1
|
Arora G, Lynn GE, Tang X, Rosen CE, Hoornstra D, Sajid A, Hovius JW, Palm NW, Ring AM, Fikrig E. CD55 Facilitates Immune Evasion by Borrelia crocidurae, an Agent of Relapsing Fever. mBio 2022; 13:e0116122. [PMID: 36036625 PMCID: PMC9600505 DOI: 10.1128/mbio.01161-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Relapsing fever, caused by diverse Borrelia spirochetes, is prevalent in many parts of the world and causes significant morbidity and mortality. To investigate the pathoetiology of relapsing fever, we performed a high-throughput screen of Borrelia-binding host factors using a library of human extracellular and secretory proteins and identified CD55 as a novel host binding partner of Borrelia crocidurae and Borrelia persica, two agents of relapsing fever in Africa and Eurasia. CD55 is present on the surface of erythrocytes, carries the Cromer blood group antigens, and protects cells from complement-mediated lysis. Using flow cytometry, we confirmed that both human and murine CD55 bound to B. crocidurae and B. persica. Given the expression of CD55 on erythrocytes, we investigated the role of CD55 in pathological B. crocidurae-induced erythrocyte aggregation (rosettes), which enables spirochete immune evasion. We showed that rosette formation was partially dependent on host cell CD55 expression. Pharmacologically, soluble recombinant CD55 inhibited erythrocyte rosette formation. Finally, CD55-deficient mice infected with B. crocidurae had a lower pathogen load and elevated proinflammatory cytokine and complement factor C5a levels. In summary, our results indicate that CD55 is a host factor that is manipulated by the causative agents of relapsing fever for immune evasion. IMPORTANCE Borrelia species are causative agents of Lyme disease and relapsing fever infections in humans. B. crocidurae causes one of the most prevalent relapsing fever infections in parts of West Africa. In the endemic regions, B. crocidurae is present in ~17% of the ticks and ~11% of the rodents that serve as reservoirs. In Senegal, ~7% of patients with acute febrile illness were found to be infected with B. crocidurae. There is little information on host-pathogen interactions and how B. crocidurae manipulates host immunity. In this study, we used a high-throughput screen to identify host proteins that interact with relapsing fever-causing Borrelia species. We identified CD55 as one of the host proteins that bind to B. crocidurae and B. persica, the two causes of relapsing fever in Africa and Eurasia. We show that the interaction of B. crocidurae with CD55, present on the surface of erythrocytes, is key to immune evasion and successful infection in vivo. Our study further shows the role of CD55 in complement regulation, regulation of inflammatory cytokine levels, and innate immunity during relapsing fever infection. Overall, this study sheds light on host-pathogen interactions during relapsing fever infection in vivo.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Geoffrey E. Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Connor E. Rosen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dieuwertje Hoornstra
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joppe W. Hovius
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity, Amsterdam, Netherlands
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Trevisan G, Cinco M, Trevisini S, di Meo N, Ruscio M, Forgione P, Bonin S. Borreliae Part 2: Borrelia Relapsing Fever Group and Unclassified Borrelia. BIOLOGY 2021; 10:1117. [PMID: 34827110 PMCID: PMC8615063 DOI: 10.3390/biology10111117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Borreliae of the relapsing fever group (RFG) are heterogenous and can be divided mainly into three groups according to vectors, namely the soft-tick-borne relapsing fever (STBRF) Borreliae, the hard-tick-borne relapsing fever (HTBRF) Borreliae, the louse-borne relapsing fever (LBRF) Borreliae, and the avian relapsing fever ones. With respect to the geographical distribution, the STBRF Borreliae are further subdivided into Old World and New World strains. Except for the Avian relapsing fever group Borreliae, which cause avian spirochetosis, all the others share infectivity in humans. They are indeed the etiological agent of both endemic and epidemic forms of relapsing fever, causing high spirochaetemia and fever. Vectors are primarily soft ticks of Ornithodoros spp. in the STBRF group; hard ticks, notably Ixodes sp., Amblyomma sp., Dermacentor sp., and Rhipicephalus sp., in the HTBRF group; and the louse pediculus humanus humanus in the TBRF one. A recent hypothesis was supported for a common ancestor of RFG Borreliae, transmitted at the beginning by hard-body ticks. Accordingly, STBRF Borreliae switched to use soft-bodied ticks as a vector, which was followed by the use of lice by Borrelia recurrentis. There are also new candidate species of Borreliae, at present unclassified, which are also described in this review.
Collapse
Affiliation(s)
- Giusto Trevisan
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
| | - Marina Cinco
- DSV—Department of Life Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Sara Trevisini
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Nicola di Meo
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Maurizio Ruscio
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Patrizia Forgione
- UOSD Dermatologia, Centro Rif. Regionale Malattia di Hansen e Lyme, P.O. dei Pellegrini, ASL Napoli 1 Centro, 80145 Naples, Italy;
| | - Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
| |
Collapse
|
3
|
Abstract
Relapsing fever (RF) is caused by several species of Borrelia; all, except two species, are transmitted to humans by soft (argasid) ticks. The species B. recurrentis is transmitted from one human to another by the body louse, while B. miyamotoi is vectored by hard-bodied ixodid tick species. RF Borrelia have several pathogenic features that facilitate invasion and dissemination in the infected host. In this article we discuss the dynamics of vector acquisition and subsequent transmission of RF Borrelia to their vertebrate hosts. We also review taxonomic challenges for RF Borrelia as new species have been isolated throughout the globe. Moreover, aspects of pathogenesis including symptomology, neurotropism, erythrocyte and platelet adhesion are discussed. We expound on RF Borrelia evasion strategies for innate and adaptive immunity, focusing on the most fundamental pathogenetic attributes, multiphasic antigenic variation. Lastly, we review new and emerging species of RF Borrelia and discuss future directions for this global disease.
Collapse
Affiliation(s)
- Job Lopez
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston TX, USA
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Medical centers, location Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sven Bergström
- Department of Molecular Biology, Umeå Center for Microbial Research, Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Boardman K, Rosenke K, Safronetz D, Feldmann H, Schwan TG. Host Competency of the Multimammate Rat Mastomys natalensis Demonstrated by Prolonged Spirochetemias with the African Relapsing Fever Spirochete Borrelia crocidurae. Am J Trop Med Hyg 2019; 101:1272-1275. [PMID: 31674298 PMCID: PMC6896849 DOI: 10.4269/ajtmh.19-0590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/15/2019] [Indexed: 11/07/2022] Open
Abstract
African multimammate rats, Mastomys natalensis, are widely distributed in sub-Saharan Africa and live in close association with humans. In West Africa, numerous field studies have shown these animals may be naturally infected with the relapsing fever spirochete Borrelia crocidurae, the primary cause of tick-borne relapsing fever in this region of the continent. However, naturally infected individual rats have never been examined over time; therefore, the true host competency of these rats for this spirochete is unknown. Therefore, using animals from an established laboratory colony of M. natalensis, rats were experimentally infected with B. crocidurae and their blood examined to 28 days postinoculation. These animals were highly susceptible to infection and displayed prolonged and cyclic spirochetemias. Our results demonstrate these peridomestic rodents are likely competent hosts for infecting argasid tick vectors and play a primary role in the enzootic cycle for B. crocidurae in West Africa.
Collapse
Affiliation(s)
- Kristin Boardman
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana
| | - Kyle Rosenke
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana
| | - Tom G. Schwan
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana
| |
Collapse
|
5
|
Bergström S, Normark J. Microbiological features distinguishing Lyme disease and relapsing fever spirochetes. Wien Klin Wochenschr 2018; 130:484-490. [PMID: 30074091 PMCID: PMC6096528 DOI: 10.1007/s00508-018-1368-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022]
Abstract
The recent proposal of splitting the genus Borrelia into two genera in the newly formed family of Borreliaceae, i. e. Borrelia and Borreliella has motivated us to reflect upon how these organisms has been characterized and differentiated. This article therefore aims to take a closer look on the biology and virulence attributes of the two suggested genera, i. e. those causing Lyme borreliosis and relapsing fever borreliosis. Both genera have much in common with similar infection biological features. They are both characterized as bacterial zoonoses, transmitted by hematophagous arthropods with almost identical microbiological appearance. Nevertheless, a closer look at the genotypic and phenotypic characteristics clearly reveals several differences that might motivate the suggested split. On the other hand, a change of this well-established classification within the genus Borrelia might impose an economical burden as well as a great confusion in society, including medical and scientific societies as well as the general population.
Collapse
Affiliation(s)
- Sven Bergström
- Department of Molecular Biology, Umeå University, 6K och 6L, Sjukhusområdet, 901 87, Umeå, Sweden. .,Umeå Center for Microbial Research, Umeå University, Umeå, Sweden. .,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
| | - Johan Normark
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Talagrand-Reboul E, Boyer PH, Bergström S, Vial L, Boulanger N. Relapsing Fevers: Neglected Tick-Borne Diseases. Front Cell Infect Microbiol 2018; 8:98. [PMID: 29670860 PMCID: PMC5893795 DOI: 10.3389/fcimb.2018.00098] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
Relapsing fever still remains a neglected disease and little is known on its reservoir, tick vector and physiopathology in the vertebrate host. The disease occurs in temperate as well as tropical countries. Relapsing fever borreliae are spirochaetes, members of the Borreliaceae family which also contain Lyme disease spirochaetes. They are mainly transmitted by Ornithodoros soft ticks, but some species are vectored by ixodid ticks. Traditionally a Borrelia species is associated with a specific vector in a particular geographical area. However, new species are regularly described, and taxonomical uncertainties deserve further investigations to better understand Borrelia vector/host adaptation. The medical importance of Borrelia miyamotoi, transmitted by Ixodes spp., has recently spawned new interest in this bacterial group. In this review, recent data on tick-host-pathogen interactions for tick-borne relapsing fevers is presented, with special focus on B. miyamotoi.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Pierre H. Boyer
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Laurence Vial
- CIRAD BIOS, UMR15 CIRAD/Institut National de la Recherche Agronomique “Contrôle des Maladies Animales Exotiques et Emergentes,” Equipe “Vecteurs,” Campus International de Baillarguet, Montpellier, France
| | - Nathalie Boulanger
- Early Bacterial Virulence: Borrelia Group, Université de Strasbourg, Facultés de Médecine et de Pharmacie, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBB EA 7290, Strasbourg, France
- Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| |
Collapse
|
7
|
Stone BL, Brissette CA. Host Immune Evasion by Lyme and Relapsing Fever Borreliae: Findings to Lead Future Studies for Borrelia miyamotoi. Front Immunol 2017; 8:12. [PMID: 28154563 PMCID: PMC5243832 DOI: 10.3389/fimmu.2017.00012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
The emerging pathogen, Borrelia miyamotoi, is a relapsing fever spirochete vectored by the same species of Ixodes ticks that carry the causative agents of Lyme disease in the US, Europe, and Asia. Symptoms caused by infection with B. miyamotoi are similar to a relapsing fever infection. However, B. miyamotoi has adapted to different vectors and reservoirs, which could result in unique physiology, including immune evasion mechanisms. Lyme Borrelia utilize a combination of Ixodes-produced inhibitors and native proteins [i.e., factor H-binding proteins (FHBPs)/complement regulator-acquiring surface proteins, p43, BBK32, BGA66, BGA71, CD59-like protein] to inhibit complement, while some relapsing fever spirochetes use C4b-binding protein and likely Ornithodoros-produced inhibitors. To evade the humoral response, Borrelia utilize antigenic variation of either outer surface proteins (Osps) and the Vmp-like sequences (Vls) system (Lyme borreliae) or variable membrane proteins (Vmps, relapsing fever borreliae). B. miyamotoi possesses putative FHBPs and antigenic variation of Vmps has been demonstrated. This review summarizes and compares the common mechanisms utilized by Lyme and relapsing fever spirochetes, as well as the current state of understanding immune evasion by B. miyamotoi.
Collapse
Affiliation(s)
- Brandee L Stone
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota , Grand Forks, ND , USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota , Grand Forks, ND , USA
| |
Collapse
|
8
|
Warrell DA. Relapsing Fevers. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
Crowder CD, Ghalyanchi Langeroudi A, Shojaee Estabragh A, Lewis ERG, Marcsisin RA, Barbour AG. Pathogen and Host Response Dynamics in a Mouse Model of Borrelia hermsii Relapsing Fever. Vet Sci 2016; 3:vetsci3030019. [PMID: 29056727 PMCID: PMC5606581 DOI: 10.3390/vetsci3030019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/23/2022] Open
Abstract
Most Borrelia species that cause tick-borne relapsing fever utilize rodents as their natural reservoirs, and for decades laboratory-bred rodents have served as informative experimental models for the disease. However, while there has much progress in understanding the pathogenetic mechanisms, including antigenic variation, of the pathogen, the host side of the equation has been neglected. Using different approaches, we studied, in immunocompetent inbred mice, the dynamics of infection with and host responses to North American relapsing fever agent B. hermsii. The spirochete’s generation time in blood of infected mice was between 4–5 h and, after a delay, was matched in rate by the increase of specific agglutinating antibodies in response to the infection. After initiating serotype cells were cleared by antibodies, the surviving spirochetes were a different serotype and, as a population, grew more slowly. The retardation was attributable to the host response and not an inherently slower growth rate. The innate responses at infection peak and immediate aftermath were characterized by elevations of both pro-inflammatory and anti-inflammatory cytokines and chemokines. Immunodeficient mice had higher spirochete burdens and severe anemia, which was accounted for by aggregation of erythrocytes by spirochetes and their partially reversible sequestration in greatly enlarged spleens and elsewhere.
Collapse
Affiliation(s)
- Christopher D Crowder
- Departments of Microbiology & Molecular Genetics and Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Arash Ghalyanchi Langeroudi
- Departments of Microbiology & Molecular Genetics and Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Azadeh Shojaee Estabragh
- Departments of Microbiology & Molecular Genetics and Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Eric R G Lewis
- Departments of Microbiology & Molecular Genetics and Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Renee A Marcsisin
- Departments of Microbiology & Molecular Genetics and Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Alan G Barbour
- Departments of Microbiology & Molecular Genetics and Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
10
|
Moll K, Palmkvist M, Ch'ng J, Kiwuwa MS, Wahlgren M. Evasion of Immunity to Plasmodium falciparum: Rosettes of Blood Group A Impair Recognition of PfEMP1. PLoS One 2015; 10:e0145120. [PMID: 26714011 PMCID: PMC4694710 DOI: 10.1371/journal.pone.0145120] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/28/2015] [Indexed: 11/18/2022] Open
Abstract
The ABO blood group antigens are expressed on erythrocytes but also on endothelial cells, platelets and serum proteins. Notably, the ABO blood group of a malaria patient determines the development of the disease given that blood group O reduces the probability to succumb in severe malaria, compared to individuals of groups A, B or AB. P. falciparum rosetting and sequestration are mediated by PfEMP1, RIFIN and STEVOR, expressed at the surface of the parasitized red blood cell (pRBC). Antibodies to these antigens consequently modify the course of a malaria infection by preventing sequestration and promoting phagocytosis of pRBC. Here we have studied rosetting P. falciparum and present evidence of an immune evasion mechanism not previously recognized. We find the accessibility of antibodies to PfEMP1 at the surface of the pRBC to be reduced when P. falciparum forms rosettes in blood group A RBC, as compared to group O RBC. The pRBC surrounds itself with tightly bound normal RBC that makes PfEMP1 inaccessible to antibodies and clearance by the immune system. Accordingly, pRBC of in vitro cloned P. falciparum devoid of ABO blood group dependent rosetting were equally well detected by anti-PfEMP1 antibodies, independent of the blood group utilized for their propagation. The pathogenic mechanisms underlying the severe forms of malaria may in patients of blood group A depend on the ability of the parasite to mask PfEMP1 from antibody recognition, in so doing evading immune clearance.
Collapse
Affiliation(s)
- Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, SE-171 77 Stockholm, Sweden
- * E-mail: (KM); (MW)
| | - Mia Palmkvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, SE-171 77 Stockholm, Sweden
| | - Junhong Ch'ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, SE-171 77 Stockholm, Sweden
| | - Mpungu Steven Kiwuwa
- Department of Pediatrics, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Biochemistry, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, Nobels väg 16, SE-171 77 Stockholm, Sweden
- * E-mail: (KM); (MW)
| |
Collapse
|
11
|
Tabuchi N, Murakami N, Fukunaga M. Identification of the Immunogenic Outer Membrane Proteins of Relapsing Fever <i>Borrelia</i>. YAKUGAKU ZASSHI 2013; 133:1417-23. [DOI: 10.1248/yakushi.13-00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Norihiko Tabuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Noritaka Murakami
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Masahito Fukunaga
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
12
|
Goutier S, Ferquel E, Pinel C, Bosseray A, Hoen B, Couetdic G, Bourahoui A, Lapostolle C, Pelloux H, Garnier M, Sertour N, Pelloux I, Pavese P, Cornet M. Borrelia crocidurae meningoencephalitis, West Africa. Emerg Infect Dis 2013; 19:301-4. [PMID: 23347436 PMCID: PMC3559064 DOI: 10.3201/eid1902.121325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Borrelia crocidurae–associated relapsing fever is endemic to West Africa and is considered benign. We report 4 patients with B. crocidurae–associated neurologic symptoms; 2 of their cases had been misdiagnosed. Frequency and severity of this disease could be underestimated; molecular methods and serodiagnostic tests for Lyme disease might be helpful in its detection.
Collapse
|
13
|
Warrell DA. Relapsing fevers. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Genetic control of the innate immune response to Borrelia hermsii influences the course of relapsing fever in inbred strains of mice. Infect Immun 2009; 78:586-94. [PMID: 19995898 DOI: 10.1128/iai.01216-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host susceptibility to infection is controlled in large measure by the genetic makeup of the host. Spirochetes of the genus Borrelia include nearly 40 species of vector-borne spirochetes that are capable of infecting a wide range of mammalian hosts, causing Lyme disease and relapsing fever. Relapsing fever is associated with high-level bacteremia, as well as hematologic manifestations, such as thrombocytopenia (i.e., low platelet numbers) and anemia. To facilitate studies of genetic control of susceptibility to Borrelia hermsii infection, we performed a systematic analysis of the course of infection using immunocompetent and immunocompromised inbred strains of mice. Our analysis revealed that sensitivity to B. hermsii infections is genetically controlled. In addition, whereas the role of adaptive immunity to relapsing fever-causing spirochetes is well documented, we found that innate immunity contributes significantly to the reduction of bacterial burden. Similar to human infection, the progression of the disease in mice was associated with thrombocytopenia and anemia. Histological and fluorescence in situ hybridization (FISH) analysis of infected tissues indicated that red blood cells (RBCs) were removed by tissue-resident macrophages, a process that could lead to anemia. Spirochetes in the spleen and liver were often visualized associated with RBCs, lending support to the hypothesis that direct interaction of B. hermsii spirochetes with RBCs leads to clearance of bacteria from the bloodstream by tissue phagocytes.
Collapse
|
15
|
Relapsing fever Borrelia binds to neolacto glycans and mediates rosetting of human erythrocytes. Proc Natl Acad Sci U S A 2009; 106:19280-5. [PMID: 19884498 DOI: 10.1073/pnas.0905470106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A hallmark of acute relapsing fever borreliosis is severe bacteremia. Some Borrelia species, such as B. duttonii and B. crocidurae, associate with erythrocytes and induce aggregation recognized as erythrocyte rosetting. Erythrocyte rosettes contribute to disease severity by increased tissue invasiveness (such as invasion of CNS and encephalitis), hemorrhaging, and reduced blood flow in affected microcapillaries. Here we report that relapsing fever Borrelia binds to neolacto (Galbeta4GlcNAcbeta3Galbeta4Glcbeta1)-carrying glycoconjugates that are present on human erythrocytes. This interaction is of low affinity but is compensated for by the multivalency of neo-lacto-oligosaccharides on the erythrocyte cell surface. Hence, the protein-carbohydrate interaction is dependent on multivalent neolacto-glycans to mediate binding.
Collapse
|
16
|
Cutler SJ, Abdissa A, Trape JF. New concepts for the old challenge of African relapsing fever borreliosis. Clin Microbiol Infect 2009; 15:400-6. [PMID: 19489922 DOI: 10.1111/j.1469-0691.2009.02819.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relapsing fever, caused by spirochaetes belonging to the genus Borrelia, was once the cause of worldwide epidemic disease. This was largely through infection with the louse-borne form of the disease, caused by Borrelia recurrentis (louse-borne relapsing fever (LBRF)). During the last century, we have witnessed the demise of this infection, largely owing to improved standards of living and the introduction of the insecticide DDT, resulting in a reduction in the incidence of the body louse, the vector for relapsing fever. In areas of extreme poverty this disease persists, causing a significant burden of disease. It is now looking probable that this infection is caused by a louse-adapted variant of Borrelia duttonii, transmitted by Ornithodoros moubata 'soft' ticks in East Africa. Like LBRF, infection still causes impact, particularly affecting young children and pregnant women. Over recent years, the true burden of relapsing fever caused by infection with the closely related Borrelia crocidurae, transmitted by Ornithodoros sonrai ticks, has only just begun to emerge. Here, the current state of knowledge concerning relapsing fever in Africa is reviewed.
Collapse
Affiliation(s)
- S J Cutler
- School of Health & Bioscience, University of East London, London, UK.
| | | | | |
Collapse
|
17
|
Pettersson J, Schrumpf ME, Raffel SJ, Porcella SF, Guyard C, Lawrence K, Gherardini FC, Schwan TG. Purine salvage pathways among Borrelia species. Infect Immun 2007; 75:3877-84. [PMID: 17502392 PMCID: PMC1952022 DOI: 10.1128/iai.00199-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome sequencing projects on two relapsing fever spirochetes, Borrelia hermsii and Borrelia turicatae, revealed differences in genes involved in purine metabolism and salvage compared to those in the Lyme disease spirochete Borrelia burgdorferi. The relapsing fever spirochetes contained six open reading frames that are absent from the B. burgdorferi genome. These genes included those for hypoxanthine-guanine phosphoribosyltransferase (hpt), adenylosuccinate synthase (purA), adenylosuccinate lyase (purB), auxiliary protein (nrdI), the ribonucleotide-diphosphate reductase alpha subunit (nrdE), and the ribonucleotide-diphosphate reductase beta subunit (nrdF). Southern blot assays with multiple Borrelia species and isolates confirmed the presence of these genes in the relapsing fever group of spirochetes but not in B. burgdorferi and related species. TaqMan real-time reverse transcription-PCR demonstrated that the chromosomal genes (hpt, purA, and purB) were transcribed in vitro and in mice. Phosphoribosyltransferase assays revealed that, in general, B. hermsii exhibited significantly higher activity than did the B. burgdorferi cell lysate, and enzymatic activity was observed with adenine, hypoxanthine, and guanine as substrates. B. burgdorferi showed low but detectable phosphoribosyltransferase activity with hypoxanthine even though the genome lacks a discernible ortholog to the hpt gene in the relapsing fever spirochetes. B. hermsii incorporated radiolabeled hypoxanthine into RNA and DNA to a much greater extent than did B. burgdorferi. This complete pathway for purine salvage in the relapsing fever spirochetes may contribute, in part, to these spirochetes achieving high cell densities in blood.
Collapse
Affiliation(s)
- Jonas Pettersson
- Rocky Mountain Laboratories, 903 S. Fourth Street, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Andersson M, Nordstrand A, Shamaei-Tousi A, Jansson A, Bergström S, Guo BP. In situ immune response in brain and kidney during early relapsing fever borreliosis. J Neuroimmunol 2007; 183:26-32. [PMID: 17184846 DOI: 10.1016/j.jneuroim.2006.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/31/2006] [Accepted: 11/01/2006] [Indexed: 11/24/2022]
Abstract
Characterization of the host immune response during initial pathogenesis of relapsing fever neuroborreliosis would be a key to understanding Borrelia persistence and factors driving the inflammatory process. We analyzed immune cells in brain and kidney with the highly invasive B. crocidurae during the first two weeks of murine infection. In both organs, microglia and/or macrophages predominated while T-cell changes were minimal. Compared to kidney, brain neutrophils infiltrated more rapidly and B-cells were essentially absent. Our results indicate that during early neuroborreliosis, brain defense is comprised primarily of innate immune cells while adaptive immunity plays a minor role.
Collapse
Affiliation(s)
- Marie Andersson
- Umeå University, Department of Molecular Biology, SE-90187 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Hovis KM, Schriefer ME, Bahlani S, Marconi RT. Immunological and molecular analyses of the Borrelia hermsii factor H and factor H-like protein 1 binding protein, FhbA: demonstration of its utility as a diagnostic marker and epidemiological tool for tick-borne relapsing fever. Infect Immun 2006; 74:4519-29. [PMID: 16861638 PMCID: PMC1539583 DOI: 10.1128/iai.00377-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been demonstrated that Borrelia hermsii, a causative agent of relapsing fever, produces a factor H (FH) and FH-like protein 1 (FHL-1) binding protein. The binding protein has been designated FhbA. To determine if FH/FHL-1 binding is widespread among B. hermsii isolates, a diverse panel of strains was tested for the FH/FHL-1 binding phenotype and FhbA production. Most isolates (23/24) produced FhbA and bound FH/FHL-1. Potential variation in FhbA among isolates was analyzed by DNA sequence analyses. Two genetically distinct FhbA types, designated fhbA1 and fhbA2, were delineated, and type-specific PCR primers were generated to allow for rapid differentiation. Pulsed-field gel electrophoresis and hybridization analyses demonstrated that all isolates that possess the gene carry it on a 200-kb linear plasmid (lp200), whereas isolates that lack the gene lack lp200 and instead carry an lp170. To determine if FhbA is antigenic during infection and to assess the specificity of the response, recombinant FhbA1 (rFhbA1) and rFhbA2 were screened with serum from infected mice and humans. FhbA was found to be expressed and antigenic and to elicit a potentially type-specific FhbA response. To localize the epitopes of FhbA1 and FhbA2, truncations were generated and screened with infection serum. The epitopes were determined to be conformationally defined. Collectively, these analyses indicate that FH/FHL-1 binding is a widespread virulence mechanism for B. hermsii and provide insight into the genetic and antigenic structure of FhbA. The data also have potential implications for understanding the epidemiology of relapsing fever in North America and can be applied to the future development of species-specific diagnostic tools.
Collapse
Affiliation(s)
- Kelley M Hovis
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, 1112 E. Clay St., McGuire Hall, Richmond, Virginia 23298-0678, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Increasing globalization may pave the way for reemergence of relapsing fever. Relapsing fever Borrelia infections have attracted little attention in recent years; however, where endemic, these infections still result in considerable illness and death. Despite the marked antimicrobial drug susceptibility of these organisms, therapy is often delayed through lack of clinical suspicion. With increasing travel, infections may be imported, through exotic relapsing fever infection or through resurgence of infected disease vectors. Although louseborne relapsing fever is now geographically limited, it was once of global importance. The possibility for reemergence was recently highlighted by the probable reemergence of louseborne relapsing fever in homeless persons from France. Host limitations enforced through louseborne transmission are less applicable for the tickborne forms of relapsing fever. Although the latter have reduced potential for epidemic spread, they have the ability to infect diverse hosts, thus establishing reservoirs of infection and presenting greater challenges for their control.
Collapse
Affiliation(s)
- Sally J Cutler
- Bacterial Zoonoses, Statutory & Exotic Bacterial Diseases, Veterinary Laboratories Agency, Surrey, United Kingdom.
| |
Collapse
|
21
|
Larsson C, Andersson M, Pelkonen J, Guo BP, Nordstrand A, Bergström S. Persistent brain infection and disease reactivation in relapsing fever borreliosis. Microbes Infect 2006; 8:2213-9. [PMID: 16782384 DOI: 10.1016/j.micinf.2006.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 04/20/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
Relapsing fever, an infection caused by Borrelia spirochetes, is generally considered a transient, self-limiting disease in humans. The present study reveals that murine infection by Borrelia duttonii can be reactivated after an extended time as a silent infection in the brain, with no bacteria appearing in the blood and spirochete load comparable to the numbers in an infected tick. The host cerebral gene expression pattern is indistinguishable from that of uninfected animals, indicating that persistent bacteria are not recognized by the immune system nor cause noticeable tissue damage. Silent infection can be reactivated by immunosuppression, inducing spirochetemia comparable to that of initial densities. B. duttonii has never been found in any host except man and the tick vector. We therefore propose the brain to be a possible natural reservoir of the spirochete. The view of relapsing fever as an acute disease should be extended to include in some cases prolonged persistence, a feature characteristic of the related spirochetal infections Lyme disease and syphilis.
Collapse
Affiliation(s)
- Christer Larsson
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
22
|
Vial L, Diatta G, Tall A, Ba EH, Bouganali H, Durand P, Sokhna C, Rogier C, Renaud F, Trape JF. Incidence of tick-borne relapsing fever in west Africa: longitudinal study. Lancet 2006; 368:37-43. [PMID: 16815378 DOI: 10.1016/s0140-6736(06)68968-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The ongoing drought in sub-Saharan countries has led to the colonisation of west African Savanna by Ornithodoros sonrai; this tick acts as a vector for Borrelia crocidurae, which causes tick-borne relapsing fever (TBRF). Our aim was to ascertain the incidence of TBRF in west Africa. METHODS From 1990 to 2003, we monitored the incidence of TBRF in Dielmo, Senegal, by daily clinical surveillance and by blood testing of individuals with a fever. From 2002 to 2005, we investigated the presence of O sonrai in 30 villages in Senegal, Mauritania, and Mali, and measured by PCR the prevalence of B crocidurae. FINDINGS The average incidence of TBRF over 14 years was 11 per 100 person-years (range from 4 in 1990 to 25 in 1997). All age-groups presented a high incidence of the disease. In addition to relapses, repeated infections in the same individuals were common, with some affected by up to six distinct infections during the study period. Epidemiological studies indicated that 26 of the 30 studied villages (87%) were colonised by the vector tick O sonrai and that the average B crocidurae infection rate of the vector was 31%. INTERPRETATION The incidence of TBRF at the community level is the highest described in Africa for any bacterial disease. The presence of the vector tick in most villages investigated and its high infection rate suggest that TBRF is a common cause of fever in most rural areas of Senegal, Mauritania, and Mali.
Collapse
Affiliation(s)
- Laurence Vial
- Institut de Recherche pour le Développement, BP 1386, CP 18524, Dakar, Sénégal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hovis KM, Jones JP, Sadlon T, Raval G, Gordon DL, Marconi RT. Molecular analyses of the interaction of Borrelia hermsii FhbA with the complement regulatory proteins factor H and factor H-like protein 1. Infect Immun 2006; 74:2007-14. [PMID: 16552029 PMCID: PMC1418896 DOI: 10.1128/iai.74.4.2007-2014.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Borrelia hermsii, the primary etiological agent of tick-borne relapsing fever in North America, binds the complement regulatory protein factor H (FH) as a means of evading opsonophagocytosis and the alternative complement pathway. The ability of FH-binding protein A (FhbA) to bind FH-like protein 1 (FHL-1) has not been assessed previously. In this study, using a whole-cell absorption assay, we demonstrated that B. hermsii absorbs both FH and FHL-1 from human serum. Consistent with this, affinity ligand binding immunoblot analyses revealed that FH constructs spanning short consensus repeats 1 to 7 and 16 to 20 bind to FhbA. To investigate the molecular basis of the interaction of FhbA with FH/FHL-1, recombinant FhbA truncated proteins were generated and tested for FH/FHL-1 binding. Binding required determinants located in both the N- and C-terminal domains of FhbA, suggesting that long-range intramolecular interactions are involved in the formation and presentation of the FH/FHL-1-binding pocket. To identify specific FhbA residues involved in binding, random mutagenesis was performed. These analyses identified a loop region of FhbA that may serve as a contact point for FH/FHL-1. The data presented here expand our understanding of the pathogenic mechanisms of the relapsing fever spirochetes and of the molecular nature of the interaction between FH/FHL-1 and FhbA.
Collapse
Affiliation(s)
- Kelley M Hovis
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | | | | | | | | | | |
Collapse
|
24
|
Guyard C, Chester EM, Raffel SJ, Schrumpf ME, Policastro PF, Porcella SF, Leong JM, Schwan TG. Relapsing fever spirochetes contain chromosomal genes with unique direct tandemly repeated sequences. Infect Immun 2005; 73:3025-37. [PMID: 15845510 PMCID: PMC1087331 DOI: 10.1128/iai.73.5.3025-3037.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome sequencing of the relapsing fever spirochetes Borrelia hermsii and Borrelia turicatae identified three open reading frames (ORFs) on the chromosomes that contained internal, tandemly repeated amino acid sequences that were absent in the Lyme disease spirochete Borrelia burgdorferi. The predicted amino acid sequences of these genes (BH0209, BH0512, and BH0553) have hydrophobic N termini, indicating that these proteins may be secreted. B. hermsii transcribed the three ORFs in vitro, and the BH0512- and BH0553-encoded proteins (PBH-512 and PBH-553) were produced in vitro and in experimentally infected mice. PBH-512 and PBH-553 were on the spirochete's outer surface, and antiserum to these proteins reduced the adherence of B. hermsii to red blood cells. PCR analyses of 28 isolates of B. hermsii and 8 isolates of B. turicatae demonstrated polymorphism in each gene correlated with the number of repeats. Serum samples from relapsing fever patients reacted with recombinant PBH-512 and PBH-553, suggesting that these proteins are produced during human infection. These polymorphic proteins may be involved in the pathogenicity of these relapsing fever spirochetes and provide a mechanism for antigenic heterogeneity within their populations.
Collapse
Affiliation(s)
- Cyril Guyard
- Rocky Mountain Laboratories, 903 S. Fourth St., Hamilton, MT 59840, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, which afflicts both humans and some domestic animals. B. burgdorferi, a highly evolved extracellular pathogen, uses several strategies to survive in a complex enzootic cycle involving a diverse range of hosts. This review focuses on the unique adaptive features of B. burgdorferi, which are central to establishing a successful spirochetal infection within arthropod and vertebrate hosts. We also discuss the regulatory mechanisms linked with the development of molecular adaptation of spirochetes within different host environments.
Collapse
Affiliation(s)
- Utpal Pal
- Room 525A, Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | | |
Collapse
|
26
|
Alugupalli KR, Gerstein RM, Chen J, Szomolanyi-Tsuda E, Woodland RT, Leong JM. The resolution of relapsing fever borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3819-27. [PMID: 12646649 DOI: 10.4049/jimmunol.170.7.3819] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rate of pathogen clearance is a critical determinant of morbidity and mortality. We sought to characterize the immune response responsible for the remarkably rapid clearance of individual episodes of bacteremia caused by the relapsing fever bacterium, Borrelia hermsii. SCID or Rag(-/-) mice were incapable of resolving B. hermsii infection, indicating a critical role for T and/or B cells. TCR(-/-) mice, which lack T cells, and IL-7(-/-) mice, which are deficient in both T cells and follicular B cells, but not in B1 cells and splenic marginal zone (MZ) B cells, efficiently cleared B. hermsii. These findings suggested that B1 cells and/or MZ B cells, two B cell subsets that are known to participate in rapid, T-independent responses, might be involved. The efficient resolution of the episodes of moderate level bacteremia by splenectomized mice suggested that MZ B cells do not play the primary role in clearance of this bacterium. In contrast, xid mice, which are deficient in B1 cells, suffered more severe episodes of bacteremia than wild-type mice. The hypothesis that B1 cells are critical for clearance of B. hermsii was further supported by a selective expansion of the B1b (i.e., IgM(high), IgD(-/low), Mac1(+) CD23(-), and CD5(-)) cell subset in infected xid mice, which coincided with the eventual resolution of infection. Finally, mice selectively incapable of secreting IgM, the dominant isotype produced by B1 cells, were completely unable to clear B. hermsii. Together these results support the model that B1b cells generate the T-independent IgM required for the control and resolution of relapsing fever borreliosis.
Collapse
Affiliation(s)
- Kishore R Alugupalli
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Tabuchi N, Mitani H, Seino S, Fukunaga M. The 44-kb linear plasmid molecule in the relapsing fever agent Borrelia duttonii strain Ly serve as a preservation of vmp genes. Microbiol Immunol 2002; 46:159-65. [PMID: 12008924 DOI: 10.1111/j.1348-0421.2002.tb02681.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Borrelia duttonii strain Ly, a causative agent of relapsing fever, contains a linear one megabase chromosome and 12 linear plasmid molecules. Here we report that the sequence of the 44-kb linear plasmid of strain Ly is found to contain variable major protein (vmp) genes for antigenic variation of relapsing fever borreliae. The determined sequence is of 44,010 bp except for both ends of the molecule. Of 39 open reading frames (ORFs) found in the sequence, 21 ORFs (named vmpA to U) showed moderate similarities with vmp genes for Borrelia hermsii. However, most of the vmp homologues are apparently nonfunctional because of their frameshifts within the sequence and/or absence of promoter and ribosome-binding signals upstream of their genes. RT-PCR experiments using the specific primer for each vmp gene revealed that vmpE, one of the vmp genes, was expressed at the location of the 44-kb plasmid molecule. The result suggests that the plasmid molecule may play a role in the preservation of the serotype switching of vmp genes in a mammalian host.
Collapse
Affiliation(s)
- Norihiko Tabuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | | | | | | |
Collapse
|
28
|
Abstract
Ticks are effective vectors of viral, bacterial, rickettsial and parasitic diseases. Many of the tick-borne diseases (TBDs) are of significance to transfusion medicine, either because of the risks they pose to the blood supply or the necessity for blood products required in their treatment. The transmission of tick-borne pathogens via blood transfusion is of global concern. However, among transfusion medicine practitioners, experience with most of these microorganisms is limited. Transfusion transmission of TBDs has been documented largely by means of single case reports. A better understanding of the epidemiology, biology and management of this group of diseases is necessary in order to assess the risks they pose to the blood supply and to help guide effective prevention strategies to reduce this risk. Unique methods are required to focus on donor selection, predonation questioning, mass screening and inactivation or eradication procedures. The role of the transfusion medicine service in their treatment also needs to be better defined. This article reviews the growing body of literature pertaining to this emerging field of transfusion medicine and offers some recommendations for transfusionists in dealing with TBDs.
Collapse
Affiliation(s)
- L Pantanowitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | |
Collapse
|
29
|
Nordstrand A, Shamaei-Tousi A, Ny A, Bergström S. Delayed invasion of the kidney and brain by Borrelia crocidurae in plasminogen-deficient mice. Infect Immun 2001; 69:5832-9. [PMID: 11500461 PMCID: PMC98701 DOI: 10.1128/iai.69.9.5832-5839.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2001] [Accepted: 05/29/2001] [Indexed: 11/20/2022] Open
Abstract
Borrelia crocidurae is an etiologic agent of relapsing fever in Africa and is transmitted to humans by the bite of soft ticks of the genus Ornithodoros. The role of the plasminogen (Plg) activation system for the pathogenicity of B. crocidurae was investigated by infection of Plg-deficient (plg(-/-)) and Plg wild-type (plg(+/+)) mice. No differences in spirochetemia were observed between the plg(-/-) and plg(+/+) mice. However, signs indicative of brain invasion, such as neurological symptoms and/or histopathological changes, were more common in plg(+/+) mice. Quantitative immunohistochemical analysis demonstrated infection of spirochetes in kidney interstitium and brain as soon as 2 days postinoculation. Lower numbers of extravascular spirochetes in plg(-/-) mice during the first days of infection suggested a less efficient invasion mechanism in these mice than in the plg(+/+) mice. The invasion of the kidneys in plg(-/-) mice produced no significant inflammation, as seen by quantitative immunohistochemistry of the CD45 common leukocyte marker. However, significant kidney inflammation was observed with infection in the plg(+/+) mice. In brain, inflammation was more severe in plg(+/+) mice than in plg(-/-) mice, and the numbers of CD45(+) cells increased significantly with duration of infection in the plg(+/+) mice. The results show that invasion of brain and kidney occurs as early as 2 days after inoculation. Also, Plg is not required for establishment of spirochetemia by the organism, whereas it is involved in the invasion of organs.
Collapse
Affiliation(s)
- A Nordstrand
- Department of Molecular Biology, Department of Medical Biosciences, Umeå University, S-90187 Umeå, Sweden.
| | | | | | | |
Collapse
|
30
|
Takahashi Y, Cutler SJ, Fukunaga M. Size conversion of a linear plasmid in the relapsing fever agent Borrelia duttonii. Microbiol Immunol 2001; 44:1071-4. [PMID: 11220682 DOI: 10.1111/j.1348-0421.2000.tb02605.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Borreliae have genomes composed of both linear and circular replicons. We have characterized the organization of linear DNA molecules from the Borrelia duttonii strain Ly. It contains a linear one megabase chromosome and 12 linear plasmids of 11 to 200 kb in size. A variant of the strain obtained after successive in vitro cultivation in BSKII medium had a 69 kb molecule instead of the 44 kb linear plasmid. No detectable differences in the growth rates and cellular structures were found. Southern hybridization using the vsp33 gene sequence from Borrelia hermsii as a probe showed that both plasmids (69 and 44 kb molecules) contained a similar part of the sequence. The spirochetes of the parental strain cause erythrocytes to aggregate in mice blood, but the variant did not form such aggregates and seemed to have lost its infectivity in mice. Size conversion of the linear plasmid may be associated with the host-parasite relationship in mammals.
Collapse
Affiliation(s)
- Y Takahashi
- Laboratory' of Molecular Microbiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | | | | |
Collapse
|
31
|
Shamaei-Tousi A, Collin O, Bergh A, Bergström S. Testicular damage by microcirculatory disruption and colonization of an immune-privileged site during Borrelia crocidurae infection. J Exp Med 2001; 193:995-1004. [PMID: 11342584 PMCID: PMC2193426 DOI: 10.1084/jem.193.9.995] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The agent of African relapsing fever, Borrelia crocidurae, causes reversible multiple organ damage. We hypothesize that this damage is caused when the spirochete forms aggregate with erythrocytes in vivo, creating rosettes that plug the microcirculatory system. To test this hypothesis, we compared testicular microcirculation over an extended time period in two groups of rats: one experimentally inoculated with B. crocidurae, the other with the nonerythrocyte rosette-forming Borrelia hermsii. In the B. crocidurae group, erythrocyte rosettes formed during spiro-chetemia blocked precapillary blood vessels and reduced the normal pattern of microcirculatory blood flow. After spirochetemia, erythrocyte rosettes disappeared and flow was normalized. Decreased blood flow and focal vascular damage with increased permeability and interstitial bleeding adjacent to the erythrocyte microemboli induced cell death in seminiferous tubules. Interestingly, we found that B. crocidurae could penetrate the tubules and remain in the testis long after the end of spirochetemia, suggesting that the testis can serve as a reservoir for this bacteria in subsequent relapses. The group infected with B. hermsii displayed normal testicular blood flow and vasomotion at all selected time points, and suffered no testicular damage. These results confirmed our hypothesis that the erythrocyte rosettes produce vascular obstruction and are the main cause of histopathology seen in model animal and human infections.
Collapse
Affiliation(s)
| | - Ola Collin
- Department of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - Anders Bergh
- Department of Pathology, Umeå University, SE-901 87 Umeå, Sweden
| | - Sven Bergström
- Department of Microbiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
32
|
Shamaei-Tousi A, Burns MJ, Benach JL, Furie MB, Gergel EI, Bergström S. The relapsing fever spirochaete, Borrelia crocidurae, activates human endothelial cells and promotes the transendothelial migration of neutrophils. Cell Microbiol 2000; 2:591-9. [PMID: 11207611 DOI: 10.1046/j.1462-5822.2000.00083.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The blood-borne, erythrocyte-aggregating Borrelia crocidurae, the causative agent of African relapsing fever, have been shown to induce severe cellular lesions in mice. In this paper, we present the first report of how the endothelium is stimulated during an African relapsing fever B. crocidurae infection. B. crocidurae co-incubated with cultured human umbilical vein endothelial cells (HUVECs) activated endothelium in such way that E-selectin and intercellular adhesion molecule 1 (ICAM-1) became upregulated in a dose- and time-dependent fashion, as determined by a whole-cell enzyme-linked immunosorbent assay (ELISA). The upregulation was reduced by treatment that killed the bacteria, suggesting that viability is important for the stimulation of HUVECs by B. crocidurae. Furthermore, conditioned medium from HUVECs stimulated with B. crocidurae contained interleukin (IL)-8, which is a chemotactic agent for neutrophils. Activation of HUVECs by B. crocidurae resulted in migration of subsequently added neutrophils across the endothelial monolayers, and this migration was inhibited by antibodies to IL-8. The activation of endothelium by B. crocidurae may constitute a key pathophysiological mechanism in B. crocidurae-induced vascular damage.
Collapse
|
33
|
Magoun L, Zückert WR, Robbins D, Parveen N, Alugupalli KR, Schwan TG, Barbour AG, Leong JM. Variable small protein (Vsp)-dependent and Vsp-independent pathways for glycosaminoglycan recognition by relapsing fever spirochaetes. Mol Microbiol 2000; 36:886-97. [PMID: 10844676 DOI: 10.1046/j.1365-2958.2000.01906.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tick-borne relapsing fever, caused by pathogenic Borrelia such as B. hermsii and B. turicatae, features recurrent episodes of bacteraemia, each of which is caused by a population of spirochaetes that expresses a different variable major protein. Relapsing fever is also associated with the infection of a variety of tissues, such as the central nervous system. In this study, we show that glycosaminoglycans (GAGs) mediate the attachment of relapsing fever spirochaetes to mammalian cells. B. hermsii strain DAH bound to immobilized heparin, and heparin and dermatan sulphate blocked bacterial binding to host cells. Bacterial binding was diminished by inhibition of host cell GAG synthesis or sulphation, or by the enzymatic removal of GAGs. GAGs mediated the attachment of relapsing fever spirochaetes to potentially relevant target cells, such as endothelial and glial cells. B. hermsii was able to attach to GAGs independently of variable major proteins, because strains expressing the variable major proteins Vsp33, Vlp7 or no variable major protein at all each recognized GAGs. Nevertheless, we found that a variable major protein of B. turicatae directly promoted GAG binding by this relapsing fever spirochaete. B. turicatae strain Oz1 serotype B, which expresses the variable major protein VspB, bound to GAGs more efficiently than did B. turicatae Oz1 serotype A, which expresses VspA. Recombinant VspB, but not VspA, bound to heparin and dermatan sulphate. Previous studies have shown that strain Oz1 serotype B grows to higher concentrations in the blood than does Oz1 serotype A. Thus, relapsing fever spirochaetes have the potential to express Vsp-dependent and Vsp-independent GAG-binding activities and, for one pair of highly related B. turicatae strains, differences in GAG binding correlate with differences in tissue tropism.
Collapse
Affiliation(s)
- L Magoun
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gebbia JA, Monco JC, Degen JL, Bugge TH, Benach JL. The plasminogen activation system enhances brain and heart invasion in murine relapsing fever borreliosis. J Clin Invest 1999; 103:81-7. [PMID: 9884337 PMCID: PMC407868 DOI: 10.1172/jci5171] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1998] [Accepted: 11/11/1998] [Indexed: 11/17/2022] Open
Abstract
The role of the plasminogen activation system (PAS) was investigated during the course of infection of a relapsing fever Borrelia species in plasminogen-deficient (plg -/-) and control (plg +/+ and plg +/-) mice. Subcutaneous inoculation of 10(4) spirochetes resulted in a peak spirochetemia five days after infection with 20-23 x 10(6) organisms per milliliter of whole blood in all mice, indicating that the PAS had no effect on the development of this phase of the infection. Anemia, thrombocytopenia, hepatitis, carditis, and splenomegaly were noted in all mice during and immediately after peak spirochetemia. Fibrin deposition in organs was noted in plg -/- mice but not in controls during these stages. Significantly greater spirochetal DNA burdens were consistently observed in the hearts and brains of control mice 28-30 days after infection, as determined by PCR amplification of this organism's flagellin gene (flaB), followed by quantitative densitometry. Furthermore, the decreased spirochetal load in brains of plg -/- mice was associated with a significant decrease in the degree of inflammation of the leptomeninges in these mice. These findings indicate a role for the PAS in heart and brain invasion by relapsing fever Borrelia, resulting in organ injury.
Collapse
Affiliation(s)
- J A Gebbia
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
35
|
Probert WS, Johnson BJ. Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 1998; 30:1003-15. [PMID: 9988477 DOI: 10.1046/j.1365-2958.1998.01127.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The attachment of pathogenic microorganisms to host cells and tissues is often mediated through the expression of surface receptors recognizing components of the extracellular matrix (ECM). Here, we investigate the ability of Borrelia spirochaetes to bind the ECM constituent, fibronectin. Borrelia lysates were separated by SDS-PAGE, transferred to nitrocellulose and probed with alkaline phosphatase-labelled fibronectin (fibronectin-AP). Five of six Borrelia species and four of eight B. burgdorferi sensu lato isolates expressed one or more fibronectin-binding proteins. Borrelia burgdorferi isolate B31 expressed a 47 kDa (P47) fibronectin-binding protein that was localized to the outer envelope based on susceptibility to proteinase K. The interaction of P47 with fibronectin was specific, and the region of fibronectin bound by P47 mapped to the gelatin/collagen binding domain. P47 was purified by affinity chromatography, digested with endoproteinase Lys-C, and the peptide fragments analysed by liquid chromatography/tandem mass spectroscopy. A search of protein databases disclosed that the P47 peptide mass profile matched that predicted for the bbk32 gene product of B. burgdorferi isolate B31. The bbk32 gene was cloned into Escherichia coli, and the ability of recombinant BBK32 to bind fibronectin and inhibit the attachment of B. burgdorferi was demonstrated. The identification of BBK32 as a receptor for fibronectin binding may enhance our understanding of the pathogenesis and chronic nature of Lyme disease.
Collapse
Affiliation(s)
- W S Probert
- Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80522, USA
| | | |
Collapse
|