiltration of the precipitates resulted in 1.79 and 3.46 fold purification of P. griseofulvum and P. thomii lectins, respectively. Both lectins showed pH optima between 7.0-8.0 and were stable near the neutral pH after 2 h. P. thomii lectin exhibited optimal activity at 35-40 degrees C, and P. griseofulvum lectin at 30-40 degrees C. P. thomii lectin showed a complete loss of activity above 40 degrees C, P. griseofulvum lectin was stable at or below 35 degrees C.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India.
| | | | | | | |
Collapse
|
26
|
Boyce KJ, Schreider L, Andrianopoulos A. In vivo yeast cell morphogenesis is regulated by a p21-activated kinase in the human pathogen Penicillium marneffei. PLoS Pathog 2009; 5:e1000678. [PMID: 19956672 PMCID: PMC2777384 DOI: 10.1371/journal.ppat.1000678] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 10/30/2009] [Indexed: 11/18/2022] Open
Abstract
Pathogens have developed diverse strategies to infect their hosts and evade the host defense systems. Many pathogens reside within host phagocytic cells, thus evading much of the host immune system. For dimorphic fungal pathogens which grow in a multicellular hyphal form, a central attribute which facilitates growth inside host cells without rapid killing is the capacity to switch from the hyphal growth form to a unicellular yeast form. Blocking this transition abolishes or severely reduces pathogenicity. Host body temperature (37°C) is the most common inducer of the hyphal to yeast transition in vitro for many dimorphic fungi, and it is often assumed that this is the inducer in vivo. This work describes the identification and analysis of a new pathway involved in sensing the environment inside a host cell by a dimorphic fungal pathogen, Penicillium marneffei. The pakB gene, encoding a p21-activated kinase, defines this pathway and operates independently of known effectors in P. marneffei. Expression of pakB is upregulated in P. marneffei yeast cells isolated from macrophages but absent from in vitro cultured yeast cells produced at 37°C. Deletion of pakB leads to a failure to produce yeast cells inside macrophages but no effect in vitro at 37°C. Loss of pakB also leads to the inappropriate production of yeast cells at 25°C in vitro, and the mechanism underlying this requires the activity of the central regulator of asexual development. The data shows that this new pathway is central to eliciting the appropriate morphogenetic response by the pathogen to the host environment independently of the common temperature signal, thus clearly separating the temperature- and intracellular-dependent signaling systems. Dimorphic fungal pathogens pose significant health and agricultural problems worldwide. These fungi have the capacity to switch between a multicellular hyphal growth form and a unicellular yeast growth form. Often one form is pathogenic, found in infected hosts, and the other is not. Many dimorphic fungal pathogens of humans produce the yeast form during infection and this form resides within host phagocytic immune cells, where it can tolerate killing by these cells and is not exposed to the acquired immune system. Inhibiting the pathogen's ability to switch growth forms has been shown to block pathogenicity. This study identifies a pathway used by the fungal pathogen to sense the host and switch to the appropriate growth form. This study provides new insights into the molecular mechanisms which are important for pathogenicity and may identify factors which can be targeted to block the ability of the pathogen to successfully reside within host cells.
Collapse
Affiliation(s)
- Kylie J. Boyce
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | - Lena Schreider
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | - Alex Andrianopoulos
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
27
|
Tiralongo J, Wohlschlager T, Tiralongo E, Kiefel MJ. Inhibition of Aspergillus fumigatus conidia binding to extracellular matrix proteins by sialic acids: a pH effect? Microbiology (Reading) 2009; 155:3100-3109. [DOI: 10.1099/mic.0.026997-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infection by Aspergillus fumigatus, which causes the life-threatening disease invasive aspergillosis, begins with the inhalation of conidia that adhere to and germinate in the lung. Previous studies have shown that A. fumigatus conidia express high levels of the negatively charged 9-carbon sugar sialic acid, and that sialic acid appears to mediate the binding of A. fumigatus conidia to basal lamina proteins. However, despite the ability of sialic acid to inhibit adherence of A. fumigatus conidia, the exact mechanism by which this binding occurs remains unresolved. Utilizing various free sialic acids and other carbohydrates, sialic acid derivatives, sialoglycoconjugates, glycoproteins, α-keto acid related compounds and amino acids we have found that the binding of A. fumigatus conidia to type IV collagen and fibrinogen was inhibited by (i) glycoproteins (in a sialic acid-independent manner), and (ii) free sialic acids, glucuronic acid and α-keto acid related compounds. However, inhibition by the latter was found to be the result of a shift in pH from neutral (pH 7.4) to acidic (less than pH 4.6) induced by the relatively high concentrations of free sialic acids, glucuronic acid and α-keto acid related compounds used in the binding assays. This suggests that previous reports describing inhibition of A. fumigatus conidia binding by free sialic acid may actually be due to a pH shift similar to that shown here. As previously reported, we found that A. fumigatus conidia express only N-acetylneuraminic acid, the most common sialic acid found in nature. However, A. fumigatus appears to do so by an alternative mechanism to that seen in other organisms. We report here that A. fumigatus (i) does not incorporate sialic acid obtained from the environment, (ii) does not synthesize and incorporate sialic acid from exogenous N-acetylmannosamine, and (iii) lacks homologues of known sialic acid biosynthesizing enzymes.
Collapse
Affiliation(s)
- Joe Tiralongo
- Institute for Glycomics, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Therese Wohlschlager
- Institute for Glycomics, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Evelin Tiralongo
- School of Pharmacy, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Milton J. Kiefel
- Institute for Glycomics, Gold Coast Campus, Griffith University, QLD 4222, Australia
| |
Collapse
|
28
|
Srinoulprasert Y, Pongtanalert P, Chawengkirttikul R, Chaiyaroj SC. Engagement of Penicillium marneffei conidia with multiple pattern recognition receptors on human monocytes. Microbiol Immunol 2009; 53:162-72. [PMID: 19302527 DOI: 10.1111/j.1348-0421.2008.00102.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
P. marneffei is a thermal dimorphic fungus which causes penicilliosis, an opportunistic infection in immunocompromised patients in South and Southeast Asia. Little is known about the innate immune response to P. marneffei infection. Therefore, the initial response of macrophages to P. marneffei conidia was evaluated by us. Adhesion between monocytes from healthy humans and fungal conidia was examined and found to be specifically inhibited by MAbs against PRR, such as MR, (TLR)1, TLR2, TLR4, TLR6, CD14, CD11a, CD11b, and CD18. To study the consequences of these interactions, cytokines were also examined by ELISA. Binding of P. marneffei conidia to monocytes was significantly inhibited, in a dose-dependent manner, by MAbs against MR, TLR1, TLR2, TLR4, TLR6, CD14, CD11b and CD18. When monocytes were co-cultured with the conidia, there was an increase in the amount of surface CD40 and CD86 expression, together with TNF-alpha and IL-1beta production, compared to unstimulated controls. In assays containing anti-TLR4 or anti-CD14 antibody, reduction in the amount of TNF-alpha released by monocytes stimulated with P. marneffei conidia was detected. In addition, it was found that production of TNF-alpha and IL-1beta from adherent peripheral blood monocytes was partially impaired when heat-inactivated autologous serum, in place of untreated autologous serum, was added to the assay. These results demonstrate that various PRR on human monocytes participate in the initial recognition of P. marneffei conidia, and the engagement of PRR could partly initiate proinflammatory cytokine production.
Collapse
Affiliation(s)
- Yuttana Srinoulprasert
- Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
29
|
Youngchim S, Vanittanakom N, Hamilton AJ. Analysis of the enzymatic activity of mycelial and yeast phases of Penicillium marneffei. Med Mycol 2008. [DOI: 10.1111/j.1365-280x.1999.00235.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
González A, Caro E, Muñoz C, Restrepo A, Hamilton AJ, Cano LE. Paracoccidioides brasiliensis conidia recognize fibronectin and fibrinogen which subsequently participate in adherence to human type II alveolar cells: Involvement of a specific adhesin. Microb Pathog 2008; 44:389-401. [DOI: 10.1016/j.micpath.2007.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 11/24/2022]
|
31
|
Cooper CR, Vanittanakom N. Insights into the pathogenicity of Penicillium marneffei. Future Microbiol 2008; 3:43-55. [PMID: 18230033 DOI: 10.2217/17460913.3.1.43] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Penicillium marneffei is a significant pathogen of AIDS patients in Southeast Asia. This fungus is unique in that it is the only dimorphic member of the genus. Pathogenesis of P. marneffei requires the saprobic mold form to undergo a morphological change upon tissue invasion. The in vivo form of this fungus reproduces as a fission yeast that capably evades the host immune system. The processes that control these morphological changes, better termed as phase transition, can be replicated in vitro by incubation of the mold form at 37 degrees C. The unidentified molecular mechanisms regulating phase transition in this fungus are now being uncovered using modern methodologies and novel strategies. A better comprehension of these underlying regulatory pathways will provide insight into eukaryotic cellular development as well as the potential factors responsible for infections caused by P. marneffei and other fungi. Such knowledge may lead to better chemotherapeutic interventions of fungal diseases.
Collapse
Affiliation(s)
- Chester R Cooper
- Department of Biological Sciences, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA.
| | | |
Collapse
|
32
|
Caro E, Gonzalez Á, Muñoz C, Urán ME, Restrepo Á, John Hamilton A, Elena Cano L. Recognition of laminin byParacoccidioides brasiliensisconidia: a possible mechanism of adherence to human type II alveolar cells. Med Mycol 2008; 46:795-804. [DOI: 10.1080/13693780802073108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanisms in human pathogenic fungi. Med Mycol 2008; 46:749-72. [DOI: 10.1080/13693780802206435] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
34
|
Kukreja N, Arora N, Singh BP, Das HR, Sridhara S. Role of Glycoproteins Isolated from Epicoccum purpurascens in Host-Pathogen Interaction. Pathobiology 2007; 74:186-92. [PMID: 17643064 DOI: 10.1159/000103378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 03/16/2007] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Attachment to host matrix is an important provisory step for the institution of any fungal infection. The present study investigates the role of glycoproteins of Epicoccum purpurascens in host-fungal adherence. METHODS Epicoccum spore-mycelial extract was fractionated on a concanavalin A-Sepharose column. Three glycoproteins of 12, 17 and 33 kDa (Epi p 1) were electroeluted and checked for hemagglutination and hemagglutination inhibition. The monosaccharide content of the highly potent protein Epi p 1 was determined by high-performance anion exchange chromatography and pulsed amperometric detection. The interaction of Epi p 1 with mannose-binding lectin (MBL) leading to the activation of the complement system was studied by immunoblot, ELISA and ELISA inhibition techniques. Immunoblot and immunoblot inhibition were carried out with culture filtrate to determine the nature of Epi p 1. RESULTS 33 (Epi p 1)-, 17- and 12-kDa proteins were 58, 46 and 38 times more potent than crude extract in hemagglutination activity (HA). The HA of Epi p 1 was inhibited by N-acetyl glucosamine, glucose and laminin. Epi p 1 had a high mannose content, showed MBL binding in ion-dependent manner and caused complement activation. The protein was detected in culture filtrate and thus seems to play a significant role in fungal invasion. CONCLUSION Epi p 1, an allergenic glycoprotein of E. purpurascens, is involved in host-fungal interactions through MBL.
Collapse
Affiliation(s)
- Neetu Kukreja
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi University, Delhi, India
| | | | | | | | | |
Collapse
|
35
|
Vanittanakom N, Cooper CR, Fisher MC, Sirisanthana T. Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin Microbiol Rev 2006; 19:95-110. [PMID: 16418525 PMCID: PMC1360277 DOI: 10.1128/cmr.19.1.95-110.2006] [Citation(s) in RCA: 354] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillium marneffei infection is an important emerging public health problem, especially among patients infected with human immunodeficiency virus in the areas of endemicity in southeast Asia, India, and China. Within these regions, P. marneffei infection is regarded as an AIDS-defining illness, and the severity of the disease depends on the immunological status of the infected individual. Early diagnosis by serologic and molecular assay-based methods have been developed and are proving to be important in diagnosing infection. The occurrence of natural reservoirs and the molecular epidemiology of P. marneffei have been studied; however, the natural history and mode of transmission of the organism remain unclear. Soil exposure, especially during the rainy season, has been suggested to be a critical risk factor. Using a highly discriminatory molecular technique, multilocus microsatellite typing, to characterize this fungus, several isolates from bamboo rats and humans were shown to share identical multilocus genotypes. These data suggest either that transmission of P. marneffei may occur from rodents to humans or that rodents and humans are coinfected from common environmental sources. These putative natural cycles of P. marneffei infection need further investigation. Studies on the fungal genetics of P. marneffei have been focused on the characterization of genetic determinants that may play important roles in asexual development, mycelial-to-yeast phase transition, and the expression of antigenic determinants. Molecular studies have identified several genes involved in germination, hyphal development, conidiogenesis, and yeast cell polarity. A number of functionally important genes, such as the malate synthase- and catalase-peroxidase protein-encoding genes, have been identified as being upregulated in the yeast phase. Future investigations pertaining to the roles of these genes in host-fungus interactions may provide the key knowledge to understanding the pathogenicity of P. marneffei.
Collapse
Affiliation(s)
- Nongnuch Vanittanakom
- Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | |
Collapse
|
36
|
Srinoulprasert Y, Kongtawelert P, Chaiyaroj SC. Chondroitin sulfate B and heparin mediate adhesion of Penicillium marneffei conidia to host extracellular matrices. Microb Pathog 2006; 40:126-32. [PMID: 16455229 DOI: 10.1016/j.micpath.2005.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2005] [Accepted: 12/08/2005] [Indexed: 11/24/2022]
Abstract
Penicilliosis is a disseminated infection in immunocompromised individuals caused by the dimorphic fungus, Penicillium marneffei. Very little is known about its route of infection, however, it is thought that initial infection occurs through inhalation of conidia. We investigated the role played by various extracellular matrix glycosaminoglycans (GAGs) in the initial adherence of P. marneffei conidia using a direct adhesion assay. GAGs were further used to block the binding of fungal spores to human lung epithelial cells and highly sulfated GAGs were tested for their inhibitory effects owing to their degree of sulfation. Our results demonstrated high levels of conidial adhesion to chondroitin sulfate B, heparin and highly sulfated chitosan (CP-3). No direct adherence was observed to immobilized chondroitin sulfate (CS) A, CSC, CSD and hyaluronic acid, as well as chitosans with low sulfate content. The results suggested that P. marneffei conidia bind to iduronic acid (IdoA) of the polysaccharide chains. Involvement of negatively charged sulfate groups in adhesion was also indicated. Furthermore, significant inhibition of conidial adherence to A549 cells was observed in the presence of CSB, heparan sulfate (HS), heparin and CP-3. It was further demonstrated that GAGs can affect the adhesion of conidia to fibronectin and laminin, glycoproteins that have previously been implicated as adhesive receptors for fungal conidia. CSB and HS could partially inhibit the adhesion of fungal conidia to laminin and fibronectin implying that conidia can weakly interact with the IdoA GAG-binding domain(s) of these molecules. The data indicated that, in addition to fibronectin and laminin, IdoA-containing GAGs may play an important role in fungal adherence to the surface of human lung epithelium.
Collapse
Affiliation(s)
- Yuttana Srinoulprasert
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | |
Collapse
|
37
|
Mendes-Giannini MJS, Soares CP, da Silva JLM, Andreotti PF. Interaction of pathogenic fungi with host cells: Molecular and cellular approaches. ACTA ACUST UNITED AC 2005; 45:383-94. [PMID: 16087326 DOI: 10.1016/j.femsim.2005.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/27/2005] [Indexed: 11/26/2022]
Abstract
This review provides an overview of several molecular and cellular approaches that are likely to supply insights into the host-fungus interaction. Fungi present intra- and/or extracellular host-parasite interfaces, the parasitism phenomenon being dependent on complementary surface molecules. The entry of the pathogen into the host cell is initiated by the fungus adhering to the cell surface, which generates an uptake signal that may induce its cytoplasmatic internalization. Furthermore, microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. On the other hand, integrins mediate the tight adhesion of cells to the ECM at sites referred to as focal adhesions and also play a role in cell signaling. The phosphorylation process is an important mechanism of cell signaling and regulation; it has been implicated recently in defense strategies against a variety of pathogens that alter host-signaling pathways in order to facilitate their invasion and survival within host cells. The study of signal transduction pathways in virulent fungi is especially important in view of their putative role in the regulation of pathogenicity. This review discusses fungal adherence, changes in cytoskeletal organization and signal transduction in relation to host-fungus interaction.
Collapse
|
38
|
Noritomi DT, Bub GL, Beer I, da Silva ASF, de Cleva R, Gama-Rodrigues JJ. Multiple brain abscesses due to Penicillium spp infection. Rev Inst Med Trop Sao Paulo 2005; 47:167-70. [PMID: 16021292 DOI: 10.1590/s0036-46652005000300010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We present a case of central nervous system (CNS) infection by a member of the Penicillium genera in a HIV-negative man in Brazil. The patient was admitted complaining of loss of visual fields and speech disturbances. CT scan revealed multiple brain abscesses. Stereothacic biopsies revealed fungal infection and amphotericin B treatment begun with initial improvement. The patient died few days later as a consequence of massive gastrointestinal bleeding due to ruptured esophageal varices. The necropsy and final microbiologic analyses disclosed infection by Penicillium sp. There are thousands of fungal species of the Penicillium genera. Systemic penicilliosis is caused by the P. marneffei and was formerly a rare disease, but now is one of the most common opportunistic infection of AIDS patients in Southeast Asia. The clinical presentation usually involves the respiratory system and the skin, besides general symptoms like fever and weight loss. Penicillium spp infection caused by species other than P. marneffei normally cause only superficial or allergic disease but rare cases of invasive disease do occur. We report the fourth case of Penicillium spp CNS infection.
Collapse
Affiliation(s)
- Danilo Teixeira Noritomi
- Gastroenterology Department, Hospital das Clínicas, Medical School, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
González A, Gómez BL, Diez S, Hernández O, Restrepo A, Hamilton AJ, Cano LE. Purification and partial characterization of a Paracoccidioides brasiliensis protein with capacity to bind to extracellular matrix proteins. Infect Immun 2005; 73:2486-95. [PMID: 15784595 PMCID: PMC1087412 DOI: 10.1128/iai.73.4.2486-2495.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms adhere to extracellular matrix proteins by means of their own surface molecules. Paracoccidioides brasiliensis conidia have been shown to be capable of interacting with extracellular matrix proteins. We aimed at determining the presence of fungal proteins that could interact with extracellular matrix protein and, if found, attempt their purification and characterization. Various extracts were prepared from P. brasiliensis mycelial and yeast cultures (total homogenates, beta-mercaptoethanol, and sodium dodecyl sulfate [SDS] extracts) and analyzed by ligand affinity assays with fibronectin, fibrinogen and laminin. Two polypeptides were detected in both fungal forms. SDS extracts that interacted with all the extracellular matrix protein were tested; their molecular masses were 19 and 32 kDa. Analysis of the N-terminal amino acid sequence of the purified 32-kDa mycelial protein showed substantial homology with P. brasiliensis, Histoplasma capsulatum, and Neurospora crassa hypothetical proteins. Additionally, a monoclonal antibody (MAb) produced against this protein recognized the 32-kDa protein in the SDS extracts of both fungal forms for immunoblot. Immunofluorescence analysis revealed that this MAb reacted not only with mycelia and yeast cells, but also with conidia, indicating that this protein was shared by the three fungal propagules. By immunoelectron microscopy, this protein was detected in the cell walls and in the cytoplasm. Both the 32-kDa purified protein and MAb inhibited the adherence of conidia to the three extracellular matrix proteins in a dose-dependent manner. These findings demonstrate the presence of two polypeptides capable of interacting with extracellular matrix proteins on the surface of P. brasiliensis propagules, indicating that there may be common receptors for laminin, fibronectin, and fibrinogen. These proteins would be crucial for initial conidial adherence and perhaps also in dissemination of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Angel González
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Carrera 72 A, No. 78B 141, A. A. 73 78 Medellín, Colombia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Gonzalez A, Gomez BL, Restrepo A, Hamilton AJ, Cano LE. Recognition of extracellular matrix proteins byParacoccidioides brasiliensisyeast cells. Med Mycol 2005; 43:637-45. [PMID: 16396249 DOI: 10.1080/13693780500064599] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The adhesion of microorganism to host cells or extracellular matrix (ECM) proteins is the first step in the establishment of an infectious process. Interaction between Paracoccidioides brasiliensis yeast cells and ECM proteins has been previously noted. In vivo, in the chronic phase of experimental paracoccidioidomycosis (PCM), laminin and fibronectin have been detected on the surface of yeast cells located inside granulomatous lesions. The aim of the present study was to examine the ability of P. brasiliensis yeast cells to interact with extracellular matrix proteins (laminin, fibrinogen and fibronectin) and to establish which molecules were involved in this interaction. Immunofluorescence microscopy and flow cytometry demonstrated that all three ECM proteins tested were able to bind to the surface of P. brasiliensis yeast cells. Treatment with trypsin, chymotrypsin, chitinase, proteinase K or different sugars resulted in no change in laminin binding. In addition, ligand affinity assays were performed using different yeast extracts (total homogenates, beta-mercaptoethanol, SDS extracts). These assays demonstrated the presence of 19 and 32-kDa proteins in the cell wall with the ability to bind to laminin, fibrinogen and fibronectin. This interaction could be important in mediating attachment of the fungus to host tissues and may consequently play a role in the pathogenesis of PCM.
Collapse
Affiliation(s)
- Angel Gonzalez
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas Medellin, Colombia.
| | | | | | | | | |
Collapse
|
41
|
Taylor ML, Duarte-Escalante E, Pérez A, Zenteno E, Toriello C. Histoplasma capsulatum yeast cells attach and agglutinate human erythrocytes. Med Mycol 2004; 42:287-92. [PMID: 15283245 DOI: 10.1080/13693780310001644734] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The ability of yeast cells of Histoplasma capsulatum to attach and agglutinate human erythrocytes has been described. This is the first report involving these yeasts in the hemagglutination phenomenon. Results revealed that the yeast cells were able to bind to erythrocytes irrespective of blood groups and to agglutinate them when a high density of yeast cells was used. Assays on the inhibition of yeast attachment to erythrocytes were also performed, using sugar-treated yeast cells. Results indicate that galactose (Gal), mainly the beta-anomer, specially inhibited yeast attachment. Disaccharides (Gal-derivatives) and glycosaminoglycans containing Gal residues, mainly chondroitin sulfate C, promote this type of inhibition. In addition, preliminary data of inhibition assays also involved a probable ionic strength driven mechanism mediated by sialic acid and heparan sulfate, suggesting that yeast binding to erythrocytes could be associated with negative charges of both molecules.
Collapse
Affiliation(s)
- M L Taylor
- Department of Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México.
| | | | | | | | | |
Collapse
|
42
|
Yuen KY, Pascal G, Wong SSY, Glaser P, Woo PCY, Kunst F, Cai JJ, Cheung EYL, Médigue C, Danchin A. Exploring the Penicillium marneffei genome. Arch Microbiol 2003; 179:339-53. [PMID: 12640520 DOI: 10.1007/s00203-003-0533-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2002] [Revised: 02/17/2003] [Accepted: 02/17/2003] [Indexed: 10/20/2022]
Abstract
Penicillium marneffei is a dimorphic fungus that intracellularly infects the reticuloendothelial system of humans and bamboo rats. Endemic in Southeast Asia, it infects 10% of AIDS patients in this region. The absence of a sexual stage and the highly infectious nature of the mould-phase conidia have impaired studies on thermal dimorphic switching and host-microbe interactions. Genomic analysis, therefore, could provide crucial information. Pulsed-field gel electrophoresis of genomic DNA of P. marneffei revealed three or more chromosomes (5.0, 4.0, and 2.2 Mb). Telomeric fingerprinting revealed 6-12 bands, suggesting that there were chromosomes of similar sizes. The genome size of P. marneffei was hence about 17.8-26.2 Mb. G+C content of the genome is 48.8 mol%. Random exploration of the genome of P. marneffei yielded 2303 random sequence tags (RSTs), corresponding to 9% of the genome, with 11.7, 6.3, and 17.4% of the RSTs having sequence similarity to yeast-specific sequences, non-yeast fungus sequences, and both (common sequences), respectively. Analysis of the RSTs revealed genes for information transfer (ribosomal protein genes, tRNA synthetase subunits, translation initiation, and elongation factors), metabolism, and compartmentalization, including several multi-drug-resistance protein genes and homologues of fluconazole-resistance gene. Furthermore, the presence of genes encoding pheromone homologues and ankyrin repeat-containing proteins of other fungi and algae strongly suggests the presence of a sexual stage that presumably exists in the environment.
Collapse
|
43
|
Tronchin G, Esnault K, Sanchez M, Larcher G, Marot-Leblond A, Bouchara JP. Purification and partial characterization of a 32-kilodalton sialic acid-specific lectin from Aspergillus fumigatus. Infect Immun 2002; 70:6891-5. [PMID: 12438366 PMCID: PMC133100 DOI: 10.1128/iai.70.12.6891-6895.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2002] [Revised: 08/28/2002] [Accepted: 09/16/2002] [Indexed: 11/20/2022] Open
Abstract
Adherence of the opportunistic fungus Aspergillus fumigatus to the extracellular matrix components is considered a crucial step in the establishment of the infection. Given the high carbohydrate content of these glycoproteins and the role of carbohydrate-protein interactions in numerous adherence processes, the presence of a lectin in A. fumigatus was investigated. Different fungal extracts obtained by sonication or grinding in liquid nitrogen from resting or swollen conidia, as well as from germ tubes and mycelium, were tested by hemagglutination assays using rabbit erythrocytes. A lectin activity was recovered in all the extracts tested. However, sonication of resting conidia resulted in the highest specific activity. Purification of the lectin was achieved by gel filtration followed by ion-exchange and hydrophobic-interaction chromatographies. Analysis of the purified lectin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed an apparent molecular mass of 32 kDa, which is similar to that of the alkaline protease already identified from different strains of A. fumigatus. However, as evidenced by the use of an alkaline protease-deficient mutant, the two activities were supported by distinct proteins. In addition, hemagglutination inhibition experiments using different saccharides and glycoproteins demonstrated the specificity of the lectin for sialic acid residues. Together these results suggest that this lectin may contribute to the attachment of conidia to the extracellular matrix components through the recognition of the numerous terminal sialic acid residues of their carbohydrate chains.
Collapse
Affiliation(s)
- Guy Tronchin
- Groupe d'Etude des Interactions Hôte-Parasite, UPRES EA 3142, Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France.
| | | | | | | | | | | |
Collapse
|
44
|
Limongi CL, Alviano CS, De Souza W, Rozental S. Isolation and partial characterization of an adhesin from Fonsecaea pedrosoi. Med Mycol 2001; 39:429-37. [PMID: 12054054 DOI: 10.1080/mmy.39.5.429.437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We showed previously that mannose and N-acetylglucosamine (GlcNAc) residues are involved in the process of adhesion of Fonsecaea pedrosoi, the causative agent of chromoblastomycosis, to epithelial cells. It was then suggested that lectin-like molecules would be involved in the interaction. In the present study, we used fluorescein isothiocyanate-labeled neoglycoproteins (bovine serum albumin [BSA]-mannose and BSA-GlcNAc) to analyze the presence of sugar-binding proteins on the surface of conidia of F. pedrosoi grown at 28 and 37 degrees C. Binding of the neoglycoproteins was measured using flow cytometry. Fungal conidia expressed high levels of binding sites for BSA-mannose and BSA-GlcNAc when grown at 37 degrees C rather than 28 degrees C. Binding was inhibited by previous incubation of the conidia in the presence of chloroquine and trypsin. Chloroquine treatment also inhibited the interaction of fungal conidia with Chinese hamster ovary cells. Extracts from the conidia, obtained using a mechanical cell homogenizer, were purified by affinity chromatography using mannose-agarose or GlcNAc-agarose column. Polyacrylamide gel electrophoresis of the purified material from both columns showed a single protein band of 50 kDa, suggesting that the same lectin-like protein recognizes both carbohydrates.
Collapse
Affiliation(s)
- C L Limongi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
45
|
Wasylnka JA, Moore MM. Adhesion of Aspergillus species to extracellular matrix proteins: evidence for involvement of negatively charged carbohydrates on the conidial surface. Infect Immun 2000; 68:3377-84. [PMID: 10816488 PMCID: PMC97605 DOI: 10.1128/iai.68.6.3377-3384.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasive lung disease caused by Aspergillus species is a potentially fatal infection in immunocompromised patients. The adhesion of Aspergillus fumigatus conidia to proteins in the basal lamina is thought to be an initial step in the development of invasive aspergillosis. The purpose of this study was to determine the mechanism of adhesion of A. fumigatus conidiospores to basal-lamina proteins and to determine whether conidia possess unique adhesins which allow them to colonize the host. We compared conidia from different Aspergillus species for the ability to bind to purified fibronectin and intact basal lamina. Adhesion assays using immobilized fibronectin or type II pneumocyte-derived basal lamina showed that A. fumigatus conidia bound significantly better than those of other Aspergillus species to both fibronectin and intact basal lamina. Neither desialylation nor complete deglycosylation of fibronectin decreased the binding of A. fumigatus conidia to fibronectin, suggesting that oligosaccharides on fibronectin were not involved in conidiospore binding. Further evidence for this hypothesis came from experiments using purified fragments of fibronectin; A. fumigatus conidia preferentially bound to the nonglycosylated 40-kDa fragment which contains the glycosaminoglycan (GAG) binding domain. Negatively charged carbohydrates, including dextran sulfate and heparin, as well as high-ionic-strength buffers, inhibited binding of A. fumigatus conidia to both fibronectin and intact basal lamina, suggesting that negatively charged carbohydrates on the surface of the conidium may bind to the GAG binding domain of fibronectin and other basal-lamina proteins. These data provide evidence for a novel mechanism of conidial attachment whereby adherence to fibronectin and other basal-lamina proteins is mediated via negatively charged carbohydrates on the conidial surface.
Collapse
Affiliation(s)
- J A Wasylnka
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
46
|
Mendes-Giannini MJS, Taylor ML, Bouchara JB, Burger E, Calich VLG, Escalante ED, Hanna SA, Lenzi HL, Machado MP, Miyaji M, Silva JLMD, Mota EM, Restrepo A, Restrepo S, Tronchin G, Vincenzi LR, Xidieh CF, Zenteno E. Pathogenesis II: Fungal responses to host responses: interaction of host cells with fungi. Med Mycol 2000. [DOI: 10.1080/mmy.38.s1.113.123] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
47
|
Youngchim S, Vanittanakom N, Hamilton AJ. Analysis of the enzymatic activity of mycelial and yeast phases of Penicillium marneffei. Med Mycol 1999; 37:445-50. [PMID: 10647127 DOI: 10.1046/j.1365-280x.1999.00235.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell-associated and extracellular enzymatic activities were examined in a total of 10 Penicillium marneffei isolates. Both mycelia and yeast expressed alkaline phosphatase, acid phosphatase and naphthol-AS-BI-phosphohydrolase activities, whereas a variety of other enzyme activities, including trypsin, chymotrypsin and alpha-fucosidase were absent. There was some inter-isolate variation in both mycelia and yeast in the activities of other enzymes such as esterases and galactosidases. Enzyme activities did not change significantly over the course of culturing in three representative isolates.
Collapse
Affiliation(s)
- S Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Thailand
| | | | | |
Collapse
|
48
|
Bouchara J, Tronchin G. Adhésion et pathogénicité dans les infections aspergillaires. Med Mal Infect 1999. [DOI: 10.1016/s0399-077x(00)87150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Hamilton AJ, Jeavons L, Youngchim S, Vanittanakom N. Recognition of fibronectin by Penicillium marneffei conidia via a sialic acid-dependent process and its relationship to the interaction between conidia and laminin. Infect Immun 1999; 67:5200-5. [PMID: 10496896 PMCID: PMC96871 DOI: 10.1128/iai.67.10.5200-5205.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion of Penicillium marneffei conidia to the extracellular matrix protein laminin via a sialic acid-dependent process has previously been demonstrated. This study describes the interaction of P. marneffei conidia with fibronectin and examines the relationship of this process to the recognition of laminin via conidia. Immunofluorescence microscopy demonstrated that fibronectin bound to the surface of conidia and to phialides, but not to hyphae, in a pattern similar to that reported for laminin. Conidia were able to bind to fibronectin immobilized on microtiter plates in a concentration-dependent manner. However, binding to fibronectin (at any given concentration of protein and conidia) was less than that to laminin under equivalent conditions. Soluble fibronectin and antifibronectin antibody inhibited adherence of conidia to fibronectin in the plate adherence assay; soluble laminin also caused pronounced inhibition. Various monosaccharides and several peptides had no effect on adherence to fibronectin. However, N-acetylneuraminic acid abolished adherence to fibronectin, indicating that the interaction was mediated through a sialic acid-dependent process; the latter parallels observations of laminin binding by conidia. Fibronectin binding (and binding of laminin) was considerably reduced by prolonged preincubation of conidia with chymotrypsin, suggesting the protein nature of the binding site. Conidia from older cultures were more adherent to both immobilized fibronectin and laminin than conidia from younger cultures. Ligand affinity binding demonstrated the presence of a 20-kDa protein with the ability to bind both fibronectin and laminin. There would therefore appear to be a common receptor for the binding of fibronectin and laminin on the surface of P. marneffei, and the interaction described here maybe important in mediating attachment of the fungus to host tissue.
Collapse
Affiliation(s)
- A J Hamilton
- Dunhill Dermatology Laboratory, St. John's Institute of Dermatology, Guys, Kings' and St. Thomas' Medical Schools, London, United Kingdom.
| | | | | | | |
Collapse
|
50
|
Abstract
Penicillium marneffei, a dimorphic fungus endemic in parts of Asia, causes disease in those with impaired cell-mediated immunity, especially persons with AIDS. The histopathology of penicilliosis marneffei features the intracellular infection of macrophages. We studied the interactions between human leukocytes and heat-killed yeast-phase P. marneffei. Monocyte-derived macrophages bound and internalized P. marneffei in the presence of complement-sufficient pooled human serum (PHS). Binding and phagocytosis were still seen if PHS was heat inactivated or omitted altogether. The binding of unopsonized P. marneffei to monocyte-derived macrophages occurred in the absence of divalent cations and was not affected by inhibitors of mannose and beta-glucan receptors or monoclonal antibodies directed against CD14 and CD11/CD18. Binding was profoundly inhibited by wheat germ agglutinin. A vigorous respiratory burst was seen in peripheral blood mononuclear cells (PBMC) stimulated with P. marneffei, regardless of whether the fungi were opsonized. However, tumor necrosis factor alpha (TNF-alpha) release from PBMC stimulated with P. marneffei occurred only if serum was present. These data demonstrate that (i) monocyte-derived macrophages bind and phagocytose P. marneffei even in the absence of opsonization, (ii) binding is divalent cation independent but is inhibited by wheat germ agglutinin, suggesting that the major receptor(s) recognizing P. marneffei is a glycoprotein with exposed N-acetyl-beta-D-glucosaminyl groups, (iii) P. marneffei stimulates the respiratory burst regardless of whether opsonins are present, and (iv) serum factors are required for P. marneffei to stimulate TNF-alpha release. The ability of unopsonized P. marneffei to parasitize mononuclear phagocytes without stimulating the production of TNF-alpha may be critical for the virulence of this intracellular parasite.
Collapse
Affiliation(s)
- Y Rongrungruang
- The Evans Memorial Department of Clinical Research and the Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|