1
|
Fan Y, Li P, Zhu D, Zhao C, Jiao J, Ji X, Du X. Effects of ESA_00986 Gene on Adhesion/Invasion and Virulence of Cronobacter sakazakii and Its Molecular Mechanism. Foods 2023; 12:2572. [PMID: 37444309 DOI: 10.3390/foods12132572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Cronobacter sakazakii is an opportunistic Gram-negative pathogen that has been identified as a causative agent of severe foodborne infections with a higher risk of mortality in neonates, premature infants, the elderly, and immunocompromised populations. The specific pathogenesis mechanisms of C. sakazakii, such as adhesion and colonization, remain unclear. Previously, we conducted comparative proteomic studies on the two strains with the stronger and weaker infection ability, respectively, and found an interesting protein, ESA_00986, which was more highly expressed in the strain with the stronger ability. This unknown protein, predicted to be a type of invasitin related to invasion, may be a critical factor contributing to its virulence. This study aimed to elucidate the precise roles of the ESA_00986 gene in C. sakazakii by generating gene knockout mutants and complementary strains. The mutant and complementary strains were assessed for their biofilm formation, mobility, cell adhesion and invasion, and virulence in a rat model. Compared with the wild-type strain, the mutant strain exhibited a decrease in motility, whereas the complementary strain showed comparable motility to the wild-type. The biofilm-forming ability of the mutant was weakened, and the mutant also exhibited attenuated adhesion to/invasion of intestinal epithelial cells (HCT-8, HICE-6) and virulence in a rat model. This indicated that ESA_00986 plays a positive role in adhesion/invasion and virulence. This study proves that the ESA_00986 gene encodes a novel virulence factor and advances our understanding of the pathogenic mechanism of C. sakazakii.
Collapse
Affiliation(s)
- Yufei Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dongdong Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chumin Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Ménard S, Lacroix-Lamandé S, Ehrhardt K, Yan J, Grassl GA, Wiedemann A. Cross-Talk Between the Intestinal Epithelium and Salmonella Typhimurium. Front Microbiol 2022; 13:906238. [PMID: 35733975 PMCID: PMC9207452 DOI: 10.3389/fmicb.2022.906238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovars are invasive gram-negative bacteria, causing a wide range of diseases from gastroenteritis to typhoid fever, representing a public health threat around the world. Salmonella gains access to the intestinal lumen after oral ingestion of contaminated food or water. The crucial initial step to establish infection is the interaction with the intestinal epithelium. Human-adapted serovars such as S. Typhi or S. Paratyphi disseminate to systemic organs and induce life-threatening disease known as typhoid fever, whereas broad-host serovars such as S. Typhimurium usually are limited to the intestine and responsible for gastroenteritis in humans. To overcome intestinal epithelial barrier, Salmonella developed mechanisms to induce cellular invasion, intracellular replication and to face host defence mechanisms. Depending on the serovar and the respective host organism, disease symptoms differ and are linked to the ability of the bacteria to manipulate the epithelial barrier for its own profit and cross the intestinal epithelium.This review will focus on S. Typhimurium (STm). To better understand STm pathogenesis, it is crucial to characterize the crosstalk between STm and the intestinal epithelium and decipher the mechanisms and epithelial cell types involved. Thus, the purpose of this review is to summarize our current knowledge on the molecular dialogue between STm and the various cell types constituting the intestinal epithelium with a focus on the mechanisms developed by STm to cross the intestinal epithelium and access to subepithelial or systemic sites and survive host defense mechanisms.
Collapse
Affiliation(s)
- Sandrine Ménard
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | - Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Jin Yan
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Agnès Wiedemann
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- *Correspondence: Agnès Wiedemann,
| |
Collapse
|
3
|
Balic A, Chintoan-Uta C, Vohra P, Sutton KM, Cassady-Cain RL, Hu T, Donaldson DS, Stevens MP, Mabbott NA, Hume DA, Sang HM, Vervelde L. Antigen Sampling CSF1R-Expressing Epithelial Cells Are the Functional Equivalents of Mammalian M Cells in the Avian Follicle-Associated Epithelium. Front Immunol 2019; 10:2495. [PMID: 31695701 PMCID: PMC6817575 DOI: 10.3389/fimmu.2019.02495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
The follicle-associated epithelium (FAE) is a specialized structure that samples luminal antigens and transports them into mucosa-associated lymphoid tissues (MALT). In mammals, transcytosis of antigens across the gut epithelium is performed by a subset of FAE cells known as M cells. Here we show that colony-stimulating factor 1 receptor (CSF1R) is expressed by a subset of cells in the avian bursa of Fabricius FAE. Expression was initially detected using a CSF1R-reporter transgene that also label subsets of bursal macrophages. Immunohistochemical detection using a specific monoclonal antibody confirmed abundant expression of CSF1R on the basolateral membrane of FAE cells. CSF1R-transgene expressing bursal FAE cells were enriched for expression of markers previously reported as putative M cell markers, including annexin A10 and CD44. They were further distinguished from a population of CSF1R-transgene negative epithelial cells within FAE by high apical F-actin expression and differential staining with the lectins jacalin, PHA-L and SNA. Bursal FAE cells that express the CSF1R-reporter transgene were responsible for the bulk of FAE transcytosis of labeled microparticles in the size range 0.02-0.1 μm. Unlike mammalian M cells, they did not readily take up larger bacterial sized microparticles (0.5 μm). Their role in uptake of bacteria was tested using Salmonella, which can enter via M cells in mammals. Labeled Salmonella enterica serovar Typhimurium entered bursal tissue via the FAE. Entry was partially dependent upon Type III secretion system-1. However, the majority of invading bacteria were localized to CSF1R-negative FAE cells and in resident phagocytes that express the phosphatidylserine receptor TIM4. CSF1R-expressing FAE cells in infected follicles showed evidence of cell death and shedding into the bursal lumen. In mammals, CSF1R expression in the gut is restricted to macrophages which only indirectly control M cell differentiation. The novel expression of CSF1R in birds suggests that these functional equivalents to mammalian M cells may have different ontological origins and their development and function are likely to be regulated by different growth factors.
Collapse
Affiliation(s)
- Adam Balic
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.,Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Cosmin Chintoan-Uta
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Prerna Vohra
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Kate M Sutton
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Robin L Cassady-Cain
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Tuan Hu
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David S Donaldson
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Mark P Stevens
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Neil A Mabbott
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - David A Hume
- Division of Genetics and Genomics, The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Helen M Sang
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| |
Collapse
|
4
|
A review of β-glucans as a growth promoter and antibiotic alternative against enteric pathogens in poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933917000241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
Da Silva C, Wagner C, Bonnardel J, Gorvel JP, Lelouard H. The Peyer's Patch Mononuclear Phagocyte System at Steady State and during Infection. Front Immunol 2017; 8:1254. [PMID: 29038658 PMCID: PMC5630697 DOI: 10.3389/fimmu.2017.01254] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
The gut represents a potential entry site for a wide range of pathogens including protozoa, bacteria, viruses, or fungi. Consequently, it is protected by one of the largest and most diversified population of immune cells of the body. Its surveillance requires the constant sampling of its encounters by dedicated sentinels composed of follicles and their associated epithelium located in specialized area. In the small intestine, Peyer’s patches (PPs) are the most important of these mucosal immune response inductive sites. Through several mechanisms including transcytosis by specialized epithelial cells called M-cells, access to the gut lumen is facilitated in PPs. Although antigen sampling is critical to the initiation of the mucosal immune response, pathogens have evolved strategies to take advantage of this permissive gateway to enter the host and disseminate. It is, therefore, critical to decipher the mechanisms that underlie both host defense and pathogen subversive strategies in order to develop new mucosal-based therapeutic approaches. Whereas penetration of pathogens through M cells has been well described, their fate once they have reached the subepithelial dome (SED) remains less well understood. Nevertheless, it is clear that the mononuclear phagocyte system (MPS) plays a critical role in handling these pathogens. MPS members, including both dendritic cells and macrophages, are indeed strongly enriched in the SED, interact with M cells, and are necessary for antigen presentation to immune effector cells. This review focuses on recent advances, which have allowed distinguishing the different PP mononuclear phagocyte subsets. It gives an overview of their diversity, specificity, location, and functions. Interaction of PP phagocytes with the microbiota and the follicle-associated epithelium as well as PP infection studies are described in the light of these new criteria of PP phagocyte identification. Finally, known alterations affecting the different phagocyte subsets during PP stimulation or infection are discussed.
Collapse
Affiliation(s)
| | - Camille Wagner
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Johnny Bonnardel
- Laboratory of Myeloid Cell Ontogeny and Functional Specialisation, VIB Inflammation Research Center, Ghent, Belgium
| | | | - Hugues Lelouard
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
6
|
Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens. Toxins (Basel) 2017; 9:toxins9020060. [PMID: 28208612 PMCID: PMC5331439 DOI: 10.3390/toxins9020060] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens can utilize tight junction proteins as receptors for attachment and subsequent internalization, while others modify or destroy the tight junction proteins by different pathways and thereby provide a gateway to the underlying tissue. This review aims to deliver an overview of the tight junction structures and function, and its role in enteric bacterial pathogenesis with a special focus on chickens. A main conclusion will be that the molecular mechanisms used by enteric pathogens to disrupt epithelial barrier function in chickens needs a much better understanding, explicitly highlighted for Campylobacter jejuni, Salmonella enterica and Clostridium perfringens. This is a requirement in order to assist in discovering new strategies to avoid damages of the intestinal barrier or to minimize consequences from infections.
Collapse
|
7
|
Flowers LJ, Bou Ghanem EN, Leong JM. Synchronous Disease Kinetics in a Murine Model for Enterohemorrhagic E. coli Infection Using Food-Borne Inoculation. Front Cell Infect Microbiol 2016; 6:138. [PMID: 27857935 PMCID: PMC5093121 DOI: 10.3389/fcimb.2016.00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/07/2016] [Indexed: 11/29/2022] Open
Abstract
Upon colonization of the intestinal epithelium, the attaching and effacing (AE) pathogen Enterohemorrhagic Escherichia coli (EHEC) effaces microvilli and forms pedestal-like structures beneath the adherent bacterium. The production of one of its virulence factors, the phage-encoded Shiga toxin (Stx) results in systemic disease, including the development of renal failure. Although EHEC does not productively infect conventional mice, EHEC infection can be modeled in mice utilizing a derivative of the natural murine AE pathogen Citrobacter rodentium (CR). Gavage of mice with CR(ΦStx2dact), a C. rodentium lysogenized by a phage encoding an Stx variant with high potency in mice, features AE lesion formation on intestinal epithelium and Stx-mediated systemic disease, including renal damage. This model is somewhat limited by mouse-to-mouse variation in the course of disease, with the time to severe morbidity (and required euthanasia) varying by as many as 5 days, a feature that limits pathological analysis at defined stages of disease. In the current study, we altered and optimized the preparation, dose, and mode of delivery of CR(ΦStx2dact), using food-borne route of infection to generate highly synchronous disease model. We found that food-borne inoculation of as few as 3 × 104 CR(ΦStx2dact) resulted in productive colonization and severe systemic disease. Upon inoculation of 1 × 108 bacteria, the majority of infected animals suffered weight loss beginning 5 days post-infection and all required euthanasia on day 6 or 7. This enhanced murine model for EHEC infection should facilitate characterization of the pathology associated with specific phases of Stx-mediated disease.
Collapse
Affiliation(s)
- Laurice J Flowers
- Molecular Biology and Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| | - Elsa N Bou Ghanem
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine Boston, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
8
|
Howlader DR, Sinha R, Nag D, Majumder N, Mukherjee P, Bhaumik U, Maiti S, Withey JH, Koley H. Zebrafish as a novel model for non-typhoidal Salmonella pathogenesis, transmission and vaccine efficacy. Vaccine 2016; 34:5099-5106. [PMID: 27614779 DOI: 10.1016/j.vaccine.2016.08.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
Salmonella-induced gastroenteritis causes massive morbidity and mortality in both adults and children of developing countries. However, it is difficult to study the mode of infection and vaccine efficacy due to inadequacies of current animal models. For this reason, we have explored using zebrafish as an improved model for non-typhoidal Salmonella (NTS) infection, including Salmonella enterica Typhimurium, Salmonella enterica Enteritidis and Salmonella enterica Weltevreden. In this study, we found that after infection of zebrafish with NTS, severe diarrhea like symptoms were observed and NTS significantly colonized the zebrafish intestine without any manipulation of the normal intestinal microbiota of the fish. Furthermore, these strains can colonize for longer than 72h and induce severe inflammation in the intestine, which may induce fish death. We also found that infected fish can transmit the pathogen into naïve fish. Moreover, we have established that zebrafish is an excellent model for vaccine study. Successive triple bath vaccination with heat-killed single serotype S. Typhimurium and S. Enteritidis immunogen induced protective efficacy against a high dose (10(8)CFU/ml) of infection with these pathogens. This study provides a natural infection model for the study of NTS infection, transmission and vaccine efficacy.
Collapse
Affiliation(s)
- Debaki Ranjan Howlader
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700 010, India
| | - Ritam Sinha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700 010, India
| | - Dhrubajyoti Nag
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700 010, India
| | - Nilanjana Majumder
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700 010, India
| | - Priyadarshini Mukherjee
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700 010, India
| | - Ushasi Bhaumik
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700 010, India
| | - Suhrid Maiti
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700 010, India
| | - Jeffrey H Withey
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hemanta Koley
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700 010, India.
| |
Collapse
|
9
|
Shao Y, Guo Y, Wang Z. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Poult Sci 2013; 92:1764-73. [PMID: 23776263 DOI: 10.3382/ps.2013-03029] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study investigated the protective effect of β-1,3/1,6-glucan on gut morphology, intestinal epithelial tight junctions, and bacterial translocation of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Ninety Salmonella-free Arbor Acre male broiler chickens were randomly divided into 3 groups: negative control group (NC), Salmonella Typhimurium-infected positive group (PC), and the Salmonella Typhimurium-infected group with dietary 100 mg/kg of β-1,3/1,6-glucan supplementation (T) to determine the effect of β-1,3/1,6-glucan on intestinal barrier function. Salmonella Typhimurium challenge alone significantly decreased villus height (P < 0.001), villus height/crypt depth ratio (P < 0.05), and the number of goblet cells (P < 0.001) in the jejunum at 14 d postinfection (dpi), but significantly increased the number of intestinal secretory IgA (sIgA)-expressing cells at 14 dpi (P < 0.01) and total sIgA levels in the jejunum at 7 (P < 0.05) and 14 dpi (P < 0.01) compared with the unchallenged birds (NC). Dietary β-1,3/1,6-glucan supplementation not only significantly increased villus height, villus height/crypt depth ratio, and the number of goblet cells (P < 0.01), but also increased the number of sIgA-expressing cells (P < 0.05) and sIgA content in the jejunum at 14 dpi (P < 0.01) in birds challenged with Salmonella Typhimurium in comparison with Salmonella Typhimurium challenge alone. β-1,3/1,6-Glucan addition had significant inhibitory effects (P < 0.05) on cecal Salmonella colonization levels and liver Salmonella invasion of the Salmonella Typhimurium-infected birds compared with the PC group. Intestinal tight junction proteins claudin-1, claudin-4, and occludin mRNA expression in the jejunum at 14 dpi was significantly decreased by Salmonella Typhimurium challenge alone (P < 0.01) compared with that of the NC group, whereas β-1,3/1,6-glucan supplementation significantly increased claudin-1 and occludin mRNA expression (P < 0.01) at 14 dpi in the jejunum of the Salmonella Typhimurium-infected birds in comparison with the PC group. Our results indicate that dietary β-1,3/1,6-glucan can alleviate intestinal mucosal barrier impairment in broiler chickens challenged with Salmonella Typhimurium.
Collapse
Affiliation(s)
- Yujing Shao
- College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | | | | |
Collapse
|
10
|
Doran KS, Banerjee A, Disson O, Lecuit M. Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect Med 2013; 3:a010090. [PMID: 23818514 PMCID: PMC3685877 DOI: 10.1101/cshperspect.a010090] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human body is bordered by the skin and mucosa, which are the cellular barriers that define the frontier between the internal milieu and the external nonsterile environment. Additional cellular barriers, such as the placental and the blood-brain barriers, define protected niches within the host. In addition to their physiological roles, these host barriers provide both physical and immune defense against microbial infection. Yet, many pathogens have evolved elaborated mechanisms to target this line of defense, resulting in a microbial invasion of cells constitutive of host barriers, disruption of barrier integrity, and systemic dissemination and invasion of deeper tissues. Here we review representative examples of microbial interactions with human barriers, including the intestinal, placental, and blood-brain barriers, and discuss how these microbes adhere to, invade, breach, or compromise these barriers.
Collapse
Affiliation(s)
- Kelly S Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182, USA.
| | | | | | | |
Collapse
|
11
|
Fiorentino M, Lammers KM, Levine MM, Sztein MB, Fasano A. In vitro Intestinal Mucosal Epithelial Responses to Wild-Type Salmonella Typhi and Attenuated Typhoid Vaccines. Front Immunol 2013; 4:17. [PMID: 23408152 PMCID: PMC3569575 DOI: 10.3389/fimmu.2013.00017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/09/2013] [Indexed: 01/06/2023] Open
Abstract
Typhoid fever, caused by S. Typhi, is responsible for approximately 200,000 deaths per year worldwide. Little information is available regarding epithelium-bacterial interactions in S. Typhi infection. We have evaluated in vitro the effects of wild-type S. Typhi, the licensed Ty21a typhoid vaccine and the leading strains CVD 908-htrA and CVD 909 vaccine candidates on intestinal barrier function and immune response. Caco2 monolayers infected with wild-type S. Typhi exhibited alterations in the organization of tight junctions, increased paracellular permeability, and a rapid decrease in Trans-Epithelial Electrical Resistance as early as 4 h post-exposure. S. Typhi triggered the secretion of interleukin (IL)-8 and IL-6. Caco2 cells infected with the attenuated strains exhibited a milder pro-inflammatory response with minimal disruption of the barrier integrity. We conclude that wild-type S. Typhi causes marked transient alterations of the intestinal mucosa that are more pronounced than those observed with Ty21a or new generation attenuated typhoid vaccine candidates.
Collapse
Affiliation(s)
- Maria Fiorentino
- Department of Pediatrics, Mucosal Biology Research Center, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
12
|
Pathogenicity of Salmonella enterica in Caenorhabditis elegans relies on disseminated oxidative stress in the infected host. PLoS One 2012; 7:e45417. [PMID: 23028994 PMCID: PMC3461013 DOI: 10.1371/journal.pone.0045417] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/20/2012] [Indexed: 12/26/2022] Open
Abstract
Feeding Caenorhabditis elegans with Salmonella enterica serovar Typhimurium significantly shortens the lifespan of the nematode. S. Typhimurium-infected C. elegans, stained with 2′,7′-dichlorodihydrofluorescein diacetate which fluoresces upon exposure to reactive oxygen species, revealed intestinal luminal staining that along with the time of infection progressed to a strong staining in the hypodermal tissues of the nematode. Still, we could not detect invasion beyond the nematode's intestinal epithelium at any stage of the infection. A similar dispersion of oxidative response was also noted in nematodes infected with S. Dublin, but not with non-pathogenic Escherichia coli or the defined pathogen Burkholderia thailandensis. Addition of catalase or the reductant ascorbic acid significantly restored the lifespan of S. Typhimurium-infected nematodes. Mutational inactivation of the bacterial thioredoxin 1 resulted in total ablation of the hypodermal oxidative response to infection, and in a strong attenuation of virulence. Virulence of the thioredoxin 1 mutant was restored by trans-complementation with redox-active variants of thioredoxin 1 or, surprisingly, by exposing the thioredoxin 1 mutant to sublethal concentrations of the disulphide catalyst copper chloride prior to infection. In summary, our observations define a new aspect in virulence of S. enterica that apparently does not involve the classical invasive or intracellular phenotype of the pathogen, but that depends on the ability to provoke overwhelming systemic oxidative stress in the host through the redox activity of bacterial thioredoxin 1.
Collapse
|
13
|
Hallstrom K, McCormick BA. Salmonella Interaction with and Passage through the Intestinal Mucosa: Through the Lens of the Organism. Front Microbiol 2011; 2:88. [PMID: 21747800 PMCID: PMC3128981 DOI: 10.3389/fmicb.2011.00088] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/13/2011] [Indexed: 01/13/2023] Open
Abstract
Salmonella enterica serotypes are invasive enteric pathogens spread through fecal contamination of food and water sources, and represent a constant public health threat around the world. The symptoms associated with salmonellosis and typhoid disease are largely due to the host response to invading Salmonella, and to the mechanisms these bacteria employ to survive in the presence of, and invade through the intestinal mucosal epithelia. Surmounting this barrier is required for survival within the host, as well as for further dissemination throughout the body, and subsequent systemic disease. In this review, we highlight some of the major hurdles Salmonella must overcome upon encountering the intestinal mucosal epithelial barrier, and examine how these bacteria surmount and exploit host defense mechanisms.
Collapse
Affiliation(s)
- Kelly Hallstrom
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School Worcester, MA, USA
| | | |
Collapse
|
14
|
Radtke AL, Wilson JW, Sarker S, Nickerson CA. Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells. PLoS One 2010; 5:e15750. [PMID: 21206750 PMCID: PMC3012082 DOI: 10.1371/journal.pone.0015750] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/28/2010] [Indexed: 02/07/2023] Open
Abstract
The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS) is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2), double (SPI-1/2) and complete T3SS knockout (SPI-1/SPI-2: flhDC) also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrea L. Radtke
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - James W. Wilson
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Shameema Sarker
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Cheryl A. Nickerson
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lahiri A, Lahiri A, Iyer N, Das P, Chakravortty D. Visiting the cell biology of Salmonella infection. Microbes Infect 2010; 12:809-18. [PMID: 20538070 DOI: 10.1016/j.micinf.2010.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Salmonella, a Gram-negative facultative intracellular pathogen is capable of infecting vast array of hosts. The striking ability of Salmonella to overcome every hurdle encountered in the host proves that they are true survivors. In the host, Salmonella infects various cell types and needs to survive and replicate by countering the defense mechanism of the specific cell. In this review, we will summarize the recent insights into the cell biology of Salmonella infection. Here, we will focus on the findings that deal with the specific mechanism of various cell types to control Salmonella infection. Further, the survival strategies of the pathogen in response to the host immunity will also be discussed in detail. Better understanding of the mechanisms by which Salmonella evade the host defense system and establish pathogenesis will be critical in disease management.
Collapse
Affiliation(s)
- Amit Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
16
|
Abstract
The development of diarrhea among hospitalized horses is a major concern for equine veterinary hospitals and referral centers. It is a potential complication of hospitalization for surgical or medical procedures and can contribute to the morbidity and mortality of horses with gastrointestinal and non-gastrointestinal diseases. Unfortunately, it can be difficult to pinpoint the exact cause of acute diarrhea or colitis, and in most cases, the specific etiologic agent is presumptive or undetermined. This article discusses the major etiologic agents of diarrhea in hospitalized horses, considers factors that place hospitalized horses at special risk for diarrhea, and examines several infectious colitis outbreaks that have occurred at veterinary referral centers.
Collapse
|
17
|
Betancourt-Sanchez M, Navarro-Garcia F. Pet secretion, internalization and induction of cell death during infection of epithelial cells by enteroaggregative Escherichia coli. MICROBIOLOGY-SGM 2009; 155:2895-2906. [PMID: 19542001 DOI: 10.1099/mic.0.029116-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In an in vitro model using HEp-2 cells treated with purified plasmid-encoded toxin (Pet), we have identified morphological changes characterized by cell rounding and detachment after toxin internalization; these changes progress to cell death. However, these effects have not yet been shown to occur during the infection of epithelial cells by enteroaggregative Escherichia coli (EAEC). Here, we show that the secretion of Pet by EAEC is regulated at the transcriptional level, since secretion was inhibited in eukaryotic cell culture medium, although Pet was efficiently secreted in the same medium supplemented with tryptone. Inefficient secretion of Pet by EAEC in DMEM prevented cell detachment, whereas efficient Pet secretion in DMEM/tryptone increased cell detachment in a HEp-2 cell adherence assay. Interestingly, Pet toxin was efficiently delivered to epithelial cells, since it was internalized into epithelial cells infected with EAEC at similar concentrations to those obtained by using 37 microg ml(-1) purified Pet protein. Additionally, Pet was not internalized when the epithelial cells were infected with a pet clone, HB101(pCEFN1), unlike the wild-type strain, which has a high adherence capability. There is a correlation between Pet secretion by EAEC, the internalization of Pet into epithelial cells, cell detachment and cell death in EAEC-infected cells. The ratio between live and dead cells decreased in cells treated with wild-type EAEC in comparison with cells treated with an isogenic mutant in the pet gene, whereas the effects were restored by complementing the mutant with the pet gene. All these data indicate that Pet is an important virulence factor in the pathogenesis of EAEC infection.
Collapse
Affiliation(s)
- Miguel Betancourt-Sanchez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ap. Postal 14-740, 07000 Mexico DF, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Ap. Postal 14-740, 07000 Mexico DF, Mexico
| |
Collapse
|
18
|
Martinez-Argudo I, Jepson MA. Salmonella translocates across an in vitro M cell model independently of SPI-1 and SPI-2. MICROBIOLOGY-SGM 2009; 154:3887-3894. [PMID: 19047755 DOI: 10.1099/mic.0.2008/021162-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have used an in vitro model of intestinal M cells to examine the mechanisms by which Salmonella enterica translocates across these specialized cells, which constitute a primary site of infection of the mammalian host. S. enterica can invade cultured cells by deploying a type III secretion system (TTSS) encoded within Salmonella pathogenicity island 1 (SPI-1) to translocate effector proteins into the host cell cytoplasm that trigger cellular responses, including prominent cytoskeletal rearrangements. After Salmonella enters the host cell, a second TTSS encoded in SPI-2 modulates intracellular trafficking and enables the bacteria to replicate within a modified vacuolar compartment. Within the host intestine, specialized antigen-sampling M cells, which reside in the epithelium overlying lymphoid tissues in the gut, are a preferential site of Salmonella invasion. The mechanisms of infection of M cells remain poorly defined and it is not known whether either SPI-1 or SPI-2 is required for infection of these cells. To address these questions we have employed an in vitro M cell model involving co-culture of polarized Caco-2 intestinal epithelial cells with Raji B cells. S. enterica serovar Typhimurium translocated across Caco-2/Raji co-cultures to a much greater extent than they cross native Caco-2 cell monolayers. Salmonella translocation was greatly reduced by heat treatment or fixation, suggesting that processes distinct from the sampling of inert particles are the main determinants of bacterial translocation. Translocation across both mono-cultured and co-cultured Caco-2 cells was partially inhibited by treatment with the dynamin inhibitor dynasore, but resistant to EIPA, an inhibitor of macropinocytosis. There was no difference between the abilities of wild-type Salmonella Typhimurium and mutants lacking multiple SPI-1 effectors to translocate across the M cell model, although the SPI-1 effector mutants were somewhat attenuated for translocation across native Caco-2 layers. There was also no difference between wild-type and SPI-2 mutants in M cell translocation. Together these data suggest that that SPI-1 and SPI-2 are dispensable for rapid M cell translocation and that infection at these specialized epithelial sites involves distinctive mechanisms that are not reliably modelled using conventional cell culture infection models.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Mark A Jepson
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
19
|
Alterations of concentrations of calcium and arachidonic acid and agglutinations of microfilaments in host cells during Toxoplasma gondii invasion. Vet Parasitol 2008; 157:21-33. [DOI: 10.1016/j.vetpar.2008.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/04/2008] [Accepted: 07/07/2008] [Indexed: 11/19/2022]
|
20
|
Corr SC, Gahan CCGM, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. ACTA ACUST UNITED AC 2007; 52:2-12. [PMID: 18081850 DOI: 10.1111/j.1574-695x.2007.00359.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
M-cells are specialized cells found in the follicle-associated epithelium of intestinal Peyer's patches of gut-associated lymphoid tissue and in isolated lymphoid follicles, appendix and in mucosal-associated lymphoid tissue sites outside the gastrointestinal tract. In the gastrointestinal tract, M-cells play an important role in transport of antigen from the lumen of the small intestine to mucosal lymphoid tissues, where processing and initiation of immune responses occur. Thus, M-cells act as gateways to the mucosal immune system and this function has been exploited by many invading pathogens. Understanding the mechanism by which M-cells sample antigen will inform the design of oral vaccines with improved efficacy in priming mucosal and systemic immune responses. In this review, the origin and morphology of M-cells, and their role in mucosal immunity and pathogenesis of infections are discussed.
Collapse
Affiliation(s)
- Sinead C Corr
- Department of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|
21
|
Guo A, Lasaro MA, Sirard JC, Kraehenbühl JP, Schifferli DM. Adhesin-dependent binding and uptake of Salmonella enterica serovar Typhimurium by dendritic cells. MICROBIOLOGY-SGM 2007; 153:1059-1069. [PMID: 17379714 DOI: 10.1099/mic.0.2006/000331-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Salmonella enterica serovar Typhimurium can be internalized by immature dendritic cells (DCs). The interacting host and bacterial molecules initiating this process remain uncharacterized. The objective of this study was to investigate whether specific fimbriae are involved in the early step of binding and uptake of Salmonella by DCs. Type 1 fimbriated S. enterica serovar Typhimurium or recombinant Escherichia coli expressing the type 1 fimbriae showed a significantly greater ability to attach to murine bone-marrow-derived DCs than non-fimbriated bacteria. The FimH adhesin was required for efficient interactions with DCs, since fimbriated fimH mutants were impaired in both binding and internalization. Finally, the internalization involved a FimH-dependent process but did not require sipB, a gene essential for Salmonella-mediated invasion of mammalian epithelial cells. Collectively, these data suggest that the bacterial interaction of DCs through the type 1 fimbrial adhesin FimH is sufficient to target S. enterica serovar Typhimurium for cellular uptake.
Collapse
Affiliation(s)
- Aizhen Guo
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Melissa A Lasaro
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Jean-Claude Sirard
- Swiss Institute for Experimental Cancer Research (ISREC), 1066 Epalinges, Switzerland
| | | | - Dieter M Schifferli
- University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Abstract
Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in both humans and warm-blooded animals. Understanding the mechanisms by which Salmonella induce disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type III secretion system (T3SS). Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second T3SS initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. These processes contribute to Salmonella entry into the host and the clinical symptoms of gastrointestinal and systemic infection. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopical methods to examine Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and confocal microscopy can reveal the juxtaposition of Salmonella, its products, and cellular components at high resolution. Simple light microscopy (LM) can also be used to investigate the interaction of bacteria with host cells and has advantages for live cell imaging, which enables detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on several LM techniques routinely used in our own research.
Collapse
Affiliation(s)
- Charlotte A Perrett
- Department of Biochemistry, School of Medical Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
23
|
Terai S, Yasuda M, Amano F. Regulation of SEp22 Expression in Salmonella enterica subsp. enterica Serovar Enteritidis by Culture Medium. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shiori Terai
- Laboratory of Physiological Chemistry, Osaka University of Pharmaceutical Sciences
| | - Maori Yasuda
- Laboratory of Physiological Chemistry, Osaka University of Pharmaceutical Sciences
| | - Fumio Amano
- Laboratory of Physiological Chemistry, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
24
|
Edwards AM, Grossman TJ, Rudney JD. Fusobacterium nucleatum transports noninvasive Streptococcus cristatus into human epithelial cells. Infect Immun 2006; 74:654-62. [PMID: 16369022 PMCID: PMC1346643 DOI: 10.1128/iai.74.1.654-662.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 08/30/2005] [Accepted: 11/01/2005] [Indexed: 02/07/2023] Open
Abstract
Analysis of human buccal epithelial cells frequently reveals an intracellular polymicrobial consortium of bacteria. Although several oral bacteria have been demonstrated to invade cultured epithelial cells, several others appear unable to internalize. We hypothesized that normally noninvasive bacteria may gain entry into epithelial cells via adhesion to invasive bacteria. Fusobacterium nucleatum is capable of binding to and invading oral epithelial cells. By contrast, Streptococcus cristatus binds weakly to host cells and is not internalized. F. nucleatum and S. cristatus coaggregate strongly via an arginine-sensitive interaction. Coincubation of KB or TERT-2 epithelial cells with equal numbers of F. nucleatum and S. cristatus bacteria led to significantly increased numbers of adherent and internalized streptococci. F. nucleatum also promoted invasion of KB cells by other oral streptococci and Actinomyces naeslundii. Dissection of fusobacterial or streptococcal adhesive interactions by using sugars, amino acids, or antibodies demonstrated that this phenomenon is due to direct attachment of S. cristatus to adherent and invading F. nucleatum. Inhibition of F. nucleatum host cell attachment and invasion with galactose, or fusobacterial-streptococcal coaggregation by the arginine homologue l-canavanine, abrogated the increased S. cristatus adhesion to, and invasion of, host cells. In addition, polyclonal antibodies to F. nucleatum, which inhibited fusobacterial attachment to both KB cells and S. cristatus, significantly decreased invasion by both species. Similar decreases were obtained when epithelial cells were pretreated with cytochalasin D, staurosporine, or cycloheximide. These studies indicate that F. nucleatum may facilitate the colonization of epithelial cells by bacteria unable to adhere or invade directly.
Collapse
Affiliation(s)
- Andrew M Edwards
- Department of Diagnostic and Biological Sciences, School of Dentistry, 17-252 Moos Tower, 515 Delaware Street S.E., Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
25
|
Hapfelmeier S, Hardt WD. A mouse model for S. typhimurium-induced enterocolitis. Trends Microbiol 2005; 13:497-503. [PMID: 16140013 DOI: 10.1016/j.tim.2005.08.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 07/26/2005] [Accepted: 08/12/2005] [Indexed: 12/20/2022]
Abstract
Salmonella typhimurium has emerged as a model pathogen that manipulates host cells in a complex fashion, thus causing disease. In humans, S. typhimurium causes acute intestinal inflammation. Intriguingly, type III secreted virulence proteins have a central role in this process. At the cellular level, the functions of these factors are well characterized; at present, animal models are required for elucidating how these factors trigger inflammatory disease in vivo. Calf infection models have been employed successfully and, recently, a mouse model was identified: in streptomycin-pretreated mice, S. typhimurium causes acute colitis. This mouse model provides a new avenue for research into acute intestinal inflammation because it enables the manipulation and dissection of both the bacterial and host contributions to the disease in unsurpassed detail.
Collapse
Affiliation(s)
- Siegfried Hapfelmeier
- Institute of Microbiology, ETH Hönggerberg, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland
| | | |
Collapse
|
26
|
Hapfelmeier S, Stecher B, Barthel M, Kremer M, Müller AJ, Heikenwalder M, Stallmach T, Hensel M, Pfeffer K, Akira S, Hardt WD. The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. THE JOURNAL OF IMMUNOLOGY 2005; 174:1675-85. [PMID: 15661931 DOI: 10.4049/jimmunol.174.3.1675] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Salmonella typhimurium can colonize the gut, invade intestinal tissues, and cause enterocolitis. In vitro studies suggest different mechanisms leading to mucosal inflammation, including 1) direct modulation of proinflammatory signaling by bacterial type III effector proteins and 2) disruption or penetration of the intestinal epithelium so that penetrating bacteria or bacterial products can trigger innate immunity (i.e., TLR signaling). We studied these mechanisms in vivo using streptomycin-pretreated wild-type and knockout mice including MyD88(-/-) animals lacking an adaptor molecule required for signaling via most TLRs. The Salmonella SPI-1 and the SPI-2 type III secretion systems (TTSS) contributed to inflammation. Mutants that retain only a functional SPI-1 (M556; sseD::aphT) or a SPI-2 TTSS (SB161; DeltainvG) caused attenuated colitis, which reflected distinct aspects of the colitis caused by wild-type S. typhimurium: M556 caused diffuse cecal inflammation that did not require MyD88 signaling. In contrast, SB161 induced focal mucosal inflammation requiring MyD88. M556 but not SB161 was found in intestinal epithelial cells. In the lamina propria, M556 and SB161 appeared to reside in different leukocyte cell populations as indicated by differential CD11c staining. Only the SPI-2-dependent inflammatory pathway required aroA-dependent intracellular growth. Thus, S. typhimurium can use two independent mechanisms to elicit colitis in vivo: SPI-1-dependent and MyD88-independent signaling to epithelial cells and SPI-2-dependent intracellular proliferation in the lamina propria triggering MyD88-dependent innate immune responses.
Collapse
Affiliation(s)
- Siegfried Hapfelmeier
- Institute of Microbiology, D-BIOL, Eidgenössiche Technische Hochschule, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Otte JM, Podolsky DK. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol 2004; 286:G613-26. [PMID: 15010363 DOI: 10.1152/ajpgi.00341.2003] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clinical studies have suggested that so-called probiotic bacteria may be effective as therapy in inflammatory bowel disease. However, the molecular mechanisms of their interaction with the intestinal surface remain undefined. The influence of whole probiotic bacteria [Escherichia coli Nissle 1917 (EcN); probiotic mixture VSL#3 (PM)], bacterial cell lysates, and conditioned media on transepithelial resistance (TER), IL-8 secretion, mucin gene expression, and tight junction proteins were determined in T84 and HT-29 intestinal epithelial cells (IEC). In addition, effects on pathogen (Salmonella dublin)-induced alterations were analyzed. EcN as well as debris and cell extracts induced IL-8 secretion from IEC, whereas no such effect was observed following incubation with the PM. The PM and soluble protein(s) released from the PM increased TER, prevented pathogen-induced decrease in TER, and were shown to stabilize tight junctions. The PM induced expression of mucins in IEC, and these organisms as well as EcN diminished S. dublin-induced cell death. Inhibition of MAPKs with PD-98059 or SB-203580 significantly decreased alterations in IL-8 synthesis and mucin expression and affected the regulation of TER. Probiotics and protein(s) released by these organisms may functionally modulate the intestinal epithelium of the host by different mechanisms, including the competition of whole organisms for contact with the epithelial surface as well as stabilization of the cytoskeleton and barrier function and the induction of mucin expression. Gram-negative and gram-positive organisms differ in the mechanisms activated, and a combination of organisms might be more effective than the application of a single strain.
Collapse
Affiliation(s)
- Jan-Michel Otte
- Center for Study of Inflammatory Bowel Disease, Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
29
|
Hapfelmeier S, Ehrbar K, Stecher B, Barthel M, Kremer M, Hardt WD. Role of the Salmonella pathogenicity island 1 effector proteins SipA, SopB, SopE, and SopE2 in Salmonella enterica subspecies 1 serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 2004; 72:795-809. [PMID: 14742523 PMCID: PMC321604 DOI: 10.1128/iai.72.2.795-809.2004] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica subspecies 1 serovar Typhimurium (serovar Typhimurium) induces enterocolitis in humans and cattle. The mechanisms of enteric salmonellosis have been studied most extensively in calf infection models. The previous studies established that effector protein translocation into host cells via the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (TTSS) is of central importance in serovar Typhimurium enterocolitis. We recently found that orally streptomycin-pretreated mice provide an alternative model for serovar Typhimurium colitis. In this model the SPI-1 TTSS also plays a key role in the elicitation of intestinal inflammation. However, whether intestinal inflammation in calves and intestinal inflammation in streptomycin-pretreated mice are induced by the same SPI-1 effector proteins is still unclear. Therefore, we analyzed the role of the SPI-1 effector proteins SopB/SigD, SopE, SopE2, and SipA/SspA in elicitation of intestinal inflammation in the murine model. We found that sipA, sopE, and, to a lesser degree, sopE2 contribute to murine colitis, but we could not assign an inflammation phenotype to sopB. These findings are in line with previous studies performed with orally infected calves. Extending these observations, we demonstrated that in addition to SipA, SopE and SopE2 can induce intestinal inflammation independent of each other and in the absence of SopB. In conclusion, our data corroborate the finding that streptomycin-pretreated mice provide a useful model for studying the molecular mechanisms of serovar Typhimurium colitis and are an important starting point for analysis of the molecular events triggered by SopE, SopE2, and SipA in vivo.
Collapse
|
30
|
La Ragione RM, Cooley WA, Velge P, Jepson MA, Woodward MJ. Membrane ruffling and invasion of human and avian cell lines is reduced for aflagellate mutants of Salmonella enterica serotype Enteritidis. Int J Med Microbiol 2003; 293:261-72. [PMID: 14503791 DOI: 10.1078/1438-4221-00263] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Independent studies have demonstrated that flagella are associated with the invasive process of Salmonella enterica serotypes, and aflagellate derivatives of Salmonella enterica serotype Enteritidis are attenuated in murine and avian models of infection. One widely held view is that the motility afforded by flagella, probably aided by chemotactic responses, mediates the initial interaction between bacterium and host cell. The adherence and invasion properties of two S. Enteritidis wild-type strains and isogenic aflagellate mutants were assessed on HEp-2 and Div-1 cells that are of human and avian epithelial origin, respectively. Both aflagellate derivatives showed a significant reduction of invasion compared with wild type over the three hours of the assays. Complementation of the defective fliC allele recovered partially the wild-type phenotype. Examination of the bacterium-host cell interaction by electron and confocal microscopy approaches showed that wild-type bacteria induced ruffle formation and significant cytoskeletal rearrangements on HEp-2 cells within 5 minutes of contact. The aflagellate derivatives induced fewer ruffles than wild type. Ruffle formation on the Div-1 cell line was less pronounced than for HEp-2 cells for wild-type S. Enteritidis. Collectively, these data support the hypothesis that flagella play an active role in the early events of the invasive process.
Collapse
Affiliation(s)
- Roberto M La Ragione
- Department of Bacterial Diseases, Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | | | | | | | | |
Collapse
|
31
|
Chen H, Schifferli DM. Construction, characterization, and immunogenicity of an attenuated Salmonella enterica serovar typhimurium pgtE vaccine expressing fimbriae with integrated viral epitopes from the spiC promoter. Infect Immun 2003; 71:4664-73. [PMID: 12874347 PMCID: PMC165986 DOI: 10.1128/iai.71.8.4664-4673.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a porcine coronavirus that causes diarrhea, leading to near 100% mortality in neonatal piglets with corresponding devastating economic consequences. For the protection of neonatal and older animals, oral live vaccines present the attractive property of inducing desired mucosal immune responses, including colostral antibodies in sows--an effective means to passively protect suckling piglets. Newly attenuated Salmonella vaccine constructs expressing TGEV S protein epitopes were studied and evaluated for improved humoral immune response to TGEV. The macrophage-inducible Salmonella ssaH and spiC/ssaB promoters were compared for their ability to express the TGEV C and A epitopes in the context of the heterologous 987P fimbriae on Salmonella vaccines. Compared to the ssaH promoter, the Salmonella cya crp vector elicited significantly higher levels of mucosal and systemic antibodies in orally immunized mice when the chimeric fimbriae were expressed from the spiC promoter. The Salmonella spiC promoter construct induced the highest level of chimeric fimbriae after being taken up by the J774A.1 macrophagelike cells. The Salmonella cya crp vaccine vector was shown to incorporate into 987P partially degraded chimeric subunits lacking the TGEV epitopes. In contrast, its isogenic pgtE mutant produced fimbriae consisting exclusively of intact chimeric subunits. Mice immunized orally with the Salmonella pgtE vaccine expressing chimeric fimbriae from the spiC promoter elicited significantly higher systemic and mucosal antibody titers against the TGEV epitopes compared to the parental vaccine. This study indicates that the Salmonella cya crp pgtE vector and the spiC promoter can be used successfully to improve immune responses toward heterologous antigens.
Collapse
MESH Headings
- Adhesins, Escherichia coli/genetics
- Adhesins, Escherichia coli/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Viral/genetics
- Bacterial Proteins/genetics
- Base Sequence
- DNA, Bacterial/genetics
- Endopeptidases/genetics
- Endopeptidases/immunology
- Epitopes/genetics
- Female
- Fimbriae Proteins/genetics
- Fimbriae Proteins/immunology
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/immunology
- Gastroenteritis, Transmissible, of Swine/immunology
- Gastroenteritis, Transmissible, of Swine/prevention & control
- Genes, Bacterial
- Immunization, Secondary
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Mutation
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Salmonella Vaccines/genetics
- Salmonella Vaccines/immunology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Transmissible gastroenteritis virus/genetics
- Transmissible gastroenteritis virus/immunology
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Huaiqing Chen
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
32
|
Giacomodonato MN, Goren NB, Sordelli DO, Vaccaro MI, Grasso DH, Ropolo AJ, Cerquetti MC. Involvement of intestinal inducible nitric oxide synthase (iNOS) in the early stages of murine salmonellosis. FEMS Microbiol Lett 2003; 223:231-8. [PMID: 12829292 DOI: 10.1016/s0378-1097(03)00385-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Local induction of inducible nitric oxide synthase (iNOS) and apoptosis was examined in the intestine of mice infected with virulent Salmonella enterica serovar Enteritidis 5694 (S. enteritidis) and its attenuated derivative mutant E/1/3. Both, intestinal iNOS mRNA expression and iNOS activity showed a peak at 4 h only in animals receiving the virulent S. enteritidis. Aminoguanidine treatment abrogated intestinal epithelial damage produced by virulent S. enteritidis and diminished apoptosis at the tips of the villi. Unlike the virulent strain, mutant E/1/3 induced massive iNOS expression in Peyer's patches, these findings may be related to its protective capacity. Our results suggest that intestinal iNOS participates in the early response to intestinal infection and that the final effect depends on the nature of the insult.
Collapse
Affiliation(s)
- Mónica N Giacomodonato
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET), Serrano 669, 1414 Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
33
|
Barthel M, Hapfelmeier S, Quintanilla-Martínez L, Kremer M, Rohde M, Hogardt M, Pfeffer K, Rüssmann H, Hardt WD. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 2003; 71:2839-58. [PMID: 12704158 PMCID: PMC153285 DOI: 10.1128/iai.71.5.2839-2858.2003] [Citation(s) in RCA: 756] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Salmonella enterica subspecies 1 serovar Typhimurium is a principal cause of human enterocolitis. For unknown reasons, in mice serovar Typhimurium does not provoke intestinal inflammation but rather targets the gut-associated lymphatic tissues and causes a systemic typhoid-like infection. The lack of a suitable murine model has limited the analysis of the pathogenetic mechanisms of intestinal salmonellosis. We describe here how streptomycin-pretreated mice provide a mouse model for serovar Typhimurium colitis. Serovar Typhimurium colitis in streptomycin-pretreated mice resembles many aspects of the human infection, including epithelial ulceration, edema, induction of intercellular adhesion molecule 1, and massive infiltration of PMN/CD18(+) cells. This pathology is strongly dependent on protein translocation via the serovar Typhimurium SPI1 type III secretion system. Using a lymphotoxin beta-receptor knockout mouse strain that lacks all lymph nodes and organized gut-associated lymphatic tissues, we demonstrate that Peyer's patches and mesenteric lymph nodes are dispensable for the initiation of murine serovar Typhimurium colitis. Our results demonstrate that streptomycin-pretreated mice offer a unique infection model that allows for the first time to use mutants of both the pathogen and the host to study the molecular mechanisms of enteric salmonellosis.
Collapse
Affiliation(s)
- Manja Barthel
- Institute of Microbiology, ETH Zürich, 8092 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
M cells are located in the epithelia overlying mucosa-associated lymphoid tissues such as Peyer's patches where they function as the antigen sampling cells of the mucosal immune system. Paradoxically, some pathogens exploit M cells as a route of invasion. Here we review our current knowledge of intestinal M cells with particular emphasis on the mechanisms underlying bacterial infection of these atypical epithelial cells.
Collapse
Affiliation(s)
- M Ann Clark
- Department of Physiological Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
35
|
Steele-Mortimer O, Brumell JH, Knodler LA, Méresse S, Lopez A, Finlay BB. The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell Microbiol 2002; 4:43-54. [PMID: 11856172 DOI: 10.1046/j.1462-5822.2002.00170.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type III secretion systems (TTSS) are used by Gram-negative pathogens to translocate proteins into eukaryotic host cells. Salmonella enterica serovar Typhimurium (S. Typhimurium) has two of these specialized systems, which are encoded on separate Salmonella pathogenicity islands (SPI-1 and SPI-2) and translocate unique sets of effectors. The specific roles of these systems in Salmonella pathogenesis remain undefined, although SPI-1 is required for bacterial invasion of epithelial cells and SPI-2 for survival/replication in phagocytic cells. However, because SPI-1 TTSS mutants are invasion-incompetent, the role of this TTSS in post-invasion processes has not been investigated. In this study, we have used two distinct methods to internalize a non-invasive SPI-1 TTSS mutant (invA) into cultured epithelial cells: (i) co-internalization with wild-type S. Typhimurium (SPI-1-dependent) and (ii) complementation with the Yersinia pseudotuberculosis invasin (inv) gene (SPI-1-independent). In both cases, internalized invA mutants were unable to replicate intracellularly, indicating that SPI-1 effectors are essential for this process and cannot be complemented by wild-type bacteria in the same cell. Analysis of the biogenesis of SCVs showed that vacuoles containing mutant bacteria displayed abnormal maturation that was dependent on the mechanism of entry. Manipulation of Salmonella-containing vacuole (SCV) biogenesis by pharmacologically perturbing membrane trafficking in the host cell increased intracellular replication of wild-type but not mutant S. Typhimurium This demonstrates a previously unknown role for SPI-1 in vacuole biogenesis and intracellular survival in non-phagocytic cells.
Collapse
|
36
|
Bumann D. Regulated antigen expression in live recombinant Salmonella enterica serovar Typhimurium strongly affects colonization capabilities and specific CD4(+)-T-cell responses. Infect Immun 2001; 69:7493-500. [PMID: 11705925 PMCID: PMC98839 DOI: 10.1128/iai.69.12.7493-7500.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulated antigen expression can influence the immunogenicity of live recombinant Salmonella vaccines, but a rational optimization has remained difficult since important aspects of this effect are incompletely understood. Here, attenuated Salmonella enterica serovar Typhimurium SL3261 strains expressing the model antigen GFP_OVA were used to quantify in vivo antigen levels by flow cytometry and to simultaneously follow the crucial early steps of antigen-specific T-cell responses in mice that are transgenic for a T-cell receptor recognizing ovalbumin. Among seven tested promoters, P(pagC) has the highest activity in murine tissues combined with low in vitro expression, whereas P(tac) has a comparable in vivo and a very high in vitro activity. Both SL3261 (pP(pagC)GFP_OVA) and SL3261 (pP(tac)GFP_OVA) cells can induce potent ovalbumin-specific cellular immune responses following oral administration, but doses almost 1,000-fold lower are sufficient for the in vivo-inducible construct SL3261 (pP(pagC)GFP_OVA) compared to SL3261 (pP(tac)GFP_OVA). This efficacy difference is largely explained by impaired early colonization capabilities of SL3261 (pP(tac)GFP_OVA) cells. Based on the findings of this study, appropriate in vivo expression levels for any given antigen can be rationally selected from the increasing set of promoters with defined properties. This will allow the improvement of recombinant Salmonella vaccines against a wide range of pathogens.
Collapse
Affiliation(s)
- D Bumann
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, D-10117 Berlin, Germany.
| |
Collapse
|
37
|
Zhou D, Galán J. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect 2001; 3:1293-8. [PMID: 11755417 DOI: 10.1016/s1286-4579(01)01489-7] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Upon contact with intestinal epithelial cells, Salmonella enterica serovar spp. inject a set of bacterial proteins into host cells via the bacterial SPI-1 type III secretion system. SopE, SopE2 and SopB, activate CDC42 and Rac to initiate actin cytoskeleton rearrangements. SipA and SipC, two Salmonella actin-binding proteins, directly modulate host actin dynamics to facilitate bacterial uptake. SptP promotes the recovery of the actin cytoskeleton rearrangements by antagonizing CDC42 and Rac. Therefore, Salmonella-induced reversible actin cytoskeleton rearrangements are the result of two coordinated steps: (i) stimulation of host signal transduction to indirectly promote actin rearrangements and (ii) direct modulation of actin dynamics.
Collapse
Affiliation(s)
- D Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
38
|
Abstract
Intestinal M cells, the specialised antigen-sampling cells of the mucosal immune system, are exploited by Salmonella and other pathogens as a route of invasion. Salmonella entry into M cells and colonisation of Peyer's patches involve mechanisms critical for infection of cultured cells as well as factors not accurately modelled in vitro.
Collapse
Affiliation(s)
- M A Jepson
- Cell Imaging Facility and the Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
39
|
Zhao L, Ezak T, Li ZY, Kawamura Y, Hirose K, Watanabe H. Vi-Suppressed wild strain Salmonella typhi cultured in high osmolarity is hyperinvasive toward epithelial cells and destructive of Peyer's patches. Microbiol Immunol 2001; 45:149-58. [PMID: 11293481 DOI: 10.1111/j.1348-0421.2001.tb01283.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salmonella typhi GIFU10007-3 which lost a viaB locus on its chromosome became highly invasive in our previous study. To investigate the phenomenon, we controlled Vi expression in wild strain S. typhi GIFU10007, and studied the invasive phenotype both in vitro and in vivo. When the wild strain of S. typhi was cultured in 300 mM NaCl containing Luria-Bertani broth (LBH), the expression of Vi antigen was suppressed, but secretion of invasion proteins (SipC, SipB and SipA) was increased. In this condition, wild strain S. typhi became highly invasive toward both epithelial cells and M cells of rat Peyer's patches. When GIFU10007 was cultured under conditions of high osmolarity, the bacteria disrupted Peyer's patches and induced massive bleeding in these structures only 20 min after inoculation into the ileal loop. In contrast, Vi-encapsulated wild strain GIFU10007 cultured under low osmolarity was not destructive, even after 60 min. To understand the role of the type III secretion system under conditions of high osmolarity, we knocked out the invA and sipC genes of both GIFU10007 and GIFU10007-3. Neither invA nor sipC mutants could invade epithelial cells or M cells in a high osmolarity environment. Our data show that the highly invasive phenotype was only expressed when the wild strain S. typhi was cultured under high osmolarity, which induced a state of Vi suppression, and in the presence of the type III secretion system.
Collapse
Affiliation(s)
- L Zhao
- Department of Microbiology, Gifu University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Jones MA, Wigley P, Page KL, Hulme SD, Barrow PA. Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect Immun 2001; 69:5471-6. [PMID: 11500419 PMCID: PMC98659 DOI: 10.1128/iai.69.9.5471-5476.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Gallinarum is a host-specific serotype that causes the severe systemic disease fowl typhoid in domestic poultry and a narrow range of other avian species but rarely causes disease in mammalian hosts. Specificity of the disease is primarily at the level of the reticuloendothelial system, but few virulence factors have been described other than the requirement for an 85-kb virulence plasmid. In this work, by making functional mutations in the type III secretion systems (TTSS) encoded by Salmonella pathogenicity island 1 (SPI-1) and SPI-2, we investigated the role of these pathogenicity islands in interactions between Salmonella serovar Gallinarum and avian cells in vitro and the role of these pathogenicity islands in virulence in chickens. The SPI-1 mutant showed decreased invasiveness into avian cells in vitro but was unaffected in its ability to persist within chicken macrophages. In contrast the SPI-2 mutant was fully invasive in nonphagocytic cells but failed to persist in macrophages. In chicken infections the SPI-2 mutant was attenuated while the SPI-1 mutant showed full virulence. In oral infections the SPI-2 mutant was not observed in the spleen or liver, and following intravenous inoculation it was cleared rapidly from these sites. SPI-2 function is required by Salmonella serovar Gallinarum for virulence, primarily through promoting survival within macrophages allowing multiplication within the reticuloendothelial system, but this does not preclude the involvement of SPI-2 in uptake from the gut to the spleen and liver. SPI-1 appears to have little effect on virulence and survival of Salmonella serovar Gallinarum in the host.
Collapse
Affiliation(s)
- M A Jones
- Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom.
| | | | | | | | | |
Collapse
|
41
|
Jepson MA, Schlecht HB, Collares-Buzato CB. Localization of dysfunctional tight junctions in Salmonella enterica serovar typhimurium-infected epithelial layers. Infect Immun 2000; 68:7202-8. [PMID: 11083857 PMCID: PMC97842 DOI: 10.1128/iai.68.12.7202-7208.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection of polarized MDCK epithelial layers by Salmonella enterica serovar Typhimurium is accompanied by increased tight junction permeability and by contraction of perijunctional actinomyosin. We localized dysfunctional tight junctions in serovar Typhimurium-infected MDCK layers by imaging apical-basolateral intramembrane diffusion of fluorescent lipid and found that loss of the apical-basolateral diffusion barrier (tight junction fence function) was most marked in areas of prominent perijunctional contraction. The protein kinase inhibitor staurosporine prevented perijunctional contraction but did not reverse the effects of serovar Typhimurium on tight junction barrier function. Hence, perijunctional contraction is not required for Salmonella-induced tight junction dysfunction and this epithelial response to infection may be multifactorial.
Collapse
Affiliation(s)
- M A Jepson
- Cell Imaging Facility and Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | | | |
Collapse
|
42
|
Lee CA, Silva M, Siber AM, Kelly AJ, Galyov E, McCormick BA. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc Natl Acad Sci U S A 2000; 97:12283-8. [PMID: 11050248 PMCID: PMC17333 DOI: 10.1073/pnas.97.22.12283] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In response to Salmonella typhimurium, the intestinal epithelium generates an intense inflammatory response consisting largely of polymorphonuclear leukocytes (neutrophils, PMN) migrating toward and ultimately across the epithelial monolayer into the intestinal lumen. It has been shown that bacterial-epithelial cell interactions elicit the production of inflammatory regulators that promote transepithelial PMN migration. Although S. typhimurium can enter intestinal epithelial cells, bacterial internalization is not required for the signaling mechanisms that induce PMN movement. Here, we sought to determine which S. typhimurium factors and intestinal epithelial signaling pathways elicit the production of PMN chemoattractants by enterocytes. Our results suggest that S. typhimurium activates a protein kinase C-dependent signal transduction pathway that orchestrates transepithelial PMN movement. We show that the type III effector protein, SipA, is not only necessary but is sufficient to induce this proinflammatory response in epithelial cells. Our results force us to reconsider the long-held view that Salmonella effector proteins must be directly delivered into host cells from bacterial cells.
Collapse
Affiliation(s)
- C A Lee
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
43
|
Murray RA, Lee CA. Invasion genes are not required for Salmonella enterica serovar typhimurium to breach the intestinal epithelium: evidence that salmonella pathogenicity island 1 has alternative functions during infection. Infect Immun 2000; 68:5050-5. [PMID: 10948124 PMCID: PMC101735 DOI: 10.1128/iai.68.9.5050-5055.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Salmonella enterica serovar Typhimurium invasion genes are necessary for bacterial invasion of intestinal epithelial cells and are thought to allow salmonellae to enter and cross the intestinal epithelium during infection. Many invasion genes are encoded on Salmonella pathogenicity island 1 (SPI1), and their expression is activated by HilA, a transcription factor also encoded on SPI1. We have studied the role of Salmonella invasion genes during infection of mice following intragastric inoculation. We have found that strains containing a mutation in hilA or invG were recovered from the intestinal contents, intestinal tissues, and systemic tissues at a lower frequency than their parental wild-type strain. In contrast, a strain in which SPI1 is deleted was recovered from infected mice at a frequency similar to that of its parental wild-type strain. The DeltaSPI1 phenotype indicates that S. enterica does not require invasion genes to cross the intestinal epithelium and infect systemic tissues. This result has forced us to reconsider the long-held belief that invasion genes directly mediate bacterial infection of the intestinal mucosa and traversion of the intestinal barrier during infection. Instead, our results suggest that hilA is required for bacterial colonization of the host intestine. The seemingly contradictory phenotype of the DeltaSPI1 mutant suggests that deletion of another gene(s) encoded on SPI1 suppresses the hilA mutant defect. We propose a model for S. enterica pathogenesis in which hilA and invasion genes are required for salmonellae to overcome a host clearance response elicited by another SPI1 gene product(s).
Collapse
Affiliation(s)
- R A Murray
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
44
|
|
45
|
DURANT J, LOWRY V, NISBET D, STANKER L, CORRIER D, RICKE S. LATE LOGARITHMIC SALMONELLA TYPHIMURIUM HEp-2 CELL ASSOCIATION AND INVASION RESPONSE TO SHORT-CHAIN FATTY ACID ADDITION. J Food Saf 2000. [DOI: 10.1111/j.1745-4565.2000.tb00284.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Abstract
In vitro assays contribute greatly to our understanding of bacterial pathogenesis, but they frequently cannot replicate the complex environment encountered by pathogens during infection. The information gained from such studies is therefore limited. In vivo models, on the other hand, can be difficult to use, and this has to some extent diminished the incentive to perform studies in living animals. However, several recently developed techniques permit in vivo examination of many genes simultaneously. Most of these methods fall into two broad classes: in vivo expression technology and signature-tagged mutagenesis. In vivo expression technology is a promoter-trap strategy designed to identify genes whose expression is induced in a specific environment, typically that encountered in a host. Signature-tagged mutagenesis uses comparative hybridization to isolate mutants unable to survive specified environmental conditions and has been used to identify genes critical for survival in the host. Both approaches have so far been used exclusively for investigating pathogen-host interactions, but they should be easily adaptable to the study of other processes.
Collapse
Affiliation(s)
- S L Chiang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
47
|
Durant JA, Lowry VK, Nisbet DJ, Stanker LH, Corrier DE, Ricke SC. Short-chain fatty acids affect cell-association and invasion of HEp-2 cells by Salmonella typhimurium. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 1999; 34:1083-1099. [PMID: 10565427 DOI: 10.1080/03601239909373246] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study demonstrates that the growth of S. typhimurium in Luria Bertani broth supplemented with acetate, propionate, butyrate, or a mixture of the three SCFA, affected cell-association and the ability to invade cultured HEp-2 cells. Cell-association and invasion was determined after growth for 4 h of growth in the presence of the SCFA at pH 6 and 7. The results suggest that the growth rate of the culture may have affected cell-association and invasion since accompanying the significant decrease in growth rate in the presence of SCFA at pH 6 was a decrease in cell-association and invasion. However, the results also suggest that the individual SCFA may play a role in modulating cell-association and the invasion phenotype and the regulation of cell-association and invasion by the SCFA was dependent on the concentration and the pH of the medium. Although the growth rates were similar for S. typhimurium in the SCFA mixture, butyrate (100 mM) and propionate (50 mM) at pH 6, differences in cell-association and invasion were observed among these cultures. Also, at pH 7, differences were observed among the SCFA treatments even though the growth rates were similar.
Collapse
Affiliation(s)
- J A Durant
- Department of Poultry Science, Texas A&M University, College Station 77843-2472, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Two key steps control immune responses in mucosal tissues: the sampling and transepithelial transport of antigens, and their targeting into professional antigen-presenting cells in mucosa-associated lymphoid tissue. Live Salmonella bacteria use strategies that allow them to cross the epithelial barrier of the gut, to survive in antigen-presenting cells where bacterial antigens are processed and presented to the immune cells, and to express adjuvant activity that prevents induction of oral tolerance. Two Salmonella serovars have been used as vaccines or vectors, S. typhimurium in mice and S. typhi in humans. S. typhimurium causes gastroenteritis in a broad host range, including humans, while S. typhi infection is restricted to humans. Attenuated S. typhimurium has been used successfully in mice to induce systemic and mucosal responses against more than 60 heterologous antigens. This review aims to revisit S. typhimurium-based vaccination, as an alternative to S. typhi, with special emphasis on the molecular pathogenesis of S. typhimurium and the host response. We then discuss how such knowledge constitutes the basis for the rational design of novel live mucosal vaccines.
Collapse
Affiliation(s)
- J C Sirard
- Swiss Institute for Experimental Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | | | | |
Collapse
|
49
|
Liljeqvist S, Ståhl S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 1999; 73:1-33. [PMID: 10483112 DOI: 10.1016/s0168-1656(99)00107-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first scientific attempts to control an infectious disease can be attributed to Edward Jenner, who, in 1796 inoculated an 8-year-old boy with cowpox (vaccinia), giving the boy protection against subsequent challenge with virulent smallpox. Thanks to the successful development of vaccines, many major diseases, such as diphtheria, poliomyelitis and measles, are nowadays kept under control, and in the case of smallpox, the dream of eradication has been fulfilled. Yet, there is a growing need for improvements of existing vaccines in terms of increased efficacy and improved safety, besides the development of completely new vaccines. Better technological possibilities, combined with increased knowledge in related fields, such as immunology and molecular biology, allow for new vaccination strategies. Besides the classical whole-cell vaccines, consisting of killed or attenuated pathogens, new vaccines based on the subunit principle, have been developed, e.g. the Hepatitis B surface protein vaccine and the Haemophilus influenzae type b vaccine. Recombinant techniques are now dominating in the strive for an ideal vaccine, being safe and cheap, heat-stable and easy to administer, preferably single-dose, and capable of inducing broad immune response with life-long memory both in adults and in infants. This review will describe different recombinant approaches used in the development of novel subunit vaccines, including design and production of protein immunogens, the development of live delivery systems and the state-of-the-art for nucleic acids vaccines.
Collapse
Affiliation(s)
- S Liljeqvist
- Department of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | |
Collapse
|
50
|
Ahmer BM, van Reeuwijk J, Watson PR, Wallis TS, Heffron F. Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol 1999; 31:971-82. [PMID: 10048039 DOI: 10.1046/j.1365-2958.1999.01244.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SirA of Salmonella typhimurium is known to regulate the hilA and prgH genes within Salmonella pathogenicity island 1 (SPI1). To identify more members of the SirA regulon, we screened 10,000 random lacZY fusions (chromosomal MudJ insertions) for regulation by SirA and identified 10 positively regulated fusions. Three fusions were within the SPI1 genes hilA (an SPI1 transcriptional regulator), spaS (a component of the SPI1 type III export apparatus) and sipB (a substrate of the SPI1 export apparatus). Two fusions were within the sopB gene (also known as sigD). sopB is located within SPI5, but encodes a protein that is exported via the SPI1 export apparatus. In addition, five fusions were within genes of unknown function that are located in SPI4. As spaS and sipB were likely to be hilA dependent, we tested all of the fusions (except hilA) for hilA dependence. Surprisingly, we found that all of the fusions require hilA for expression and that plasmid-encoded SirA cannot bypass this requirement. Therefore, SirA regulates hilA, the product of which regulates genes within SPI1, SPI4 and SPI5. Both sirA and hilA mutants are dramatically attenuated in a bovine model of gastroenteritis, but have little or no effect in the mouse model of typhoid fever. This study establishes the SirA/HilA regulatory cascade as the primary regulon controlling enteropathogenic virulence functions in S. typhimurium. Because S. typhimurium causes gastroenteritis in both cattle and humans, we believe that this information may be directly applicable to the human disease.
Collapse
Affiliation(s)
- B M Ahmer
- Department of Molecular Microbiology, Oregon Health Sciences University, Portland 97201-3098, USA.
| | | | | | | | | |
Collapse
|