1
|
Yamamoto K, Torigoe S, Tsujimura Y, Asaka MN, Okumura K, Ato M. In vivo imaging identified efficient antimicrobial treatment against Mycobacterium marinum infection in mouse footpads. Sci Rep 2024; 14:24343. [PMID: 39420066 PMCID: PMC11487254 DOI: 10.1038/s41598-024-75207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Mycobacterium marinum (M. marinum) is the most common causative bacteria of cutaneous non-tuberculous mycobacterial (NTM) infections, including fish tank granuloma. Treating M. marinum-caused infection takes longer than other NTM diseases because M. marinum is less susceptible to antimicrobial agents. A standard treatment regimen for M. marinum infection has not been established yet, and few in vivo experiments have been performed in mammals to evaluate the bactericidal effects of antimicrobials. In this study, we developed a noninvasive in vivo imaging method to assess the therapeutic efficacy of antimicrobials against M. marinum infection. The data obtained using fluorescent protein or bioluminescence from luciferase will offer valuable insights into bacteria visualization across various bacterial infections. Furthermore, through this imaging technique, we demonstrated that combining clarithromycin, rifampicin, ethambutol, and minocycline effectively cleared M. marinum from the footpad. Granulomas with necrotic abscesses formed on the footpad of M. marinum-infected mice, primarily due to neutrophils involved in the host's cell-mediated immune response. Inflammatory cytokine and chemokine levels significantly increased 7 days post-infection, aligning with the footpad swelling and granuloma formation observed in the untreated group. Interestingly, immune mediators and cells induced by M. marinum footpad infection were crucial factors associated with hypersensitivity and granuloma formation, as seen in pulmonary tuberculosis. This novel imaging analysis using a cutaneous NTM mouse model might be a powerful tool for the comprehensive analysis of mycobacterial infections.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan.
| | - Shota Torigoe
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Yusuke Tsujimura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Masamitsu N Asaka
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Kayo Okumura
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| |
Collapse
|
2
|
Lefrançois LH, Nitschke J, Wu H, Panis G, Prados J, Butler RE, Mendum TA, Hanna N, Stewart GR, Soldati T. Temporal genome-wide fitness analysis of Mycobacterium marinum during infection reveals the genetic requirement for virulence and survival in amoebae and microglial cells. mSystems 2024; 9:e0132623. [PMID: 38270456 PMCID: PMC10878075 DOI: 10.1128/msystems.01326-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Tuberculosis remains the most pervasive infectious disease and the recent emergence of drug-resistant strains emphasizes the need for more efficient drug treatments. A key feature of pathogenesis, conserved between the human pathogen Mycobacterium tuberculosis and the model pathogen Mycobacterium marinum, is the metabolic switch to lipid catabolism and altered expression of virulence genes at different stages of infection. This study aims to identify genes involved in sustaining viable intracellular infection. We applied transposon sequencing (Tn-Seq) to M. marinum, an unbiased genome-wide strategy combining saturation insertional mutagenesis and high-throughput sequencing. This approach allowed us to identify the localization and relative abundance of insertions in pools of transposon mutants. Gene essentiality and fitness cost of mutations were quantitatively compared between in vitro growth and different stages of infection in two evolutionary distinct phagocytes, the amoeba Dictyostelium discoideum and the murine BV2 microglial cells. In the M. marinum genome, 57% of TA sites were disrupted and 568 genes (10.2%) were essential, which is comparable to previous Tn-Seq studies on M. tuberculosis and M. bovis. Major pathways involved in the survival of M. marinum during infection of D. discoideum are related to DNA damage repair, lipid and vitamin metabolism, the type VII secretion system (T7SS) ESX-1, and the Mce1 lipid transport system. These pathways, except Mce1 and some glycolytic enzymes, were similarly affected in BV2 cells. These differences suggest subtly distinct nutrient availability or requirement in different host cells despite the known predominant use of lipids in both amoeba and microglial cells.IMPORTANCEThe emergence of biochemically and genetically tractable host model organisms for infection studies holds the promise to accelerate the pace of discoveries related to the evolution of innate immunity and the dissection of conserved mechanisms of cell-autonomous defenses. Here, we have used the genetically and biochemically tractable infection model system Dictyostelium discoideum/Mycobacterium marinum to apply a genome-wide transposon-sequencing experimental strategy to reveal comprehensively which mutations confer a fitness advantage or disadvantage during infection and compare these to a similar experiment performed using the murine microglial BV2 cells as host for M. marinum to identify conservation of virulence pathways between hosts.
Collapse
Affiliation(s)
- Louise H. Lefrançois
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
- Bioinformatics Support Platform for data analysis, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Rachel E. Butler
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Tom A. Mendum
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Graham R. Stewart
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| |
Collapse
|
3
|
Li X, Yue X, Xie J. The goldfish primary kidney macrophage system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105100. [PMID: 37977243 DOI: 10.1016/j.dci.2023.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Miodrag (Mike) Belosevic and collaborators profoundly influenced the development of primary kidney macrophage culturing system (PKM) to study fish immunology in various aspects of comparative immunology. Their application of using PKM model, opened a new path for studying the development of macrophages, regulation of hematopoiesis, and cell specific response against various pathogens. By measuring histopathological and immunological outcomes, the biological implications of a variety of cytokines and signal transduction molecules could be elucidated with the established PKM system. A variety of growth factors mediating hematopoiesis and cytokines regulating the immune responses were functionally characterized, which served as a fundamental basis for making goldfish an excellent model to study fish immunology. Specifically, using in vivo and PKM based in vitro assays, the Belosevic lab advanced the goldfish-M. marinum model to study the anti-mycobacteria responses in teleosts, thus paving a way for the development of novel therapeutic approaches which could be applied in aquaculture settings or utilized as a model for human disease. In this review, we will look at the contribution of Dr. Mike Belosevic to teleost macrophage development, multiple cytokine functional characterization, and host-pathogen interactions.
Collapse
Affiliation(s)
- Xionglin Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang Province, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang Province, 315211, China.
| |
Collapse
|
4
|
He B, Sridhar A, Streiff C, Deketelaere C, Zhang H, Gao Y, Hu Y, Pirotte S, Delrez N, Davison AJ, Donohoe O, Vanderplasschen AFC. In Vivo Imaging Sheds Light on the Susceptibility and Permissivity of Carassius auratus to Cyprinid Herpesvirus 2 According to Developmental Stage. Viruses 2023; 15:1746. [PMID: 37632088 PMCID: PMC10459324 DOI: 10.3390/v15081746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) is a virus that causes mass mortality in economically important Carassius spp. However, there have been no comprehensive studies into host susceptibility or permissivity with respect to developmental stage, and the major portal of viral entry into the host is still unclear. To help bridge these knowledge gaps, we developed the first ever recombinant strain of CyHV-2 expressing bioluminescent and fluorescent reporter genes. Infection of Carassius auratus hosts with this recombinant by immersion facilitated the exploitation of various in vivo imaging techniques to establish the spatiotemporal aspects of CyHV-2 replication at larval, juvenile, and adult developmental stages. While less susceptible than later developmental stages, larvae were most permissive to CyHV-2 replication, leading to rapid systemic infection and high mortality. Permissivity to CyHV-2 decreased with advancing development, with adults being the least permissive and, thus, also exhibiting the least mortality. Across all developmental stages, the skin was the most susceptible and permissive organ to infection at the earliest sampling points post-infection, indicating that it represents the major portal of entry into these hosts. Collectively these findings provide important fundamental insights into CyHV-2 pathogenesis and epidemiology in Carassius auratus with high relevance to other related economically important virus-host models.
Collapse
Affiliation(s)
- Bo He
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Cindy Streiff
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Caroline Deketelaere
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Haiyan Zhang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Yunlong Hu
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Sebastien Pirotte
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Natacha Delrez
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| | - Owen Donohoe
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
- Bioscience Research Institute, Technological University of the Shannon, Athlone N37 HD68, Co. Westmeath, Ireland
| | - Alain F. C. Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium; (B.H.); (A.S.); (C.S.); (C.D.); (H.Z.); (Y.G.); (Y.H.); (S.P.); (N.D.); (O.D.)
| |
Collapse
|
5
|
Rashmeei M, Hosseini Shekarabi SP, Mehrgan MS, Paknejad H. Assessment of dietary chaste tree (Vitex agnus-castus) fruit extract on growth performance, hemato-biochemical parameters, and mRNA levels of growth and appetite-related genes in goldfish (Carassius auratus). AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Mangus LM, França MS, Shivaprasad HL, Wolf JC. Research-Relevant Background Lesions and Conditions in Common Avian and Aquatic Species. ILAR J 2021; 62:169-202. [PMID: 33782706 DOI: 10.1093/ilar/ilab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022] Open
Abstract
Non-mammalian vertebrates including birds, fish, and amphibians have a long history of contributing to ground-breaking scientific discoveries. Because these species offer several experimental advantages over higher vertebrates and share extensive anatomic and genetic homology with their mammalian counterparts, they remain popular animal models in a variety of fields such as developmental biology, physiology, toxicology, drug discovery, immunology, toxicology, and infectious disease. As with all animal models, familiarity with the anatomy, physiology, and spontaneous diseases of these species is necessary for ensuring animal welfare, as well as accurate interpretation and reporting of study findings. Working with avian and aquatic species can be especially challenging in this respect due to their rich diversity and array of unique adaptations. Here, we provide an overview of the research-relevant anatomic features, non-infectious conditions, and infectious diseases that impact research colonies of birds and aquatic animals, including fish and Xenopus species.
Collapse
Affiliation(s)
- Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Monique S França
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, Georgia, USA
| | - H L Shivaprasad
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Tulare, California, USA
| | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| |
Collapse
|
7
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|
8
|
Tsai MA, Wang PC, Yoshida S, Aono A, Mitarai S, Wada T, Chen SC. Establishment of loop-mediated isothermal amplification for rapid and convenient detection of Mycobacterium marinum complex. J Microbiol Methods 2019; 164:105671. [PMID: 31326444 DOI: 10.1016/j.mimet.2019.105671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022]
Abstract
Mycobacterium marinum is a zoonotic pathogen that can cause dermatological infection mainly from contaminated water or fish. Some well-known genetically similar species and subspecies are M. lifrandii and M. pseudoshottsii from amphibians and fish in aquaculture, and M. ulcerans, a causative agent of a neglected tropical disease (NTD), Buruli ulcer. They are believed to survive in water as their major niche, which might be related to their source of infection, but detailed ecological surveillance of the species complex remains to be done. Herein, we present a new detection system for M. marinum complex based on isothermal DNA amplification that can be conducted conveniently with high sensitivity and specificity. The target was a chromosomal gene, mrsA, including a restriction polymorphism between M. ulcerans (except for the most ancestral subspecies, M. ulcerans subsp. shinshuense) and the other species. The system was able to detect less than 500 fg (approximately 70 copies) of genomic DNA of M. marinum, within 60 min, and caused no amplification from mycobacterial species other than M. marinum complex species. It was also verified that restriction of the amplified DNA fragments was able to discriminate M. ulcerans as expected. This easy, quick, and convenient system is expected to facilitate detection of M. marinum complex from various resources.
Collapse
Affiliation(s)
- Ming-An Tsai
- Department of Biology, National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan, Republic of China; Graduate Institute of Marine Biology, National Dong Hwa University, Checheng, Pingtung, Taiwan, Republic of China
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan, Republic of China
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai, Osaka, Japan; Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Anti-tuberculosis Association, Kiyose, Tokyo, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Anti-tuberculosis Association, Kiyose, Tokyo, Japan
| | - Takayuki Wada
- Department of International Health, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan, Republic of China.
| |
Collapse
|
9
|
Harjula SKE, Ojanen MJT, Taavitsainen S, Nykter M, Rämet M. Interleukin 10 mutant zebrafish have an enhanced interferon gamma response and improved survival against a Mycobacterium marinum infection. Sci Rep 2018; 8:10360. [PMID: 29985419 PMCID: PMC6037744 DOI: 10.1038/s41598-018-28511-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis ranks as one of the world’s deadliest infectious diseases causing more than a million casualties annually. IL10 inhibits the function of Th1 type cells, and IL10 deficiency has been associated with an improved resistance against Mycobacterium tuberculosis infection in a mouse model. Here, we utilized M. marinum infection in the zebrafish (Danio rerio) as a model for studying Il10 in the host response against mycobacteria. Unchallenged, nonsense il10e46/e46 mutant zebrafish were fertile and phenotypically normal. Following a chronic mycobacterial infection, il10e46/e46 mutants showed enhanced survival compared to the controls. This was associated with an increased expression of the Th cell marker cd4-1 and a shift towards a Th1 type immune response, which was demonstrated by the upregulated expression of tbx21 and ifng1, as well as the down-regulation of gata3. In addition, at 8 weeks post infection il10e46/e46 mutant zebrafish had reduced expression levels of proinflammatory cytokines tnfb and il1b, presumably indicating slower progress of the infection. Altogether, our data show that Il10 can weaken the immune defense against M. marinum infection in zebrafish by restricting ifng1 response. Importantly, our findings support the relevance of M. marinum infection in zebrafish as a model for tuberculosis.
Collapse
Affiliation(s)
- Sanna-Kaisa E Harjula
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Markus J T Ojanen
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Laboratory of Immunoregulation, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Sinja Taavitsainen
- Laboratory of Computational Biology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Matti Nykter
- Laboratory of Computational Biology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland. .,Department of Pediatrics, Tampere University Hospital, Tampere, Finland. .,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland. .,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
10
|
Abstract
Granulomas are organized aggregates of macrophages, often with characteristic morphological changes, and other immune cells. These evolutionarily ancient structures form in response to persistent particulate stimuli-infectious or noninfectious-that individual macrophages cannot eradicate. Granulomas evolved as protective responses to destroy or sequester particles but are frequently pathological in the context of foreign bodies, infections, and inflammatory diseases. We summarize recent findings that suggest that the granulomatous response unfolds in a stepwise program characterized by a series of macrophage activations and transformations that in turn recruit additional cells and produce structural changes. We explore why different granulomas vary and the reasons that granulomas are protective and pathogenic. Understanding the mechanisms and role of granuloma formation may uncover new therapies for the multitude of granulomatous diseases that constitute serious medical problems while enhancing the protective function of granulomas in infections.
Collapse
Affiliation(s)
- Antonio J Pagán
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; , .,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; , .,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
11
|
Choe Y, Yu JE, Park J, Park D, Oh JI, Kim S, Moon KH, Kang HY. Goldfish, Carassius auratus, as an infection model for studying the pathogenesis of Edwardsiella piscicida. Vet Res Commun 2017; 41:289-297. [PMID: 29119302 DOI: 10.1007/s11259-017-9700-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 09/21/2017] [Indexed: 01/18/2023]
Abstract
This study demonstrates the feasibility of using goldfish as an infection model to investigate the pathogenesis of Edwardsiella piscicida. Goldfish were found to be susceptible to acute E. piscicida-induced disease and died in a dose-dependent manner. E. piscicida was further shown to replicate rapidly in the head kidneys and livers of infected goldfish from 1 d post-injection, and bacteria numbers were significantly decreased 5 d post-injection. Immune responses were successfully induced in goldfish injected with E. piscicida strains and 60% of goldfish inoculated with an attenuated E. piscicida strain were found to survive subsequent injection with a pathogenic strain. The results of differential leukocyte count experiments suggested that leukocytes were immediately recruited as an innate immune response against the infection. Thus, this well-characterized goldfish species is a suitable infection model for studying E. piscicida pathogenesis, and might be applicable to research on other fish diseases.
Collapse
Affiliation(s)
- Yunjeong Choe
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, 46241, South Korea
| | - Jong Earn Yu
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, 46241, South Korea
| | - Junmo Park
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, 46241, South Korea
| | - Dongchul Park
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, 46241, South Korea
| | - Jeong-Il Oh
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, 46241, South Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, 46241, South Korea
| | - Ki Hwan Moon
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Ho Young Kang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
12
|
Fogelson SB, Fast MD, Leary J, Camus AC. Pathologic features of mycobacteriosis in naturally infected Syngnathidae and novel transcriptome assembly in association with disease. JOURNAL OF FISH DISEASES 2017; 40:1681-1694. [PMID: 28449243 DOI: 10.1111/jfd.12634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 02/12/2017] [Indexed: 06/07/2023]
Abstract
Syngnathidae (seahorses, seadragons and pipefish) suffer significant losses from non-tuberculous mycobacteria. However, they produce markedly different lesions in response to the disease compared to other teleost species, notably infrequent granuloma formation. This study evaluated 270 syngnathid fish, from which 92 were diagnosed with mycobacteriosis by histopathology, culture or both. Microscopic lesions variably consisted of random foci of coagulative necrosis in multiple organs, containing high numbers of free bacteria and large aggregates or sheets of macrophages with cytoplasm laden with acid-fast bacilli. Mycobacterial associated granulomas were identified in only six seahorses. Five fish had positive cultures with no observed microscopic changes. RNA-seq of the head kidney was performed to investigate the transcriptome of two infected and six non-infected lined seahorses Hippocampus erectus. Assembled and annotated putative transcripts serve to enrich the database for this species, as well as provide baseline data for understanding the pathogenesis of mycobacteriosis in seahorses. Putative components of the innate immune system (IL-1β, IL-6, TNF, NOS, Toll-like receptor 1, MHC Class I, NF-κβ, transforming growth factor beta, MyD88) were identified in the RNA-seq data set. However, a homolog for a key component in the TH1 adaptive immune response, interferon-gamma, was not identified and may underlie the unique pathologic presentation.
Collapse
Affiliation(s)
- S B Fogelson
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - M D Fast
- Department of Pathology and Microbiology, University of Prince Edward Island, Atlantic Veterinary College, Charlottetown, PE, Canada
| | - J Leary
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - A C Camus
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
13
|
Abstract
ABSTRACT
Mycobacterium marinum
is a well-known pathogenic mycobacterium for skin and soft tissue infections and is associated with fishes and water. Among nontuberculous mycobacteria (NTM), it is the leading cause of extrarespiratory human infections worldwide. In addition, there is a specific scientific interest in
M. marinum
because of its genetic relatedness to
Mycobacterium tuberculosis
and because experimental infection of
M. marinum
in fishes mimics tuberculosis pathogenesis. Microbiological characteristics include the fact that it grows in 7 to 14 days with photochromogenic colonies and is difficult to differentiate from
Mycobacterium ulcerans
and other mycolactone-producing NTM on a molecular basis. The diagnosis is highly suspected by the mode of infection, which is related to the hobby of fishkeeping, professional handling of marine shells, or swimming in nonchlorinated pools. Clinics distinguished skin and soft tissue lesions (typically sporotrichoid or subacute hand nodules) and lesions disseminated to joint and bone, often related with the local use of corticosteroids. In clinical microbiology, microscopy and culture are often negative because growth requires low temperature (30°C) and several weeks to succeed in primary cultivation. The treatment is not standardized, and no randomized control trials have been done. Therapy is a combination of surgery and antimicrobial agents such as cyclines and rifampin, with successful outcome in most of the skin diseases but less frequently in deep tissue infections. Prevention can be useful with hand protection recommendations for professionals and all persons manipulating fishes or fish tank water and use of alcohol disinfection after contact.
Collapse
|
14
|
Jin HS, Lee HM, Lee DH, Cha GH, Cho KS, Jang J, Jo EK. Functional characterisation of the Drosophila cg6568 gene in host defence against Mycobacterium marinum. Microbes Infect 2017; 19:351-357. [PMID: 28245983 DOI: 10.1016/j.micinf.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/16/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
Mycobacterium marinum is a pathogenic mycobacterial species closely related to Mycobacterium tuberculosis. In this study, we established a mycobacterial infection model of Drosophila melanogaster to characterize the role played by cg6568, a homolog of the human cathelicidin gene, in the innate defense against infection. Drosophila cg6568 was expressed at various levels during all developmental stages, and the expression levels were modulated by M. marinum in a time-dependent manner. 20-hydroxyecdysone induced Drosophila cg6568 transcription both in vitro and in vivo. Using flies expressing cg6568 RNAi, we found that cg6568 was essential both for D. melanogaster survival and the exertion of antimicrobial effects during M. marinum infection. Thus, we named the gene product a cathelicidin-like antimicrobial protein of D. melanogaster (dCAMP). Our results indicate that dCAMP is crucial in terms of the innate D. melanogaster defense during M. marinum infection.
Collapse
Affiliation(s)
- Hyo Sun Jin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea; Biomedical Research Institute, Chungnam National University Hospital, Daejeon, South Korea
| | - Hye-Mi Lee
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Da-Hye Lee
- Pulmonary Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Guang-Ho Cha
- Infection Biology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jichan Jang
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea; Molecular Mechanism of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju, Gyeongnam, South Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.
| |
Collapse
|
15
|
Qiu T, Liu L, Gao M, Zhang L, Tursun H, Wang X. Effects of solid-phase denitrification on the nitrate removal and bacterial community structure in recirculating aquaculture system. Biodegradation 2016; 27:165-78. [DOI: 10.1007/s10532-016-9764-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 04/18/2016] [Indexed: 12/01/2022]
|
16
|
Hodgkinson JW, Ge JQ, Katzenback BA, Havixbeck JJ, Barreda DR, Stafford JL, Belosevic M. Development of an in vitro model system to study the interactions between Mycobacterium marinum and teleost neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:349-357. [PMID: 26231477 DOI: 10.1016/j.dci.2015.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
The lack of a reliable mammalian neutrophil in vitro culture system has restricted our ability to examine their precise roles in mycobacterial infections. Previously, we developed the procedures for the isolation and culture of primary kidney-derived neutrophil-like cells from goldfish that are functionally and morphologically similar to mammalian neutrophils. The cultured primary goldfish neutrophils exhibited prolonged viability and functional effector responses. In this study, we demonstrate that when exposed to live or heat-killed Mycobacterium marinum, goldfish neutrophils increased their mRNA levels for several pro-inflammatory cytokines (il-1β1, il-1β2, tnfα-1, tnfα-2) and the cytokine receptors (ifngr1-1, tnfr1, tnfr2). These neutrophils also exhibited chemotaxis toward live mycobacteria, internalized the bacilli, and produced reactive oxygen intermediates (ROI) in response to pathogen exposure. The survival of intracellular mycobacteria was significantly reduced in activated neutrophils, indicating a robust killing response by these teleost granulocytes. We suggest that this goldfish primary neutrophil in vitro model system will provide important information regarding neutrophil-mediated host defense mechanisms against mycobacteria in teleosts as well as in higher vertebrates.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jun-Qing Ge
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Barbara A Katzenback
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jeffrey J Havixbeck
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
Ackleh AS, Delcambre ML, Sutton KL. A second-order high-resolution finite difference scheme for a size-structured model for the spread of Mycobacterium marinum. JOURNAL OF BIOLOGICAL DYNAMICS 2014; 9 Suppl 1:156-187. [PMID: 25271885 DOI: 10.1080/17513758.2014.962998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a second-order high-resolution finite difference scheme to approximate the solution of a mathematical model of the transmission dynamics of Mycobacterium marinum (Mm) in an aquatic environment. This work extends the numerical theory and continues the preliminary studies on the model first developed in Ackleh et al. [Structured models for the spread of Mycobacterium marinum: foundations for a numerical approximation scheme, Math. Biosci. Eng. 11 (2014), pp. 679-721]. Numerical simulations demonstrating the accuracy of the method are presented, and we compare this scheme to the first-order scheme developed in Ackleh et al. [Structured models for the spread of Mycobacterium marinum: foundations for a numerical approximation scheme, Math. Biosci. Eng. 11 (2014), pp. 679-721] to show that the first-order method requires significantly more computational time to provide solutions with a similar accuracy. We also demonstrated that the model can be a tool to understand surprising or nonintuitive phenomena regarding competitive advantage in the context of biologically realistic growth, birth and death rates.
Collapse
Affiliation(s)
- Azmy S Ackleh
- a Department of Mathematics , University of Louisiana at Lafayette , Lafayette , LA 70504 , USA
| | | | | |
Collapse
|
18
|
Haridy M, Tachikawa Y, Yoshida S, Tsuyuguchi K, Tomita M, Maeda S, Wada T, Ibi K, Sakai H, Yanai T. Mycobacterium marinum infection in Japanese forest green tree frogs (Rhacophorus arboreus). J Comp Pathol 2014; 151:277-89. [PMID: 25047922 DOI: 10.1016/j.jcpa.2014.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/07/2014] [Accepted: 04/24/2014] [Indexed: 11/25/2022]
Abstract
Four Japanese forest green tree frogs (Rhacophorus arboreus) were presented with emaciation, abdominal distention and ulcerative and nodular cutaneous lesions affecting the brisket, limbs, digits and ventral abdomen. Another three frogs had been found dead in the same tank 1 year previously. Necropsy examination of these seven frogs revealed splenomegaly and hepatomegaly, with multiple tan-yellow nodular foci present in the liver, spleen, heart, lungs, ovaries and kidneys. Microscopically, five frogs had necrosis and surrounding granulomatous inflammation in the liver, spleen, kidneys, lungs, intestine and ovaries, with numerous acid-fast bacilli in the areas of necrosis. Two frogs had granulomatous lesions in the lungs, liver, spleen, heart, coelomic membrane, stomach and intestinal wall. These lesions had no or minimal necrosis and few acid-fast bacilli. Mycobacterium spp. was cultured from three frogs and identified as Mycobacterium marinum by colony growth rate and photochromogenicity and DNA sequencing. This is the first report of M. marinum infection in Japanese forest green tree frogs.
Collapse
Affiliation(s)
- M Haridy
- Department of Pathogenetic Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Y Tachikawa
- Gifu World Fresh Water Aquarium, Gifu, Japan
| | - S Yoshida
- National Hospital Organization, Kinki-Chuo Chest Medical Centre, Sakai, Osaka 591-8555, Japan; Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - K Tsuyuguchi
- National Hospital Organization, Kinki-Chuo Chest Medical Centre, Sakai, Osaka 591-8555, Japan
| | - M Tomita
- National Hospital Organization, Kinki-Chuo Chest Medical Centre, Sakai, Osaka 591-8555, Japan
| | - S Maeda
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-shi, Tokyo 204-8533, Japan
| | - T Wada
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - K Ibi
- Department of Pathogenetic Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - H Sakai
- Department of Pathogenetic Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - T Yanai
- Department of Pathogenetic Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
19
|
ACKLEH AZMYS, SUTTON KARYNL, MUTOJI KNADINE, MALLICK AMRITA, ENNIS DONG. A STRUCTURED MODEL FOR THE TRANSMISSION DYNAMICS OFMYCOBACTERIUM MARINUMBETWEEN AQUATIC ANIMALS. J BIOL SYST 2014. [DOI: 10.1142/s0218339014500028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium marinum (Mm), a genetically similar bacterium to Mycobacterium tuberculosis, affects a number of fish industries (fisheries, aquaculture, aquariums and research stocks) on a comparable scale to tuberculosis (TB) in humans. Because of this, and the practical advantages of working with animal models as opposed to humans, Mm infections in recently established fish models provide a unique opportunity for the study of mycobacterial infections. We derive a model of transmission dynamics of Mm in fish, which either involves consumption of an infected host or a source of bacteria to ensure "activation" into a highly infectious state. We derive a model of transmission within a food web, in which infected fish behavior is structured by infection severity. This is a key component as chronic (seemingly asymptomatic) infection is prominent in both fish and human TB. We illustrate, via a novel numerical scheme, that this model can be used to reproduce experimental settings. We further argue that the framework developed herein is a useful tool to address key questions such as design in experimental settings and potential control strategies in large-scale situations.
Collapse
Affiliation(s)
- AZMY S. ACKLEH
- Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, USA
| | - KARYN L. SUTTON
- Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, USA
| | - K. NADINE MUTOJI
- Department of Biology, University of Louisiana at Lafayette, LA 70504-2451, USA
| | - AMRITA MALLICK
- Department of Biology, University of Louisiana at Lafayette, LA 70504-2451, USA
| | - DON G. ENNIS
- Department of Biology, University of Louisiana at Lafayette, LA 70504-2451, USA
| |
Collapse
|
20
|
Stoop EJM, Mishra AK, Driessen NN, van Stempvoort G, Bouchier P, Verboom T, van Leeuwen LM, Sparrius M, Raadsen SA, van Zon M, van der Wel NN, Besra GS, Geurtsen J, Bitter W, Appelmelk BJ, van der Sar AM. Mannan core branching of lipo(arabino)mannan is required for mycobacterial virulence in the context of innate immunity. Cell Microbiol 2013; 15:2093-108. [PMID: 23902464 PMCID: PMC3963455 DOI: 10.1111/cmi.12175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Abstract
The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, remains an important worldwide health threat. Although TB is one of the oldest infectious diseases of man, a detailed understanding of the mycobacterial mechanisms underlying pathogenesis remains elusive. Here, we studied the role of the α(1→2) mannosyltransferase MptC in mycobacterial virulence, using the Mycobacterium marinum zebrafish infection model. Like its M. tuberculosis orthologue, disruption of M. marinum mptC (mmar_3225) results in defective elongation of mannose caps of lipoarabinomannan (LAM) and absence of α(1→2)mannose branches on the lipomannan (LM) and LAM mannan core, as determined by biochemical analysis (NMR and GC-MS) and immunoblotting. We found that the M. marinum mptC mutant is strongly attenuated in embryonic zebrafish, which rely solely on innate immunity, whereas minor virulence defects were observed in adult zebrafish. Strikingly, complementation with the Mycobacterium smegmatis mptC orthologue, which restored mannan core branching but not cap elongation, was sufficient to fully complement the virulence defect of the mptC mutant in embryos. Altogether our data demonstrate that not LAM capping, but mannan core branching of LM/LAM plays an important role in mycobacterial pathogenesis in the context of innate immunity.
Collapse
Affiliation(s)
- Esther J M Stoop
- Department of Medical Microbiology and Infection Control, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hodgkinson JW, Ge JQ, Grayfer L, Stafford J, Belosevic M. Analysis of the immune response in infections of the goldfish (Carassius auratus L.) with Mycobacterium marinum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:456-65. [PMID: 22885635 DOI: 10.1016/j.dci.2012.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
The rapid doubling time and genetic relatedness of the fish pathogen Mycobacterium marinum to Mycobacterium tuberculosis has rendered the former an attractive model for investigating mycobacterial host-pathogen interactions. We employed the M. marinum-goldfish infection model to investigate the in vivo immune responses to this pathogen in the context of a natural host. Histological analysis revealed mycobacterial infiltrates in goldfish kidney and spleen tissues, peaking 28 days post infections (dpi). Quantitative gene expression analysis showed significant increases of mRNA levels of pro-inflammatory cytokines (IFNγ, IL-12p40, IL-1β1) and cytokine receptors (IFNGR1-1, TNFR2) at 7 dpi. Conversely, the gene expression levels of key anti-inflammatory cytokines TGFβ and IL-10 were elevated at 14 dpi. Furthermore, M. marinum infections markedly increased the cytokine-primed oxidative burst responses of isolated kidney phagocytes at 7 but not 56 dpi. We believe that the M. marinum-goldfish infection model will be invaluable in furthering the understanding of the mycobacterium host-pathogen interface.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
22
|
Mosi L, Mutoji NK, Basile FA, Donnell R, Jackson KL, Spangenberg T, Kishi Y, Ennis DG, Small PLC. Mycobacterium ulcerans causes minimal pathogenesis and colonization in medaka (Oryzias latipes): an experimental fish model of disease transmission. Microbes Infect 2012; 14:719-29. [PMID: 22465732 PMCID: PMC3389220 DOI: 10.1016/j.micinf.2012.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Mycobacterium ulcerans causes Buruli ulcer in humans, a progressive ulcerative epidermal lesion due to the mycolactone toxin produced by the bacterium. Molecular analysis of M. ulcerans reveals it is closely related to Mycobacterium marinum, a pathogen of both fish and man. Molecular evidence from diagnostic PCR assays for the insertion sequence IS2404 suggests an association of M. ulcerans with fish. However, fish infections by M. ulcerans have not been well documented and IS2404 has been found in other mycobacteria. We have thus, employed two experimental approaches to test for M. ulcerans in fish. We show here for the first time that M. ulcerans with or without the toxin does not mount acute or chronic infections in Japanese Medaka "Oryzias latipes" even at high doses. Moreover, M. ulcerans-infected medaka do not exhibit any visible signs of infection nor disease and the bacteria do not appear to replicate over time. In contrast, similar high doses of the wild-type M. marinum or a mycolactone-producing M. marinum "DL" strain are able to mount an acute disease with mortality in medaka. Although these results would suggest that M. ulcerans does not mount infections in fish we have evidence that CLC macrophages from goldfish are susceptible to mycolactones.
Collapse
Affiliation(s)
- Lydia Mosi
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zerihun MA, Colquhoun DJ, Poppe TT. Experimental mycobacteriosis in Atlantic cod, Gadus morhua L. JOURNAL OF FISH DISEASES 2012; 35:365-377. [PMID: 22404316 DOI: 10.1111/j.1365-2761.2012.01349.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Piscine mycobacteriosis causes losses in a number of fish species both in the wild and in aquaculture worldwide. Mycobacterium salmoniphilum infections have on several occasions been reported in farmed Atlantic salmon, Salmo salar L. The present study tested and confirmed the susceptibility of Atlantic cod, Gadus morhua L., an important yet relatively novel aquaculture species, to infection with M. salmoniphilum. Atlantic cod injected intraperitoneally with a suspension of this bacterium were maintained together with cohabitant (COH) fish in a flow-through marine water system at 10-11 °C. The fish were supervised daily and samples taken at 2, 7, 14, 23, 34 and 53 weeks post-infection and examined pathologically, bacteriologically and using molecular biology. Injected mycobacteria were re-isolated in high concentrations from both injected and COH fish groups. Death attributable to mycobacterial infection was observed in both injected (47%) and COH (28%) fish groups. Extensive development of granuloma in visceral organs, mainly the mesenteries, spleen, kidney and liver (lesser extent) and at later stages of the infection in heart tissues and gills, was observed in both injected and COH fish. Granulomas underwent a temporal progression of distinct morphological stages, culminating in well-circumscribed lesions surrounded by normal or healing tissue. Acid-fast bacilli were detected in both granulomas and non-granulomatous tissues. This study confirms that Atlantic cod is highly susceptible to M. salmoniphilum infection and that this bacterial species may be a threat to cod both in the wild and in the aquaculture.
Collapse
Affiliation(s)
- M A Zerihun
- Norwegian Veterinary Institute, Oslo, Norway.
| | | | | |
Collapse
|
24
|
van der Woude AD, Sarkar D, Bhatt A, Sparrius M, Raadsen SA, Boon L, Geurtsen J, van der Sar AM, Luirink J, Houben ENG, Besra GS, Bitter W. Unexpected link between lipooligosaccharide biosynthesis and surface protein release in Mycobacterium marinum. J Biol Chem 2012; 287:20417-29. [PMID: 22505711 DOI: 10.1074/jbc.m111.336461] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mycobacterial cell envelope is characterized by the presence of a highly impermeable second membrane, which is composed of mycolic acids intercalated with different unusual free lipids, such as lipooligosaccharides (LOS). Transport across this cell envelope requires a dedicated secretion system for extracellular proteins, such as PE_PGRS proteins, which are specific mycobacterial proteins with polymorphic GC-rich sequence (PGRS). In this study, we set out to identify novel components involved in the secretion of PE_PGRS proteins by screening Mycobacterium marinum transposon mutants for secretion defects. Interestingly, most mutants were not affected in secretion but in the release of PE_PGRS proteins from the cell surface. These mutants had insertions in a gene cluster associated with LOS biosynthesis. Lipid analysis of these mutants revealed a role at different stages of LOS biosynthesis for 10 novel genes. Furthermore, we show that regulatory protein WhiB4 is involved in LOS biosynthesis. The absence of the most extended LOS molecule, i.e. LOS-IV, and a concomitant accumulation of LOS-III was already sufficient to reduce the release of PE_PGRS proteins from the mycobacterial cell surface. A similar effect was observed for major surface protein EspE. These results show that the attachment of surface proteins is strongly influenced by the glycolipid composition of the mycobacterial cell envelope. Finally, we tested the virulence of a LOS-IV-deficient mutant in our zebrafish embryo infection model. This mutant showed a marked increase in virulence as compared with the wild-type strain, suggesting that LOS-IV plays a role in the modulation of mycobacterial virulence.
Collapse
Affiliation(s)
- Aniek D van der Woude
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ghosh P, Hsu C, Alyamani EJ, Shehata MM, Al-Dubaib MA, Al-Naeem A, Hashad M, Mahmoud OM, Alharbi KBJ, Al-Busadah K, Al-Swailem AM, Talaat AM. Genome-wide analysis of the emerging infection with Mycobacterium avium subspecies paratuberculosis in the Arabian camels (Camelus dromedarius). PLoS One 2012; 7:e31947. [PMID: 22393374 PMCID: PMC3290536 DOI: 10.1371/journal.pone.0031947] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/17/2012] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (M. ap) is the causative agent of paratuberculosis or Johne's disease (JD) in herbivores with potential involvement in cases of Crohn's disease in humans. JD is spread worldwide and is economically important for both beef and dairy industries. Generally, pathogenic ovine strains (M. ap-S) are mainly found in sheep while bovine strains (M. ap-C) infect other ruminants (e.g. cattle, goat, deer), as well as sheep. In an effort to characterize this emerging infection in dromedary/Arabian camels, we successfully cultured M. ap from several samples collected from infected camels suffering from chronic, intermittent diarrhea suggestive of JD. Gene-based typing of isolates indicated that all isolates belong to sheep lineage of strains of M. ap (M. ap-S), suggesting a putative transmission from infected sheep herds. Screening sheep and goat herds associated with camels identified the circulation of this type in sheep but not goats. The current genome-wide analysis recognizes these camel isolates as a sub-lineage of the sheep strain with a significant number of single nucleotide polymorphisms (SNPs) between sheep and camel isolates (∼1000 SNPs). Such polymorphism could represent geographical differences among isolates or host adaptation of M. ap during camel infection. To our knowledge, this is the first attempt to examine the genomic basis of this emerging infection in camels with implications on the evolution of this important pathogen. The sequenced genomes of M. ap isolates from camels will further assist our efforts to understand JD pathogenesis and the dynamic of disease transmission across animal species.
Collapse
Affiliation(s)
- Pallab Ghosh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chungyi Hsu
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Essam J. Alyamani
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Maher M. Shehata
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Musaad A. Al-Dubaib
- College of Agriculture and Veterinary Medicine, Qassim University, Qassim, Saudi Arabia
| | - Abdulmohsen Al-Naeem
- College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Hassa, Saudi Arabia
| | - Mahmoud Hashad
- College of Agriculture and Veterinary Medicine, Qassim University, Qassim, Saudi Arabia
| | - Osama M. Mahmoud
- College of Agriculture and Veterinary Medicine, Qassim University, Qassim, Saudi Arabia
| | - Khalid B. J. Alharbi
- College of Agriculture and Veterinary Medicine, Qassim University, Qassim, Saudi Arabia
| | - Khalid Al-Busadah
- College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Hassa, Saudi Arabia
| | - Abdulaziz M. Al-Swailem
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- * E-mail: (AMT); (AMA)
| | - Adel M. Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Bacterial Genomics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (AMT); (AMA)
| |
Collapse
|
26
|
Mutoji KN, Ennis DG. Expression of common fluorescent reporters may modulate virulence for Mycobacterium marinum: dramatic attenuation results from Gfp over-expression. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:39-48. [PMID: 21658470 DOI: 10.1016/j.cbpc.2011.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022]
Abstract
Mycobacterium marinum is an established surrogate pathogen for Mycobacterium tuberculosis because of its strong conservation of thousands of orthologous genes, lower risk to researchers and similar pathology in fish. This pathogen causes TB-like chronic disease in a wide variety of fish species. As in human TB, the microbe grows within the host macrophages, can mount life-long chronic infections and produces granulomatous lesions in target organs. One of the fish species known to manifest chronic "fish TB" is the small laboratory fish, Japanese ricefish (medaka; Oryzias latipes). Our laboratory is currently characterizing the disease progression in medaka using fluorescent reporter systems that are introduced into engineered strains of M. marinum. While conducting these studies we observed differences in growth, plasmid stability, and virulence depending on which fluorescent reporter construct was present. Here, we describe large negative effects on virulence and organ colonization that occurred with a commonly used plasmid pG13, that expresses green fluorescent protein (Gfp). The studies presented here, indicate that Gfp over-expression was the basis for the reduced virulence in this reporter construct. We also show that these negative effects could be reversed by significantly reducing Gfp expression levels or by using low-expression constructs of Rfp.
Collapse
Affiliation(s)
- K Nadine Mutoji
- Department of Biology, University of Louisiana, Lafayette, LA 70504, USA
| | | |
Collapse
|
27
|
Reavill DR, Schmidt RE. Mycobacterial lesions in fish, amphibians, reptiles, rodents, lagomorphs, and ferrets with reference to animal models. Vet Clin North Am Exot Anim Pract 2012; 15:25-v. [PMID: 22244111 DOI: 10.1016/j.cvex.2011.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mycobacteriosis is a serious disease across many animal species. Approximately more than 120 species are currently recognized in the genus Mycobacterium. This article describes the zoonotic potential of mycobacteria and mycobacteriosis in fish, amphibians, rodents, rabbits, and ferrets. It considers clinical signs; histology; molecular methods of identification, such as polymerase chain reaction and DNA sequencing; routes of infection; and disease progression. Studying the disease in animals may aid in understanding the pathogenesis of mycobacterial infections in humans and identify better therapy and preventative options such as vaccines.
Collapse
Affiliation(s)
- Drury R Reavill
- Zoo/Exotic Pathology Service, West Sacramento, CA 95605, USA.
| | | |
Collapse
|
28
|
Yan W, Nie P, Lu Y. Establishment, characterization and viral susceptibility of a new cell line derived from goldfish, Carassius auratus (L.), tail fin. JOURNAL OF FISH DISEASES 2011; 34:757-768. [PMID: 21916901 DOI: 10.1111/j.1365-2761.2011.01292.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A continuous cell line [goldfish tail fin (GFTF)] derived from a goldfish tail fin, Carassius auratus, was established and characterized. GFTF cells predominantly consist of fibroblast-like cells that were maintained and subcultured more than 50 times over a period of 15 months. Cells grew at temperatures between 15 and 37°C, with an optimum temperature of 25°C. The growth rate of GFTF cells increased proportionally with the foetal bovine serum (FBS) concentration (5-20%), with optimum growth at 20% FBS. The chromosome numbers were 88-112, with a modal peak of 104 chromosomes. Five known fish viruses were tested to determine susceptibility. Results demonstrated that GFTF is susceptible to snakehead rhabdovirus, spring viraemia of carp virus and channel catfish virus (CCV). In addition, GFTF demonstrated a higher sensitivity to, and increased viral production of, CCV than that observed in the control cell line, channel catfish ovary cells. This suggests that GFTF cells would be useful as a diagnostic tool for viral diseases in this fish species, as well as for the isolation and study of goldfish viruses in the future. Furthermore, these cells were transfected with pEGFP-N1 vector DNA and some fluorescent signals were observed, suggesting that GFTF cells could be a useful tool for transgenic and genetic manipulation studies.
Collapse
Affiliation(s)
- W Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Province, China
| | | | | |
Collapse
|
29
|
Zerihun MA, Berg V, Lyche JL, Colquhoun DJ, Poppe TT. Mycobacterium salmoniphilum infection in burbot Lota lota. DISEASES OF AQUATIC ORGANISMS 2011; 95:57-64. [PMID: 21797036 DOI: 10.3354/dao02347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Burbot Lota lota sampled from lakes Mjosa and Losna in southeastern Norway between 2005 and 2008 were found to be infected with Mycobacterium salmoniphilum at a culture-positive prevalence of 18.6 and 3.3%, respectively. The condition factor (CF) of mycobacteria-affected fish sampled from Mjøsa in 2008 was lower than the average CF of total sampled fish the same year. Externally visible pathological changes included skin ulceration, petechiae, exopthalmia and cataract. Internally, the infections were associated with capsulated, centrally necrotic granulomas, containing large numbers of acid-fast bacilli, found mainly in the mesenteries, spleen, heart and swim bladder. Mycobacterial isolates recovered on Middlebrook 7H10 agar were confirmed as M. salmoniphilum by phenotypical investigation and by partial sequencing of the 16S rRNA, rpoB and Hsp65genes as well as the internal transcribed spacer (ITS1) locus. This study adds burbot to the list of fish species susceptible to piscine mycobacteriosis and describes M. salmoniphilum infection in a non-salmonid fish for the first time.
Collapse
|
30
|
Jeon SJ, Gonsalves LC, Jacobs JM, Rhodes M, Councilman J, Baya A, May EB, Fast MD. Short-term infection of striped bass Morone saxatilis with Mycobacterium marinum. DISEASES OF AQUATIC ORGANISMS 2011; 94:117-124. [PMID: 21648240 DOI: 10.3354/dao02318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Striped bass Morone saxatilis were studied in order to characterize their immune responses over the short term following challenge with Mycobacterium marinum. The expression of immunity-related genes (IL-1beta, TNF-alpha, Nramp and TGF-beta) quickly increased following infection with M. marinum, but these genes were subsequently down-regulated despite the fact that bacterial counts remained high. The number of monocytes and neutrophils also initially increased at 1 d postinfection. This confirms the importance of these types of cells in initial inflammation and mycobacterial infection in striped bass. The phagocytic index of splenic leukocytes over these same time frames did not change significantly following infection. The discrete window in which inflammatory mechanisms were stimulated in striped bass may be related to the intracellular nature of this pathogen.
Collapse
Affiliation(s)
- Soo Jin Jeon
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stoop EJM, Schipper T, Rosendahl Huber SK, Nezhinsky AE, Verbeek FJ, Gurcha SS, Besra GS, Vandenbroucke-Grauls CMJE, Bitter W, van der Sar AM. Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. Dis Model Mech 2011; 4:526-36. [PMID: 21372049 PMCID: PMC3124061 DOI: 10.1242/dmm.006676] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The hallmark of tuberculosis (TB) is the formation of granulomas, which are clusters of infected macrophages surrounded by additional macrophages, neutrophils and lymphocytes. Although it has long been thought that granulomas are beneficial for the host, there is evidence that mycobacteria also promote the formation of these structures. In this study, we aimed to identify new mycobacterial factors involved in the initial stages of granuloma formation. We exploited the zebrafish embryo Mycobacterium marinum infection model to study initiation of granuloma formation and developed an in vivo screen to select for random M. marinum mutants that were unable to induce granuloma formation efficiently. Upon screening 200 mutants, three mutants repeatedly initiated reduced granuloma formation. One of the mutants was found to be defective in the espL gene, which is located in the ESX-1 cluster. The ESX-1 cluster is disrupted in the Mycobacterium bovis BCG vaccine strain and encodes a specialized secretion system known to be important for granuloma formation and virulence. Although espL has not been implicated in protein secretion before, we observed a strong effect on the secretion of the ESX-1 substrates ESAT-6 and EspE. We conclude that our zebrafish embryo M. marinum screen is a useful tool to identify mycobacterial genes involved in the initial stages of granuloma formation and that we have identified a new component of the ESX-1 secretion system. We are confident that our approach will contribute to the knowledge of mycobacterial virulence and could be helpful for the development of new TB vaccines.
Collapse
Affiliation(s)
- Esther J M Stoop
- Department of Medical Microbiology and Infection Control, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reimschuessel R, Evans ER, Stine CB, Hasbrouck N, Mayer TD, Nochetto C, Gieseker CM. Renal crystal formation after combined or sequential oral administration of melamine and cyanuric acid. Food Chem Toxicol 2010; 48:2898-906. [PMID: 20674644 PMCID: PMC11421668 DOI: 10.1016/j.fct.2010.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/03/2010] [Accepted: 07/18/2010] [Indexed: 11/25/2022]
Abstract
We evaluated renal melamine-cyanurate crystal spherulite formation after single and repeated ingestion of both melamine (MEL) and cyanuric acid (CYA) in catfish and trout. MEL and CYA were co-administered orally over a range of doses, 0.1-20mg/kg body weight (bw) of each compound, either once or repeatedly for 4, 14 or 28 days (d). In catfish, the No Observable Adverse Effects Levels (NOAELs) for crystal formation for single, 4d or 14 d dosing were 10, 2.5 and 0.5mg/kg bw, respectively. In trout, the respective NOAELs were 2.5, 2.5 and 0.5mg/kg bw. No renal crystals formed in catfish fed 0.1mg/kg bw of each compound for 28 d. Sequential administration of 20mg/kg bw of MEL followed by 20mg/kg bw of CYA or vise-versa, with waiting periods of 1, 3, 7, 14 or 21 d between compound dosing also induced renal crystal formation in fish. These studies show that both catfish and trout are sensitive, non-mammalian models, for renal crystal formation following MEL and CYA ingestion. Since fish generally excrete chemicals more slowly than mammals, they may provide a "worst case scenario" model for higher risk populations, such as infants or persons with compromised renal function.
Collapse
Affiliation(s)
- R Reimschuessel
- Center for Veterinary Medicine, US Food and Drug Administration, 8401 Muirkirk Rd, Laurel, MD 20708, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kent ML, Feist SW, Harper C, Hoogstraten-Miller S, Law JM, Sánchez-Morgado JM, Tanguay RL, Sanders GE, Spitsbergen JM, Whipps CM. Recommendations for control of pathogens and infectious diseases in fish research facilities. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:240-8. [PMID: 18755294 PMCID: PMC3270489 DOI: 10.1016/j.cbpc.2008.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/20/2022]
Abstract
Concerns about infectious diseases in fish used for research have risen along with the dramatic increase in the use of fish as models in biomedical research. In addition to acute diseases causing severe morbidity and mortality, underlying chronic conditions that cause low-grade or subclinical infections may confound research results. Here we present recommendations and strategies to avoid or minimize the impacts of infectious agents in fishes maintained in the research setting. There are distinct differences in strategies for control of pathogens in fish used for research compared to fishes reared as pets or in aquaculture. Also, much can be learned from strategies and protocols for control of diseases in rodents used in research, but there are differences. This is due, in part, the unique aquatic environment that is modified by the source and quality of the water provided and the design of facilities. The process of control of pathogens and infectious diseases in fish research facilities is relatively new, and will be an evolving process over time. Nevertheless, the goal of documenting, detecting, and excluding pathogens in fish is just as important as in mammalian research models.
Collapse
Affiliation(s)
- Michael L Kent
- Center for Fish Disease Research, Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dierckens K, Rekecki A, Laureau S, Sorgeloos P, Boon N, Van den Broeck W, Bossier P. Development of a bacterial challenge test for gnotobiotic sea bass (Dicentrarchus labrax) larvae. Environ Microbiol 2009; 11:526-33. [DOI: 10.1111/j.1462-2920.2008.01794.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect Immun 2008; 76:5478-87. [PMID: 18852239 DOI: 10.1128/iai.00614-08] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ESX-1 secretion system plays a critical role in the virulence of M. tuberculosis and M. marinum, but the precise molecular and cellular mechanisms are not clearly defined. Virulent M. marinum is able to escape from the Mycobacterium-containing vacuole (MCV) into the host cell cytosol, polymerize actin, and spread from cell to cell. In this study, we have examined nine M. marinum ESX-1 mutants and the wild type by using fluorescence and electron microscopy detecting MCV membranes and actin polymerization. We conclude that ESX-1 plays an essential role in M. marinum escape from the MCV. We also show that the ESX-1 mutants acquire the ability to polymerize actin after being artificially delivered into the macrophage cytosol by hypotonic shock treatment, indicating that ESX-1 is not directly involved in initiation of actin polymerization. We provide evidence that M. marinum induces membrane pores approximately 4.5 nm in diameter, and this activity correlates with ESAT-6 secretion. Importantly, purified ESAT-6, but not the other ESX-1-secreted proteins, is able to cause dose-dependent pore formation in host cell membranes. These results suggest that ESAT-6 secreted by M. marinum ESX-1 could play a direct role in producing pores in MCV membranes, facilitating M. marinum escape from the vacuole and cell-to-cell spread. Our study provides new insight into the mechanism by which ESX-1 secretion and ESAT-6 enhance the virulence of mycobacterial infection.
Collapse
|
36
|
Cosma CL, Swaim LE, Volkman H, Ramakrishnan L, Davis JM. Zebrafish and frog models of Mycobacterium marinum infection. ACTA ACUST UNITED AC 2008; Chapter 10:Unit 10B.2. [PMID: 18770575 DOI: 10.1002/0471729256.mc10b02s3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycobacterium marinum infection of poikilothermic animals, such as fish and frogs, results in chronic granulomatous diseases that bear many similarities to mycobacterioses in mammals, including tuberculosis. This unit describes three animal models of M. marinum infection that can be used to study basic aspects of Mycobacterium-host interactions and granuloma development, as well as trafficking of immune cells in host tissues. Protocols are included that describe intraperitoneal infection of adult leopard frogs (Rana pipiens) and zebrafish (Danio rerio). Protocols also describe subsequent monitoring of the infection by enumeration of bacterial cfu, mean time to death, or visual examination of infected tissue using both conventional histological stains and fluorescence microscopy of fluorescently marked bacteria. Furthermore, protocols are included that describe the infection of embryonic zebrafish and the subsequent analysis of the infection in real time using DIC and fluorescence microscopy.
Collapse
Affiliation(s)
- Christine L Cosma
- University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
37
|
Mycobacteriosis in fishes: a review. Vet J 2008; 180:33-47. [PMID: 18620877 DOI: 10.1016/j.tvjl.2008.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 11/22/2022]
Abstract
Mycobacterium species have long been recognised as a significant source of morbidity and mortality in finfish aquaculture, as well as in wild finfishes. Mycobacteria infecting fishes also include zoonotic pathogens that can cause protracted illness, especially in immunocompromised individuals. Several basic aspects of mycobacterial pathobiology in aquatic animals remain poorly understood, although a number of important recent developments have been made, especially with respect to identification of novel Mycobacterium spp. infecting fishes and a new group of mycobacteria closely related to the human pathogen Mycobacterium ulcerans. This review will encompass important aspects of mycobacterial disease in fishes, discuss recent research including studies of mycobacteriosis in striped bass (Morone saxatilis) of Chesapeake Bay, USA, and suggest directions for future work.
Collapse
|
38
|
Zanoni RG, Florio D, Fioravanti ML, Rossi M, Prearo M. Occurrence of Mycobacterium spp. in ornamental fish in Italy. JOURNAL OF FISH DISEASES 2008; 31:433-441. [PMID: 18471099 DOI: 10.1111/j.1365-2761.2008.00924.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The occurrence of Mycobacterium spp. in freshwater and marine ornamental fish was studied in Italy from June 2002 to May 2005. Two surveys were carried out, one of aquarium fish sent to the Laboratory for diagnosis, and the other of prevalence of infection by mycobacteria in ornamental fish imported into Italy. Bacterial isolation was carried out from the spleen, kidney and liver, and the isolates were subsequently identified by biochemical tests. In the first survey, 387 fish were examined and Mycobacterium spp. were isolated from 181 (46.8%) fish. In the second survey 127 batches of ornamental fish from different countries were examined. Mycobacterium spp. were isolated from 38 (29.9%) batches. The following species were found: M. fortuitum, M. peregrinum, M. chelonae, M. abscessus, M. marinum, M. gordonae, M. nonchromogenicum and M. interjectum. There was a high prevalence of infection independent of the presence of macroscopic lesions. Mycobacterium fortuitum and M. chelonae were more prevalent than M. marinum in the samples examined.
Collapse
Affiliation(s)
- R G Zanoni
- Department of Veterinary Public Health and Animal Pathology, University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
39
|
Tobin DM, Ramakrishnan L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 2008; 10:1027-39. [PMID: 18298637 DOI: 10.1111/j.1462-5822.2008.01133.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A thorough understanding of Mycobacterium tuberculosis pathogenesis in humans has been elusive in part because of imperfect surrogate laboratory hosts, each with its own idiosyncrasies. Mycobacterium marinum is the closest genetic relative of the M. tuberculosis complex and is a natural pathogen of ectotherms. In this review, we present evidence that the similar genetic programmes of M. marinum and M. tuberculosis and the corresponding host immune responses reveal a conserved skeleton of Mycobacterium host-pathogen interactions. While both species have made niche-specific refinements, an essential framework has persisted. We highlight genetic comparisons of the two organisms and studies of M. marinum in the developing zebrafish. By pairing M. marinum with the simplified immune system of zebrafish embryos, many of the defining mechanisms of mycobacterial pathogenesis can be distilled and investigated in a tractable host/pathogen pair.
Collapse
Affiliation(s)
- David M Tobin
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
40
|
Kurata O, Nakabayashi M, Hatai K. In vitro leukocyte-encapsulation model in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 32:726-734. [PMID: 18093653 DOI: 10.1016/j.dci.2007.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 05/25/2023]
Abstract
We developed an in vitro model to study the cellular and molecular mechanisms of granulomatous inflammation in response to invading pathogens. Ichthyophonus hoferi was used as a target for encapsulation by cultivated leukocytes from the kidney of the rainbow trout (Oncorhynchus mykiss). The encapsulation process was observed over 1 week. The leukocytes were identified as either macrophages in the inner layer, or neutrophils and lymphocytes in the outer layer. The encapsulation response was inhibited by treatment with heat, but not formalin or methanol. The recognition of heat-unstable molecules on the pathogen surface could induce encapsulation. Increased expression of pro-inflammatory cytokines, such as interleukin (IL)-1beta, IL-8 and tumor necrosis factor-alpha2, was observed during encapsulation. These cytokines might play crucial roles in the encapsulation process. In particular, IL-8, which was expressed at a late phase, might recruit specific cell populations, such as the lymphocytes comprising the outer cellular layer around the target.
Collapse
Affiliation(s)
- Osamu Kurata
- Laboratory of Fish Diseases, Department of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan.
| | | | | |
Collapse
|
41
|
Species of environmental mycobacteria differ in their abilities to grow in human, mouse, and carp macrophages and with regard to the presence of mycobacterial virulence genes, as observed by DNA microarray hybridization. Appl Environ Microbiol 2007; 74:275-85. [PMID: 17981953 DOI: 10.1128/aem.01480-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There are many species of environmental mycobacteria (EM) that infect animals that are important to the economy and research and that also have zoonotic potential. The genomes of very few of these bacterial species have been sequenced, and little is known about the molecular mechanisms by which most of these opportunistic pathogens cause disease. In this study, 18 isolates of EM isolated from fish and humans (including strains of Mycobacterium avium, Mycobacterium peregrinum, Mycobacterium chelonae, and Mycobacterium salmoniphilum) were examined for their abilities to grow in macrophage lines from humans, mice, and carp. Genomic DNA from 14 of these isolates was then hybridized against DNA from an M. avium reference strain, with a custom microarray containing virulence genes of mycobacteria and a selection of representative genes from metabolic pathways. The strains of EM had different abilities to grow within the three types of cell lines, which grouped largely according to the host from which they were isolated. Genes identified as being putatively absent in some of the strains included those with response regulatory functions, cell wall compositions, and fatty acid metabolisms as well as a recently identified pathogenicity island important to macrophage uptake. Further understanding of the role these genes play in host specificity and pathogenicity will be important to gain insight into the zoonotic potential of certain EM as well as their mechanisms of virulence.
Collapse
|
42
|
Harriff MJ, Bermudez LE, Kent ML. Experimental exposure of zebrafish, Danio rerio (Hamilton), to Mycobacterium marinum and Mycobacterium peregrinum reveals the gastrointestinal tract as the primary route of infection: a potential model for environmental mycobacterial infection. JOURNAL OF FISH DISEASES 2007; 30:587-600. [PMID: 17850575 DOI: 10.1111/j.1365-2761.2007.00839.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The natural route by which fish become infected with mycobacteria is unknown. Danio rerio (Hamilton) were exposed by bath immersion and intubation to Mycobacterium marinum and Mycobacterium peregrinum isolates obtained from diseased zebrafish. Exposed fish were collected over the course of 8 weeks and examined for the presence of mycobacteriosis. Mycobacteria were consistently cultured from the intestines, and often from the livers and spleens of fish exposed by both methods. Mycobacteria were not observed in the gills. Histological analysis revealed that fish infected with M. marinum often developed granulomas accompanied by clinical signs of mycobacteriosis, while infection with M. peregrinum infrequently led to clinical signs of disease. Passage of the bacteria through environmental amoebae (Acanthamoeba castellani) was associated with increased growth of M. peregrinum over the course of 8 weeks, when compared to infection with the bacteria not passed through amoebae. The results provide evidence that zebrafish acquire mycobacteria primarily through the intestinal tract, resulting in mycobacterial dissemination.
Collapse
Affiliation(s)
- M J Harriff
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
43
|
Talaat AM, Ward SK, Wu CW, Rondon E, Tavano C, Bannantine JP, Lyons R, Johnston SA. Mycobacterial bacilli are metabolically active during chronic tuberculosis in murine lungs: insights from genome-wide transcriptional profiling. J Bacteriol 2007; 189:4265-74. [PMID: 17384189 PMCID: PMC1913421 DOI: 10.1128/jb.00011-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic tuberculosis represents a major health problem for one-third of the world's population today. A key question relevant to chronic tuberculosis is the physiological status of Mycobacterium tuberculosis during this important stage of infection. To examine the molecular bases of chronic tuberculosis and the role of host immunity in mycobacterial growth, we determined the mycobacterial transcriptional profiles during chronic and reactivation phases of murine tuberculosis using in vivo microarray analysis (IVMA). Following 28 days of aerosol infection, mycobacterial counts remained stable, although the bacilli were metabolically active with a 50% active transcriptome. The expression of genes involved in lipid and carbohydrate pathways was significantly enriched during the middle stage of chronic tuberculosis, suggesting a nutrient-rich microenvironment. A total of 137 genes were significantly regulated in mid-chronic tuberculosis (45 and 60 days) compared to an early stage (14 days) of infection. Additional sets of genes, including the virulence regulator virS, were up-regulated during the reactivation stage, indicating their possible roles in mycobacterial resurgence. Interestingly, a set of potential transcriptional regulators was significantly induced at the late stage of chronic tuberculosis. Bioinformatic analysis identified a large number of genes that could be regulated by one of the potential transcriptional regulators encoded by rv0348, including the sigF operon. Taken together, IVMA provided a better definition of the transcriptional machinery activated during chronic and reactivation stages of tuberculosis and identified a novel transcriptional regulator. A similar approach can be adopted to study key stages of intracellular pathogens.
Collapse
Affiliation(s)
- Adel M Talaat
- Laboratory of Bacterial Genomics, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706-1581, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Petrini B. Mycobacterium marinum: ubiquitous agent of waterborne granulomatous skin infections. Eur J Clin Microbiol Infect Dis 2007; 25:609-13. [PMID: 17047903 DOI: 10.1007/s10096-006-0201-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium marinum is a waterborne mycobacterium that commonly infects fish and amphibians worldwide. Infection in humans occurs occasionally, in most cases as a granulomatous infection localized in the skin, typically following minor trauma on the hands. For this reason, infection is especially common among aquarium keepers. Such local infection may-though infrequently-spread to tendon sheaths or joints. Disseminated disease, which is rare, can occur in immunosuppressed patients. In order to obtain a definitive diagnosis, culture and histopathological examination of biopsies from skin or other tissues are recommended. Infections sometimes heal spontaneously, but drug treatment is usually necessary for several months in order to cure the infection. Doxycycline or clarithromycin is used most commonly, although in severe cases, a combination of rifampicin and ethambutol is recommended.
Collapse
Affiliation(s)
- B Petrini
- Department of Clinical Microbiology, Karolinska University Hospital (Solna) and Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
45
|
Wu CW, Livesey M, Schmoller SK, Manning EJB, Steinberg H, Davis WC, Hamilton MJ, Talaat AM. Invasion and persistence of Mycobacterium avium subsp. paratuberculosis during early stages of Johne's disease in calves. Infect Immun 2007; 75:2110-9. [PMID: 17296749 PMCID: PMC1865790 DOI: 10.1128/iai.01739-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Infection with Mycobacterium avium subsp. paratuberculosis causes Johne's disease in cattle and is a serious problem for the dairy industry worldwide. Development of models to mimic aspects of Johne's disease remains an elusive goal because of the chronic nature of the disease. In this report, we describe a surgical approach employed to characterize the very early stages of infection of calves with M. avium subsp. paratuberculosis. To our surprise, strains of M. avium subsp. paratuberculosis were able to traverse the intestinal tissues within 1 h of infection in order to colonize distant organs, such as the liver and lymph nodes. Both the ileum and the mesenteric lymph nodes were persistently infected for months following intestinal deposition of M. avium subsp. paratuberculosis despite a lack of fecal shedding of mycobacteria. During the first 9 months of infection, humoral immune responses were not detected. Nonetheless, using flow cytometric analysis, we detected a significant change in the cells participating in the inflammatory responses of infected calves compared to cells in a control animal. Additionally, the levels of cytokines detected in both the ileum and the lymph nodes indicated that there were TH1-type-associated cellular responses but not TH2-type-associated humoral responses. Finally, surgical inoculation of a wild-type strain and a mutant M. avium subsp. paratuberculosis strain (with an inactivated gcpE gene) demonstrated the ability of the model which we developed to differentiate between the wild-type strain and a mutant strain of M. avium subsp. paratuberculosis deficient in tissue colonization and invasion. Overall, novel insights into the early stages of Johne's disease were obtained, and a practical model of mycobacterial invasiveness was developed. A similar approach can be used for other enteric bacteria.
Collapse
Affiliation(s)
- Chia-wei Wu
- The Laboratory of Bacterial Genomics, Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706-1581, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Watral V, Kent ML. Pathogenesis of Mycobacterium spp. in zebrafish (Danio rerio) from research facilities. Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:55-60. [PMID: 16904945 DOI: 10.1016/j.cbpc.2006.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/13/2006] [Accepted: 06/19/2006] [Indexed: 11/25/2022]
Abstract
One of the most common diseases that we have diagnosed in zebrafish is mycobacteriosis, caused by several Mycobacterium spp. The severity of the disease ranged from severe outbreaks to incidental infections. We conducted an in vivo study to evaluate the pathogenesis of six isolates of Mycobacterium from zebrafish with mycobacteriosis from four research facilities and one wholesale supplier of zebrafish in the United States: Mycobacterium abscessus, Mycobacterium peregrinum, Mycobacterium chelonae (2 isolates), and Mycobacterium marinum. We also included two isolates of M. marinum from other fishes. Fish were exposed by intraperitoneal injection at a target does of 5 x 10(4) bacteria/fish, and were held in static aquaria at 28 degrees C for 8 weeks. Fish were examined by histology and culture, and mortalities were recorded. The M. marinum isolates caused 100% infection and mortality between 30% and 100%. None of the other Mycobacterium species caused significant mortalities, but several of these fish had granulomatous lesions in visceral organs. Mycobacteria were consistently recovered in culture from fish exposed to M. marinum, and from only 9% of fish exposed to the other species. This study suggests that, of the isolates tested, only M. marinum is highly pathogenic and virulent to healthy zebrafish.
Collapse
Affiliation(s)
- Virginia Watral
- Center for Fish Disease Research, Department of Microbiology, Oregon State University, Corvallis, OR 97331-3804, USA
| | | |
Collapse
|
47
|
Broussard GW, Ennis DG. Mycobacterium marinum produces long-term chronic infections in medaka: a new animal model for studying human tuberculosis. Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:45-54. [PMID: 17015042 PMCID: PMC2714049 DOI: 10.1016/j.cbpc.2006.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 07/01/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Human infection by Mycobacterium tuberculosis is endemic, with approximately 2 billion infected and is the most common cause of adult death due to an infectious agent. Because of the slow growth rate of M. tuberculosis and risk to researchers, other species of Mycobacterium have been employed as alternative model systems to study human tuberculosis (TB). Mycobacterium marinum may be a good surrogate pathogen, conferring TB-like chronic infections in some fish. Medaka (Oryzias latipes) has been established for over five decades as a laboratory fish model for toxicology, genotoxicity, teratogenesis, carcinogenesis, classical genetics and embryology. We are investigating if medaka might also serve as a host for M. marinum in order to model human TB. We show that both acute and chronic infections are inducible in a dose dependent manner. Colonization of target organs and systemic granuloma formation has been demonstrated through the use of histology. M. marinum expressing green fluorescent protein (Gfp) was used to monitor bacterial colonization of these organs in fresh tissues as well as in intact animals. Moreover, we have employed the See-Through fish line, a variety of medaka devoid of major pigments, to monitor real-time disease progression, in living animals. We have also compared the susceptibility of another prominent fish model, zebrafish (Danio rerio), to our medaka-M. marinum model. We determined the course of infections in zebrafish is significantly more severe than in medaka. Together, these results indicate that the medaka-M. marinum model provides unique advantages for studying chronic mycobacteriosis.
Collapse
Affiliation(s)
| | - Don G. Ennis
- Corresponding author: Department of Biology, Postal Address: P.O. Box 42451, University of Louisiana, Lafayette, LA 70504-2451. Tel.: (337) 482-5008; fax: (337) 482-5660 E-mail address:
| |
Collapse
|
48
|
Swaim LE, Connolly LE, Volkman HE, Humbert O, Born DE, Ramakrishnan L. Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect Immun 2006; 74:6108-17. [PMID: 17057088 PMCID: PMC1695491 DOI: 10.1128/iai.00887-06] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zebrafish, a genetically tractable model vertebrate, is naturally susceptible to tuberculosis caused by Mycobacterium marinum, a close genetic relative of the causative agent of human tuberculosis, Mycobacterium tuberculosis. We previously developed a zebrafish embryo-M. marinum infection model to study host-pathogen interactions in the context of innate immunity. Here, we have constructed a flowthrough fish facility for the large-scale longitudinal study of M. marinum-induced tuberculosis in adult zebrafish where both innate and adaptive immunity are operant. We find that zebrafish are exquisitely susceptible to M. marinum strain M. Intraperitoneal injection of five organisms produces persistent granulomatous tuberculosis, while the injection of approximately 9,000 organisms leads to acute, fulminant disease. Bacterial burden, extent of disease, pathology, and host mortality progress in a time- and dose-dependent fashion. Zebrafish tuberculous granulomas undergo caseous necrosis, similar to human tuberculous granulomas. In contrast to mammalian tuberculous granulomas, zebrafish lesions contain few lymphocytes, calling into question the role of adaptive immunity in fish tuberculosis. However, like rag1 mutant mice infected with M. tuberculosis, we find that rag1 mutant zebrafish are hypersusceptible to M. marinum infection, demonstrating that the control of fish tuberculosis is dependent on adaptive immunity. We confirm the previous finding that M. marinum DeltaRD1 mutants are attenuated in adult zebrafish and extend this finding to show that DeltaRD1 predominantly produces nonnecrotizing, loose macrophage aggregates. This observation suggests that the macrophage aggregation defect associated with DeltaRD1 attenuation in zebrafish embryos is ongoing during adult infection.
Collapse
Affiliation(s)
- Laura E Swaim
- Department of Microbiology, Box 357242, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
49
|
Shin SJ, Wu CW, Steinberg H, Talaat AM. Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun 2006; 74:3825-33. [PMID: 16790754 PMCID: PMC1489745 DOI: 10.1128/iai.01742-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Johne's disease, caused by Mycobacterium paratuberculosis infection, is a worldwide problem for the dairy industry and has a possible involvement in Crohn's disease in humans. To identify virulence determinants of this economically important pathogen, a library of 5,060 transposon mutants was constructed using Tn5367 insertion mutagenesis, followed by large-scale sequencing to identify disrupted genes. In this report, 1,150 mutants were analyzed and 970 unique insertion sites were identified. Sequence analysis of the disrupted genes indicated that the insertion of Tn5367 was more prevalent in genomic regions with G+C content (50.5 to 60.5%) lower than the average G+C content (69.3%) of the rest of the genome. Phenotypic screening of the library identified disruptions of genes involved in iron, tryptophan, or mycolic acid metabolic pathways that displayed unique growth characteristics. Bioinformatic analysis of disrupted genes identified a list of potential virulence determinants for further testing with animals. Mouse infection studies showed a significant decrease in tissue colonization by mutants with a disruption in the gcpE, pstA, kdpC, papA2, impA, umaA1, or fabG2_2 gene. Attenuation phenotypes were tissue specific (e.g., for the umaA1 mutant) as well as time specific (e.g., for the impA mutant), suggesting that those genes may be involved in different virulence mechanisms. The identified potential virulence determinants represent novel functional classes that could be necessary for mycobacterial survival during infection and could provide suitable targets for vaccine and drug development against Johne's and Crohn's diseases.
Collapse
Affiliation(s)
- Sung Jae Shin
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706-1581, USA
| | | | | | | |
Collapse
|
50
|
Gao LY, Pak M, Kish R, Kajihara K, Brown EJ. A mycobacterial operon essential for virulence in vivo and invasion and intracellular persistence in macrophages. Infect Immun 2006; 74:1757-67. [PMID: 16495549 PMCID: PMC1418628 DOI: 10.1128/iai.74.3.1757-1767.2006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to invade and grow in macrophages is necessary for Mycobacterium tuberculosis to cause disease. We have found a Mycobacterium marinum locus of two genes that is required for both invasion and intracellular survival in macrophages. The genes were designated iipA (mycobacterial invasion and intracellular persistence) and iipB. The iip mutant, which was created by insertion of a kanamycin resistance gene cassette at the 5' region of iipA, was completely avirulent to zebra fish. Expression of the M. tuberculosis orthologue of iipA, Rv1477, fully complemented the iip mutant for infectivity in vivo, as well as for invasion and intracellular persistence in macrophages. In contrast, the iipB orthologue, Rv1478, only partially complemented the iip mutant in vivo and restored invasion but not intracellular growth in macrophages. While IipA and IipB differ at their N termini, they are highly similar throughout their C-terminal NLPC_p60 domains. The p60 domain of Rv1478 is fully functional to replace that of Rv1477, suggesting that the N-terminal sequence of Rv1477 is required for full virulence in vivo and in macrophages. Further mutations demonstrated that both Arg-Gly-Asp (RGD) and Asp-Cys-Ser-Gly (DCSG) sequences in the p60 domain are required for function. The iip mutant exhibited increased susceptibility to antibiotics and lysozyme and failed to fully separate daughter cells in liquid culture, suggesting a role for iip genes in cell wall structure and function. Altogether, these studies demonstrate an essential role for a p60-containing protein, IipA, in the pathogenesis of M. marinum infection.
Collapse
Affiliation(s)
- Lian-Yong Gao
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, 600 16th St., Campus Box 2140, San Francisco, CA 94143-2140, USA
| | | | | | | | | |
Collapse
|