1
|
Abstract
Neutrophils or polymorphonuclear neutrophils (PMNs) are an important component of innate host defense. These phagocytic leukocytes are recruited to infected tissues and kill invading microbes. There are several general characteristics of neutrophils that make them highly effective as antimicrobial cells. First, there is tremendous daily production and turnover of granulocytes in healthy adults-typically 1011 per day. The vast majority (~95%) of these cells are neutrophils. In addition, neutrophils are mobilized rapidly in response to chemotactic factors and are among the first leukocytes recruited to infected tissues. Most notably, neutrophils contain and/or produce an abundance of antimicrobial molecules. Many of these antimicrobial molecules are toxic to host cells and can destroy host tissues. Thus, neutrophil activation and turnover are highly regulated processes. To that end, aged neutrophils undergo apoptosis constitutively, a process that contains antimicrobial function and proinflammatory capacity. Importantly, apoptosis facilitates nonphlogistic turnover of neutrophils and removal by macrophages. This homeostatic process is altered by interaction with microbes and their products, as well as host proinflammatory molecules. Microbial pathogens can delay neutrophil apoptosis, accelerate apoptosis following phagocytosis, or cause neutrophil cytolysis. Here, we review these processes and provide perspective on recent studies that have potential to impact this paradigm.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mark T Quinn
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Selvaraj C, Vierra M, Dinesh DC, Abhirami R, Singh SK. Structural insights of macromolecules involved in bacteria-induced apoptosis in the pathogenesis of human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:1-38. [PMID: 34090612 DOI: 10.1016/bs.apcsb.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numbers of pathogenic bacteria can induce apoptosis in human host cells and modulate the cellular pathways responsible for inducing or inhibiting apoptosis. These pathogens are significantly recognized by host proteins and provoke the multitude of several signaling pathways and alter the cellular apoptotic stimuli. This process leads the bacterial entry into the mammalian cells and evokes a variety of responses like phagocytosis, release of mitochondrial cytochrome c, secretion of bacterial effectors, release of both apoptotic and inflammatory cytokines, and the triggering of apoptosis. Several mechanisms are involved in bacteria-induced apoptosis including, initiation of the endogenous death machinery, pore-forming proteins, and secretion of superantigens. Either small molecules or proteins may act as a binding partner responsible for forming the protein complexes and regulate enzymatic activity via protein-protein interactions. The bacteria induce apoptosis, attack the human cell and gain control over various types of cells and tissue. Since these processes are intricate in the defense mechanisms of host organisms against pathogenic bacteria and play an important function in host-pathogen interactions. In this chapter, we focus on the various bacterial-induced apoptosis mechanisms in host cells and discuss the important proteins and bacterial effectors that trigger the host cell apoptosis. The structural characterization of bacterial effector proteins and their interaction with human host cells are also considered.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Marisol Vierra
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | | | - Rajaram Abhirami
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
3
|
Rungelrath V, Kobayashi SD, DeLeo FR. Neutrophils in innate immunity and systems biology-level approaches. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1458. [PMID: 31218817 DOI: 10.1002/wsbm.1458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared to the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, nonspecific, and not dependent on previous exposure to microorganisms. Historically, studies of PMN-pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas postphagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past 20 years. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein, we give an updated review of the systems biology-level approaches that have been used to gain an enhanced view of the role of neutrophils during host-pathogen interaction and neutrophil-mediated diseases. We anticipate that these and future systems-level studies will continue to provide information important for understanding, treatment, and control of diseases caused by pathogenic microorganisms. This article is categorized under: Physiology > Organismal Responses to Environment Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Viktoria Rungelrath
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
4
|
Zhang X, Hu X, Rao X. Apoptosis induced by Staphylococcus aureus toxins. Microbiol Res 2017; 205:19-24. [DOI: 10.1016/j.micres.2017.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
5
|
Santana PT, Benjamim CF, Martinez CG, Kurtenbach E, Takiya CM, Coutinho-Silva R. The P2X7 Receptor Contributes to the Development of the Exacerbated Inflammatory Response Associated with Sepsis. J Innate Immun 2015; 7:417-27. [PMID: 25675986 DOI: 10.1159/000371388] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sepsis is associated with high mortality rates in intensive care units worldwide and represents a systemic inflammatory response to infection. P2X7 is an ionotropic purine receptor with known proinflammatory activity. Here, we investigated the role of the P2X7 receptor in sepsis induced by cecal ligation and puncture (CLP). METHODS Wild-type (WT) and P2X7KO (P2X7 null) mice were subjected to CLP and their survival was monitored for 7 days. Blood, peritoneal wash and lungs were collected 24 h after CLP and used to measure bacterial load, immune cell infiltration, nitric oxide (NO), cytokine levels, and peritoneal cell death and to assess lung injury. RESULTS P2X7KO mice showed significantly increased survival 7 days after CLP (30% compared to 60% in WT animals) accompanied by an overall attenuated inflammatory response, with decreased cell recruitment to the peritoneum, no or limited increases in the levels of NO and proinflammatory cytokines (IL-1β, IL-6, IL-12, IL-17, and IL-4), reduced peritoneal cell apoptosis, and less pronounced lung infiltration and morphological changes. CONCLUSIONS Our data show the P2X7 receptor is required for the development of the inflammatory response associated with sepsis and support the notion that P2X7 receptor is a valid therapeutic target against inflammatory diseases.
Collapse
Affiliation(s)
- Patricia Texeira Santana
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Langrová T, Sládek Z, Ryšánek D. The effect of the bacterial pathogens Staphylococcus aureus and Streptococcus uberis on morphological features of apoptosis of heifers mammary gland neutrophils. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun200553040061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Fijalkowski K, Czernomysy-Furowicz D, Irwin JA, Nawrotek P, Pobucewicz A. Secretory virulence factors produced by Staphylococcus aureus isolates obtained from mastitic bovine milk--effect on bovine polymorphonuclear neutrophils. Res Vet Sci 2011; 93:82-7. [PMID: 21944833 DOI: 10.1016/j.rvsc.2011.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 11/27/2022]
Abstract
The aim of the research was to test whether exogenic virulence factors secreted by Staphylococcus aureus isolates are involved in mechanisms that allow the bacteria to modulate and evade phagocytosis by bovine polymorphonuclear neutrophils. The research was based on the comparison of the effects of supernatants, prepared from cultures of 30 S. aureus isolates, on the functional properties of bovine neutrophils in vitro. S. aureus isolates were collected from milk samples from cows with clinical mastitis. Supernatants, which were used to treat leukocytes, were prepared from 18 h S. aureus cultures. Exogenic virulence factors secreted by S. aureus isolates significantly influenced the phagocytosis parameters evaluated. Depending on their leukotoxic or superantigenic properties, supernatants could affect the ingestion process, and also showed an influence on the digestion efficiency and phagocytosis carried out by bovine polymorphonuclear neutrophils in vitro.
Collapse
Affiliation(s)
- Karol Fijalkowski
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Poland.
| | | | | | | | | |
Collapse
|
8
|
Kobayashi SD. Role of neutrophils in innate immunity: a systems biology-level approach. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2009; 1:309-333. [PMID: 20836000 PMCID: PMC3501127 DOI: 10.1002/wsbm.32] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared with the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, non-specific, and not dependent on previous exposure to microorganisms. Historically, studies on PMN-pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas post-phagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past decade. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein we review the systems biology-level approaches that have been used to gain an enhanced view of the role of neutrophils during host-pathogen interaction. We anticipate that these and future systems-level studies will ultimately provide information critical to our understanding, treatment, and control of diseases caused by pathogenic microorganisms.
Collapse
Affiliation(s)
- Scott D. Kobayashi
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| |
Collapse
|
9
|
Abstract
Polymorphonuclear leukocytes (PMNs) are the most abundant white cell in humans and an essential component of the innate immune system. PMNs are typically the first type of leukocyte recruited to sites of infection or areas of inflammation. Ingestion of microorganisms triggers production of reactive oxygen species and fusion of cytoplasmic granules with forming phagosomes, leading to effective killing of ingested microbes. Phagocytosis of bacteria typically accelerates neutrophil apoptosis, which ultimately promotes the resolution of infection. However, some bacterial pathogens alter PMN apoptosis to survive and thereby cause disease. Herein, we review PMN apoptosis and the ability of microorganisms to alter this important process.
Collapse
Affiliation(s)
- Adam D Kennedy
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
10
|
The dual effects of TNFalpha on neutrophil apoptosis are mediated via differential effects on expression of Mcl-1 and Bfl-1. Blood 2007; 111:878-84. [PMID: 17942758 DOI: 10.1182/blood-2007-05-087833] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutrophils have a very short half-life in the circulation, undergoing rapid death by apoptosis, but a number of agents can either delay or accelerate the rate at which these cells undergo death. TNFalpha can exert opposing, concentration-dependent effects on neutrophils to either accelerate their apoptosis or enhance their survival. We show that TNFalpha greatly increases the rate of turnover of Mcl-1, an antiapoptotic protein that plays a key role in neutrophil survival. In contrast to Mcl-1 turnover in control- or granulocyte-macrophage colony-stimulating factor (GM-CSF)-treated neutrophils that occurs via the proteasome, TNFalpha-accelerated Mcl-1 turnover occurs via activation of caspases. Mcl-1-depleted cells thus have accelerated rates of apoptosis. While TNFalpha had no effect on MCL-1 transcription, it induced expression of another antiapoptotic molecule, BFL-1. Low concentrations of TNFalpha (<or=1 ng/mL) stimulated BFL-1 expression, whereas higher concentrations (>or=10 ng/mL) triggered caspase-dependent acceleration of Mcl-1 turnover. These opposing effects on 2 separate antiapoptotic systems of neutrophils explain the divergent effects of TNFalpha on neutrophil apoptosis and have important implications for understanding how TNFalpha may affect immune function in inflammatory diseases.
Collapse
|
11
|
Sethu P, Moldawer LL, Mindrinos MN, Scumpia PO, Tannahill CL, Wilhelmy J, Efron PA, Brownstein BH, Tompkins RG, Toner M. Microfluidic isolation of leukocytes from whole blood for phenotype and gene expression analysis. Anal Chem 2007; 78:5453-61. [PMID: 16878882 DOI: 10.1021/ac060140c] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Technologies that enable the isolation of cell subtypes from small samples of complex populations will greatly facilitate the implementation of proteomics and genomics to human diseases. Transcriptome analysis of blood requires the depletion of contaminating erythrocytes. We report an automated microfluidic device to rapidly deplete erythrocytes from whole blood via deionized water lysis and to collect enriched leukocytes for phenotype and genomic analyses. Starting with blood from healthy subjects, we demonstrate the utility of this microfluidic cassette and lysis protocol to prepare unstimulated leukocytes, and leukocytes stimulated ex vivo with Staphylococcal enterotoxin B, which mimics some of the cellular effects seen in patients with severe bacterial infections. Microarrays are used to assess the global gene expression response to enterotoxin B. The results demonstrate that this system can isolate unactivated leukocytes from small blood samples without any significant loss, which permits more information to be obtained from subsequent analysis, and will be readily applicable to clinical settings.
Collapse
Affiliation(s)
- Palaniappan Sethu
- Surgical Services and Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tollersrud T, Kampen AH, Kenny K. Staphylococcus aureus enterotoxin D is secreted in milk and stimulates specific antibody responses in cows in the course of experimental intramammary infection. Infect Immun 2006; 74:3507-12. [PMID: 16714582 PMCID: PMC1479268 DOI: 10.1128/iai.01726-05] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enterotoxin D (SED)-producing strain of Staphylococcus aureus was used to infect one mammary gland of each of 17 lactating dairy cows. All glands became infected and shed bacteria over a sampling period of 3 weeks. Serum and milk antibodies specific for SED were monitored by an enzyme-linked immunosorbent assay for 12 weeks. Elevated anti-SED antibodies were detected in all cows after infection, and immunoglobulin of the G2 subclass comprised most of the specific serum response. SED was detected in mastitic milk samples from two cows at levels of 5 to 10 ng/ml. An in vitro lymphocyte proliferation assay showed that SED at levels below 10 pg/ml induced proliferation of bovine lymphocytes and that sheep antiserum specific for SED neutralized this proliferative response. Sera obtained from the cows pre- and postinfection inhibited lymphocyte proliferation at SED concentrations of 10 and 50 ng/ml, respectively. The addition of SED to whole blood or to isolated neutrophils had no significant effect on neutrophil function in vitro. The results show that SED is secreted during mammary gland infection, is mitogenic for bovine lymphocytes, and stimulates the production of specific antibodies.
Collapse
Affiliation(s)
- Tore Tollersrud
- Department of Animal Health, National Veterinary Institute, P.O. Box 8156, Dep. 0033 Oslo, Norway.
| | | | | |
Collapse
|
13
|
Ulett GC, Adderson EE. Regulation of Apoptosis by Gram-Positive Bacteria: Mechanistic Diversity and Consequences for Immunity. ACTA ACUST UNITED AC 2006; 2:119-141. [PMID: 19081777 DOI: 10.2174/157339506776843033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Apoptosis, or programmed cell death (PCD), is an important physiological mechanism, through which the human immune system regulates homeostasis and responds to diverse forms of cellular damage. PCD may also be involved in immune counteraction to microbial infection. Over the past decade, the amount of research on bacteria-induced PCD has grown tremendously, and the implications of this mechanism on immunity are being elucidated. Some pathogenic bacteria actively trigger the suicide response in critical lineages of leukocytes that orchestrate both the innate and adaptive immune responses; other bacteria proactively prevent PCD to benefit their own survival and persistence. Currently, the microbial virulence factors, which represent the keys to unlocking the suicide response in host cells, are a primary focus of this field. In this review, we discuss these bacterial "apoptosis regulatory molecules" and the apoptotic events they either trigger or prevent, the host target cells of this regulatory activity, and the possible ramifications for immunity to infection. Gram-positive pathogens including Staphylococcus, Streptococcus, Bacillus, Listeria, and Clostridia species are discussed as important agents of human infection that modulate PCD pathways in eukaryotic cells.
Collapse
Affiliation(s)
- Glen C Ulett
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
14
|
Brest P, Bétis F, Cuburu N, Selva E, Herrant M, Servin A, Auberger P, Hofman P. Increased rate of apoptosis and diminished phagocytic ability of human neutrophils infected with Afa/Dr diffusely adhering Escherichia coli strains. Infect Immun 2004; 72:5741-9. [PMID: 15385473 PMCID: PMC517549 DOI: 10.1128/iai.72.10.5741-5749.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proinflammatory effect of Afa/Dr diffusely adhering Escherichia coli (Afa/Dr DAEC) strains have been recently demonstrated in vitro by showing that polymorphonuclear leukocyte (PMN) transepithelial migration is induced after bacterial colonization of apical intestinal monolayers. The effect of Afa/Dr DAEC-PMN interaction on PMN behavior has been not investigated. Because of the putative virulence mechanism of PMN apoptosis during infectious diseases and taking into account the high level of expression of the decay-accelerating factor (DAF, or CD55), the receptor of Afa/Dr DAEC on PMNs, we sought to determine whether infection of PMNs by Afa/Dr DAEC strains could promote cell apoptosis. We looked at the behavior of PMNs incubated with Afa/Dr DAEC strains once they had transmigrated across polarized monolayers of intestinal (T84) cells. Infection of PMNs by Afa/Dr DAEC strains induced PMN apoptosis characterized by morphological nuclear changes, DNA fragmentation, caspase activation, and a high level of annexin V expression. However, transmigrated and nontransmigrated PMNs incubated with Afa/Dr DAEC strains showed similar elevated global caspase activities. PMN apoptosis depended on their agglutination, induced by Afa/Dr DAEC, and was still observed after preincubation of PMNs with anti-CD55 and/or anti-CD66 antibodies. Low levels of phagocytosis of Afa/Dr DAEC strains were observed both in nontransmigrated and in transmigrated PMNs compared to that observed with the control E. coli DH5alpha strain. Taken together, these data strongly suggest that interaction of Afa/Dr DAEC with PMNs may increase the bacterial virulence both by inducing PMN apoptosis through an agglutination process and by diminishing their phagocytic capacity.
Collapse
|
15
|
Kuroishi T, Komine KI, Asai KI, Kobayashi J, Watanabe K, Yamaguchi T, Kamata SI, Kumagai K. Inflammatory responses of bovine polymorphonuclear neutrophils induced by staphylococcal enterotoxin C via stimulation of mononuclear cells. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 10:1011-8. [PMID: 14607860 PMCID: PMC262437 DOI: 10.1128/cdli.10.6.1011-1018.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To elucidate the pathological roles of staphylococcal enterotoxin C (SEC) in bovine staphylococcal mastitis, a histopathological analysis of SEC-inoculated mammary glands was performed. SEC-inoculated mammary glands exhibited interstitial inflammation, and the leukocytes that migrated into the gland were predominantly polymorphonuclear neutrophils (PMN). In the gland cistern tissues dissected from SEC-inoculated mammary glands, epithelial cellular degeneration was observed. We also investigated the physiological effects of SEC on PMN in vitro. PMN migration was induced by culture supernatant of SEC-stimulated peripheral blood mononuclear cells (S-PBMC sup) but not by that of nonstimulated PBMC (N-PBMC sup). The concentration of interleukin-8 was significantly (P < 0.05) higher in S-PBMC sup than N-PBMC sup, and a significantly (P < 0.05) higher mRNA expression of growth-regulated oncogenes was detected in SEC-stimulated PBMC than in nonstimulated PBMC. Milk PMN collected from SEC-inoculated mammary glands produced more than 2 times the amount of superoxide at 1 day postinoculation (dpi) than at 0 dpi in the presence of phorbol 12-myristate 13-acetate (PMA). PMN cultured with S-PBMC sup for 24 h also produced significantly (P < 0.05) larger amounts of superoxide than those cultured with N-PBMC sup in the presence of PMA. Moreover, S-PBMC sup induced the long-time survival of PMN. These results indicate that SEC induces the activation of PMN via the stimulation of mononuclear cells.
Collapse
|
16
|
Abstract
Sepsis is a syndrome of significant morbidity and mortality. Unlike the advances made in other diseases processes, improvements in outcome from sepsis, severe sepsis, and septic shock have been modest. Current research has altered our understanding of sepsis pathogenesis such that present models and definitions are still evolving. One relatively novel cell type, the dendritic cell, is the subject of much current investigation in sepsis. Although our present understanding of dendritic cell biology is incomplete, growing evidence supports the importance of this antigen-presenting cell in the normal and maladaptive responses to microbial invasion and tissue injury. A better understanding of this cell's basic biology as well as its potential as a therapeutic target will undoubtedly play increasing roles in the development of new strategies for the treatment of the septic patient.
Collapse
Affiliation(s)
- Philip Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville 32610, USA
| | | |
Collapse
|
17
|
Ellis TN, Beaman BL. Interferon-gamma activation of polymorphonuclear neutrophil function. Immunology 2004; 112:2-12. [PMID: 15096178 PMCID: PMC1782470 DOI: 10.1111/j.1365-2567.2004.01849.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 02/16/2004] [Indexed: 11/29/2022] Open
Abstract
As current research illuminates the dynamic interplay between the innate and acquired immune responses, the interaction and communication between these two arms has yet to be fully investigated. Polymorphonuclear neutrophils (PMNs) and interferon-gamma (IFN-gamma) are known critical components of innate and acquired immunity, respectively. However, recent studies have demonstrated that these two components are not entirely isolated. Treatment of PMNs with IFN-gamma elicits a variety of responses depending on stimuli and environmental conditions. These responses include increased oxidative burst, differential gene expression, and induction of antigen presentation. Many of these functions have been overlooked in PMNs, which have long been classified as terminal phagocytic cells incapable of protein synthesis. As this review reports, the old definition of the PMN is in need of an update, as these cells have demonstrated their ability to mediate the transition between the innate and acquired immune responses.
Collapse
Affiliation(s)
- Terri N Ellis
- Department of Medical Microbiology and Immunology, University of California School of Medicine, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
18
|
Haslinger B, Strangfeld K, Peters G, Schulze-Osthoff K, Sinha B. Staphylococcus aureus alpha-toxin induces apoptosis in peripheral blood mononuclear cells: role of endogenous tumour necrosis factor-alpha and the mitochondrial death pathway. Cell Microbiol 2003; 5:729-41. [PMID: 12969378 DOI: 10.1046/j.1462-5822.2003.00317.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus infections can result in septic and toxic shock with depletion of immune cells and massive cytokine production. Recently, we showed that, in S. aureus-infected Jurkat T cells, alpha-toxin is the major mediator of caspase activation and apoptosis. Here, we investigated the mechanisms of cell death induced by alpha-toxin in peripheral blood mononuclear cells (MNC). We show that alpha-toxin is required and sufficient for S. aureus-induced cell death not only in transformed Jurkat T cells but also in MNC. Low alpha-toxin doses (3-30 ng ml-1) dose- and time-dependently induced apoptosis in both cell types, which was completely blocked by the caspase inhibitor zVAD-fmk. In Jurkat T cells and MNC, alpha-toxin induced the breakdown of the mitochondrial membrane potential and the intrinsic activation of caspase-3, -8 and -9. Interestingly, unlike in Jurkat T cells, apoptosis in MNC was additionally mediated by a caspase-9-independent component. MNC, but not Jurkat T cells, produced tumour necrosis factor (TNF)-alpha upon alpha-toxin stimulation. Blocking endogenous TNF-alpha with a TNF-alpha receptor antagonist partially decreased apoptosis in MNC. Our data therefore suggest that, whereas in Jurkat T cells apoptosis is solely mediated by the mitochondrial pathway, in MNC endogenous TNF-alpha and a death receptor-dependent pathway are also involved, which may contribute to depletion of immune cells during S. aureus infection.
Collapse
Affiliation(s)
- Bettina Haslinger
- Institute of Medical Microbiology, Medical School of University Hospital of Münster, Domagkstrasse 10, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
19
|
Perticarari S, Presani G, Prodan M, Granzotto M, Murgia R, Cinco M. Lymphocyte apoptosis co-cultured with Borrelia burgdorferi. Microb Pathog 2003; 35:139-45. [PMID: 12946326 DOI: 10.1016/s0882-4010(03)00096-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease. We investigated whether the in vitro co-cultivation of lymphocytes with spirochetes would induce apoptosis in human lymphocytes. Peripheral blood mononuclear cell were mixed with various ratio of cell/spirochetes (1:10, 1:20, 1:50, 1:100) and incubated in a humified atmosphere of 5% CO(2) at 37 degrees C. Apoptosis was determined at 0, 4, 24 h by Annexin V binding assay and propidium iodide staining, and by CD95 Apo-1 expression. Analysis was performed by multiparametric flow cytometry on CD3, CD4, CD8, CD19 subset of lymphocytes. The binding of Annexin V increased at 24 h in T lymphocytes infected by living spirochetes at ratio 1:50; similar results were obtained with inactivated or sonicated spirochetes and lipidated OspC. The rate of Annexin V binding and pattern of CD95 over-expression were different in CD3, CD4, CD8 and CD19 subset; interleukine-10 (IL-10) was measured in supernatants of cultures after treatment with Borrelia preparations and with OspA and OspC, lipidated or not. Our data suggest that spirochetes were able to induce apoptosis on lymphocytes; the phenomenon appears associated with number of spirochetes, incubation time and the release of IL-10 in co-cultures. Moreover apoptosis was probably Fas-mediated and the cells involved were prevalently CD4.
Collapse
Affiliation(s)
- Sandra Perticarari
- Laboratorio di Immunologia, IRCCS Burlo Garofolo, Via Dell'Istria 65/1, Trieste 34147, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Vasilieva GI, Kozlovsky VN, Kiseleva AK, Mishankin MB, Mishankin BN. Role of apoptosis of phagocytic cells in the development of immunodeficiency in plague. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 529:181-3. [PMID: 12756755 DOI: 10.1007/0-306-48416-1_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Galina I Vasilieva
- Research Institute for Plague Control, Department of Immunology, Rostov-on-Don, Russia
| | | | | | | | | |
Collapse
|
21
|
Perskvist N, Long M, Stendahl O, Zheng L. Mycobacterium tuberculosis promotes apoptosis in human neutrophils by activating caspase-3 and altering expression of Bax/Bcl-xL via an oxygen-dependent pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6358-65. [PMID: 12055253 DOI: 10.4049/jimmunol.168.12.6358] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In addition to direct bactericidal activities, such as phagocytosis and generation of reactive oxygen species (ROS), neutrophils can regulate the inflammatory response by undergoing apoptosis. We found that infection of human neutrophils with Mycobacterium tuberculosis (Mtb) induced rapid cell death displaying the characteristic features of apoptosis such as morphologic changes, phosphatidylserine exposure, and DNA fragmentation. Both a virulent (H37Rv) and an attenuated (H37Ra) strain of Mtb were equally effective in inducing apoptosis. Pretreatment of neutrophils with antioxidants or an inhibitor of NADPH oxidase markedly blocked Mtb-induced apoptosis but did not affect spontaneous apoptosis. Activation of caspase-3 was evident in neutrophils undergoing spontaneous apoptosis, but it was markedly augmented and accelerated during Mtb-induced apoptosis. The Mtb-induced apoptosis was associated with a speedy and transient increase in expression of Bax protein, a proapoptotic member of the Bcl-2 family, and a more prominent reduction in expression of the antiapoptotic protein Bcl-x(L). Pretreatment with an inhibitor of NADPH oxidase distinctly suppressed the Mtb-stimulated activation of caspase-3 and alteration of Bax/Bcl-x(L) expression in neutrophils. These results indicate that infection with Mtb causes ROS-dependent alteration of Bax/Bcl-x(L) expression and activation of caspase-3, and thereby induces apoptosis in human neutrophils. Moreover, we found that phagocytosis of Mtb-induced apoptotic neutrophils markedly increased the production of proinflammatory cytokine TNF-alpha by human macrophages. Therefore, the ROS-dependent apoptosis in Mtb-stimulated neutrophils may represent an important host defense mechanism aimed at selective removal of infected cells at the inflamed site, which in turn aids the functional activities of local macrophages.
Collapse
Affiliation(s)
- Nasrin Perskvist
- Division of Medical Microbiology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
22
|
Schuberth HJ, Krueger C, Zerbe H, Bleckmann E, Leibold W. Characterization of leukocytotoxic and superantigen-like factors produced by Staphylococcus aureus isolates from milk of cows with mastitis. Vet Microbiol 2001; 82:187-99. [PMID: 11423209 DOI: 10.1016/s0378-1135(01)00386-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Staphylococcus aureus is a major pathogen for cattle, causing various forms of subclinical and clinical mastitis. Two groups of virulence factors (leukotoxins and superantigens) are supposed to play an important role in the initiation and/or the exacerbation of this disease. In order to detect all known and putative members of leukotoxins and SAgs (superantigens), we tested secreted factors of different S. aureus isolates in flow cytometry-based assays. Isolates were sampled from 68 cows of different farms and cultured for 24h in vitro. Supernatants were then coincubated with purified polymorphonuclear granulocytes (PMN) or combinations of blood mononuclear cells (MNC) and PMN. Viable PMN and MNC were determined by quantitative flow cytometry. In addition, we recorded the proliferation-inducing potential of isolate supernatants for bovine MNC. Based on these criteria, the supernatants of S. aureus isolates fell in three groups. The first group (n=32), termed LT-SNs (leukotoxin-containing supernatants), killed purified granulocytes (neutrophils and eosinophils) in vitro. The second group of supernatants (n=20), termed SAg-SN (superantigen-containing supernatants), induced activation and proliferation of mononuclear cells (MNC) and, only in the presence of MNC, resulted in a selective depletion of neutrophils after 24h in vitro. The third group of supernatants (n=16) contained neither LTs or SAgs. Functionally, SAg-SNs behaved like purified staphylococcal enterotoxin A (SEA) or SEB tested in parallel. The absence of SAg-like activity in LT-SNs was confirmed by heat treatment of LT-SNs, which destroyed the leukocytotoxic activity, but did not reveal any MNC-activating potential. This study, therefore, suggests, that pathogenic S. aureus isolates either produce leukotoxins or superantigens and that both groups of virulence factors can easily be differentiated by the functional assays described. The prevalence of leukotoxin- or superantigen-producing isolates was comparable among cattle with subclinical (LT=41%; SAg=30.8%) mastitis. The higher frequency of LT-producing isolates in cases of clinical mastitis (LT=55.2%; SAg=27.6%) was not significant. At least, these findings argue against the dominant role of superantigens or leukotoxins in S. aureus-induced bovine mastitis.
Collapse
Affiliation(s)
- H J Schuberth
- Immunology Unit, School of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | | | | | | | | |
Collapse
|
23
|
Tikhonov I, Doroshenko T, Chaly Y, Smolnikova V, Pauza CD, Voitenok N. Down-regulation of CXCR1 and CXCR2 expression on human neutrophils upon activation of whole blood by S. aureus is mediated by TNF-alpha. Clin Exp Immunol 2001; 125:414-22. [PMID: 11531949 PMCID: PMC1906137 DOI: 10.1046/j.1365-2249.2001.01626.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2001] [Indexed: 11/20/2022] Open
Abstract
It was suggested that bacterial products can inhibit the expression of leucocyte chemokine receptors during sepsis and affect leucocyte functions in septic syndrome. Superantigens and toxins produced by Staphylococcus aureus are capable of activating leucocytes via binding to MHC-II antigens on monocytes and T-cell receptor molecules on T lymphocytes. It was recently shown that staphylococcal enterotoxins directly down-regulate the expression of CC chemokine receptors on monocytes through binding to MHC class II molecules. We studied the effects of killed S. aureus on the expression of interleukin-8 receptors, CXCR1 and CXCR2, on polymorphonuclear leucocytes (PMN), which are known to lack the expression of MHC-II antigens. It was shown that S. aureus down-regulated the cell-surface expression of CXCR1 and CXCR2 on PMN in the whole blood and total blood leucocyte fraction containing PMN and monocytes, but did not modulate IL-8 receptor expression in purified PMN suspension. Antibody to TNF-alpha abrogated down-regulation of IL-8 receptors induced by S. aureus. In contrast, LPS reduced CXCR1 and CXCR2 expression in purified PMN and whole blood in a TNF-alpha-independent manner. We further showed that TNF-alpha-induced decrease of CXCR1 and CXCR2 expression was associated with lower IL-8 binding and lower CXCR1 and CXCR2 mRNA levels, and was abrogated by protease inhibitors. We suggest that during septicemia, S. aureus may inhibit neutrophil responsiveness to IL-8 and other CXC chemokines via TNF-alpha- mediated down-regulation of CXCR1 and CXCR2.
Collapse
Affiliation(s)
- I Tikhonov
- Laboratory of Cellular and Molecular Immunology, Institute of Hematology and Blood Transfusion, Minsk, Belarus.
| | | | | | | | | | | |
Collapse
|
24
|
Lei L, Altstaedt J, von der Ohe M, Proft T, Gross U, Rink L. Induction of interleukin‐8 in human neutrophils after MHC class II cross‐linking with superantigens. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.1.80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Li Lei
- Institute of Immunology and Transfusion Medicine, University of Lübeck School of Medicine, D‐23538 Lübeck, Germany
| | - Julia Altstaedt
- Institute of Immunology and Transfusion Medicine, University of Lübeck School of Medicine, D‐23538 Lübeck, Germany
| | - Maren von der Ohe
- Institute of Immunology and Transfusion Medicine, University of Lübeck School of Medicine, D‐23538 Lübeck, Germany
| | - Thomas Proft
- Institute of Immunology and Transfusion Medicine, University of Lübeck School of Medicine, D‐23538 Lübeck, Germany
| | - Ulrike Gross
- Institute of Immunology and Transfusion Medicine, University of Lübeck School of Medicine, D‐23538 Lübeck, Germany
| | - Lothar Rink
- Institute of Immunology and Transfusion Medicine, University of Lübeck School of Medicine, D‐23538 Lübeck, Germany
| |
Collapse
|
25
|
Mullarky IK, Su C, Frieze N, Park YH, Sordillo LM. Staphylococcus aureus agr genotypes with enterotoxin production capabilities can resist neutrophil bactericidal activity. Infect Immun 2001; 69:45-51. [PMID: 11119487 PMCID: PMC97853 DOI: 10.1128/iai.69.1.45-51.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus pathogenicity is mainly due to the production of a number of secreted and cell surface-associated proteins under the regulation of the agr gene. A region of the agr gene was used to subgroup S. aureus strains according to restriction fragment length polymorphisms. Additionally, strains were subtyped according to the coagulase gene in order to strengthen discriminatory power. Virulence capabilities of agr genotype subgroups were evaluated using an in vitro neutrophil bactericidal assay, which showed that prevalent genotypes were significantly better at evading this primary host defense. Multiplex PCR was then used to detect enterotoxin genes among the genotype subgroups in order to determine possible virulence candidates that enable strains to combat neutrophil killing. The prevalent genotype strains were found to possess higher production capabilities for enterotoxin A than did low-prevalence strains. The significance of enterotoxin A production capabilities in affecting pathogenicity of S. aureus strains was evaluated and found to have a profound effect on neutrophil killing abilities. The use of a large epidemiological database as a tool for subgrouping strains with varying degrees of pathogenicity has allowed the identification of relevant and previously undefined virulence factors that affect a pathogen's capability to overcome host immune defenses.
Collapse
Affiliation(s)
- I K Mullarky
- Department of Veterinary Science, Center for Mastitis Research, The Pennsylvania State University, University Park, Pennsylvania 16802-3500, USA
| | | | | | | | | |
Collapse
|
26
|
Cauley LS, Miller EE, Yen M, Swain SL. Superantigen-induced CD4 T cell tolerance mediated by myeloid cells and IFN-gamma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6056-66. [PMID: 11086037 DOI: 10.4049/jimmunol.165.11.6056] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have previously shown that systemic staphylococcal enterotoxin A (SEA) injections cause CD4 T cells in TCR-transgenic mice to become tolerant to subsequent ex vivo restimulation. An active IFN-gamma-dependent mechanism of suppression was responsible for the apparent unresponsiveness of the CD4 T cells. In this study, we analyze the response of CD4 T cells isolated throughout the first 10 days of the in vivo response to injected SEA. We show that CD4 T cells isolated at the peak of the in vivo response undergo very little activation-induced cell death after sterile FACS sorting or restimulation in the presence of neutralizing Abs to IFN-gamma. We also show that the IFN-gamma-dependent tolerance develops soon after SEA injection in the spleens of both normal and TCR-transgenic mice. This suppression is dependent upon myeloid cells from the SEA-treated mice and is optimal when inducible NO synthase activity and reactive oxygen intermediates are both present. The data indicate that IFN-gamma, myeloid cells, and a combination of NO and reactive oxygen intermediates all contribute to a common pathway of T cell death that targets activated or responding CD4 T cells. Sorted Gr-1(+) cells from SEA-treated mice also directly suppress the response of naive CD4 T cells in mixed cultures, indicating that this tolerance mechanism may play a role in down-regulating other vigorous immune responses.
Collapse
Affiliation(s)
- L S Cauley
- Trudeau Institute, Saranac Lake, NY 12983, USA
| | | | | | | |
Collapse
|
27
|
Schuberth HJ, Krueger C, Hendricks A, Bimczok D, Leibold W. Superantigen-dependent accelerated death of bovine neutrophilic granulocytes in vitro is mediated by blood mononuclear cells. Immunobiology 2000; 202:493-507. [PMID: 11205377 DOI: 10.1016/s0171-2985(00)80106-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
While classical interactions of bacterial superantigens (SAgs) with antigen presenting cells and T cells have been studied intensively, the potential interactions of SAgs with granulocytes (PMNs) have gained much less attention. We investigated if in the bovine system SAgs have any direct or indirect influence on the fate of granulocytes, which are among those cells primarily responsible for the elimination of superantigen-producing bacteria. The tested SAgs (SEA, SEB) had no apparent direct effect on PMN viability (neutrophils and eosinophils). However, in the presence of blood mononuclear cells (MNCs), SAgs led to an accelerated death of neutrophils but not of eosinophils. Compared to medium controls, in SAg-stimulated cultures only about 20-50% of the neutrophils survived after 24 hours in vitro. Accelerated death of neutrophils required the presence of at least 10% MNC and started between 2.5-24 h after initiation of the co-culture between MNC and PMN. Minimal effective SEA concentrations ranged between 10-100 pg/l (SEB 0.1-10 ng/l). The effect could be mimicked by culture supernatants of SAg-stimulated MNCs, suggesting that direct cell-cell interactions are not required for the killing. In the human system, where we tested the role of TNF-alpha, an antibody specific for this cytokine was not able to abolish the death of human neutrophils. Brefeldin A, an inhibitor of golgi transport and cytokine secretion, which blocked the SAg-induced activation of bovine MNC did not abolish the killing of neutrophils. Blocking of nitric oxide generation or PGE2 synthesis also could not alter the SAg-induced killing of bovine neutrophils. The observed indirect negative effects of SAgs on neutrophils may provide new insights in mechanisms by which superantigens modulate the hosts immune response.
Collapse
Affiliation(s)
- H J Schuberth
- Immunology Unit, School of Veterinary Medicine, Hannover, Germany.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Sepsis demonstrates a marked dysregulation of the immune system in its ability to fight infection. Previous models have focused on the mechanisms which upregulate and sustain the heightened immune response without addressing the role of down-regulation effectors. Attention has been drawn to these down-regulating mechanisms and their precise role in the pathophysiology of sepsis. Apoptosis is an evolutionarily conserved, energy-dependent mode of cell death requiring the initiation and regulation of complex genetic programs. It is the body's main method of getting rid of cells which are in excess, damaged, or no longer needed in a controlled manner. The role of this cellular phenomenon in physiology and pathophysiology has been the subject of intense scrutiny over the last decade. Much work has demonstrated that dysregulation of apoptosis does occur in immune and nonimmune cells in in vitro and in vivo models of sepsis. The difficulty has been in tying the phenomenology of apoptosis into the pathophysiology of sepsis. Further work is needed to make these connections to elucidate rational approaches for clinical applications of immunomodulation in sepsis.
Collapse
Affiliation(s)
- R Mahidhara
- Department of Surgery, University of Pittsburgh School of Medicine, PA 15261, USA
| | | |
Collapse
|