1
|
König F, Svensson SL, Sharma CM. Interplay of two small RNAs fine-tunes hierarchical flagella gene expression in Campylobacter jejuni. Nat Commun 2024; 15:5240. [PMID: 38897989 PMCID: PMC11187230 DOI: 10.1038/s41467-024-48986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Like for many bacteria, flagella are crucial for Campylobacter jejuni motility and virulence. Biogenesis of the flagellar machinery requires hierarchical transcription of early, middle (RpoN-dependent), and late (FliA-dependent) genes. However, little is known about post-transcriptional regulation of flagellar biogenesis by small RNAs (sRNAs). Here, we characterized two sRNAs with opposing effects on C. jejuni filament assembly and motility. We demonstrate that CJnc230 sRNA (FlmE), encoded downstream of the flagellar hook protein, is processed from the RpoN-dependent flgE mRNA by RNase III, RNase Y, and PNPase. We identify mRNAs encoding a flagella-interaction regulator and the anti-sigma factor FlgM as direct targets of CJnc230 repression. CJnc230 overexpression upregulates late genes, including the flagellin flaA, culminating in longer flagella and increased motility. In contrast, overexpression of the FliA-dependent sRNA CJnc170 (FlmR) reduces flagellar length and motility. Overall, our study demonstrates how the interplay of two sRNAs post-transcriptionally fine-tunes flagellar biogenesis through balancing of the hierarchically-expressed components.
Collapse
Affiliation(s)
- Fabian König
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany
| | - Sarah L Svensson
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cynthia M Sharma
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany.
| |
Collapse
|
2
|
Aliyeva-Schnorr L, Schuster C, Deising HB. Natural Urease Inhibitors Reduce the Severity of Disease Symptoms, Dependent on the Lifestyle of the Pathogens. J Fungi (Basel) 2023; 9:708. [PMID: 37504697 PMCID: PMC10381680 DOI: 10.3390/jof9070708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
The development of new anti-ureolytic compounds is of great interest due to the newly discovered role of urease inhibitors in crop protection. Purine degradation and the generation of ammonium by urease are required for the full virulence of biotrophic and hemibiotrophic fungal plant pathogens. Accordingly, chemicals displaying urease inhibitor activity may be used as a novel class of fungicides. Several urease inhibitors belonging to different chemical classes are known, and some compounds have been developed as urea fertilizer additives. We tested whether the natural urease inhibitors p-benzoquinone (p-HQ) and hydroquinone (HQ), as well as the synthetic inhibitors isopropoxy carbonyl phosphoric acid amide (iCPAA), benzyloxy carbonyl phosphoric acid amide (bCPAA), and dipropyl-hexamino-1,3 diphosphazenium chloride (DDC), prevent or delay plant infection caused by pathogens differing in lifestyles and host plants. p-BQ, HQ, and DCC not only protected maize from infection by the hemibiotroph C. graminicola, but also inhibited the infection process of biotrophs such as the wheat powdery mildew fungus Blumeria graminis f. sp. tritici and the broad bean rust fungus Uromyces viciae-fabae. Interestingly, the natural quinone-based compounds even reduced the symptom severity of the necrotrophic fungi, i.e., the grey mold pathogen B. cinerea and the Southern Leaf Spot fungus C. heterostrophus, to some extent. The urease inhibitors p-BQ, HQ, and DCC interfered with appressorial penetration and confirmed the appropriateness of urease inhibitors as novel fungicidal agents.
Collapse
Affiliation(s)
- Lala Aliyeva-Schnorr
- Chair for Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| | - Carola Schuster
- SKW Stickstoffwerke Piesteritz GmbH, Möllensdorfer Str. 13, D-06886 Lutherstadt Wittenberg, Germany
| | - Holger B Deising
- Chair for Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Cj0683 Is a Competence Protein Essential for Efficient Initialization of DNA Uptake in Campylobacter jejuni. Biomolecules 2023; 13:biom13030514. [PMID: 36979449 PMCID: PMC10046745 DOI: 10.3390/biom13030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
C. jejuni is an important food-borne pathogen displaying high genetic diversity, substantially based on natural transformation. The mechanism of DNA uptake from the environment depends on a type II secretion/type IV pilus system, whose components are partially known. Here, we quantified DNA uptake in C. jejuni at the single cell level and observed median transport capacities of approximately 30 kb per uptake location. The process appeared to be limited by the initialization of DNA uptake, was finite, and, finalized within 30 min of contact to DNA. Mutants lacking either the outer membrane pore PilQ or the inner membrane channel ComEC were deficient in natural transformation. The periplasmic DNA binding protein ComE was negligible for DNA uptake, which is in contrast to its proposed function. Intriguingly, a mutant lacking the unique periplasmic protein Cj0683 displayed rare but fully functional DNA uptake events. We conclude that Cj0683 was essential for the efficient initialization of DNA uptake, consistent with the putative function as a competence pilus protein. Unravelling features important in natural transformation might lead to target identification, reducing the adaptive potential of pathogens.
Collapse
|
4
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
5
|
Taillieu E, Chiers K, Amorim I, Gärtner F, Maes D, Van Steenkiste C, Haesebrouck F. Gastric Helicobacter species associated with dogs, cats and pigs: significance for public and animal health. Vet Res 2022; 53:42. [PMID: 35692057 PMCID: PMC9190127 DOI: 10.1186/s13567-022-01059-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022] Open
Abstract
This article focuses on the pathogenic significance of Helicobacter species naturally colonizing the stomach of dogs, cats and pigs. These gastric "non-Helicobacter (H.) pylori Helicobacter species" (NHPH) are less well-known than the human adapted H. pylori. Helicobacter suis has been associated with gastritis and decreased daily weight gain in pigs. Several studies also attribute a role to this pathogen in the development of hyperkeratosis and ulceration of the non-glandular stratified squamous epithelium of the pars oesophagea of the porcine stomach. The stomach of dogs and cats can be colonized by several Helicobacter species but their pathogenic significance for these animals is probably low. Helicobacter suis as well as several canine and feline gastric Helicobacter species may also infect humans, resulting in gastritis, peptic and duodenal ulcers, and low-grade mucosa-associated lymphoid tissue lymphoma. These agents may be transmitted to humans most likely through direct or indirect contact with dogs, cats and pigs. Additional possible transmission routes include consumption of water and, for H. suis, also consumption of contaminated pork. It has been described that standard H. pylori eradication therapy is usually also effective to eradicate the NHPH in human patients, although acquired antimicrobial resistance may occasionally occur and porcine H. suis strains are intrinsically less susceptible to aminopenicillins than non-human primate H. suis strains and other gastric Helicobacter species. Virulence factors of H. suis and the canine and feline gastric Helicobacter species include urease activity, motility, chemotaxis, adhesins and gamma-glutamyl transpeptidase. These NHPH, however, lack orthologs of cytotoxin-associated gene pathogenicity island and vacuolating cytotoxin A, which are major virulence factors in H. pylori. It can be concluded that besides H. pylori, gastric Helicobacter species associated with dogs, cats and pigs are also clinically relevant in humans. Although recent research has provided better insights regarding pathogenic mechanisms and treatment strategies, a lot remains to be investigated, including true prevalence rates, exact modes of transmission and molecular pathways underlying disease development and progression.
Collapse
Affiliation(s)
- Emily Taillieu
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Koen Chiers
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Irina Amorim
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Porto, Portugal.,Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal.,School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Porto, Portugal.,Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp University, Edegem, Belgium.,Department of Gastroenterology and Hepatology, General Hospital Maria Middelares, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
6
|
Kumar S, Vinella D, De Reuse H. Nickel, an essential virulence determinant of Helicobacter pylori: Transport and trafficking pathways and their targeting by bismuth. Adv Microb Physiol 2022; 80:1-33. [PMID: 35489790 DOI: 10.1016/bs.ampbs.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Nickel is required for the pathogenicity of H. pylori. This bacterial pathogen colonizes the stomach of about half of the human population worldwide and is associated with gastric cancer that is responsible for 800,000 deaths per year. H. pylori possesses two nickel-enzymes that are essential for in vivo colonization, a [NiFe] hydrogenase and an abundant urease responsible for resistance to gastric acidity. Because of these two enzymes, survival of H. pylori relies on an important supply of nickel, implying tight control strategies to avoid its toxic accumulation or deprivation. H. pylori possesses original mechanisms for nickel uptake, distribution, storage and trafficking that will be discussed in this review. During evolution, acquisition of nickel transporters and specific nickel-binding proteins has been a decisive event to allow Helicobacter species to become able to colonize the stomach. Accordingly, many of the factors involved in these mechanisms are required for mouse colonization by H. pylori. These mechanisms are controlled at different levels including protein interaction networks, transcriptional, post-transcriptional and post-translational regulation. Bismuth is another metal used in combination with antibiotics to efficiently treat H. pylori infections. Although the precise mode of action of bismuth is unknown, many targets have been identified in H. pylori and there is growing evidence that bismuth interferes with the essential nickel pathways. Understanding the metal pathways will help improve treatments against H. pylori and other pathogens.
Collapse
Affiliation(s)
- Sumith Kumar
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Daniel Vinella
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Hilde De Reuse
- Unité Pathogenèse de Helicobacter, CNRS UMR6047, Département de Microbiologie, Institut Pasteur, Paris, France.
| |
Collapse
|
7
|
Small RNA mediated gradual control of lipopolysaccharide biosynthesis affects antibiotic resistance in Helicobacter pylori. Nat Commun 2021; 12:4433. [PMID: 34290242 PMCID: PMC8295292 DOI: 10.1038/s41467-021-24689-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
The small, regulatory RNA RepG (Regulator of polymeric G-repeats) regulates the expression of the chemotaxis receptor TlpB in Helicobacter pylori by targeting a variable G-repeat in the tlpB mRNA leader. Here, we show that RepG additionally controls lipopolysaccharide (LPS) phase variation by also modulating the expression of a gene (hp0102) that is co-transcribed with tlpB. The hp0102 gene encodes a glycosyltransferase required for LPS O-chain biosynthesis and in vivo colonization of the mouse stomach. The G-repeat length defines a gradual (rather than ON/OFF) control of LPS biosynthesis by RepG, and leads to gradual resistance to a membrane-targeting antibiotic. Thus, RepG-mediated modulation of LPS structure might impact host immune recognition and antibiotic sensitivity, thereby helping H. pylori to adapt and persist in the host. The small RNA RepG modulates expression of chemotaxis receptor TlpB in Helicobacter pylori by targeting a length-variable G-repeat in the tlpB mRNA. Here, Pernitzsch et al. show that RepG also gradually controls lipopolysaccharide biosynthesis, antibiotic susceptibility, and in-vivo colonization of the stomach, by regulating a gene that is co-transcribed with tlpB.
Collapse
|
8
|
A bacterial small RNA regulates the adaptation of Helicobacter pylori to the host environment. Nat Commun 2021; 12:2085. [PMID: 33837194 PMCID: PMC8035401 DOI: 10.1038/s41467-021-22317-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. However, the mechanisms by which the bacteria adapt to the stomach environment are poorly understood. Here, we show that a small non-coding RNA of H. pylori (HPnc4160, also known as IsoB or NikS) regulates the pathogen’s adaptation to the host environment as well as bacterial oncoprotein production. In a rodent model of H. pylori infection, the genomes of bacteria isolated from the stomach possess an increased number of T-repeats upstream of the HPnc4160-coding region, and this leads to reduced HPnc4160 expression. We use RNA-seq and iTRAQ analyses to identify eight targets of HPnc4160, including genes encoding outer membrane proteins and oncoprotein CagA. Mutant strains with HPnc4160 deficiency display increased colonization ability of the mouse stomach, in comparison with the wild-type strain. Furthermore, HPnc4160 expression is lower in clinical isolates from gastric cancer patients than in isolates derived from non-cancer patients, while the expression of HPnc4160’s targets is higher in the isolates from gastric cancer patients. Therefore, the small RNA HPnc4160 regulates H. pylori adaptation to the host environment and, potentially, gastric carcinogenesis. Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. Here, Kinoshita-Daitoku et al. show that a small non-coding RNA of H. pylori regulates bacterial adaptation to the stomach environment and bacterial oncoprotein production.
Collapse
|
9
|
Eisenbart SK, Alzheimer M, Pernitzsch SR, Dietrich S, Stahl S, Sharma CM. A Repeat-Associated Small RNA Controls the Major Virulence Factors of Helicobacter pylori. Mol Cell 2020; 80:210-226.e7. [PMID: 33002424 DOI: 10.1016/j.molcel.2020.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Many bacterial pathogens regulate their virulence genes via phase variation, whereby length-variable simple sequence repeats control the transcription or coding potential of those genes. Here, we have exploited this relationship between DNA structure and physiological function to discover a globally acting small RNA (sRNA) regulator of virulence in the gastric pathogen Helicobacter pylori. Our study reports the first sRNA whose expression is affected by a variable thymine (T) stretch in its promoter. We show the sRNA post-transcriptionally represses multiple major pathogenicity factors of H. pylori, including CagA and VacA, by base pairing to their mRNAs. We further demonstrate transcription of the sRNA is regulated by the nickel-responsive transcriptional regulator NikR (thus named NikS for nickel-regulated sRNA), thereby linking virulence factor regulation to nickel concentrations. Using in-vitro infection experiments, we demonstrate NikS affects host cell internalization and epithelial barrier disruption. Together, our results show NikS is a phase-variable, post-transcriptional global regulator of virulence properties in H. pylori.
Collapse
Affiliation(s)
- Sara K Eisenbart
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Mona Alzheimer
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sandy R Pernitzsch
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sascha Dietrich
- Core Unit Systems Medicine, Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stephanie Stahl
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Cynthia M Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
10
|
Fiori-Duarte AT, Rodrigues RP, Kitagawa RR, Kawano DF. Insights into the Design of Inhibitors of the Urease Enzyme - A Major Target for the Treatment of Helicobacter pylori Infections. Curr Med Chem 2020; 27:3967-3982. [PMID: 30827224 DOI: 10.2174/0929867326666190301143549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022]
Abstract
Expressed by a variety of plants, fungi and bacteria, the urease enzyme is directly associated with the virulence factor of many bacteria, including Helicobacter pylori, a gram-negative bacterium related to several gastrointestinal diseases and responsible for one of the most frequent bacterial infections throughout the world. The Helicobacter pylori Urease (HPU) is a nickel-dependent metalloenzyme expressed in response to the environmental stress caused by the acidic pH of the stomach. The enzyme promotes the increase of gastric pH through acid neutralization by the products of urea hydrolysis, then critically contributing to the colonization and pathogenesis of the microorganism. At the same time, standard treatments for Helicobacter pylori infections have limitations such as the increasing bacterial resistance to the antibiotics used in the clinical practice. As a strategy for the development of novel treatments, urease inhibitors have proved to be promising, with a wide range of chemical compounds, including natural, synthetic and semisynthetic products to be researched and potentially developed as new drugs. In this context, this review highlights the advances in the field of HPU inhibition, presenting and discussing the basis for the research of new molecules aiming at the identification of more efficient therapeutic entities.
Collapse
Affiliation(s)
- Ana Thereza Fiori-Duarte
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Candido Portinari 200, 13083-871 Campinas, SP, Brazil
| | - Ricardo Pereira Rodrigues
- Department of Pharmaceutical Sciences, Health Sciences Center - CCS, Federal University of Espírito Santo - UFES, Av. Marechal Campos 1468, 29047-105 Vitoria, ES, Brazil
| | - Rodrigo Rezende Kitagawa
- Department of Pharmaceutical Sciences, Health Sciences Center - CCS, Federal University of Espírito Santo - UFES, Av. Marechal Campos 1468, 29047-105 Vitoria, ES, Brazil
| | - Daniel Fábio Kawano
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Candido Portinari 200, 13083-871 Campinas, SP, Brazil.,Institute of Chemistry, University of Campinas - UNICAMP, Rua Josué de Castro s/n, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
11
|
Alzheimer M, Svensson SL, König F, Schweinlin M, Metzger M, Walles H, Sharma CM. A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni. PLoS Pathog 2020; 16:e1008304. [PMID: 32069333 PMCID: PMC7048300 DOI: 10.1371/journal.ppat.1008304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/28/2020] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
The Gram-negative Epsilonproteobacterium Campylobacter jejuni is currently the most prevalent bacterial foodborne pathogen. Like for many other human pathogens, infection studies with C. jejuni mainly employ artificial animal or cell culture models that can be limited in their ability to reflect the in-vivo environment within the human host. Here, we report the development and application of a human three-dimensional (3D) infection model based on tissue engineering to study host-pathogen interactions. Our intestinal 3D tissue model is built on a decellularized extracellular matrix scaffold, which is reseeded with human Caco-2 cells. Dynamic culture conditions enable the formation of a polarized mucosal epithelial barrier reminiscent of the 3D microarchitecture of the human small intestine. Infection with C. jejuni demonstrates that the 3D tissue model can reveal isolate-dependent colonization and barrier disruption phenotypes accompanied by perturbed localization of cell-cell junctions. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D model deviated from those obtained with 2D-monolayers, but recapitulated phenotypes previously observed in animal models. Moreover, we demonstrate the involvement of a small regulatory RNA pair, CJnc180/190, during infections and observe different phenotypes of CJnc180/190 mutant strains in 2D vs. 3D infection models. Hereby, the CJnc190 sRNA exerts its pathogenic influence, at least in part, via repression of PtmG, which is involved in flagellin modification. Our results suggest that the Caco-2 cell-based 3D tissue model is a valuable and biologically relevant tool between in-vitro and in-vivo infection models to study virulence of C. jejuni and other gastrointestinal pathogens. Enteric pathogens have evolved numerous strategies to successfully colonize and persist in the human gastrointestinal tract. However, especially for the research of virulence mechanisms of human pathogens, often only limited infection models are available. Here, we have applied and further advanced a tissue-engineered human intestinal tissue model based on an extracellular matrix scaffold reseeded with human cells that can faithfully mimic pathogenesis-determining processes of the zoonotic pathogen Campylobacter jejuni. Our three-dimensional (3D) intestinal infection model allows for the assessment of epithelial barrier function during infection as well as for the quantification of bacterial adherence, internalization, and transmigration. Investigation of C. jejuni mutant strains in our 3D tissue model revealed isolate-specific infection phenotypes, in-vivo relevant infection outcomes, and uncovered the involvement of a small RNA pair during C. jejuni pathogenesis. Overall, our results demonstrate the power of tissue-engineered models for studying host-pathogen interactions, and our model will also be helpful to investigate other gastrointestinal pathogens.
Collapse
Affiliation(s)
- Mona Alzheimer
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Sarah L. Svensson
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Fabian König
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Matthias Schweinlin
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Marco Metzger
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Fraunhofer-Institute for Silicate Research, Translational Centre Regenerative Therapies, Würzburg, Germany
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail: (HW); (CMS)
| | - Cynthia M. Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- * E-mail: (HW); (CMS)
| |
Collapse
|
12
|
Iost I, Chabas S, Darfeuille F. Maturation of atypical ribosomal RNA precursors in Helicobacter pylori. Nucleic Acids Res 2019; 47:5906-5921. [PMID: 31006803 PMCID: PMC6582327 DOI: 10.1093/nar/gkz258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
In most bacteria, ribosomal RNA is transcribed as a single polycistronic precursor that is first processed by RNase III. This double-stranded specific RNase cleaves two large stems flanking the 23S and 16S rRNA mature sequences, liberating three 16S, 23S and 5S rRNA precursors, which are further processed by other ribonucleases. Here, we investigate the rRNA maturation pathway of the human gastric pathogen Helicobacter pylori. This bacterium has an unusual arrangement of its rRNA genes, the 16S rRNA gene being separated from a 23S-5S rRNA cluster. We show that RNase III also initiates processing in this organism, by cleaving two typical stem structures encompassing 16S and 23S rRNAs and an atypical stem–loop located upstream of the 5S rRNA. Deletion of RNase III leads to the accumulation of a large 23S-5S precursor that is found in polysomes, suggesting that it can function in translation. Finally, we characterize a cis-encoded antisense RNA overlapping the leader of the 23S-5S rRNA precursor. We present evidence that this antisense RNA interacts with this precursor, forming an intermolecular complex that is cleaved by RNase III. This pairing induces additional specific cleavages of the rRNA precursor coupled with a rapid degradation of the antisense RNA.
Collapse
Affiliation(s)
- Isabelle Iost
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Sandrine Chabas
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Fabien Darfeuille
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| |
Collapse
|
13
|
Suzuki R, Satou K, Shiroma A, Shimoji M, Teruya K, Matsumoto T, Akada J, Hirano T, Yamaoka Y. Genome-wide mutation analysis of Helicobacter pylori after inoculation to Mongolian gerbils. Gut Pathog 2019; 11:45. [PMID: 31558915 PMCID: PMC6754630 DOI: 10.1186/s13099-019-0326-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background Helicobacter pylori is a pathogenic bacterium that causes various gastrointestinal diseases in the human stomach. H. pylori is well adapted to the human stomach but does not easily infect other animals. As a model animal, Mongolian gerbils are often used, however, the genome of the inoculated H. pylori may accumulate mutations to adapt to the new host. To investigate mutations occurring in H. pylori after infection in Mongolian gerbils, we compared the whole genome sequence of TN2 wild type strain (TN2wt) and next generation sequencing data of retrieved strains from the animals after different lengths of infection. Results We identified mutations in 21 loci of 17 genes of the post-inoculation strains. Of the 17 genes, five were outer membrane proteins that potentially influence on the colonization and inflammation. Missense and nonsense mutations were observed in 15 and 6 loci, respectively. Multiple mutations were observed in three genes. Mutated genes included babA, tlpB, and gltS, which are known to be associated with adaptation to murine. Other mutations were involved with chemoreceptor, pH regulator, and outer membrane proteins, which also have potential to influence on the adaptation to the new host. Conclusions We confirmed mutations in genes previously reported to be associated with adaptation to Mongolian gerbils. We also listed up genes that mutated during the infection to the gerbils, though it needs experiments to prove the influence on adaptation.
Collapse
Affiliation(s)
- Rumiko Suzuki
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Kazuhito Satou
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Akino Shiroma
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Makiko Shimoji
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Kuniko Teruya
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Takashi Matsumoto
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Junko Akada
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Takashi Hirano
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Yoshio Yamaoka
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan.,3Department of Medicine-Gastroenterology, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030 USA.,Global Oita Medical Advanced Research Center for Health, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| |
Collapse
|
14
|
Establishment of serine protease htrA mutants in Helicobacter pylori is associated with secA mutations. Sci Rep 2019; 9:11794. [PMID: 31409845 PMCID: PMC6692382 DOI: 10.1038/s41598-019-48030-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori plays an essential role in the pathogenesis of gastritis, peptic ulcer disease, and gastric cancer. The serine protease HtrA, an important secreted virulence factor, disrupts the gastric epithelium, which enables H. pylori to transmigrate across the epithelium and inject the oncogenic CagA protein into host cells. The function of periplasmic HtrA for the H. pylori cell is unknown, mainly due to unavailability of the htrA mutants. In fact, htrA has been described as an essential gene in this bacterium. We have screened 100 worldwide H. pylori isolates and show that only in the N6 strain it was possible to delete htrA or mutate the htrA gene to produce proteolytically inactive HtrA. We have sequenced the wild-type and mutant chromosomes and we found that inactivation of htrA is associated with mutations in SecA – a component of the Sec translocon apparatus used to translocate proteins from the cytoplasm into the periplasm. The cooperation of SecA and HtrA has been already suggested in Streptococcus pneumonia, in which these two proteins co-localize. Hence, our results pinpointing a potential functional relationship between HtrA and the Sec translocon in H. pylori possibly indicate for the more general mechanism responsible to maintain bacterial periplasmic homeostasis.
Collapse
|
15
|
Wu H, Iwai N, Suzuki Y, Nakano T. Molecular association of FtsZ with the intrabacterial nanotransportation system for urease in Helicobacter pylori. Med Mol Morphol 2019; 52:226-234. [PMID: 31134430 DOI: 10.1007/s00795-019-00225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 11/26/2022]
Abstract
Helicobacter pylori possesses intrabacterial nanotransportation system (ibNoTS) for transporting CagA, VacA, and urease within the bacterial cytoplasm, which is controlled by the extrabacterial environment. The route of ibNoTS for CagA is reported to be associated with the MreB filament, whereas the route of ibNoTS for urease is not yet known. In this study, we demonstrated by immunoelectron microscopy that urease along the route of ibNoTS localizes closely with the FtsZ filament in the bacterium. Supporting this, we found by enzyme immunoassay and co-immunoprecipitation analysis that urease interacted with FtsZ. These findings indicate that urease along the route of ibNoTS is closely associated with the FtsZ filament. Since these phenomena were not observed in ibNoTS for CagA, the route of ibNoTS for CagA is different from that of ibNoTS for urease. We propose that the route of ibNoTS for urease is associated with the FtsZ filament in H. pylori.
Collapse
Affiliation(s)
- Hong Wu
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Noritaka Iwai
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Takashi Nakano
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
16
|
Sodolescu A, Dian C, Terradot L, Bouzhir-Sima L, Lestini R, Myllykallio H, Skouloubris S, Liebl U. Structural and functional insight into serine hydroxymethyltransferase from Helicobacter pylori. PLoS One 2018; 13:e0208850. [PMID: 30550583 PMCID: PMC6294363 DOI: 10.1371/journal.pone.0208850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/23/2018] [Indexed: 11/19/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT), encoded by the glyA gene, is a ubiquitous pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the formation of glycine from serine. The thereby generated 5,10-methylene tetrahydrofolate (MTHF) is a major source of cellular one-carbon units and a key intermediate in thymidylate biosynthesis. While in virtually all eukaryotic and many bacterial systems thymidylate synthase ThyA, SHMT and dihydrofolate reductase (DHFR) are part of the thymidylate/folate cycle, the situation is different in organisms using flavin-dependent thymidylate synthase ThyX. Here the distinct catalytic reaction directly produces tetrahydrofolate (THF) and consequently in most ThyX-containing organisms, DHFR is absent. While the resulting influence on the folate metabolism of ThyX-containing bacteria is not fully understood, the presence of ThyX may provide growth benefits under conditions where the level of reduced folate derivatives is compromised. Interestingly, the third key enzyme implicated in generation of MTHF, serine hydroxymethyltransferase (SHMT), has a universal phylogenetic distribution, but remains understudied in ThyX-containg bacteria. To obtain functional insight into these ThyX-dependent thymidylate/folate cycles, we characterized the predicted SHMT from the ThyX-containing bacterium Helicobacter pylori. Serine hydroxymethyltransferase activity was confirmed by functional genetic complementation of a glyA-inactivated E. coli strain. A H. pylori ΔglyA strain was obtained, but exhibited markedly slowed growth and had lost the virulence factor CagA. Biochemical and spectroscopic evidence indicated formation of a characteristic enzyme-PLP-glycine-folate complex and revealed unexpectedly weak binding affinity of PLP. The three-dimensional structure of the H. pylori SHMT apoprotein was determined at 2.8Ǻ resolution, suggesting a structural basis for the low affinity of the enzyme for its cofactor. Stabilization of the proposed inactive configuration using small molecules has potential to provide a specific way for inhibiting HpSHMT.
Collapse
Affiliation(s)
- Andreea Sodolescu
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Cyril Dian
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette, France
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, CNRS, Université de Lyon, Lyon, France
| | - Latifa Bouzhir-Sima
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Roxane Lestini
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Hannu Myllykallio
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| | - Stéphane Skouloubris
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
- Department of Biology, Université Paris-Sud, Université Paris Saclay, Orsay, France
| | - Ursula Liebl
- Laboratory of Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Université Paris Saclay, Palaiseau, France
| |
Collapse
|
17
|
Metabolic models and gene essentiality data reveal essential and conserved metabolism in prokaryotes. PLoS Comput Biol 2018; 14:e1006556. [PMID: 30444863 PMCID: PMC6283598 DOI: 10.1371/journal.pcbi.1006556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 12/06/2018] [Accepted: 10/09/2018] [Indexed: 01/13/2023] Open
Abstract
Essential metabolic reactions are shaping constituents of metabolic networks, enabling viable and distinct phenotypes across diverse life forms. Here we analyse and compare modelling predictions of essential metabolic functions with experimental data and thereby identify core metabolic pathways in prokaryotes. Simulations of 15 manually curated genome-scale metabolic models were integrated with 36 large-scale gene essentiality datasets encompassing a wide variety of species of bacteria and archaea. Conservation of metabolic genes was estimated by analysing 79 representative genomes from all the branches of the prokaryotic tree of life. We find that essentiality patterns reflect phylogenetic relations both for modelling and experimental data, which correlate highly at the pathway level. Genes that are essential for several species tend to be highly conserved as opposed to non-essential genes which may be conserved or not. The tRNA-charging module is highlighted as ancestral and with high centrality in the networks, followed closely by cofactor metabolism, pointing to an early information processing system supplied by organic cofactors. The results, which point to model improvements and also indicate faults in the experimental data, should be relevant to the study of centrality in metabolic networks and ancient metabolism but also to metabolic engineering with prokaryotes. If we tried to list every known chemical reaction within an organism–human, plant or even bacteria–we would get quite a long and confusing read. But when this information is represented in so-called genome-scale metabolic networks, we have the means to access computationally each of those reactions and their interconnections. Some parts of the network have alternatives, while others are unique and therefore can be essential for growth. Here, we simulate growth and compare essential reactions and genes for the simplest type of unicellular species–prokaryotes–to understand which parts of their metabolism are universally essential and potentially ancestral. We show that similar patterns of essential reactions echo phylogenetic relationships (this makes sense, as the genome provides the building plan for the enzymes that perform those reactions). Our computational predictions correlate strongly with experimental essentiality data. Finally, we show that a crucial step of protein synthesis (tRNA charging) and the synthesis and transformation of small molecules that enzymes require (cofactors) are the most essential and conserved parts of metabolism in prokaryotes. Our results are a step further in understanding the biology and evolution of prokaryotes but can also be relevant in applied studies including metabolic engineering and antibiotic design.
Collapse
|
18
|
The Sole DEAD-Box RNA Helicase of the Gastric Pathogen Helicobacter pylori Is Essential for Colonization. mBio 2018; 9:mBio.02071-17. [PMID: 29588407 PMCID: PMC5874925 DOI: 10.1128/mbio.02071-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Present in every kingdom of life, generally in multiple copies, DEAD-box RNA helicases are specialized enzymes that unwind RNA secondary structures. They play major roles in mRNA decay, ribosome biogenesis, and adaptation to cold temperatures. Most bacteria have multiple DEAD-box helicases that present both specialized and partially redundant functions. By using phylogenomics, we revealed that the Helicobacter genus, including the major gastric pathogen H. pylori, is among the exceptions, as it encodes a sole DEAD-box RNA helicase. In H. pylori, this helicase, designated RhpA, forms a minimal RNA degradosome together with the essential RNase, RNase J, a major player in the control of RNA decay. Here, we used H. pylori as a model organism with a sole DEAD-box helicase and investigated the role of this helicase in H. pylori physiology, ribosome assembly, and during in vivo colonization. Our data showed that RhpA is dispensable for growth at 37°C but crucial at 33°C, suggesting an essential role of the helicase in cold adaptation. Moreover, we found that a ΔrhpA mutant was impaired in motility and deficient in colonization of the mouse model. RhpA is involved in the maturation of 16S rRNA at 37°C and is associated with translating ribosomes. At 33°C, RhpA is, in addition, recruited to individual ribosomal subunits. Finally, via its role in the RNA degradosome, RhpA directs the regulation of the expression of its partner, RNase J. RhpA is thus a multifunctional enzyme that, in H. pylori, plays a central role in gene regulation and in the control of virulence.IMPORTANCE We present the results of our study on the role of RhpA, the sole DEAD-box RNA helicase encoded by the major gastric pathogen Helicobacter pylori We observed that all the Helicobacter species possess such a sole helicase, in contrast to most free-living bacteria. RhpA is not essential for growth of H. pylori under normal conditions. However, deletion of rhpA leads to a motility defect and to total inhibition of the ability of H. pylori to colonize a mouse model. We also demonstrated that this helicase encompasses most of the functions of its specialized orthologs described so far. We found that RhpA is a key element of the bacterial adaptation to colder temperatures and plays a minor role in ribosome biogenesis. Finally, RhpA regulates transcription of the rnj gene encoding RNase J, its essential partner in the minimal H. pylori RNA degradosome, and thus plays a crucial role in the control of RNA decay.
Collapse
|
19
|
Molecular architecture of the PBP2-MreC core bacterial cell wall synthesis complex. Nat Commun 2017; 8:776. [PMID: 28974686 PMCID: PMC5626683 DOI: 10.1038/s41467-017-00783-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Bacterial cell wall biosynthesis is an essential process that requires the coordinated activity of peptidoglycan biosynthesis enzymes within multi-protein complexes involved in cell division (the “divisome”) and lateral wall growth (the “elongasome”). MreC is a structural protein that serves as a platform during wall elongation, scaffolding other essential peptidoglycan biosynthesis macromolecules, such as penicillin-binding proteins. Despite the importance of these multi-partite complexes, details of their architecture have remained elusive due to the transitory nature of their interactions. Here, we present the crystal structures of the soluble PBP2:MreC core elongasome complex from Helicobacter pylori, and of uncomplexed PBP2. PBP2 recognizes the two-winged MreC molecule upon opening of its N-terminal region, revealing a hydrophobic zipper that serves as binding platform. The PBP2:MreC interface is essential both for protein recognition in vitro and maintenance of bacterial shape and growth. This work allows visualization as to how peptidoglycan machinery proteins are scaffolded, revealing interaction regions that could be targeted by tailored inhibitors. Bacterial wall biosynthesis is a complex process that requires the coordination of multiple enzymes. Here, the authors structurally characterize the PBP2:MreC complex involved in peptidoglycan elongation and cross-linking, and demonstrate that its disruption leads to loss of H. pylori shape and inability to sustain growth.
Collapse
|
20
|
Arnion H, Korkut DN, Masachis Gelo S, Chabas S, Reignier J, Iost I, Darfeuille F. Mechanistic insights into type I toxin antitoxin systems in Helicobacter pylori: the importance of mRNA folding in controlling toxin expression. Nucleic Acids Res 2017; 45:4782-4795. [PMID: 28077560 PMCID: PMC5416894 DOI: 10.1093/nar/gkw1343] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022] Open
Abstract
Type I toxin-antitoxin (TA) systems have been identified in a wide range of bacterial genomes. Here, we report the characterization of a new type I TA system present on the chromosome of the major human gastric pathogen, Helicobacter pylori. We show that the aapA1 gene encodes a 30 amino acid peptide whose artificial expression in H. pylori induces cell death. The synthesis of this toxin is prevented by the transcription of an antitoxin RNA, named IsoA1, expressed on the opposite strand of the toxin gene. We further reveal additional layers of post-transcriptional regulation that control toxin expression: (i) transcription of the aapA1 gene generates a full-length transcript whose folding impedes translation (ii) a 3΄ end processing of this message generates a shorter transcript that, after a structural rearrangement, becomes translatable (iii) but this rearrangement also leads to the formation of two stem-loop structures allowing formation of an extended duplex with IsoA1 via kissing-loop interactions. This interaction ensures both the translation inhibition of the AapA1 active message and its rapid degradation by RNase III, thus preventing toxin synthesis under normal growth conditions. Finally, a search for homologous mRNA structures identifies similar TA systems in a large number of Helicobacter and Campylobacter genomes.
Collapse
Affiliation(s)
- Hélène Arnion
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Dursun Nizam Korkut
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Sara Masachis Gelo
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Sandrine Chabas
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Jérémy Reignier
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Isabelle Iost
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Fabien Darfeuille
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| |
Collapse
|
21
|
Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization. Microbiol Spectr 2017; 4. [PMID: 27227312 DOI: 10.1128/microbiolspec.vmbf-0007-2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Invading pathogens are exposed to a multitude of harmful conditions imposed by the host gastrointestinal tract and immune system. Bacterial defenses against these physical and chemical stresses are pivotal for successful host colonization and pathogenesis. Enteric pathogens, which are encountered due to the ingestion of or contact with contaminated foods or materials, are highly successful at surviving harsh conditions to colonize and cause the onset of host illness and disease. Pathogens such as Campylobacter, Helicobacter, Salmonella, Listeria, and virulent strains of Escherichia have evolved elaborate defense mechanisms to adapt to the diverse range of stresses present along the gastrointestinal tract. Furthermore, these pathogens contain a multitude of defenses to help survive and escape from immune cells such as neutrophils and macrophages. This chapter focuses on characterized bacterial defenses against pH, osmotic, oxidative, and nitrosative stresses with emphasis on both the direct and indirect mechanisms that contribute to the survival of each respective stress response.
Collapse
|
22
|
Bischler T, Hsieh PK, Resch M, Liu Q, Tan HS, Foley PL, Hartleib A, Sharma CM, Belasco JG. Identification of the RNA Pyrophosphohydrolase RppH of Helicobacter pylori and Global Analysis of Its RNA Targets. J Biol Chem 2016; 292:1934-1950. [PMID: 27974459 DOI: 10.1074/jbc.m116.761171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
RNA degradation is crucial for regulating gene expression in all organisms. Like the decapping of eukaryotic mRNAs, the conversion of the 5'-terminal triphosphate of bacterial transcripts to a monophosphate can trigger RNA decay by exposing the transcript to attack by 5'-monophosphate-dependent ribonucleases. In both biological realms, this deprotection step is catalyzed by members of the Nudix hydrolase family. The genome of the gastric pathogen Helicobacter pylori, a Gram-negative epsilonproteobacterium, encodes two proteins resembling Nudix enzymes. Here we present evidence that one of them, HP1228 (renamed HpRppH), is an RNA pyrophosphohydrolase that triggers RNA degradation in H. pylori, whereas the other, HP0507, lacks such activity. In vitro, HpRppH converts RNA 5'-triphosphates and diphosphates to monophosphates. It requires at least two unpaired nucleotides at the 5' end of its substrates and prefers three or more but has only modest sequence preferences. The influence of HpRppH on RNA degradation in vivo was examined by using RNA-seq to search the H. pylori transcriptome for RNAs whose 5'-phosphorylation state and cellular concentration are governed by this enzyme. Analysis of cDNA libraries specific for transcripts bearing a 5'-triphosphate and/or monophosphate revealed at least 63 potential HpRppH targets. These included mRNAs and sRNAs, several of which were validated individually by half-life measurements and quantification of their 5'-terminal phosphorylation state in wild-type and mutant cells. These findings demonstrate an important role for RppH in post-transcriptional gene regulation in pathogenic Epsilonproteobacteria and suggest a possible basis for the phenotypes of H. pylori mutants lacking this enzyme.
Collapse
Affiliation(s)
- Thorsten Bischler
- From the Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany; the Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany and
| | - Ping-Kun Hsieh
- the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Marcus Resch
- From the Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany; the Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany and
| | - Quansheng Liu
- the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Hock Siew Tan
- the Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany and
| | - Patricia L Foley
- the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Anika Hartleib
- From the Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany; the Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany and
| | - Cynthia M Sharma
- From the Research Center for Infectious Diseases, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany; the Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/D15, 97080 Würzburg, Germany and.
| | - Joel G Belasco
- the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016.
| |
Collapse
|
23
|
Fischer F, Robbe-Saule M, Turlin E, Mancuso F, Michel V, Richaud P, Veyrier FJ, De Reuse H, Vinella D. Characterization in Helicobacter pylori of a Nickel Transporter Essential for Colonization That Was Acquired during Evolution by Gastric Helicobacter Species. PLoS Pathog 2016; 12:e1006018. [PMID: 27923069 PMCID: PMC5140060 DOI: 10.1371/journal.ppat.1006018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/21/2016] [Indexed: 12/23/2022] Open
Abstract
Metal acquisition is crucial for all cells and for the virulence of many bacterial pathogens. In particular, nickel is a virulence determinant for the human gastric pathogen Helicobacter pylori as it is the cofactor of two enzymes essential for in vivo colonization, urease and a [NiFe] hydrogenase. To import nickel despite its scarcity in the human body, H. pylori requires efficient uptake mechanisms that are only partially defined. Indeed, alternative ways of nickel entry were predicted to exist in addition to the well-described NixA permease. Using a genetic screen, we identified an ABC transporter, that we designated NiuBDE, as a novel H. pylori nickel transport system. Unmarked mutants carrying deletions of nixA, niuD and/or niuB, were constructed and used to measure (i) tolerance to toxic nickel exposure, (ii) intracellular nickel content by ICP-OES, (iii) transport of radioactive nickel and (iv) expression of a reporter gene controlled by nickel concentration. We demonstrated that NiuBDE and NixA function separately and are the sole nickel transporters in H. pylori. NiuBDE, but not NixA, also transports cobalt and bismuth, a metal currently used in H. pylori eradication therapy. Both NiuBDE and NixA participate in nickel-dependent urease activation at pH 5 and survival under acidic conditions mimicking those encountered in the stomach. However, only NiuBDE is able to carry out this activity at neutral pH and is essential for colonization of the mouse stomach. Phylogenomic analyses indicated that both nixA and niuBDE genes have been acquired via horizontal gene transfer by the last common ancestor of the gastric Helicobacter species. Our work highlights the importance of this evolutionary event for the emergence of Helicobacter gastric species that are adapted to the hostile environment of the stomach where the capacity of Helicobacter to import nickel and thereby activate urease needs to be optimized.
Collapse
Affiliation(s)
- Frédéric Fischer
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| | - Marie Robbe-Saule
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| | - Evelyne Turlin
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| | - Francesco Mancuso
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| | - Valérie Michel
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| | - Pierre Richaud
- CEA, DRF, BIAM SBVME and CNRS, UMR 7265, Saint-Paul-lez-Durance, Aix Marseille Université, Marseille, FRANCE
| | - Frédéric J. Veyrier
- INRS-Institut Armand-Frappier, Bacterial Symbionts Evolution, Laval, Quebec, CANADA
| | - Hilde De Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
- * E-mail:
| | - Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, FRANCE
| |
Collapse
|
24
|
Redko Y, Galtier E, Arnion H, Darfeuille F, Sismeiro O, Coppée JY, Médigue C, Weiman M, Cruveiller S, De Reuse H. RNase J depletion leads to massive changes in mRNA abundance in Helicobacter pylori. RNA Biol 2016; 13:243-53. [PMID: 26726773 DOI: 10.1080/15476286.2015.1132141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Degradation of RNA as an intermediate message between genes and corresponding proteins is important for rapid attenuation of gene expression and maintenance of cellular homeostasis. This process is controlled by ribonucleases that have different target specificities. In the bacterial pathogen Helicobacter pylori, an exo- and endoribonuclease RNase J is essential for growth. To explore the role of RNase J in H. pylori, we identified its putative targets at a global scale using next generation RNA sequencing. We found that strong depletion for RNase J led to a massive increase in the steady-state levels of non-rRNAs. mRNAs and RNAs antisense to open reading frames were most affected with over 80% increased more than 2-fold. Non-coding RNAs expressed in the intergenic regions were much less affected by RNase J depletion. Northern blotting of selected messenger and non-coding RNAs validated these results. Globally, our data suggest that RNase J of H. pylori is a major RNase involved in degradation of most cellular RNAs.
Collapse
Affiliation(s)
- Yulia Redko
- a Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter , ERL CNRS 3526
| | - Eloïse Galtier
- a Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter , ERL CNRS 3526
| | - Hélène Arnion
- b INSERM U869, University of Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux , France
| | - Fabien Darfeuille
- b INSERM U869, University of Bordeaux , 146 rue Léo Saignat, 33076 Bordeaux , France
| | - Odile Sismeiro
- c Institut Pasteur, Plate-Forme 2 - Transcriptome et Epigénome
| | | | - Claudine Médigue
- d CNRS-UMR 8030 and Commissariat à l'Energie Atomique et aux Energies Alternatives CEA/DSV/IG/Genoscope LABGeM , Evry , France
| | - Marion Weiman
- d CNRS-UMR 8030 and Commissariat à l'Energie Atomique et aux Energies Alternatives CEA/DSV/IG/Genoscope LABGeM , Evry , France
| | - Stéphane Cruveiller
- d CNRS-UMR 8030 and Commissariat à l'Energie Atomique et aux Energies Alternatives CEA/DSV/IG/Genoscope LABGeM , Evry , France
| | - Hilde De Reuse
- a Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter , ERL CNRS 3526
| |
Collapse
|
25
|
Chaput C, Ecobichon C, Pouradier N, Rousselle JC, Namane A, Boneca IG. Role of the N-Acetylmuramoyl-l-Alanyl Amidase, AmiA, of Helicobacter pylori in Peptidoglycan Metabolism, Daughter Cell Separation, and Virulence. Microb Drug Resist 2016; 22:477-86. [PMID: 27447281 PMCID: PMC5036311 DOI: 10.1089/mdr.2016.0070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human gastric pathogen, Helicobacter pylori, is becoming increasingly resistant to most available antibiotics. Peptidoglycan (PG) metabolism is essential to eubacteria, hence, an excellent target for the development of new therapeutic strategies. However, our knowledge on PG metabolism in H. pylori remains poor. We have further characterized an isogenic mutant of the amiA gene encoding a N-acetylmuramoyl-l-alanyl amidase. The amiA mutant displayed long chains of unseparated cells, an impaired motility despite the presence of intact flagella and a tolerance to amoxicillin. Interestingly, the amiA mutant was impaired in colonizing the mouse stomach suggesting that AmiA is a valid target in H. pylori for the development of new antibiotics. Using reverse phase high-pressure liquid chromatography, we analyzed the PG muropeptide composition and glycan chain length distribution of strain 26695 and its amiA mutant. The analysis showed that H. pylori lacked muropeptides with a degree of cross-linking higher than dimeric muropeptides. The amiA mutant was also characterized by a decrease of muropeptides carrying 1,6-anhydro-N-acetylmuramic acid residues, which represent the ends of the glycan chains. This correlated with an increase of very long glycan strands in the amiA mutant. It is suggested that these longer glycan strands are trademarks of the division site. Taken together, we show that the low redundancy on genes involved in PG maturation supports H. pylori as an actractive alternative model to study PG metabolism and cell shape regulation.
Collapse
Affiliation(s)
- Catherine Chaput
- 1 Institut Pasteur, Unite de Pathogénie Bactérienne des Muqueuses , Paris, France
| | - Chantal Ecobichon
- 1 Institut Pasteur, Unite de Pathogénie Bactérienne des Muqueuses , Paris, France .,2 Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne , Paris, France .,3 INSERM , Equipe Avenir, Paris, France
| | - Nadine Pouradier
- 1 Institut Pasteur, Unite de Pathogénie Bactérienne des Muqueuses , Paris, France
| | | | | | - Ivo G Boneca
- 1 Institut Pasteur, Unite de Pathogénie Bactérienne des Muqueuses , Paris, France .,2 Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne , Paris, France .,3 INSERM , Equipe Avenir, Paris, France
| |
Collapse
|
26
|
Krüger NJ, Knüver MT, Zawilak-Pawlik A, Appel B, Stingl K. Genetic Diversity as Consequence of a Microaerobic and Neutrophilic Lifestyle. PLoS Pathog 2016; 12:e1005626. [PMID: 27166672 PMCID: PMC4864210 DOI: 10.1371/journal.ppat.1005626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/21/2016] [Indexed: 01/10/2023] Open
Abstract
As a neutrophilic bacterium, Helicobacter pylori is growth deficient under extreme acidic conditions. The gastric pathogen is equipped with an acid survival kit, regulating urease activity by a pH-gated urea channel, opening below pH 6.5. After overcoming acid stress, the bacterium’s multiplication site is situated at the gastric mucosa with near neutral pH. The pathogen exhibits exceptional genetic variability, mainly due to its capability of natural transformation, termed competence. Using single cell analysis, we show here that competence is highly regulated in H. pylori. DNA uptake complex activity was reversibly shut down below pH 6.5. pH values above 6.5 opened a competence window, in which competence development was triggered by the combination of pH increase and oxidative stress. In contrast, addition of sublethal concentrations of the DNA-damaging agents ciprofloxacin or mitomycin C did not trigger competence development under our conditions. An oxygen-sensitive mutant lacking superoxide dismutase (sodB) displayed a higher competent fraction of cells than the wild type under comparable conditions. In addition, the sodB mutant was dependent on adenine for growth in broth and turned into non-cultivable coccoid forms in its absence, indicating that adenine had radical quenching capacity. Quantification of periplasmically located DNA in competent wild type cells revealed outstanding median imported DNA amounts of around 350 kb per cell within 10 min of import, with maximally a chromosomal equivalent (1.6 Mb) in individual cells, far exceeding previous amounts detected in other Gram-negative bacteria. We conclude that the pathogen’s high genetic diversity is a consequence of its enormous DNA uptake capacity, triggered by intrinsic and extrinsic oxidative stress once a neutral pH at the site of chronic host colonization allows competence development. Natural transformation, i.e. the capacity to take up DNA from the environment, is one of the crucial means for horizontal gene transfer and genetic diversity in bacteria. The human gastric pathogen Helicobacter pylori is confronted with acid stress before entering its multiplication site, the gastric mucosa. The bacterium causes lifelong chronic gastritis and is perfectly adapted to the human host, crucially by displaying unusual genetic diversity. Using a single cell approach and well-controlled conditions, we show here that the amount of imported DNA in competent H. pylori is outstanding, far exceeding previous measurement with other Gram-negative bacteria. Furthermore, DNA uptake activity was tightly regulated and limited to pH above 6.5, conditions thought to be met in close contact with the gastric mucosa. In addition, we show that within this pH competence window, competence development was triggered by an increase in pH in combination with the level of oxidative stress. Our data provide explanations for the extraordinary high genetic diversity, often referred to as genome plasticity of this unusual microaerobic pathogen.
Collapse
Affiliation(s)
- Nora-Johanna Krüger
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Marie-Theres Knüver
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Wroclaw, Poland
| | - Bernd Appel
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Kerstin Stingl
- Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
- * E-mail:
| |
Collapse
|
27
|
Skouloubris S, Djaout K, Lamarre I, Lambry JC, Anger K, Briffotaux J, Liebl U, de Reuse H, Myllykallio H. Targeting of Helicobacter pylori thymidylate synthase ThyX by non-mitotoxic hydroxy-naphthoquinones. Open Biol 2016; 5:150015. [PMID: 26040760 PMCID: PMC4632503 DOI: 10.1098/rsob.150015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ThyX is an essential thymidylate synthase that is mechanistically and structurally unrelated to the functionally analogous human enzyme, thus providing means for selective inhibition of bacterial growth. To identify novel compounds with anti-bacterial activity against the human pathogenic bacterium Helicobacter pylori, based on our earlier biochemical and structural analyses, we designed a series of eighteen 2-hydroxy-1,4-naphthoquinones (2-OH-1,4-NQs) that target HpThyX. Our lead-like molecules markedly inhibited the NADPH oxidation and 2′-deoxythymidine-5′-monophosphate-forming activities of HpThyX enzyme in vitro, with inhibitory constants in the low nanomolar range. The identification of non-cytotoxic and non-mitotoxic 2-OH-1,4-NQ inhibitors permitted testing their in vivo efficacy in a mouse model for H. pylori infections. Despite the widely assumed toxicity of naphthoquinones (NQs), we identified tight-binding ThyX inhibitors that were tolerated in mice and can be associated with a modest effect in reducing the number of colonizing bacteria. Our results thus provide proof-of-concept that targeting ThyX enzymes is a highly feasible strategy for the development of therapies against H. pylori and a high number of other ThyX-dependent pathogenic bacteria. We also demonstrate that chemical reactivity of NQs does not prevent their exploitation as anti-microbial compounds, particularly when mitotoxicity screening is used to prioritize these compounds for further experimentation.
Collapse
Affiliation(s)
- Stéphane Skouloubris
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France Department of Biology, Université Paris-Sud, Orsay 91405, France
| | - Kamel Djaout
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Isabelle Lamarre
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Karine Anger
- Department of Microbiology, Institut Pasteur, Unité Pathogenèse de Helicobacter, 28 rue du Dr. Roux, Paris 75724, France
| | - Julien Briffotaux
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Ursula Liebl
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| | - Hilde de Reuse
- Department of Microbiology, Institut Pasteur, Unité Pathogenèse de Helicobacter, 28 rue du Dr. Roux, Paris 75724, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, CNRS UMR7645, INSERM U1182, Ecole Polytechnique, Palaiseau 91128, France
| |
Collapse
|
28
|
Vinella D, Fischer F, Vorontsov E, Gallaud J, Malosse C, Michel V, Cavazza C, Robbe-Saule M, Richaud P, Chamot-Rooke J, Brochier-Armanet C, De Reuse H. Evolution of Helicobacter: Acquisition by Gastric Species of Two Histidine-Rich Proteins Essential for Colonization. PLoS Pathog 2015; 11:e1005312. [PMID: 26641249 PMCID: PMC4671568 DOI: 10.1371/journal.ppat.1005312] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Virulence of the human gastric pathogen Helicobacter pylori is dependent on nickel, cofactor of two enzymes essential for in vivo colonization, urease and [NiFe] hydrogenase. We found that two small paralogous nickel-binding proteins with high content in Histidine (Hpn and Hpn-2) play a central role in maintaining non-toxic intracellular nickel content and in controlling its intracellular trafficking. Measurements of metal resistance, intracellular nickel contents, urease activities and interactomic analysis were performed. We observed that Hpn acts as a nickel-sequestration protein, while Hpn-2 is not. In vivo, Hpn and Hpn-2 form homo-multimers, interact with each other, Hpn interacts with the UreA urease subunit while Hpn and Hpn-2 interact with the HypAB hydrogenase maturation proteins. In addition, Hpn-2 is directly or indirectly restricting urease activity while Hpn is required for full urease activation. Based on these data, we present a model where Hpn and Hpn-2 participate in a common pathway of controlled nickel transfer to urease. Using bioinformatics and top-down proteomics to identify the predicted proteins, we established that Hpn-2 is only expressed by H. pylori and its closely related species Helicobacter acinonychis. Hpn was detected in every gastric Helicobacter species tested and is absent from the enterohepatic Helicobacter species. Our phylogenomic analysis revealed that Hpn acquisition was concomitant with the specialization of Helicobacter to colonization of the gastric environment and the duplication at the origin of hpn-2 occurred in the common ancestor of H. pylori and H. acinonychis. Finally, Hpn and Hpn-2 were found to be required for colonization of the mouse model by H. pylori. Our data show that during evolution of the Helicobacter genus, acquisition of Hpn and Hpn-2 by gastric Helicobacter species constituted a decisive evolutionary event to allow Helicobacter to colonize the hostile gastric environment, in which no other bacteria persistently thrives. This acquisition was key for the emergence of one of the most successful bacterial pathogens, H. pylori. Helicobacter pylori is a bacterium that persistently colonizes the stomach of half of the human population. Infection by H. pylori is associated with gastritis, peptic ulcer disease and adenocarcinoma. To resist gastric acidity and proliferate in the stomach, H. pylori relies on urease, an enzyme that contains a nickel-metallocenter at its active site. Thus, nickel is a virulence determinant for H. pylori. Our aim is to characterize how H. pylori controls the intracellular nickel concentration to avoid toxicity, which protein partners are involved, and how they impact urease activity and virulence. We characterized two H. pylori proteins, Hpn and Hpn-2 that are rich in Histidine residues. We demonstrated that Hpn is involved in nickel sequestration, that the two proteins interact with each other and that their combined activities participate in a nickel transfer pathway to urease. Hpn is only expressed in gastric Helicobacter species able to colonize the stomach and Hpn-2 is restricted to the H. pylori and its close relative H. acinonychis. We found that both proteins are essential for colonization of a mouse model by H. pylori. We conclude that during evolution, the acquisition of Hpn and Hpn-2 by gastric Helicobacter species was decisive for their capacity to colonize the stomach.
Collapse
Affiliation(s)
- Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Frédéric Fischer
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Egor Vorontsov
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Julien Gallaud
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Christian Malosse
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Valérie Michel
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | | | - Marie Robbe-Saule
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Pierre Richaud
- CEA, DSV, IBEB, SBVME and CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France and Aix Marseille Université, BVME UMR7265, Marseille, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Hilde De Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Cáceres-Delpiano J, Teneb J, Mansilla R, García A, Salas-Burgos A. Variations in periplasmic loop interactions determine the pH-dependent activity of the hexameric urea transporter UreI from Helicobacter pylori: a molecular dynamics study. BMC STRUCTURAL BIOLOGY 2015; 15:11. [PMID: 26112768 PMCID: PMC4482100 DOI: 10.1186/s12900-015-0038-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 06/15/2015] [Indexed: 11/17/2022]
Abstract
Background Helicobacter pylori is an important factor in the development of diseases such as ulcer and gastric cancer. This bacterium uses a periplasmic transporter, UreI, to deliver urea to the intracelullar space, where later it is transformed into ammonia by the cytoplasmic enzyme urease to survive the acidic condition of the human stomach. The UreI transporter presents a pH-dependent activity, where this pH-dependence remains unknown at a structural level. Althought the existance of several protonable residues in the periplasmic loops are related to the pH-dependent activity, we find interesting to have a clear view of the conformational changes involved in this phenomena through a molecular dynamic study. Results Molecular dynamic simulations of the UreI transporter at three different pH conditions were performed, revealing two main pH-dependent conformations, which we present as the open and close states. We find that salt bridges between the periplasmic loops are crucial interactions that stabilize these conformations. Besides, a cooperative behaviour exists between the six subunits of the system that is necessary to fulfill the activity of this transporter. Conclusions We found different pH-dependent conformations of the urea transporter UreI from Helicobacter pylori, which are related to salt-bridge interactions in the periplasmic regions. The behaviour of every channel in the system is not independent, given the existance of a cooperative behaviour through the formation of salt-bridges between the subunits of the hexameric system. We believe that our results will be related to the generation of new eradication therapies using this transporter as an attractive target, denoting that the knowledge of the possible pH-dependent conformations adopted for this transporter are important for the development of rational drug design approximations. Electronic supplementary material The online version of this article (doi:10.1186/s12900-015-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Cáceres-Delpiano
- Department of Pharmacology, School of Sciences, University of Concepción, Concepción, Chile.
| | - Jaime Teneb
- Department of Pharmacology, School of Sciences, University of Concepción, Concepción, Chile.
| | - Rodrigo Mansilla
- Department of Pharmacology, School of Sciences, University of Concepción, Concepción, Chile.
| | - Apolinaria García
- Department of Microbiology, School of Sciences, University of Concepción, Concepción, Chile.
| | - Alexis Salas-Burgos
- Department of Pharmacology, School of Sciences, University of Concepción, Concepción, Chile.
| |
Collapse
|
30
|
Wu H, Iwai N, Nakano T, Ooi Y, Ishihara S, Sano K. Route of intrabacterial nanotransportation system for CagA in Helicobacter pylori. Med Mol Morphol 2015; 48:191-203. [PMID: 25707504 DOI: 10.1007/s00795-015-0097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) possesses an intrabacterial nanotransportation system (ibNoTS) for transporting CagA and urease within the bacterial cytoplasm; this system is controlled by the extrabacterial environment. The transportation routes of the system have not yet been studied in detail. In this study, we demonstrated by immunoelectron microscopy that CagA localizes closely with the MreB filament in the bacterium, and MreB polymerization inhibitor A22 obstructs ibNoTS for CagA. These findings indicate that the route of ibNoTS for CagA is closely associated with the MreB filament. Because these phenomena were not observed in ibNoTS for urease, the route of ibNoTS for CagA is different from that of ibNoTS for urease as previously suggested. We propose that the route of ibNoTS for CagA is associated with the MreB filament in H. pylori.
Collapse
Affiliation(s)
- Hong Wu
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan. .,Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Noritaka Iwai
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takashi Nakano
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Yukimasa Ooi
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Infection Control Office, Osaka Medical College Hospital, Osaka, Japan
| | - Sonoko Ishihara
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Kouichi Sano
- Project Team for Study of Nanotransportation System, Central Research Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.,Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
31
|
Affiliation(s)
- Diego Mora
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stefania Arioli
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Mechanisms of molecular transport through the urea channel of Helicobacter pylori. Nat Commun 2014; 4:2900. [PMID: 24305683 PMCID: PMC3863980 DOI: 10.1038/ncomms3900] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/08/2013] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori survival in acidic environments relies on cytoplasmic hydrolysis of gastric urea into ammonia and carbon dioxide, which buffer the pathogen’s periplasm. Urea uptake is greatly enhanced and regulated by HpUreI, a proton-gated inner membrane channel protein essential for gastric survival of H. pylori. The crystal structure of HpUreI describes a static snapshot of the channel with two constriction sites near the center of the bilayer that are too narrow to allow passage of urea or even water. Here we describe the urea transport mechanism at atomic resolution, revealed by unrestrained microsecond equilibrium molecular dynamics simulations of the hexameric channel assembly. Two consecutive constrictions open to allow conduction of urea, which is guided through the channel by interplay between conserved residues that determine proton rejection and solute selectivity. Remarkably, HpUreI conducts water at rates equivalent to aquaporins, which might be essential for efficient transport of urea at small concentration gradients. Helicobacter pylori survives in the acidic environment of the stomach by taking up urea and converting it to ammonia and carbon dioxide, which buffer the bacterial periplasm. Using molecular dynamics simulations, McNulty et al. provide insight into the mechanism of urea uptake through the H. pylori urea transporter.
Collapse
|
33
|
Abstract
The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4 (+). This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) the exit of protonated ammonium outward via the UreI permease, which was shown to facilitate diffusion of both urea and ammonium, and/or (ii) the assimilation of this ammonium, which is supported by evidence that H. pylori assimilates urea nitrogen into its amino acid pools. We investigated the second hypothesis by constructing strains with altered expression of the ammonium-assimilating enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) and the ammonium-evolving periplasmic enzymes glutaminase (Ggt) and asparaginase (AsnB). H. pylori strains expressing elevated levels of either GS or GDH are more acid tolerant than the wild type, exhibit enhanced ammonium production, and are able to alkalize the medium faster than the wild type. Strains lacking the genes for either Ggt or AsnB are acid sensitive, have 8-fold-lower urea-dependent ammonium production, and are more acid sensitive than the parent. Additionally, we found that purified H. pylori GS produces glutamine in the presence of Mg(2+) at a rate similar to that of unadenylated Escherichia coli GS. These data reveal that all four enzymes contribute to whole-cell acid resistance in H. pylori and are likely important for assimilation and/or efflux of urea-derived ammonium.
Collapse
|
34
|
Affiliation(s)
- Julian C Rutherford
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
35
|
Yang I, Nell S, Suerbaum S. Survival in hostile territory: the microbiota of the stomach. FEMS Microbiol Rev 2013; 37:736-61. [DOI: 10.1111/1574-6976.12027] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/28/2013] [Accepted: 06/07/2013] [Indexed: 02/06/2023] Open
|
36
|
Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature 2012; 493:255-8. [PMID: 23222544 PMCID: PMC3974264 DOI: 10.1038/nature11684] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/18/2012] [Indexed: 12/14/2022]
Abstract
Half the world's population is chronically infected with Helicobacter pylori1, causing gastritis, ulcers and increased incidence of gastric adenocarcinoma2. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach3. The channel is closed at neutral pH and opens at acidic pH to allow rapid urea access to cytoplasmic urease4. Urease produces NH3 and CO2 that neutralize entering protons and thus buffer the periplasm to pH ∼6.1 even in gastric juice at pH <2.0. Here we report the structure of HpUreI, revealing six protomers assembled in a hexameric ring surrounding a central bilayer plug of ordered lipids. Each protomer encloses a channel formed by a twisted bundle of six transmembrane helices. The bundle defines a novel fold comprising a two-helix hairpin motif repeated three times around the central axis of the channel, without the inverted repeat of mammalian urea transporters. Both the channel and the protomer interface contain residues conserved in the AmiS/UreI superfamily, suggesting preservation of channel architecture and oligomeric state in this superfamily. Predominantly aromatic or aliphatic side chains line the entire channel and define two consecutive constriction sites in the middle of the channel. Mutation of Trp153 in the cytoplasmic constriction site to Ala or Phe reduces the selectivity for urea compared to thiourea, suggesting that solute interaction with Trp153 contributes specificity. The novel hexameric channel structure described here provides a new paradigm for permeation of urea and other small amide solutes in prokaryotes and archaea.
Collapse
|
37
|
Redko Y, Aubert S, Stachowicz A, Lenormand P, Namane A, Darfeuille F, Thibonnier M, De Reuse H. A minimal bacterial RNase J-based degradosome is associated with translating ribosomes. Nucleic Acids Res 2012; 41:288-301. [PMID: 23093592 PMCID: PMC3592473 DOI: 10.1093/nar/gks945] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Protein complexes directing messenger RNA (mRNA) degradation are present in all kingdoms of life. In Escherichia coli, mRNA degradation is performed by an RNA degradosome organized by the major ribonuclease RNase E. In bacteria lacking RNase E, the existence of a functional RNA degradosome is still an open question. Here, we report that in the bacterial pathogen Helicobacter pylori, RNA degradation is directed by a minimal RNA degradosome consisting of Hp-RNase J and the only DExD-box RNA helicase of H. pylori, RhpA. We show that the protein complex promotes faster degradation of double-stranded RNA in vitro in comparison with Hp-RNase J alone. The ATPase activity of RhpA is stimulated in the presence of Hp-RNase J, demonstrating that the catalytic capacity of both partners is enhanced upon interaction. Remarkably, both proteins are associated with translating ribosomes and not with individual 30S and 50S subunits. Moreover, Hp-RNase J is not recruited to ribosomes to perform rRNA maturation. Together, our findings imply that in H. pylori, the mRNA-degrading machinery is associated with the translation apparatus, a situation till now thought to be restricted to eukaryotes and archaea.
Collapse
Affiliation(s)
- Yulia Redko
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Roure S, Bonis M, Chaput C, Ecobichon C, Mattox A, Barrière C, Geldmacher N, Guadagnini S, Schmitt C, Prévost MC, Labigne A, Backert S, Ferrero RL, Boneca IG. Peptidoglycan maturation enzymes affect flagellar functionality in bacteria. Mol Microbiol 2012; 86:845-56. [PMID: 22994973 DOI: 10.1111/mmi.12019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/24/2022]
Abstract
The flagellar machinery is a highly complex organelle composed of a free rotating flagellum and a fixed stator that converts energy into movement. The assembly of the flagella and the stator requires interactions with the peptidoglycan layer through which the organelle has to pass for externalization. Lytic transglycosylases are peptidoglycan degrading enzymes that cleave the sugar backbone of peptidoglycan layer. We show that an endogenous lytic transglycosylase is required for full motility of Helicobacter pylori and colonization of the gastric mucosa. Deficiency of motility resulted from a paralysed phenotype implying an altered ability to generate flagellar rotation. Similarly, another Gram-negative pathogen Salmonella typhimurium and the Gram-positive pathogen Listeria monocytogenes required the activity of lytic transglycosylases, Slt or MltC, and a glucosaminidase (Auto), respectively, for full motility. Furthermore, we show that in absence of the appropriate lytic transglycosylase, the flagellar motor protein MotB from H. pylori does not localize properly to the bacterial pole. We present a new model involving the maturation of the surrounding peptidoglycan for the proper anchoring and functionality of the flagellar motor.
Collapse
Affiliation(s)
- Sophie Roure
- Institut Pasteur, Group Biology and Genetics of the Bacterial Cell Wall, Paris, F-75015, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Role of the Helicobacter pylori sensor kinase ArsS in protein trafficking and acid acclimation. J Bacteriol 2012; 194:5545-51. [PMID: 22865848 DOI: 10.1128/jb.01263-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori survives and grows at low pHs via acid acclimation mechanisms that enable periplasmic pH homeostasis. Important components include a cytoplasmic urease; a pH-gated urea channel, UreI; and periplasmic α-carbonic anhydrase. To allow the rapid adjustment of periplasmic pH, acid acclimation components are recruited to the inner membrane in acid. The ArsRS two-component system, in an acid-responsive manner, controls the transcription of the urease gene cluster and α-carbonic anhydrase. The aim of this study is to determine the role of ArsS in protein trafficking as a component of acid acclimation. H. pylori wild-type and ΔarsS bacteria were incubated at acidic and neutral pHs. Intact bacteria, purified membranes, and total protein were analyzed by Western blotting and urease activity measurements. The total urease activity level was decreased in the ΔarsS strain, but the acid activation of UreI was unaffected. A 30-min acid exposure increased the level and activity of urease proteins at the membrane in the wild type but not in the ΔarsS strain. The urease levels and activity of the ΔarsS strain after a 90-min acid exposure were similar to those of the wild type. ArsS, in addition to its role in urease gene transcription, is also involved in the recruitment of urease proteins to the inner membrane to augment acid acclimation during acute acid exposure. Urease membrane recruitment following prolonged acid exposure in the absence of ArsS was similar to that of the wild type, suggesting a compensatory mechanism, possibly regulated by FlgS, underscoring the importance of urease membrane recruitment and activation in periplasmic pH homeostasis.
Collapse
|
40
|
Abstract
Helicobacter pylori infects half of the world's population and plays a causal role in ulcer disease and gastric cancer. This pathogenic neutralophile uniquely colonizes the acidic gastric milieu through the process of acid acclimation. Acid acclimation is the ability of the organism to maintain periplasmic pH near neutrality in an acidic environment to prevent a fall in cytoplasmic pH in order to maintain viability and growth in acid. Recently, due to an increase in antibiotic resistance, the rate of H. pylori eradication has fallen below 80% generating renewed interest in novel eradication regimens and targets. In this article, we review the gastric biology of H. pylori and acid acclimation, various detection procedures, antibiotic resistance and the role that gastric acidity plays in the susceptibility of the organism to antibiotics currently in use and propose several novel drug targets that would promote eradication in the absence of antibiotics.
Collapse
|
41
|
Biochemical and cellular characterization of Helicobacter pylori RecA, a protein with high-level constitutive expression. J Bacteriol 2011; 193:6490-7. [PMID: 21949074 DOI: 10.1128/jb.05646-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is a bacterial pathogen colonizing half of the world's human population. It has been implicated in a number of gastric diseases, from asymptomatic gastritis to cancer. It is characterized by an amazing genetic variability that results from high mutation rates and efficient DNA homologous recombination and transformation systems. Here, we report the characterization of H. pylori RecA (HpRecA), a protein shown to be involved in DNA repair, transformation, and mouse colonization. The biochemical characterization of the purified recombinase reveals activities similar to those of Escherichia coli RecA (EcRecA). We show that in H. pylori, HpRecA is present in about 80,000 copies per cell during exponential growth and decreases to about 50,000 copies in stationary phase. The amount of HpRecA remains unchanged after induction of DNA lesions, suggesting that HpRecA is always expressed at a high level in order to repair DNA damage or facilitate recombination. We performed HpRecA localization analysis by adding a Flag tag to the protein, revealing two different patterns of localization. During exponential growth, RecA-Flag presents a diffuse pattern, overlapping with the DAPI (4',6-diamidino-2-phenylindole) staining of DNA, whereas during stationary phase, the protein is present in more defined areas devoid of DAPI staining. These localizations are not affected by inactivation of competence or DNA recombination genes. Neither UV irradiation nor gamma irradiation modified HpRecA localization, suggesting the existence of a constitutive DNA damage adaptation system.
Collapse
|
42
|
El Ghachi M, Matteï PJ, Ecobichon C, Martins A, Hoos S, Schmitt C, Colland F, Ebel C, Prévost MC, Gabel F, England P, Dessen A, Boneca IG. Characterization of the elongasome core PBP2 : MreC complex of Helicobacter pylori. Mol Microbiol 2011; 82:68-86. [PMID: 21801243 DOI: 10.1111/j.1365-2958.2011.07791.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The definition of bacterial cell shape is a complex process requiring the participation of multiple components of an intricate macromolecular machinery. We aimed at characterizing the determinants involved in cell shape of the helical bacterium Helicobacter pylori. Using a yeast two-hybrid screen with the key cell elongation protein PBP2 as bait, we identified an interaction between PBP2 and MreC. The minimal region of MreC required for this interaction ranges from amino acids 116 to 226. Using recombinant proteins, we showed by affinity and size exclusion chromatographies and surface plasmon resonance that PBP2 and MreC form a stable complex. In vivo, the two proteins display a similar spatial localization and their complex has an apparent 1:1 stoichiometry; these results were confirmed in vitro by analytical ultracentrifugation and chemical cross-linking. Small angle X-ray scattering analyses of the PBP2 : MreC complex suggest that MreC interacts directly with the C-terminal region of PBP2. Depletion of either PBP2 or MreC leads to transition into spherical cells that lose viability. Finally, the specific expression in trans of the minimal interacting domain of MreC with PBP2 in the periplasmic space leads to cell rounding, suggesting that the PBP2/MreC complex formation in vivo is essential for cell morphology.
Collapse
Affiliation(s)
- Meriem El Ghachi
- Institut Pasteur, Group Biology and Genetics of the Bacterial Cell Wall, F-75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gray LR, Gu SX, Quick M, Khademi S. Transport kinetics and selectivity of HpUreI, the urea channel from Helicobacter pylori. Biochemistry 2011; 50:8656-63. [PMID: 21877689 DOI: 10.1021/bi200887a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Helicobacter pylori's unique ability to colonize and survive in the acidic environment of the stomach is critically dependent on uptake of urea through the urea channel, HpUreI. Hence, HpUreI may represent a promising target for the development of specific drugs against this human pathogen. To obtain insight into the structure-function relationship of this channel, we developed conditions for the high-yield expression and purification of stable recombinant HpUreI. Detergent-solubilized HpUreI forms a homotrimer, as determined by chemical cross-linking. Urea dissociation kinetics of purified HpUreI were determined by means of the scintillation proximity assay, whereas urea efflux was measured in HpUreI-containing proteoliposomes using stopped-flow spectrometry to determine the kinetics and selectivity of the urea channel. The kinetic analyses revealed that urea conduction in HpUreI is pH-sensitive and saturable with a half-saturation concentration (or K(0.5)) of ~163 mM. The extent of binding of urea by HpUreI was increased at lower pH; however, the apparent affinity of urea binding (~150 mM) was not significantly pH-dependent. The solute selectivity analysis indicated that HpUreI is highly selective for urea and hydroxyurea. Removing either amino group of urea molecules diminishes their permeability through HpUreI. Similar to urea conduction, diffusion of water through HpUreI is pH-dependent with low water permeability at neutral pH.
Collapse
Affiliation(s)
- Lawrence R Gray
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52241, United States
| | | | | | | |
Collapse
|
44
|
García-Ortíz MV, Marsin S, Arana ME, Gasparutto D, Guérois R, Kunkel TA, Radicella JP. Unexpected role for Helicobacter pylori DNA polymerase I as a source of genetic variability. PLoS Genet 2011; 7:e1002152. [PMID: 21731507 PMCID: PMC3121766 DOI: 10.1371/journal.pgen.1002152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/09/2011] [Indexed: 01/28/2023] Open
Abstract
Helicobacter pylori, a human pathogen infecting about half of the world population, is characterised by its large intraspecies variability. Its genome plasticity has been invoked as the basis for its high adaptation capacity. Consistent with its small genome, H. pylori possesses only two bona fide DNA polymerases, Pol I and the replicative Pol III, lacking homologues of translesion synthesis DNA polymerases. Bacterial DNA polymerases I are implicated both in normal DNA replication and in DNA repair. We report that H. pylori DNA Pol I 5′- 3′ exonuclease domain is essential for viability, probably through its involvement in DNA replication. We show here that, despite the fact that it also plays crucial roles in DNA repair, Pol I contributes to genomic instability. Indeed, strains defective in the DNA polymerase activity of the protein, although sensitive to genotoxic agents, display reduced mutation frequencies. Conversely, overexpression of Pol I leads to a hypermutator phenotype. Although the purified protein displays an intrinsic fidelity during replication of undamaged DNA, it lacks a proofreading activity, allowing it to efficiently elongate mismatched primers and perform mutagenic translesion synthesis. In agreement with this finding, we show that the spontaneous mutator phenotype of a strain deficient in the removal of oxidised pyrimidines from the genome is in part dependent on the presence of an active DNA Pol I. This study provides evidence for an unexpected role of DNA polymerase I in generating genomic plasticity. Helicobacter pylori is the main cause of ulcers and gastric cancers. One the characteristics of this bacterial species is that it displays an amazing capacity to change its genetic information. This genetic variability provides H. pylori with an adaptation potential that allows it to successfully colonise the stomach of about half the human population. Here we identified a surprising source of genomic plasticity in an enzyme also involved in the maintenance of DNA integrity. Indeed, we show that DNA polymerase I, one of the only two DNA polymerases that are found in H. pylori, although essential for DNA replication and repair, contributes to mutagenesis due to its biochemical characteristics.
Collapse
Affiliation(s)
| | - Stéphanie Marsin
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, UMR 217 CNRS/CEA, Fontenay aux Roses, France
| | - Mercedes E. Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | | | - Raphaël Guérois
- CEA, iBiTecS, Gif sur Yvette, France
- CNRS, URA 2096, Gif sur Yvette, France
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - J. Pablo Radicella
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, UMR 217 CNRS/CEA, Fontenay aux Roses, France
- * E-mail:
| |
Collapse
|
45
|
Kosikowska P, Berlicki Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections: a patent review. Expert Opin Ther Pat 2011; 21:945-57. [PMID: 21457123 DOI: 10.1517/13543776.2011.574615] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Urease is the enzyme that catalyzes the hydrolysis of urea, which is involved in serious infections caused by Helicobacter pylori in the gastric tract, as well as Proteus and related species in the urinary tract. The necessity to treat such infections has stimulated intensive studies on various groups of urease inhibitors. AREAS COVERED Patent literature on urease inhibitors with possible applications in medicine is reviewed in this paper. Hydroxamic acids, phosphoramidates, urea derivatives, quinones and heterocyclic compounds constitute the major classes of structures with such activity. EXPERT OPINION Until now, only one compound, acetohydroxamic acid, has been clinically used for the treatment of urinary tract infections by urease inhibition. Unfortunately, it exhibits severe side effects. Thus, it seems that the full potential of urease inhibition has not yet been fully explored. Several Japanese patents related to the use of herbal extracts as sources of polyphenolic urease inhibitors have been considered as complementary or alternative therapy; however, their accessibility is quite possibly due to reduced restrictions for the introduction of natural products to the market.
Collapse
Affiliation(s)
- Paulina Kosikowska
- Wrocław University of Technology, Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław, Poland
| | | |
Collapse
|
46
|
Zawilak-Pawlik A, Donczew R, Szafrański S, Mackiewicz P, Terradot L, Zakrzewska-Czerwińska J. DiaA/HobA and DnaA: a pair of proteins co-evolved to cooperate during bacterial orisome assembly. J Mol Biol 2011; 408:238-51. [PMID: 21354425 DOI: 10.1016/j.jmb.2011.02.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/08/2011] [Accepted: 02/17/2011] [Indexed: 11/26/2022]
Abstract
Replication of the bacterial chromosome is initiated by binding the DnaA protein to oriC. Various factors control the ability of DnaA to bind and unwind DNA. Among them, Escherichia coli DiaA and Helicobacter pylori HobA have been characterized recently. They were found to interact with domain I of DnaA and stimulate DnaA binding to oriC. We examined HobA and DiaA functional homology and showed that, despite a high degree of structural similarity, they are not interchangeable because they are unable to interact with heterologous DnaA proteins. We revealed particular structural differences impeding formation of heterologous complexes and, consistently, we restored DiaA-enhanced oriC binding by the hybrid Ec(I)-Hp(II-IV)DnaA protein; i.e. H. pylori DnaA in which domain I was exchanged with that of E. coli. This proved that DiaA and HobA are functional homologs and upon binding to DnaA they exert a similar effect on orisome formation. Interestingly, we showed for the first time that the dynamics of DiaA- and HobA-stimulated orisome assembly are different. HobA enhances and accelerates HpDnaA binding to oriC, whereas DiaA increases but decelerates EcDnaA binding with oriC. We postulate that the different dynamics of orisome formation reflect the distinct strategies adopted by E. coli and H. pylori to regulate the frequency of the replication of their chromosomes. DiaA/HobA homolog have been identified in many proteobacteria and therefore might constitute a common, though species-specific, factor modulating bacterial orisome assembly.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland.
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Bonis M, Ecobichon C, Guadagnini S, Prévost MC, Boneca IG. A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. Mol Microbiol 2010; 78:809-19. [DOI: 10.1111/j.1365-2958.2010.07383.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Vitamin B6 is required for full motility and virulence in Helicobacter pylori. mBio 2010; 1. [PMID: 21151756 PMCID: PMC3000542 DOI: 10.1128/mbio.00112-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 07/15/2010] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in our understanding of how Helicobacter pylori causes disease, the factors that allow this pathogen to persist in the stomach have not yet been fully characterized. To identify new virulence factors in H. pylori, we generated low-infectivity variants of a mouse-colonizing H. pylori strain using the classical technique of in vitro attenuation. The resulting variants and their highly infectious progenitor bacteria were then analyzed by global gene expression profiling. The gene expression levels of five open reading frames (ORFs) were significantly reduced in low-infectivity variants, with the most significant changes observed for ORFs HP1583 and HP1582. These ORFs were annotated as encoding homologs of the Escherichia coli vitamin B6 biosynthesis enzymes PdxA and PdxJ. Functional complementation studies with E. coli confirmed H. pylori PdxA and PdxJ to be bona fide homologs of vitamin B6 biosynthesis enzymes. Importantly, H. pylori PdxA was required for optimal growth in vitro and was shown to be essential for chronic colonization in mice. In addition to having a well-known metabolic role, vitamin B6 is necessary for the synthesis of glycosylated flagella and for flagellum-based motility in H. pylori. Thus, for the first time, we identify vitamin B6 biosynthesis enzymes as novel virulence factors in bacteria. Interestingly, pdxA and pdxJ orthologs are present in a number of human pathogens, but not in mammalian cells. We therefore propose that PdxA/J enzymes may represent ideal candidates for therapeutic targets against bacterial pathogens. Approximately half of the world’s population is infected with H. pylori, yet how H. pylori bacteria establish chronic infections in human hosts remains elusive. From gene array studies, we identified two genes as representing potentially novel colonization factors for H. pylori. These genes encoded enzymes involved in the synthesis of vitamin B6, an important molecule for many metabolic reactions in living organisms. Little is currently known regarding vitamin B6 biosynthesis in human pathogens. We showed that mutant H. pylori bacteria lacking an enzyme involved in de novo vitamin B6 biosynthesis, PdxA, were unable to synthesize motility appendages (flagella) and were unable to establish chronic colonization in mice. Thus, this work identifies vitamin B6 biosynthesis enzymes as novel virulence factors for bacterial pathogens. Interestingly, a number of human pathogens, but not their mammalian hosts, possess these genes, which suggests that Pdx enzymes may represent ideal candidates for new therapeutic targets.
Collapse
|
50
|
Coupled amino acid deamidase-transport systems essential for Helicobacter pylori colonization. Infect Immun 2010; 78:2782-92. [PMID: 20368342 DOI: 10.1128/iai.00149-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In addition to their classical roles as carbon or nitrogen sources, amino acids can be used for bacterial virulence, colonization, or stress resistance. We found that original deamidase-transport systems impact colonization by Helicobacter pylori, a human pathogen associated with gastric pathologies, including adenocarcinoma. We demonstrated that l-asparaginase (Hp-AnsB) and gamma-glutamyltranspeptidase (Hp-gammaGT) are highly active periplasmic deamidases in H. pylori, producing ammonia and aspartate or glutamate from asparagine and glutamine, respectively. Hp-GltS was identified as a sole and specialized transporter for glutamate, while aspartate was exclusively imported by Hp-DcuA. Uptake of Gln and Asn strictly relies on indirect pathways following prior periplasmic deamidation into Glu and Asp. Hence, in H. pylori, the coupled action of periplasmic deamidases with their respective transporters enables the acquisition of Glu and Asp from Gln and Asn, respectively. These systems were active at neutral rather than acidic pH, suggesting their function near the host epithelial cells. We showed that Hp-DcuA, the fourth component of these novel deamidase-transport systems, was as crucial as Hp-gammaGT, Hp-AnsB, and Hp-GltS for animal model colonization. In conclusion, the pH-regulated coupled amino acid deamidase-uptake system represents an original optimized system that is essential for in vivo colonization of the stomach environment by H. pylori. We propose a model in which these two nonredundant systems participate in H. pylori virulence by depleting gastric or immune cells from protective amino acids such as Gln and producing toxic ammonia close to the host cells.
Collapse
|