1
|
Freeman-Gallant G, McCarthy K, Yates J, Kulas K, Rudolph MJ, Vance DJ, Mantis NJ. A Refined Human Linear B Cell Epitope Map of Outer Surface Protein C (OspC) From the Lyme Disease Spirochete, Borrelia Burgdorferi. Pathog Immun 2025; 10:159-186. [PMID: 40017585 PMCID: PMC11867186 DOI: 10.20411/pai.v10i1.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/07/2025] [Indexed: 03/01/2025] Open
Abstract
Background A detailed understanding of the human antibody response to outer surface protein C (OspC) of Borrelia burgdorferi has important implications for Lyme disease diagnostics and vaccines. Methods In this report, 13 peptides encompassing 8 reported OspC linear B-cell epitopes from OspC types A, B, and K, including the largely conserved C-terminus (residues 193-210), were evaluated by multiplex immunoassay (MIA) for IgG reactivity with ~700 human serum samples confirmed positive in a 2-tiered Lyme disease diagnostic assay (Bb+) and ~160 post-treatment Lyme disease (PTLD) serum samples. The vmp-like sequence E (VlsE) C6-17 peptide was included as a positive control. Results Serum IgG from Bb+ samples were reactive with 10 of the 13 OspC-derived peptides tested, with the C-terminal peptide (residues 193-210) being the most reactive. Spearman's rank correlation matrices and hierarchical clustering revealed a strong correlation between 193-210 and VlsE C6-17 peptide reactivity but little demonstrable association between 193-210 and the other OspC peptides or recombinant OspC. OspC peptide reactivities (excluding 193-210) were strongly correlated with each other and were disproportionately influenced by a subset of pan-reactive samples. In the PTLD sample set, none of the OspC-derived peptides were significantly reactive over baseline, even though VlsE C6-17 peptide reactivity remained. Conclusions The asynchronous and potentially short-lived serologic response to OspC-derived peptides reveals the complexity of B-cell responses to B. burgdorferi lipoproteins and confounds interpretation of antibody profiles for Lyme disease diagnostics.
Collapse
Affiliation(s)
- Grace Freeman-Gallant
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Kathleen McCarthy
- Department of Biomedical Sciences, University at Albany, Albany, New York
| | - Jennifer Yates
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, University at Albany, Albany, New York
| | - Karen Kulas
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | | | - David J. Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, University at Albany, Albany, New York
| | - Nicholas J. Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, University at Albany, Albany, New York
| |
Collapse
|
2
|
Hofmann H, Margos G, Todorova A, Ringshausen I, Kuleshov K, Fingerle V. Case report of disseminated borrelial lymphocytoma with isolation of Borrelia burgdorferi sensu stricto in chronic lymphatic leukemia stage Binet A-an 11 year follow up. Front Med (Lausanne) 2024; 11:1465630. [PMID: 39493706 PMCID: PMC11527655 DOI: 10.3389/fmed.2024.1465630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
We report a rare manifestation of cutaneous borreliosis in a patient with pre-existing malignant lymphoproliferative disease, in particular chronic lymphocytic B cell leukemia (B-CLL). The patient's cutaneous lesions were initially diagnosed histologically as leukemia cutis. Distribution pattern of the skin lesions were in typical localizations for borrelial lymphocytoma. Borrelia burgdorferi sensu stricto was isolated and cultured from two sites (ear, mammilla). Antibiotic therapy improved the cutaneous lesions and the general condition of the patient. However, a second round of antibiotic therapy was required to resolve the lesions. At eleven years of follow-up the patient's skin was clear and she still had a stable condition of B-CLL without chemotherapy. In conclusion, the patient suffered from Lyme borreliosis (Borrelia lymphocytoma) and the cutaneous symptoms were aggravated by the underlying condition of chronic B-CLL condition.
Collapse
Affiliation(s)
- Heidelore Hofmann
- Department of Dermatology and Allergy, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Antonia Todorova
- Department of Dermatology and Allergy, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
- Department of Public Health, City of Munich, Munich, Germany
| | - Ingo Ringshausen
- III Medical Department for Hematology and Hematooncology, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
- University College London Cancer Institute, London, United Kingdom
| | | | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| |
Collapse
|
3
|
Rudolph MJ, Chen Y, Vorauer C, Vance DJ, Piazza CL, Willsey GG, McCarthy K, Muriuki B, Cavacini LA, Guttman M, Mantis NJ. Structure of a Human Monoclonal Antibody in Complex with Outer Surface Protein C of the Lyme Disease Spirochete, Borreliella burgdorferi. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1234-1243. [PMID: 39240158 DOI: 10.4049/jimmunol.2400247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
Lyme disease is a tick-borne, multisystem infection caused by the spirochete Borreliella burgdorferi. Although Abs have been implicated in the resolution of Lyme disease, the specific B cell epitopes targeted during human infections remain largely unknown. In this study, we characterized and defined the structural epitope of a patient-derived bactericidal monoclonal IgG (B11) against outer surface protein C (OspC), a homodimeric lipoprotein necessary for B. burgdorferi tick-mediated transmission and early-stage colonization of vertebrate hosts. High-resolution epitope mapping was accomplished through hydrogen deuterium exchange-mass spectrometry and X-ray crystallography. Structural analysis of B11 Fab-OspCA complexes revealed the B11 Fabs associated in a 1:1 stoichiometry with the lateral faces of OspCA homodimers such that the Abs are essentially positioned perpendicular to the spirochete's outer surface. B11's primary contacts reside within the membrane-proximal regions of α-helices 1 and 6 and adjacent loops 5 and 6 in one OspCA monomer. In addition, B11 spans the OspCA dimer interface, engaging opposing α-helix 1', α-helix 2', and loop 2-3' in the second OspCA monomer. The B11-OspCA structure is reminiscent of the recently solved mouse transmission blocking monoclonal IgG B5 in complex with OspCA, indicating a mode of engagement with OspC that is conserved across species. In conclusion, we provide a detailed insight into the interaction between a functional human Ab and an immunodominant Lyme disease Ag long considered an important vaccine candidate.
Collapse
Affiliation(s)
| | - Yang Chen
- New York Structural Biology Center, New York, NY
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY
- Department of Biomedical Sciences, University at Albany, Albany, NY
| | - Carol Lyn Piazza
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Graham G Willsey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY
| | | | | | - Lisa A Cavacini
- University of Massachusetts Chan Medical School, Worcester, MA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY
- Department of Biomedical Sciences, University at Albany, Albany, NY
| |
Collapse
|
4
|
Akther S, Mongodin EF, Morgan RD, Di L, Yang X, Golovchenko M, Rudenko N, Margos G, Hepner S, Fingerle V, Kawabata H, Norte AC, de Carvalho IL, Núncio MS, Marques A, Schutzer SE, Fraser CM, Luft BJ, Casjens SR, Qiu W. Natural selection and recombination at host-interacting lipoprotein loci drive genome diversification of Lyme disease and related bacteria. mBio 2024; 15:e0174924. [PMID: 39145656 PMCID: PMC11389397 DOI: 10.1128/mbio.01749-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024] Open
Abstract
Lyme disease, caused by spirochetes in the Borrelia burgdorferi sensu lato clade within the Borrelia genus, is transmitted by Ixodes ticks and is currently the most prevalent and rapidly expanding tick-borne disease in Europe and North America. We report complete genome sequences of 47 isolates that encompass all established species in this clade while highlighting the diversity of the widespread human pathogenic species B. burgdorferi. A similar set of plasmids has been maintained throughout Borrelia divergence, indicating that they are a key adaptive feature of this genus. Phylogenetic reconstruction of all sequenced Borrelia genomes revealed the original divergence of Eurasian and North American lineages and subsequent dispersals that introduced B. garinii, B. bavariensis, B. lusitaniae, B. valaisiana, and B. afzelii from East Asia to Europe and B. burgdorferi and B. finlandensis from North America to Europe. Molecular phylogenies of the universally present core replicons (chromosome and cp26 and lp54 plasmids) are highly consistent, revealing a strong clonal structure. Nonetheless, numerous inconsistencies between the genome and gene phylogenies indicate species dispersal, genetic exchanges, and rapid sequence evolution at plasmid-borne loci, including key host-interacting lipoprotein genes. While localized recombination occurs uniformly on the main chromosome at a rate comparable to mutation, lipoprotein-encoding loci are recombination hotspots on the plasmids, suggesting adaptive maintenance of recombinant alleles at loci directly interacting with the host. We conclude that within- and between-species recombination facilitates adaptive sequence evolution of host-interacting lipoprotein loci and contributes to human virulence despite a genome-wide clonal structure of its natural populations. IMPORTANCE Lyme disease (also called Lyme borreliosis in Europe), a condition caused by spirochete bacteria of the genus Borrelia, transmitted by hard-bodied Ixodes ticks, is currently the most prevalent and rapidly expanding tick-borne disease in the United States and Europe. Borrelia interspecies and intraspecies genome comparisons of Lyme disease-related bacteria are essential to reconstruct their evolutionary origins, track epidemiological spread, identify molecular mechanisms of human pathogenicity, and design molecular and ecological approaches to disease prevention, diagnosis, and treatment. These Lyme disease-associated bacteria harbor complex genomes that encode many genes that do not have homologs in other organisms and are distributed across multiple linear and circular plasmids. The functional significance of most of the plasmid-borne genes and the multipartite genome organization itself remains unknown. Here we sequenced, assembled, and analyzed whole genomes of 47 Borrelia isolates from around the world, including multiple isolates of the human pathogenic species. Our analysis elucidates the evolutionary origins, historical migration, and sources of genomic variability of these clinically important pathogens. We have developed web-based software tools (BorreliaBase.org) to facilitate dissemination and continued comparative analysis of Borrelia genomes to identify determinants of human pathogenicity.
Collapse
Affiliation(s)
- Saymon Akther
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
| | | | | | - Lia Di
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
| | - Xiaohua Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, USA
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | - Sabrina Hepner
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority and German National Reference Centre for Borrelia, Oberschleissheim, Bavaria, Germany
| | | | - Ana Cláudia Norte
- Department of Life Sciences, University of Coimbra, MARE-Marine and Environmental Sciences Centre, Coimbra, Portugal
| | | | - Maria Sofia Núncio
- Centre for Vector and Infectious Diseases Research, Águas de Moura, Portugal
| | - Adriana Marques
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | - Claire M Fraser
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin J Luft
- Department of Medicine, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, USA
| | - Sherwood R Casjens
- University of Utah School of Medicine and School of Biological Sciences, Salt Lake City, Utah, USA
| | - Weigang Qiu
- Graduate Center and Hunter College, City University of New York, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
5
|
Rudolph MJ, Chen Y, Vorauer C, Vance DJ, Piazza CL, Willsey GG, McCarthy K, Muriuki B, Cavacini LA, Guttman M, Mantis NJ. Structure of a human monoclonal antibody in complex with Outer surface protein C (OspC) of the Lyme disease spirochete, Borreliella burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591597. [PMID: 38746285 PMCID: PMC11092446 DOI: 10.1101/2024.04.29.591597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lyme disease is a tick-borne, multisystem infection caused by the spirochete, Borreliella burgdorferi . Although antibodies have been implicated in the resolution of Lyme disease, the specific B cell epitopes targeted during human infections remain largely unknown. In this study, we characterized and defined the structural epitope of a patient-derived bactericidal monoclonal IgG ("B11") against Outer surface protein C (OspC), a homodimeric lipoprotein necessary for B. burgdorferi tick-mediated transmission and early-stage colonization of vertebrate hosts. High-resolution epitope mapping was accomplished through hydrogen deuterium exchange-mass spectrometry (HDX-MS) and X-ray crystallography. Structural analysis of B11 Fab-OspC A complexes revealed the B11 Fabs associated in a 1:1 stoichiometry with the lateral faces of OspC A homodimers such that the antibodies are essentially positioned perpendicular to the spirochete's outer surface. B11's primary contacts reside within the membrane proximal regions of α-helices 1 and 6 and adjacent loops 5 and 6 in one OspC A monomer. In addition, B11 spans the OspC A dimer interface, engaging opposing α-helix 1', α-helix 2', and loop 2-3' in the second OspC A monomer. The B11-OspC A structure is reminiscent of the recently solved mouse transmission blocking monoclonal IgG B5 in complex with OspC A , indicating a mode of engagement with OspC that is conserved across species. In conclusion, we provide the first detailed insight into the interaction between a functional human antibody and an immunodominant Lyme disease antigen long considered an important vaccine target.
Collapse
|
6
|
Koloski CW, Hurry G, Foley-Eby A, Adam H, Goldstein S, Zvionow P, Detmer SE, Voordouw MJ. Male C57BL/6J mice have higher presence and abundance of Borrelia burgdorferi in their ventral skin compared to female mice. Ticks Tick Borne Dis 2024; 15:102308. [PMID: 38215632 DOI: 10.1016/j.ttbdis.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
Borrelia burgdorferi is a tick-borne spirochete that causes Lyme disease in humans. The host immune system controls the abundance of the spirochete in the host tissues. Recent work with immunocompetent Mus musculus mice strain C3H/HeJ found that males had a higher tissue infection prevalence and spirochete load compared to females. The purpose of this study was to determine whether host sex and acquired immunity interact to influence the prevalence and abundance of spirochetes in the tissues of the commonly used mouse strain C57BL/6. Wildtype (WT) mice and their SCID counterparts (C57BL/6) were experimentally infected with B. burgdorferi via tick bite. Ear biopsies were sampled at weeks 4, 8, and 12 post-infection (PI) and five tissues (left ear, ventral skin, heart, tibiotarsal joint of left hind leg, and liver) were collected at necropsy (16 weeks PI). The mean spirochete load in the tissues of the SCID mice was 260.4x higher compared to the WT mice. In WT mice, the infection prevalence in the ventral skin was significantly higher in males (40.0 %) compared to females (0.0 %), and the spirochete load in the rear tibiotarsal joint was significantly higher (4.3x) in males compared to females. In SCID mice, the spirochete load in the ventral skin was 200.0x higher in males compared to females, but there were no significant sex-specific difference in spirochete load in the other tissues (left ear, heart, tibiotarsal joint, or liver). Thus, the absence of acquired immunity greatly amplified the spirochete load in the ventral skin of male mice. It is important to note that the observed sex-specific differences in laboratory mice cannot be extrapolated to humans. Future studies should investigate the mechanisms underlying the male bias in the abundance of B. burgdorferi in the mouse skin.
Collapse
Affiliation(s)
- Cody W Koloski
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Alexandra Foley-Eby
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Hesham Adam
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Savannah Goldstein
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Pini Zvionow
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Susan E Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
7
|
Shifflett SA, Ferreira FC, González J, Toledo A, Fonseca DM, Ellis VA. Diversity and host specificity of Borrelia burgdorferi's outer surface protein C ( ospC) alleles in synanthropic mammals, with a notable ospC allele U absence from mixed infections. Infect Immun 2024; 92:e0024423. [PMID: 38099660 PMCID: PMC10790820 DOI: 10.1128/iai.00244-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024] Open
Abstract
Interactions among pathogen genotypes that vary in host specificity may affect overall transmission dynamics in multi-host systems. Borrelia burgdorferi, a bacterium that causes Lyme disease, is typically transmitted among wildlife by Ixodes ticks. Despite the existence of many alleles of B. burgdorferi's sensu stricto outer surface protein C (ospC) gene, most human infections are caused by a small number of ospC alleles ["human infectious alleles" (HIAs)], suggesting variation in host specificity associated with ospC. To characterize the wildlife host association of B. burgdorferi's ospC alleles, we used metagenomics to sequence ospC alleles from 68 infected individuals belonging to eight mammalian species trapped at three sites in suburban New Brunswick, New Jersey (USA). We found that multiple allele ("mixed") infections were common. HIAs were most common in mice (Peromyscus spp.) and only one HIA was detected at a site where mice were rarely captured. ospC allele U was exclusively found in chipmunks (Tamias striatus), and although a significant number of different alleles were observed in chipmunks, including HIAs, allele U never co-occurred with other alleles in mixed infections. Our results suggest that allele U may be excluding other alleles, thereby reducing the capacity of chipmunks to act as reservoirs for HIAs.
Collapse
Affiliation(s)
- Scarlet A. Shifflett
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, Delaware, USA
| | - Francisco C. Ferreira
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, New Jersey, USA
| | - Julia González
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, New Jersey, USA
| | - Alvaro Toledo
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, New Jersey, USA
| | - Dina M. Fonseca
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, New Jersey, USA
| | - Vincenzo A. Ellis
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
8
|
Golovchenko M, Opelka J, Vancova M, Sehadova H, Kralikova V, Dobias M, Raska M, Krupka M, Sloupenska K, Rudenko N. Concurrent Infection of the Human Brain with Multiple Borrelia Species. Int J Mol Sci 2023; 24:16906. [PMID: 38069228 PMCID: PMC10707132 DOI: 10.3390/ijms242316906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Lyme disease (LD) spirochetes are well known to be able to disseminate into the tissues of infected hosts, including humans. The diverse strategies used by spirochetes to avoid the host immune system and persist in the host include active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, changing of morphological and physiological state in varying environments, formation of biofilms and persistent forms, and, importantly, incursion into immune-privileged sites such as the brain. Invasion of immune-privileged sites allows the spirochetes to not only escape from the host immune system but can also reduce the efficacy of antibiotic therapy. Here we present a case of the detection of spirochetal DNA in multiple loci in a LD patient's post-mortem brain. The presence of co-infection with Borrelia burgdorferi sensu stricto and Borrelia garinii in this LD patient's brain was confirmed by PCR. Even though both spirochete species were simultaneously present in human brain tissue, the brain regions where the two species were detected were different and non-overlapping. The presence of atypical spirochete morphology was noted by immunohistochemistry of the brain samples. Atypical morphology was also found in the tissues of experimentally infected mice, which were used as a control.
Collapse
Affiliation(s)
- Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
| | - Jakub Opelka
- Biology Centre Czech Academy of Sciences, Institute of Entomology, 37005 Ceske Budejovice, Czech Republic; (J.O.); (H.S.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Marie Vancova
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Hana Sehadova
- Biology Centre Czech Academy of Sciences, Institute of Entomology, 37005 Ceske Budejovice, Czech Republic; (J.O.); (H.S.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Veronika Kralikova
- Institute of Forensic Medicine and Medical Law, University Hospital Olomouc, 77900 Olomouc, Czech Republic; (V.K.); (M.D.)
| | - Martin Dobias
- Institute of Forensic Medicine and Medical Law, University Hospital Olomouc, 77900 Olomouc, Czech Republic; (V.K.); (M.D.)
| | - Milan Raska
- Department of Immunology, University Hospital Olomouc, 77900 Olomouc, Czech Republic;
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (M.K.); (K.S.)
| | - Kristyna Sloupenska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (M.K.); (K.S.)
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
| |
Collapse
|
9
|
Pearson P, Rich C, Siegel EL, Brisson D, Rich SM. Differential Resistance of Borrelia burgdorferi Clones to Human Serum-Mediated Killing Does Not Correspond to Their Predicted Invasiveness. Pathogens 2023; 12:1238. [PMID: 37887754 PMCID: PMC10609869 DOI: 10.3390/pathogens12101238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Reservoir host associations have been observed among and within Borrelia genospecies, and host complement-mediated killing is a major determinant in these interactions. In North America, only a subset of Borrelia burgdorferi lineages cause the majority of disseminated infections in humans. We hypothesize that differential resistance to human complement-mediated killing may be a major phenotypic determinant of whether a lineage can establish systemic infection. As a corollary, we hypothesize that borreliacidal action may differ among human subjects. To test these hypotheses, we isolated primary B. burgdorferi clones from field-collected ticks and determined whether the killing effects of human serum differed among those clones in vitro and/or whether these effects were consistent among human sera. Clones associated with human invasiveness did not show higher survival in human serum compared to noninvasive clones. These results indicate that differential complement-mediated killing of B. burgdorferi lineages is not a determinant of invasiveness in humans. Only one significant difference in the survivorship of individual clones incubated in different human sera was detected, suggesting that complement-mediated killing of B. burgdorferi is usually similar among humans. Mechanisms other than differential human complement-mediated killing of B. burgdorferi lineages likely explain why only certain lineages cause the majority of disseminated human infections.
Collapse
Affiliation(s)
- Patrick Pearson
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA; (P.P.); (C.R.); (E.L.S.)
| | - Connor Rich
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA; (P.P.); (C.R.); (E.L.S.)
| | - Eric L. Siegel
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA; (P.P.); (C.R.); (E.L.S.)
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Stephen M. Rich
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA; (P.P.); (C.R.); (E.L.S.)
| |
Collapse
|
10
|
Shifflett SA, Wiedmeyer T, Kennedy A, Maestas L, Buoni M, Ciloglu A, Ellis VA. Prevalence of Borrelia burgdorferi and diversity of its outer surface protein C (ospC) alleles in blacklegged ticks (Ixodes scapularis) in Delaware. Ticks Tick Borne Dis 2023; 14:102139. [PMID: 36780839 PMCID: PMC10033352 DOI: 10.1016/j.ttbdis.2023.102139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023]
Abstract
Characterizing the diversity of genes associated with virulence and transmission of a pathogen across the pathogen's distribution can inform our understanding of host infection risk. Borrelia burgdorferi is a vector-borne bacterium that causes Lyme disease in humans and is common in the United States. The outer surface protein C (ospC) gene of B. burgdorferi exhibits substantial genetic variation across the pathogen's distribution and plays a critical role in virulence and transmission in vertebrate hosts. In fact, B. burgdorferi infections that disseminate across host tissues in humans are associated with only a subset of ospC alleles. Delaware has a high incidence of Lyme disease, but the diversity of ospC in B. burgdorferi in the state has not been evaluated. We used PCR to amplify ospC in B. burgdorferi-infected blacklegged ticks (Ixodes scapularis) in sites statewide and used short-read sequencing to identify ospC alleles. B. burgdorferi prevalence in blacklegged ticks varied across sites, but not significantly so. We identified 15 previously characterized ospC alleles accounting for nearly all of the expected diversity of alleles across the sites as estimated using the Chao1 index. Nearly 40% of sequenced infections (23/58) had more than one ospC allele present suggesting mixed strain infections and the relative frequencies of alleles in single infections were positively correlated with their relative frequencies in mixed infections. Turnover of ospC alleles was positively related to distance between sites with closer sites having more similar allele compositions than more distant sites. This suggests a degree of B. burgdorferi dispersal limitation or habitat specialization. OspC alleles known to cause disseminated infections in humans were found at the highest frequencies across sites, corresponding to Delaware's high incidence of Lyme disease.
Collapse
Affiliation(s)
- Scarlet A Shifflett
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | - Tyler Wiedmeyer
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | - Ashley Kennedy
- Mosquito Control Section, Division of Fish & Wildlife, Delaware Department of Natural Resources and Environmental Control, DE, USA
| | - Lauren Maestas
- Mosquito Control Section, Division of Fish & Wildlife, Delaware Department of Natural Resources and Environmental Control, DE, USA; Cattle Fever Tick Research Laboratory, USDA, Agricultural Research Service, Edinburg, TX, USA
| | - Michael Buoni
- Delaware Technical Community College, Georgetown, DE, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Arif Ciloglu
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye; Vectors and Vector-Borne Diseases Implementation and Research Center, Erciyes University, Kayseri, Türkiye
| | - Vincenzo A Ellis
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
11
|
Mukherjee PG, Liveris D, Hanincova K, Iyer R, Wormser GP, Huang W, Schwartz I. Borrelia burgdorferi Outer Surface Protein C Is Not the Sole Determinant of Dissemination in Mammals. Infect Immun 2023; 91:e0045622. [PMID: 36880751 PMCID: PMC10112133 DOI: 10.1128/iai.00456-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Lyme disease in the United States is most often caused by Borrelia burgdorferi sensu stricto. After a tick bite, the patient may develop erythema migrans at that site. If hematogenous dissemination occurs, the patient may then develop neurologic manifestations, carditis, or arthritis. Host-pathogen interactions include factors that contribute to hematogenous dissemination to other body sites. Outer surface protein C (OspC), a surface-exposed lipoprotein of B. burgdorferi, is essential during the early stages of mammalian infection. There is a high degree of genetic variation at the ospC locus, and certain ospC types are more frequently associated with hematogenous dissemination in patients, suggesting that OspC may be a major contributing factor to the clinical outcome of B. burgdorferi infection. In order to evaluate the role of OspC in B. burgdorferi dissemination, ospC was exchanged between B. burgdorferi isolates with different capacities to disseminate in laboratory mice, and these strains were then tested for their ability to disseminate in mice. The results indicated that the ability of B. burgdorferi to disseminate in mammalian hosts does not depend on OspC alone. The complete genome sequences of two closely related strains of B. burgdorferi with differing dissemination phenotypes were determined, but a specific genetic locus that could explain the differences in the phenotypes could not be definitively identified. The animal studies performed clearly demonstrated that OspC is not the sole determinant of dissemination. Future studies of the type described here with additional borrelial strains will hopefully clarify the genetic elements associated with hematogenous dissemination.
Collapse
Affiliation(s)
- Priyanka G. Mukherjee
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Dionysios Liveris
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Klára Hanincova
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Radha Iyer
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Gary P. Wormser
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Weihua Huang
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Ira Schwartz
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
12
|
Zawada SG, von Fricken ME, Weppelmann TA, Sikaroodi M, Gillevet PM. Genetic variation of Borreliella burgdorferi in Fairfax County, Virginia, targeting the OspC gene in white-footed mice. Front Microbiol 2022; 13:998365. [DOI: 10.3389/fmicb.2022.998365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/20/2022] [Indexed: 11/20/2022] Open
Abstract
Outer surface protein C (OspC) is a commonly used marker in population studies of Borreliella to differentiate types and establish evolution over time. Investigating the ospC genetic types of Borreliella burgdorferi across multiple organ tissues of white-footed mice has the potential to contribute to our understanding of Lyme disease and the wide spectrum of clinical presentation associated with infection. In this study, five unique tissue types were sampled from 90 mice and screened for B. burgdorferi infections. This initial screening revealed a 63% overall B. burgdorferi infection rate in the mice collected (57/90). A total of 163 tissues (30.4%) tested positive for B. burgdorferi infections and when mapped to Borreliella types, 143,894 of the initial 322,480 reads mapped to 10 of the reference sequences in the ospC strain library constructed for this study at a 97% MOI. Two tissue types, the ear and the tongue, each accounted for 90% of the observed Borreliella sequence diversity in the tissue samples surveyed. The largest amount of variation was observed in an individual ear tissue sample with six ospC sequence types, which is equivalent to 60% of the observed variation seen across all tested specimens, with statistically significant associations observed between tissue type and detected Borreliella. There is strong evidence for genetic variability in B. burgdorferi within local white-footed mouse populations and even within individual hosts by tissue type. These findings may shed light on drivers of infection sequalae in specific tissues in humans and highlights the need for expanded surveillance on the epigenetics of B. burgdorferi across reservoirs, ticks, and infected patients.
Collapse
|
13
|
Lin YP, Tufts DM, Combs M, Dupuis AP, Marcinkiewicz AL, Hirsbrunner AD, Diaz AJ, Stout JL, Blom AM, Strle K, Davis AD, Kramer LD, Kolokotronis SO, Diuk-Wasser MA. Cellular and immunological mechanisms influence host-adapted phenotypes in a vector-borne microparasite. Proc Biol Sci 2022; 289:20212087. [PMID: 35193398 PMCID: PMC8864362 DOI: 10.1098/rspb.2021.2087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/18/2022] [Indexed: 01/15/2023] Open
Abstract
Predicting pathogen emergence and spillover risk requires understanding the determinants of a pathogens' host range and the traits involved in host competence. While host competence is often considered a fixed species-specific trait, it may be variable if pathogens diversify across hosts. Balancing selection can lead to maintenance of pathogen polymorphisms (multiple-niche-polymorphism; MNP). The causative agent of Lyme disease, Borrelia burgdorferi (Bb), provides a model to study the evolution of host adaptation, as some Bb strains defined by their outer surface protein C (ospC) genotype, are widespread in white-footed mice and others are associated with non-rodent vertebrates (e.g. birds). To identify the mechanisms underlying potential strain × host adaptation, we infected American robins and white-footed mice, with three Bb strains of different ospC genotypes. Bb burdens varied by strain in a host-dependent fashion, and strain persistence in hosts largely corresponded to Bb survival at early infection stages and with transmission to larvae (i.e. fitness). Early survival phenotypes are associated with cell adhesion, complement evasion and/or inflammatory and antibody-mediated removal of Bb, suggesting directional selective pressure for host adaptation and the potential role of MNP in maintaining OspC diversity. Our findings will guide future investigations to inform eco-evolutionary models of host adaptation for microparasites.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA
| | - Danielle M. Tufts
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
- Infectious Diseases and Microbiology Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Combs
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Alan P. Dupuis
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | | | | | - Alexander J. Diaz
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Jessica L. Stout
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Anna M. Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Klemen Strle
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA
| | - April D. Davis
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Laura D. Kramer
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
- Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Institute for Genomic Health, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Division of Infectious Diseases, Department of Medicine, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Maria A. Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
A Borrelia burgdorferi outer surface protein C (OspC) genotyping method using Luminex technology. PLoS One 2022; 17:e0269266. [PMID: 35648767 PMCID: PMC9159548 DOI: 10.1371/journal.pone.0269266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Borrelia burgdorferi is an important tickborne human pathogen comprising several strains based on nucleotide sequence of the outer surface protein C (ospC) gene. Detection and characterization of different ospC genotypes is vital for research on B. burgdorferi and the risk it poses to humans. Here we present a novel, multiplex assay based on Luminex xMAP technology for the detection of B. burgdorferi ospC genotypes. The assay has five major steps: amplification of the ospC gene, hydrolyzation of surplus primers and nucleotides, incorporation of biotinylated nucleotides into the template DNA, hybridization to Luminex microspheres, and detection of fluorescent signals corresponding to each ospC genotype. We validated the protocol by comparing results obtained from our method against results from an established ospC genotyping method. This protocol can be used for the characterization of ospC genotypes in B. burgdorferi infected ticks, reservoir hosts, and/or clinical samples.
Collapse
|
15
|
Dolange V, Simon S, Morel N. Detection of Borrelia burgdorferi antigens in tissues and plasma during early infection in a mouse model. Sci Rep 2021; 11:17368. [PMID: 34462491 PMCID: PMC8405660 DOI: 10.1038/s41598-021-96861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
Borrelia burgdorferi is the causative agent of Lyme borreliosis, which is the most common tick-borne human disease in Europe and North America. Currently, the diagnosis of Lyme borreliosis is based on serological tests allowing indirect detection of anti-Borrelia antibodies produced by patients. Their main drawback is a lack of sensitivity in the early phase of disease and an incapacity to prove an active infection. Direct diagnostic tests are clearly needed. The objectives of this study were to produce tools allowing sensitive detection of potential circulating Borrelia antigens and to evaluate them in a mouse model. We focused on two potential early bacterial makers, the highly variable OspC protein and the conserved protein FlaB. High-affinity monoclonal antibodies were produced and used to establish various immunoassays and western blot detection. A very good limit of detection for OspC as low as 17 pg/mL of sample was achieved with SPIE-IA. In infected mice, we were able to measure OspC in plasma with a mean value of 10 ng/mL at 7 days post-inoculation. This result suggests that OspC could be a good blood marker for diagnosis of Lyme borreliosis and that the tools developed during this study could be very useful.
Collapse
Affiliation(s)
- Victoria Dolange
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Nathalie Morel
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department (DMTS), SPI, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
16
|
Lyme arthritis: linking infection, inflammation and autoimmunity. Nat Rev Rheumatol 2021; 17:449-461. [PMID: 34226730 PMCID: PMC9488587 DOI: 10.1038/s41584-021-00648-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Infectious agents can trigger autoimmune responses in a number of chronic inflammatory diseases. Lyme arthritis, which is caused by the tick-transmitted spirochaete Borrelia burgdorferi, is effectively treated in most patients with antibiotic therapy; however, in a subset of patients, arthritis can persist and worsen after the spirochaete has been killed (known as post-infectious Lyme arthritis). This Review details the current understanding of the pathogenetic events in Lyme arthritis, from initial infection in the skin, through infection of the joints, to post-infectious chronic inflammatory arthritis. The central feature of post-infectious Lyme arthritis is an excessive, dysregulated pro-inflammatory immune response during the infection phase that persists into the post-infectious period. This response is characterized by high amounts of IFNγ and inadequate amounts of the anti-inflammatory cytokine IL-10. The consequences of this dysregulated pro-inflammatory response in the synovium include impaired tissue repair, vascular damage, autoimmune and cytotoxic processes, and fibroblast proliferation and fibrosis. These synovial characteristics are similar to those in other chronic inflammatory arthritides, including rheumatoid arthritis. Thus, post-infectious Lyme arthritis provides a model for other chronic autoimmune or autoinflammatory arthritides in which complex immune responses can be triggered and shaped by an infectious agent in concert with host genetic factors.
Collapse
|
17
|
Ford L, Tufts DM. Lyme Neuroborreliosis: Mechanisms of B. burgdorferi Infection of the Nervous System. Brain Sci 2021; 11:brainsci11060789. [PMID: 34203671 PMCID: PMC8232152 DOI: 10.3390/brainsci11060789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Lyme borreliosis is the most prevalent tick-borne disease in the United States, infecting ~476,000 people annually. Borrelia spp. spirochetal bacteria are the causative agents of Lyme disease in humans and are transmitted by Ixodes spp ticks. Clinical manifestations vary depending on which Borrelia genospecies infects the patient and may be a consequence of distinct organotropism between species. In the US, B. burgdorferi sensu stricto is the most commonly reported genospecies and infection can manifest as mild to severe symptoms. Different genotypes of B. burgdorferi sensu stricto may be responsible for causing varying degrees of clinical manifestations. While the majority of Lyme borreliae-infected patients fully recover with antibiotic treatment, approximately 15% of infected individuals experience long-term neurological and psychological symptoms that are unresponsive to antibiotics. Currently, long-term antibiotic treatment remains the only FDA-approved option for those suffering from these chronic effects. Here, we discuss the current knowledge pertaining to B. burgdorferi sensu stricto infection in the central nervous system (CNS), termed Lyme neuroborreliosis (LNB), within North America and specifically the United States. We explore the molecular mechanisms of spirochete entry into the brain and the role B. burgdorferi sensu stricto genotypes play in CNS infectivity. Understanding infectivity can provide therapeutic targets for LNB treatment and offer public health understanding of the B. burgdorferi sensu stricto genotypes that cause long-lasting symptoms.
Collapse
Affiliation(s)
- Lenzie Ford
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Correspondence: (L.F.); (D.M.T.)
| | - Danielle M. Tufts
- Infectious Diseases and Microbiology Department, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: (L.F.); (D.M.T.)
| |
Collapse
|
18
|
Development of a capture sequencing assay for enhanced detection and genotyping of tick-borne pathogens. Sci Rep 2021; 11:12384. [PMID: 34117323 PMCID: PMC8196166 DOI: 10.1038/s41598-021-91956-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Inadequate sensitivity has been the primary limitation for implementing high-throughput sequencing for studies of tick-borne agents. Here we describe the development of TBDCapSeq, a sequencing assay that uses hybridization capture probes that cover the complete genomes of the eleven most common tick-borne agents found in the United States. The probes are used for solution-based capture and enrichment of pathogen nucleic acid followed by high-throughput sequencing. We evaluated the performance of TBDCapSeq to surveil samples that included human whole blood, mouse tissues, and field-collected ticks. For Borrelia burgdorferi and Babesia microti, the sensitivity of TBDCapSeq was comparable and occasionally exceeded the performance of agent-specific quantitative PCR and resulted in 25 to > 10,000-fold increase in pathogen reads when compared to standard unbiased sequencing. TBDCapSeq also enabled genome analyses directly within vertebrate and tick hosts. The implementation of TBDCapSeq could have major impact in studies of tick-borne pathogens by improving detection and facilitating genomic research that was previously unachievable with standard sequencing approaches.
Collapse
|
19
|
Abstract
Lyme borreliosis is caused by a growing list of related, yet distinct, spirochetes with complex biology and sophisticated immune evasion mechanisms. It may result in a range of clinical manifestations involving different organ systems, and can lead to persistent sequelae in a subset of cases. The pathogenesis of Lyme borreliosis is incompletely understood, and laboratory diagnosis, the focus of this review, requires considerable understanding to interpret the results correctly. Direct detection of the infectious agent is usually not possible or practical, necessitating a continued reliance on serologic testing. Still, some important advances have been made in the area of diagnostics, and there are many promising ideas for future assay development. This review summarizes the state of the art in laboratory diagnostics for Lyme borreliosis, provides guidance in test selection and interpretation, and highlights future directions.
Collapse
|
20
|
Molecular Microbiological and Immune Characterization of a Cohort of Patients Diagnosed with Early Lyme Disease. J Clin Microbiol 2020; 59:JCM.00615-20. [PMID: 33087434 DOI: 10.1128/jcm.00615-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Lyme disease is a tick-borne infection caused by the bacteria Borrelia burgdorferi Current diagnosis of early Lyme disease relies heavily on clinical criteria, including the presence of an erythema migrans rash. The sensitivity of current gold-standard diagnostic tests relies upon antibody formation, which is typically delayed and thus of limited utility in early infection. We conducted a study of blood and skin biopsy specimens from 57 patients with a clinical diagnosis of erythema migrans. Samples collected at the time of diagnosis were analyzed using an ultrasensitive, PCR-based assay employing an isothermal amplification step and multiple primers. In 75.4% of patients, we directly detected one or more B. burgdorferi genotypes in the skin. Two-tier testing showed that 20 (46.5%) of those found to be PCR positive remained serologically negative at both acute and convalescent time points. Multiple genotypes were found in three (8%) of those where a specific genotype could be identified. The 13 participants who lacked PCR and serologic evidence for exposure to B. burgdorferi could be differentiated as a group from PCR-positive participants by their levels of several immune markers as well as by clinical descriptors such as the number of acute symptoms and the pattern of their erythema migrans rash. These results suggest that within a Mid-Atlantic cohort, patient subgroups can be identified using PCR-based direct detection approaches. This may be particularly useful in future research such as vaccine trials and public health surveillance of tick-borne disease patterns.
Collapse
|
21
|
Abstract
Lyme disease (Lyme borreliosis) is a tick-borne, zoonosis of adults and children caused by genospecies of the Borrelia burgdorferi sensu lato complex. The ailment, widespread throughout the Northern Hemisphere, continues to increase globally due to multiple environmental factors, coupled with increased incursion of humans into habitats that harbor the spirochete. B. burgdorferi sensu lato is transmitted by ticks from the Ixodes ricinus complex. In North America, B. burgdorferi causes nearly all infections; in Europe, B. afzelii and B. garinii are most associated with human disease. The spirochete's unusual fragmented genome encodes a plethora of differentially expressed outer surface lipoproteins that play a seminal role in the bacterium's ability to sustain itself within its enzootic cycle and cause disease when transmitted to its incidental human host. Tissue damage and symptomatology (i.e., clinical manifestations) result from the inflammatory response elicited by the bacterium and its constituents. The deposition of spirochetes into human dermal tissue generates a local inflammatory response that manifests as erythema migrans (EM), the hallmark skin lesion. If treated appropriately and early, the prognosis is excellent. However, in untreated patients, the disease may present with a wide range of clinical manifestations, most commonly involving the central nervous system, joints, or heart. A small percentage (~10%) of patients may go on to develop a poorly defined fibromyalgia-like illness, post-treatment Lyme disease (PTLD) unresponsive to prolonged antimicrobial therapy. Below we integrate current knowledge regarding the ecologic, epidemiologic, microbiologic, and immunologic facets of Lyme disease into a conceptual framework that sheds light on the disorder that healthcare providers encounter.
Collapse
Affiliation(s)
- Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, CT 06030, USA
- Department of Pediatrics, UConn Health, Farmington, CT 06030, USA
- Departments of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
- Departments of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
- Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Klemen Strle
- Division of Infectious Diseases, Wadsworth Center, NY Department of Health, Albany NY, 12208, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
O'Bier NS, Hatke AL, Camire AC, Marconi RT. Human and Veterinary Vaccines for Lyme Disease. Curr Issues Mol Biol 2020; 42:191-222. [PMID: 33289681 DOI: 10.21775/cimb.042.191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lyme disease (LD) is an emerging zoonotic infection that is increasing in incidence in North America, Europe, and Asia. With the development of safe and efficacious vaccines, LD can potentially be prevented. Vaccination offers a cost-effective and safe approach for decreasing the risk of infection. While LD vaccines have been widely used in veterinary medicine, they are not available as a preventive tool for humans. Central to the development of effective vaccines is an understanding of the enzootic cycle of LD, differential gene expression of Borrelia burgdorferi in response to environmental variables, and the genetic and antigenic diversity of the unique bacteria that cause this debilitating disease. Here we review these areas as they pertain to past and present efforts to develop human, veterinary, and reservoir targeting LD vaccines. In addition, we offer a brief overview of additional preventative measures that should employed in conjunction with vaccination.
Collapse
Affiliation(s)
- Nathaniel S O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Amanda L Hatke
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Andrew C Camire
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| |
Collapse
|
23
|
Cutler SJ, Vayssier-Taussat M, Estrada-Peña A, Potkonjak A, Mihalca AD, Zeller H. Tick-borne diseases and co-infection: Current considerations. Ticks Tick Borne Dis 2020; 12:101607. [PMID: 33220628 DOI: 10.1016/j.ttbdis.2020.101607] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023]
Abstract
Over recent years, a multitude of pathogens have been reported to be tick-borne. Given this, it is unsurprising that these might co-exist within the same tick, however our understanding of the interactions of these agents both within the tick and vertebrate host remains poorly defined. Despite the rich diversity of ticks, relatively few regularly feed on humans, 12 belonging to argasid and 20 ixodid species, and literature on co-infection is only available for a few of these species. The interplay of various pathogen combinations upon the vertebrate host and tick vector represents a current knowledge gap. The impact of co-infection in humans further extends into diagnostic challenges arising when multiple pathogens are encountered and we have little current data upon which to make therapeutic recommendations for those with multiple infections. Despite these short-comings, there is now increasing recognition of co-infections and current research efforts are providing valuable insights into dynamics of pathogen interactions whether they facilitate or antagonise each other. Much of this existing data is focussed upon simultaneous infection, however the consequences of sequential infection also need to be addressed. To this end, it is timely to review current understanding and highlight those areas still to address.
Collapse
Affiliation(s)
- Sally J Cutler
- School of Health, Sport & Bioscience, University of East London, London, E15 4LZ, UK.
| | | | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Spain
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Serbia
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania
| | - Hervé Zeller
- European Centre for Disease Prevention and Control, Solna, Sweden
| |
Collapse
|
24
|
Antibody profiling of a Borreliella burgdorferi (Lyme disease) C6 antibody positive, symptomatic Rottweiler and her pups. Vet J 2020; 262:105504. [PMID: 32792093 DOI: 10.1016/j.tvjl.2020.105504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Lyme disease (LD) is a tick-transmitted disease caused by Borreliella burgdorferi (Bb). Temporal studies of maternal antibody (Ab) profiles in Bb infected pregnant dogs and their pups have not been conducted. In this study, Ab profiles of a client-owned Bb C6 Ab positive Rottweiler and her nine pups were assessed. The dam presented with lameness 12 days prior to parturition and was C6 Ab positive with a Quant C6 Ab concentration of 237U/mL. Treatment with amoxicillin was initiated and 11 days later nine pups were delivered. Screening of the sera from the dam and pups against Bb cell lysates and a panel of antigens revealed similar immunoreactivity profiles. While antigen-specific IgG and IgM reactivity persisted in the dam for at least 7 months, a rapid decline in IgG specific for BBA36, BBK53, BB0238, BBA73 and outer surface protein (Osp) E in the pups occurred between days 29 and 52 post-parturition. In contrast, Ab specific for DbpA and the diagnostic antigens VlsE (C6) and OspF, remained elevated in the pups. Sera from the dam displayed potent complement-dependent bactericidal activity against Bb. Sera from the pups was also bactericidal but primarily through a complement-independent mechanism. Lastly, single dose vaccination of the dam at day 51 post-parturition with a LD subunit vaccine consisting of OspA and an OspC chimeritope triggered a broad anti-OspC Ab response indicative of an anamnestic response. Although this study focused on a single case, these findings add to our knowledge of maternal Ab profiles and will aid the interpretation of serological assays in pups delivered by a Bb C6 Ab positive dog.
Collapse
|
25
|
Mtierová Z, Derdáková M, Chvostáč M, Didyk YM, Mangová B, Rusňáková Tarageľová V, Selyemová D, Šujanová A, Václav R. Local Population Structure and Seasonal Variability of Borrelia garinii Genotypes in Ixodes ricinus Ticks, Slovakia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3607. [PMID: 32455590 PMCID: PMC7277216 DOI: 10.3390/ijerph17103607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
Abstract
Lyme disease (LD) is the most common tick-borne human disease in Europe, and Borrelia garinii, which is associated with avian reservoirs, is one of the most genetically diverse and widespread human pathogenic genospecies from the B. burgdorferi sensu lato (s.l.) complex. The clinical manifestations of LD are known to vary between regions and depend on the genetic strain even within Borrelia genospecies. It is thus of importance to explore the genetic diversity of such pathogenic borreliae for the wide range of host and ecological contexts. In this study, multilocus sequence typing (MLST) was employed to investigate the local population structure of B. garinii in Ixodes ricinus ticks. The study took place in a natural wetland in Slovakia, temporally encompassing spring and autumn bird migration periods as well as the breeding period of resident birds. In total, we examined 369 and 255 ticks collected from 78 birds and local vegetation, respectively. B. burgdorferi s.l. was detected in 43.4% (160/369) of ticks recovered from birds and in 26.3% (67/255) of questing ticks, respectively. Considering the ticks from bird hosts, the highest prevalence was found for single infections with B. garinii (22.5%). Infection intensity of B. garinii in bird-feeding ticks was significantly higher than that in questing ticks. We identified ten B. garinii sequence types (STs) occurring exclusively in bird-feeding ticks, two STs occurring exclusively in questing ticks, and one ST (ST 244) occurring in both ticks from birds and questing ticks. Four B. garinii STs were detected for the first time herein. With the exception of ST 93, we detected different STs in spring and summer for bird-feeding ticks. Our results are consistent with previous studies of the low geographic structuring of B. garinii genotypes. However, our study reveals some consistency in local ST occurrence and a geographic signal for one of the clonal complexes.
Collapse
Affiliation(s)
- Zuzana Mtierová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Markéta Derdáková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Michal Chvostáč
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Yuliya M. Didyk
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
- Schmalhausen Institute of Zoology, NAS of Ukraine, B. Khmelnytskogo 15, 01030 Kyiv, Ukraine
| | - Barbara Mangová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Veronika Rusňáková Tarageľová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Diana Selyemová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Alžbeta Šujanová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Radovan Václav
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| |
Collapse
|
26
|
Lin YP, Tan X, Caine JA, Castellanos M, Chaconas G, Coburn J, Leong JM. Strain-specific joint invasion and colonization by Lyme disease spirochetes is promoted by outer surface protein C. PLoS Pathog 2020; 16:e1008516. [PMID: 32413091 PMCID: PMC7255614 DOI: 10.1371/journal.ppat.1008516] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Accepted: 04/03/2020] [Indexed: 01/06/2023] Open
Abstract
Lyme disease, caused by Borrelia burgdorferi, B. afzelii and B. garinii, is a chronic, multi-systemic infection and the spectrum of tissues affected can vary with the Lyme disease strain. For example, whereas B. garinii infection is associated with neurologic manifestations, B. burgdorferi infection is associated with arthritis. The basis for tissue tropism is poorly understood, but has been long hypothesized to involve strain-specific interactions with host components in the target tissue. OspC (outer surface protein C) is a highly variable outer surface protein required for infectivity, and sequence differences in OspC are associated with variation in tissue invasiveness, but whether OspC directly influences tropism is unknown. We found that OspC binds to the extracellular matrix (ECM) components fibronectin and/or dermatan sulfate in an OspC variant-dependent manner. Murine infection by isogenic B. burgdorferi strains differing only in their ospC coding region revealed that two OspC variants capable of binding dermatan sulfate promoted colonization of all tissues tested, including joints. However, an isogenic strain producing OspC from B. garinii strain PBr, which binds fibronectin but not dermatan sulfate, colonized the skin, heart and bladder, but not joints. Moreover, a strain producing an OspC altered to recognize neither fibronectin nor dermatan sulfate displayed dramatically reduced levels of tissue colonization that were indistinguishable from a strain entirely deficient in OspC. Finally, intravital microscopy revealed that this OspC mutant, in contrast to a strain producing wild type OspC, was defective in promoting joint invasion by B. burgdorferi in living mice. We conclude that OspC functions as an ECM-binding adhesin that is required for joint invasion, and that variation in OspC sequence contributes to strain-specific differences in tissue tropism displayed among Lyme disease spirochetes. Infection by different Lyme disease bacteria is associated with different manifestations, such as cardiac, neurologic, or, in the case of B. burgdorferi, the major cause of Lyme disease in the U.S., joint disease. The basis for these differences is unknown, but likely involve strain-specific interactions with host components in the target tissue. The sequence of the outer surface lipoprotein OspC varies with the strains, and we found that this variation influences the spectrum of host extracellular matrix components recognized. Infection of mice with strains that are identical except for ospC revealed that OspC variants that differ in binding spectrum promote infection of different tissues. A strain producing OspC invaded and colonized the joint in living animals, but an altered OspC protein incapable of binding tissue components did not. Thus, tissue-binding by OspC is critical for infection and joint invasion, and OspC variation directly influences tissue tropism.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, United States of America
| | - Xi Tan
- Departments of Biochemistry & Molecular Biology and Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A. Caine
- Division of Infectious Diseases, and Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mildred Castellanos
- Departments of Biochemistry & Molecular Biology and Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - George Chaconas
- Departments of Biochemistry & Molecular Biology and Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jenifer Coburn
- Division of Infectious Diseases, and Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail: (JC); (JML)
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (JC); (JML)
| |
Collapse
|
27
|
Liang L, Wang J, Schorter L, Nguyen Trong TP, Fell S, Ulrich S, Straubinger RK. Rapid clearance of Borrelia burgdorferi from the blood circulation. Parasit Vectors 2020; 13:191. [PMID: 32312278 PMCID: PMC7171858 DOI: 10.1186/s13071-020-04060-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/01/2020] [Indexed: 12/02/2022] Open
Abstract
Background Borrelia burgdorferi is a tick-borne spirochete that causes Lyme borreliosis (LB). After an initial tick bite, it spreads from the deposition site in the dermis to distant tissues of the host. It is generally believed that this spirochete disseminates via the hematogenous route. Borrelia persica causes relapsing fever and is able to replicate in the blood stream. Currently the exact dissemination pathway of LB pathogens in the host is not known and controversially discussed. Methods In this study, we established a strict intravenous infection murine model using host-adapted spirochetes. Survival capacity and infectivity of host-adapted B. burgdorferi sensu stricto (Bbss) were compared to those of B. persica (Bp) after either intradermal (ID) injection into the dorsal skin of immunocompetent mice or strict intravenous (IV) inoculation via the jugular vein. By in vitro culture and PCR, viable spirochetes and their DNA load in peripheral blood were periodically monitored during a 49/50-day course post-injection, as well as in various tissue samples collected at day 49/50. Specific antibodies in individual plasma/serum samples were detected with serological methods. Results Regardless of ID or IV injection, DNA of Bp was present in blood samples up to day 24 post-challenge, while no Bbss was detectable in the blood circulation during the complete observation period. In contrast to the brain tropism of Bp, Bbss spirochetes were found in ear, skin, joint, bladder, and heart tissue samples of only ID-inoculated mice. All tested tissues collected from IV-challenged mice were negative for traces of Bbss. ELISA testing of serum samples showed that Bp induced gradually increasing antibody levels after ID or IV inoculation, while Bbss did so only after ID injection but not after IV inoculation. Conclusions This study allows us to draw the following conclusions: (i) Bp survives in the blood and disseminates to the host’s brain via the hematogenous route; and (ii) Bbss, in contrast, is cleared rapidly from the blood stream and is a tissue-bound spirochete.![]()
Collapse
Affiliation(s)
- Liucun Liang
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany
| | - Jinyong Wang
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA.,Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong, People's Republic of China
| | - Lucas Schorter
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany
| | - Thu Phong Nguyen Trong
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany
| | - Shari Fell
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany.,Chemisches Veterinäruntersuchungsamt Sigmaringen, Fidelis-Graf-Straße 1, 72488, Sigmaringen, Germany
| | - Sebastian Ulrich
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany
| | - Reinhard K Straubinger
- Bacteriology and Mycology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Science, Faculty of Veterinary Medicine, LMU Munich, Munich, Germany.
| |
Collapse
|
28
|
Rebman AW, Aucott JN. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease. Front Med (Lausanne) 2020; 7:57. [PMID: 32161761 PMCID: PMC7052487 DOI: 10.3389/fmed.2020.00057] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
It has long been observed in clinical practice that a subset of patients with Lyme disease report a constellation of symptoms such as fatigue, cognitive difficulties, and musculoskeletal pain, which may last for a significant period of time. These symptoms, which can range from mild to severe, have been reported throughout the literature in both prospective and population-based studies in Lyme disease endemic regions. The etiology of these symptoms is unknown, however several illness-causing mechanisms have been hypothesized, including microbial persistence, host immune dysregulation through inflammatory or secondary autoimmune pathways, or altered neural networks, as in central sensitization. Evaluation and characterization of persistent symptoms in Lyme disease is complicated by potential independent, repeat exposures to B. burgdorferi, as well as the potential for co-morbid diseases with overlapping symptom profiles. Antibody testing for B. burgdorferi is an insensitive measure after treatment, and no other FDA-approved tests currently exist. As such, diagnosis presents a complex challenge for physicians, while the lived experience for patients is one marked by uncertainty and often illness invalidation. Currently, there are no FDA-approved pharmaceutical therapies, and the safety and efficacy of off-label and/or complementary therapies have not been well studied and are not agreed-upon within the medical community. Post-treatment Lyme disease represents a narrow, defined, mechanistically-neutral subset of this larger, more heterogeneous group of patients, and is a useful definition in research settings as an initial subgroup of study. The aim of this paper is to review the current literature on the diagnosis, etiology, risk factors, and treatment of patients with persistent symptoms in the context of Lyme disease. The meaning and relevance of existing patient subgroups will be discussed, as will future research priorities, including the need to develop illness biomarkers, elucidate the biologic mechanisms of disease, and drive improvements in therapeutic options.
Collapse
Affiliation(s)
- Alison W Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John N Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Izac JR, O'Bier NS, Oliver LD, Camire AC, Earnhart CG, LeBlanc Rhodes DV, Young BF, Parnham SR, Davies C, Marconi RT. Development and optimization of OspC chimeritope vaccinogens for Lyme disease. Vaccine 2020; 38:1915-1924. [PMID: 31959423 PMCID: PMC7085410 DOI: 10.1016/j.vaccine.2020.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Abstract
Experimental Outer surface protein (Osp) C based subunit chimeritope vaccinogens for Lyme disease (LD) were assessed for immunogenicity, structure, ability to elicit antibody (Ab) responses to divergent OspC proteins, and bactericidal activity. Chimeritopes are chimeric epitope based proteins that consist of linear epitopes derived from multiple proteins or multiple variants of a protein. An inherent advantage to chimeritope vaccinogens is that they can be constructed to trigger broadly protective Ab responses. Three OspC chimeritope proteins were comparatively assessed: Chv1, Chv2 and Chv3. The Chv proteins possess the same set of 18 linear epitopes derived from 9 OspC type proteins but differ in the physical ordering of epitopes or by the presence or absence of linkers. All Chv proteins were immunogenic in mice and rats eliciting high titer Ab. Immunoblot and enzyme linked immunosorbent assays demonstrated that the Chv proteins elicit IgG that recognizes a diverse array of OspC type proteins. The panel included OspC proteins produced by N. American and European strains of the LD spirochetes. Rat anti-Chv antisera uniformly labeled intact, non-permeabilized Borreliella burgdorferi demonstrating that vaccinal Ab can bind to targets that are naturally presented on the spirochete cell surface. Vaccinal Ab also displayed potent complement dependent-Ab mediated killing activity. This study highlights the ability of OspC chimeritopes to serve as vaccinogens that trigger potentially broadly protective Ab responses. In addition to the current use of an OspC chimeritope in a canine LD vaccine, chimeritopes can serve as key components of human LD subunit vaccines.
Collapse
Affiliation(s)
- Jerilyn R Izac
- Dept. Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0678, United States
| | - Nathaniel S O'Bier
- Dept. Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0678, United States
| | - Lee D Oliver
- Dept. Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0678, United States
| | - Andrew C Camire
- Dept. Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0678, United States
| | - Christopher G Earnhart
- Dept. Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0678, United States
| | | | - Brandon F Young
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Stuart R Parnham
- Dept. Biochem. & Biophysics, The University of North Carolina, Chapel Hill, NC 27599, United States
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Richard T Marconi
- Dept. Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0678, United States.
| |
Collapse
|
30
|
Bamm VV, Ko JT, Mainprize IL, Sanderson VP, Wills MKB. Lyme Disease Frontiers: Reconciling Borrelia Biology and Clinical Conundrums. Pathogens 2019; 8:E299. [PMID: 31888245 PMCID: PMC6963551 DOI: 10.3390/pathogens8040299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Lyme disease is a complex tick-borne zoonosis that poses an escalating public health threat in several parts of the world, despite sophisticated healthcare infrastructure and decades of effort to address the problem. Concepts like the true burden of the illness, from incidence rates to longstanding consequences of infection, and optimal case management, also remain shrouded in controversy. At the heart of this multidisciplinary issue are the causative spirochetal pathogens belonging to the Borrelia Lyme complex. Their unusual physiology and versatile lifestyle have challenged microbiologists, and may also hold the key to unlocking mysteries of the disease. The goal of this review is therefore to integrate established and emerging concepts of Borrelia biology and pathogenesis, and position them in the broader context of biomedical research and clinical practice. We begin by considering the conventions around diagnosing and characterizing Lyme disease that have served as a conceptual framework for the discipline. We then explore virulence from the perspective of both host (genetic and environmental predispositions) and pathogen (serotypes, dissemination, and immune modulation), as well as considering antimicrobial strategies (lab methodology, resistance, persistence, and clinical application), and borrelial adaptations of hypothesized medical significance (phenotypic plasticity or pleomorphy).
Collapse
Affiliation(s)
| | | | | | | | - Melanie K. B. Wills
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (V.V.B.); (J.T.K.); (I.L.M.); (V.P.S.)
| |
Collapse
|
31
|
Caimano MJ, Groshong AM, Belperron A, Mao J, Hawley KL, Luthra A, Graham DE, Earnhart CG, Marconi RT, Bockenstedt LK, Blevins JS, Radolf JD. The RpoS Gatekeeper in Borrelia burgdorferi: An Invariant Regulatory Scheme That Promotes Spirochete Persistence in Reservoir Hosts and Niche Diversity. Front Microbiol 2019; 10:1923. [PMID: 31507550 PMCID: PMC6719511 DOI: 10.3389/fmicb.2019.01923] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/05/2019] [Indexed: 11/28/2022] Open
Abstract
Maintenance of Borrelia burgdorferi within its enzootic cycle requires a complex regulatory pathway involving the alternative σ factors RpoN and RpoS and two ancillary trans-acting factors, BosR and Rrp2. Activation of this pathway occurs within ticks during the nymphal blood meal when RpoS, the effector σ factor, transcribes genes required for tick transmission and mammalian infection. RpoS also exerts a 'gatekeeper' function by repressing σ70-dependent tick phase genes (e.g., ospA, lp6.6). Herein, we undertook a broad examination of RpoS functionality throughout the enzootic cycle, beginning with modeling to confirm that this alternative σ factor is a 'genuine' RpoS homolog. Using a novel dual color reporter system, we established at the single spirochete level that ospA is expressed in nymphal midguts throughout transmission and is not downregulated until spirochetes have been transmitted to a naïve host. Although it is well established that rpoS/RpoS is expressed throughout infection, its requirement for persistent infection has not been demonstrated. Plasmid retention studies using a trans-complemented ΔrpoS mutant demonstrated that (i) RpoS is required for maximal fitness throughout the mammalian phase and (ii) RpoS represses tick phase genes until spirochetes are acquired by a naïve vector. By transposon mutant screening, we established that bba34/oppA5, the only OppA oligopeptide-binding protein controlled by RpoS, is a bona fide persistence gene. Lastly, comparison of the strain 297 and B31 RpoS DMC regulons identified two cohorts of RpoS-regulated genes. The first consists of highly conserved syntenic genes that are similarly regulated by RpoS in both strains and likely required for maintenance of B. burgdorferi sensu stricto strains in the wild. The second includes RpoS-regulated plasmid-encoded variable surface lipoproteins ospC, dbpA and members of the ospE/ospF/elp, mlp, revA, and Pfam54 paralogous gene families, all of which have evolved via inter- and intra-strain recombination. Thus, while the RpoN/RpoS pathway regulates a 'core' group of orthologous genes, diversity within RpoS regulons of different strains could be an important determinant of reservoir host range as well as spirochete virulence.
Collapse
Affiliation(s)
- Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, CT, United States,Department of Pediatrics, UConn Health, Farmington, CT, United States,Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States,*Correspondence: Melissa J. Caimano,
| | | | - Alexia Belperron
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jialing Mao
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Kelly L. Hawley
- Department of Pediatrics, UConn Health, Farmington, CT, United States,Division of Infectious Diseases and Immunology, Connecticut Children’s Medical Center, Hartford, CT, United States
| | - Amit Luthra
- Department of Medicine, UConn Health, Farmington, CT, United States
| | - Danielle E. Graham
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher G. Earnhart
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Linda K. Bockenstedt
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jon S. Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, CT, United States,Department of Pediatrics, UConn Health, Farmington, CT, United States,Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States,Department of Genetics and Genome Science, UConn Health, Farmington, CT, United States,Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
32
|
Parveen N, Bhanot P. Babesia microti- Borrelia Burgdorferi Coinfection. Pathogens 2019; 8:E117. [PMID: 31370180 PMCID: PMC6789475 DOI: 10.3390/pathogens8030117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The incidence and geographic distribution of human babesiosis is growing in the U.S. Its major causative agent is the protozoan parasite, Babesia microti. B. microti is transmitted to humans primarily through the bite of Ixodes scapularis ticks, which are vectors for a number of other pathogens. Other routes of B. microti transmission are blood transfusion and in rare cases of mother-to-foetus transmission, through the placenta. This review discusses the current literature on mammalian coinfection with B. microti and Borrelia burgdorferi, the causative agent Lyme disease.
Collapse
Affiliation(s)
- Nikhat Parveen
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ 07103, USA.
| | - Purnima Bhanot
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ 07103, USA.
| |
Collapse
|
33
|
Bigelmayr S, Koenigs A, Kraiczy P. Inter- and intraspecies-specific adhesion of Lyme borreliae to human keratinocytes. Ticks Tick Borne Dis 2019; 10:207-212. [DOI: 10.1016/j.ttbdis.2018.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
|
34
|
Di Domenico EG, Cavallo I, Bordignon V, D'Agosto G, Pontone M, Trento E, Gallo MT, Prignano G, Pimpinelli F, Toma L, Ensoli F. The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis. Front Neurol 2018; 9:1048. [PMID: 30559713 PMCID: PMC6287027 DOI: 10.3389/fneur.2018.01048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023] Open
Abstract
Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia, respectively. The infection affects multiple organ systems, including the skin, joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease, occurring in 10-15% of infected individuals. During the course of the infection, bacteria migrate through the host tissues altering the coagulation and fibrinolysis pathways and the immune response, reaching the central nervous system (CNS) within 2 weeks after the bite of an infected tick. The early treatment with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless, persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has been observed that the antibiotic resistance and the reoccurrence of Lyme disease are associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions. Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of biofilm aggregates in the development of the different manifestations of Lyme disease including LNB.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Martina Pontone
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Maria Teresa Gallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
35
|
Genotyping and Quantifying Lyme Pathogen Strains by Deep Sequencing of the Outer Surface Protein C ( ospC) Locus. J Clin Microbiol 2018; 56:JCM.00940-18. [PMID: 30158192 DOI: 10.1128/jcm.00940-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
A mixed infection of a single tick or host by Lyme disease spirochetes is common and a unique challenge for the diagnosis, treatment, and surveillance of Lyme disease. Here, we describe a novel protocol for differentiating Lyme strains on the basis of deep sequencing of the hypervariable outer surface protein C locus (ospC). Improving upon the traditional DNA-DNA hybridization method, the next-generation sequencing-based protocol is high throughput, quantitative, and able to detect new pathogen strains. We applied the method to more than one hundred infected Ixodes scapularis ticks collected from New York State, USA, in 2015 and 2016. An analysis of strain distributions within individual ticks suggests an overabundance of multiple infections by five or more strains, inhibitory interactions among coinfecting strains, and the presence of a new strain closely related to Borreliella bissettiae A supporting bioinformatics pipeline has been developed. The newly designed pair of universal ospC primers target intergenic sequences conserved among all known Lyme pathogens. The protocol could be used for culture-free identification and quantification of Lyme pathogens in wildlife and potentially in clinical specimens.
Collapse
|
36
|
Gallais F, De Martino SJ, Sauleau EA, Hansmann Y, Lipsker D, Lenormand C, Talagrand-Reboul E, Boyer PH, Boulanger N, Jaulhac B, Schramm F. Multilocus sequence typing of clinical Borreliella afzelii strains: population structure and differential ability to disseminate in humans. Parasit Vectors 2018; 11:374. [PMID: 29954419 PMCID: PMC6027761 DOI: 10.1186/s13071-018-2938-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lyme borreliosis in humans results in a range of clinical manifestations, thought to be partly due to differences in the pathogenicity of the infecting strain. This study compared European human clinical strains of Borreliella afzelii (previously named Borrelia afzelii) using multilocus sequence typing (MLST) to determine their spatial distribution across Europe and to establish whether there are associations between B. afzelii genotypes and specific clinical manifestations of Lyme borreliosis. For this purpose, typing was performed on 63 strains, and data on a further 245 strains were accessed from the literature. RESULTS All 308 strains were categorized into 149 sequence types (STs), 27 of which are described here for the first time. Phylogenetic and goeBURST analyses showed short evolutionary distances between strains. Although the main STs differed among the countries with the largest number of strains of interest (Germany, the Netherlands, France and Slovenia), the B. afzelii clinical strains were less genetically structured than those previously observed in the European tick population. Two STs were found significantly more frequently in strains associated with clinical manifestations involving erythema migrans, whereas another ST was found significantly more frequently in strains associated with disseminated manifestations, especially neuroborreliosis. CONCLUSIONS The MLST profiles showed low genetic differentiation between B. afzelii strains isolated from patients with Lyme borreliosis in Europe. Also, clinical data analysis suggests the existence of lineages with differential dissemination properties in humans.
Collapse
Affiliation(s)
- Floriane Gallais
- EA7290 Early Bacterial Virulence: Lyme borreliosis Group, FMTS, University of Strasbourg, Strasbourg, France
| | - Sylvie J De Martino
- EA7290 Early Bacterial Virulence: Lyme borreliosis Group, FMTS, University of Strasbourg, Strasbourg, France.,French National Reference Center for Borrelia, University Hospital Strasbourg, Strasbourg, France.,Groupe d'Étude de la Borréliose de Lyme (GEBLY), Strasbourg, France
| | - Erik A Sauleau
- Public Health, Methods in Clinical Research Team, University Hospital Strasbourg, Strasbourg, France
| | - Yves Hansmann
- EA7290 Early Bacterial Virulence: Lyme borreliosis Group, FMTS, University of Strasbourg, Strasbourg, France.,Groupe d'Étude de la Borréliose de Lyme (GEBLY), Strasbourg, France.,Infectious Disease Department, University Hospital Strasbourg, Strasbourg, France
| | - Dan Lipsker
- Groupe d'Étude de la Borréliose de Lyme (GEBLY), Strasbourg, France.,Dermatology Department, University Hospital Strasbourg, Strasbourg, France
| | - Cédric Lenormand
- EA7290 Early Bacterial Virulence: Lyme borreliosis Group, FMTS, University of Strasbourg, Strasbourg, France.,Groupe d'Étude de la Borréliose de Lyme (GEBLY), Strasbourg, France.,Dermatology Department, University Hospital Strasbourg, Strasbourg, France
| | - Emilie Talagrand-Reboul
- EA7290 Early Bacterial Virulence: Lyme borreliosis Group, FMTS, University of Strasbourg, Strasbourg, France
| | - Pierre H Boyer
- EA7290 Early Bacterial Virulence: Lyme borreliosis Group, FMTS, University of Strasbourg, Strasbourg, France
| | - Nathalie Boulanger
- EA7290 Early Bacterial Virulence: Lyme borreliosis Group, FMTS, University of Strasbourg, Strasbourg, France.,French National Reference Center for Borrelia, University Hospital Strasbourg, Strasbourg, France
| | - Benoît Jaulhac
- EA7290 Early Bacterial Virulence: Lyme borreliosis Group, FMTS, University of Strasbourg, Strasbourg, France.,French National Reference Center for Borrelia, University Hospital Strasbourg, Strasbourg, France.,Groupe d'Étude de la Borréliose de Lyme (GEBLY), Strasbourg, France
| | - Frédéric Schramm
- EA7290 Early Bacterial Virulence: Lyme borreliosis Group, FMTS, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
37
|
Hacker GM, Brown RN, Fedorova N, Girard YA, Higley M, Clueit B, Lane RS. Spatial clustering of Borrelia burgdorferi sensu lato within populations of Allen's chipmunks and dusky-footed woodrats in northwestern California. PLoS One 2018; 13:e0195586. [PMID: 29634745 DOI: 10.1371/journal.pone.0195586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/26/2018] [Indexed: 11/19/2022] Open
Abstract
The ecology of Lyme borreliosis is complex in northwestern California, with several potential reservoir hosts, tick vectors, and genospecies of Borrelia burgdorferi sensu lato. The primary objective of this study was to determine the fine-scale spatial distribution of different genospecies in four rodent species, the California ground squirrel (Otospermophilus beecheyi), northern flying squirrel (Glaucomys sabrinus), dusky-footed woodrat (Neotoma fuscipes), and Allen's chipmunk (Neotamias senex). Rodents were live-trapped between June 2004 and May 2005 at the Hoopa Valley Tribal Reservation (HVTR) in Humboldt County, California. Ear-punch biopsies obtained from each rodent were tested by polymerase chain reaction (PCR) and sequencing analysis. The programs ArcGIS and SaTScan were used to examine the spatial distribution of genospecies. Multinomial log-linear models were used to model habitat and host-specific characteristics and their effect on the presence of each borrelial genospecies. The Akaike information criterion (AICc) was used to compare models and determine model fit. Borrelia burgdorferi sensu stricto was primarily associated with chipmunks and B. bissettiae largely with woodrats. The top model included the variables "host species", "month", and "elevation" (weight = 0.84). Spatial clustering of B. bissettiae was detected in the northwestern section of the HVTR, whereas B. burgdorferi sensu stricto was clustered in the southeastern section. We conclude that the spatial distribution of these borreliae are driven at least in part by host species, time-of-year, and elevation.
Collapse
Affiliation(s)
- Gregory M Hacker
- Department of Natural Resources, Humboldt State University, Arcata, California, United States of America
| | - Richard N Brown
- Department of Natural Resources, Humboldt State University, Arcata, California, United States of America
| | - Natalia Fedorova
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | - Yvette A Girard
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | - Mark Higley
- Hoopa Tribal Forestry, Hoopa Valley Tribal Reservation, Hoopa, California, United States of America
| | - Bernadette Clueit
- Department of Natural Resources, Humboldt State University, Arcata, California, United States of America
| | - Robert S Lane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| |
Collapse
|
38
|
Abstract
Persistent genetic variation within populations presents an evolutionary problem, as natural selection and genetic drift tend to erode genetic diversity. Models of balancing selection were developed to account for the maintenance of genetic variation observed in natural populations. Negative frequency-dependent selection is a powerful type of balancing selection that maintains many natural polymorphisms, but it is also commonly misinterpreted. This review aims to clarify the processes underlying negative frequency-dependent selection, describe classes of polymorphisms that can and cannot result from these processes, and discuss the empirical data needed to accurately identify processes that generate or maintain diversity in nature. Finally, the importance of accurately describing the processes affecting genetic diversity within populations as it relates to research progress is considered.
Collapse
Affiliation(s)
- Dustin Brisson
- Biology Department, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
39
|
Caine JA, Lin YP, Kessler JR, Sato H, Leong JM, Coburn J. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival. Cell Microbiol 2017; 19:10.1111/cmi.12786. [PMID: 28873507 PMCID: PMC5680108 DOI: 10.1111/cmi.12786] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 01/15/2023]
Abstract
Borrelia burgdorferi (Bb) is the causative agent of Lyme disease in the United States, a disease that can result in carditis, and chronic and debilitating arthritis and/or neurologic symptoms if left untreated. Bb survives in the midgut of the Ixodes scapularis tick, or within tissues of immunocompetent hosts. In the early stages of infection, the bacteria are present in the bloodstream where they must resist clearance by the innate immune system of the host. We have found a novel role for outer surface protein C (OspC) from B. burgdorferi and B. garinii in interactions with the complement component C4b and bloodstream survival in vivo. Our data show that OspC inhibits the classical and lectin complement pathways and competes with complement protein C2 for C4b binding. Resistance to complement is important for maintenance of the lifecycle of Bb, enabling survival of the pathogen within the host as well as in the midgut of a feeding tick when ospC expression is induced.
Collapse
Affiliation(s)
- Jennifer A. Caine
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI
| | - Yi-Pin Lin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Julie R. Kessler
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI
| | - Hiromi Sato
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Jenifer Coburn
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
40
|
Durand J, Jacquet M, Rais O, Gern L, Voordouw MJ. Fitness estimates from experimental infections predict the long-term strain structure of a vector-borne pathogen in the field. Sci Rep 2017; 7:1851. [PMID: 28500292 PMCID: PMC5431797 DOI: 10.1038/s41598-017-01821-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/04/2017] [Indexed: 11/18/2022] Open
Abstract
The populations of many pathogen species consist of a collection of common and rare strains but the factors underlying this strain-specific variation in frequency are often unknown. Understanding frequency variation among strains is particularly challenging for vector-borne pathogens where the strain-specific fitness depends on the performance in both the vertebrate host and the arthropod vector. Two sympatric multiple-strain tick-borne pathogens, Borrelia afzelii and B. garinii, that use the same tick vector, Ixodes ricinus, but different vertebrate hosts were studied. 454-sequencing of the polymorphic ospC gene was used to characterize the community of Borrelia strains in a local population of I. ricinus ticks over a period of 11 years. Estimates of the reproduction number (R0), a measure of fitness, were obtained for six strains of B. afzelii from a previous laboratory study. There was substantial variation in prevalence among strains and some strains were consistently common whereas other strains were consistently rare. In B. afzelii, the strain-specific estimates of R0 in laboratory mice explained over 70% of the variation in the prevalences of the strains in our local population of ticks. Our study shows that laboratory estimates of fitness can predict the community structure of multiple-strain pathogens in the field.
Collapse
Affiliation(s)
- Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maxime Jacquet
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lise Gern
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
41
|
Pulzova L, Flachbartova Z, Bencurova E, Potocnakova L, Comor L, Schreterova E, Bhide M. Identification of B-cell epitopes of Borrelia burgdorferi outer surface protein C by screening a phage-displayed gene fragment library. Microbiol Immunol 2017; 60:669-677. [PMID: 27619624 DOI: 10.1111/1348-0421.12438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 11/29/2022]
Abstract
Outer surface protein C (OspC) of Borrelia stimulates remarkable immune responses during early infection and is therefore currently considered a leading diagnostic and vaccine candidate. The sensitivity and specificity of serological tests based on whole protein OspC for diagnosis of Lyme disease are still unsatisfactory. Minimal B-cell epitopes are key in the development of reliable immunodiagnostic tools. Using OspC fragments displayed on phage particles (phage library) and anti-OspC antibodies isolated from sera of naturally infected patients, six OspC epitopes capable of distinguishing between LD patient and healthy control sera were identified. Three of these epitopes are located at the N-terminus (OspC E1 aa19-27, OspC E2 aa38-53, OspC E3 aa62-66) and three at the C-terminal end (OspC E4 aa155-163, OspC E5 aa184-190 and OspC E6 aa201-207). OspC E1, E4 and E6 were highly conserved among LD related Borreliae. To our knowledge, epitopes OspC E2, E3 and E5 were identified for the first time in this study. Minimal B-cell epitopes may provide fundamental data for the development of multi-epitope-based diagnostic tools for Lyme disease.
Collapse
Affiliation(s)
- Lucia Pulzova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181, Kosice, Slovakia
| | - Zuzana Flachbartova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181, Kosice, Slovakia
| | - Elena Bencurova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181, Kosice, Slovakia
| | - Lenka Potocnakova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181, Kosice, Slovakia
| | - Lubos Comor
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181, Kosice, Slovakia
| | - Eva Schreterova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181, Kosice, Slovakia. .,Institute of Neuroimmunology of Slovak Academy of Sciences, 845 10 Bratislava, Slovakia.
| |
Collapse
|
42
|
Hyde JA. Borrelia burgdorferi Keeps Moving and Carries on: A Review of Borrelial Dissemination and Invasion. Front Immunol 2017; 8:114. [PMID: 28270812 PMCID: PMC5318424 DOI: 10.3389/fimmu.2017.00114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Borrelia burgdorferi is the etiological agent of Lyme disease, a multisystemic, multistage, inflammatory infection resulting in patients experiencing cardiac, neurological, and arthritic complications when not treated with antibiotics shortly after exposure. The spirochetal bacterium transmits through the Ixodes vector colonizing the dermis of a mammalian host prior to hematogenous dissemination and invasion of distal tissues all the while combating the immune response as it traverses through its pathogenic lifecycle. The innate immune response controls the borrelial burden in the dermis, but is unable to clear the infection and thereby prevent progression of disease. Dissemination in the mammalian host requires temporal regulation of virulence determinants to allow for vascular interactions, invasion, and colonization of distal tissues. Virulence determinants and/or adhesins are highly heterogenetic among environmental B. burgdorferi strains with particular genotypes being associated with the ability to disseminate to specific tissues and the severity of disease, but fail to generate cross-protective immunity between borrelial strains. The unique motility of B. burgdorferi rendered by the endoflagella serves a vital function for dissemination and protection from immune recognition. Progress has been made toward understanding the chemotactic regulation coordinating the activity of the two polar localized flagellar motors and their role in borrelial virulence, but this regulation is not yet fully understood. Distinct states of motility allow for dynamic interactions between several B. burgdorferi adhesins and host targets that play roles in transendothelial migration. Transmigration across endothelial and blood-brain barriers allows for the invasion of tissues and elicits localized immune responses. The invasive nature of B. burgdorferi is lacking in proactive mechanisms to modulate disease, such as secretion systems and toxins, but recent work has shown degradation of host extracellular matrices by B. burgdorferi contributes to the invasive capabilities of the pathogen. Additionally, B. burgdorferi may use invasion of eukaryotic cells for immune evasion and protection against environmental stresses. This review provides an overview of B. burgdorferi mechanisms for dissemination and invasion in the mammalian host, which are essential for pathogenesis and the development of persistent infection.
Collapse
Affiliation(s)
- Jenny A Hyde
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center , Bryan, TX , USA
| |
Collapse
|
43
|
Rynkiewicz EC, Brown J, Tufts DM, Huang CI, Kampen H, Bent SJ, Fish D, Diuk-Wasser MA. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections. Parasit Vectors 2017; 10:64. [PMID: 28166814 PMCID: PMC5292797 DOI: 10.1186/s13071-016-1964-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Wild hosts are commonly co-infected with complex, genetically diverse, pathogen communities. Competition is expected between genetically or ecologically similar pathogen strains which may influence patterns of coexistence. However, there is little data on how specific strains of these diverse pathogen species interact within the host and how this impacts pathogen persistence in nature. Ticks are the most common disease vector in temperate regions with Borrelia burgdorferi, the causative agent of Lyme disease, being the most common vector-borne pathogen in North America. Borrelia burgdorferi is a pathogen of high public health concern and there is significant variation in infection phenotype between strains, which influences predictions of pathogen dynamics and spread. Methods In a laboratory experiment, we investigated whether two closely-related strains of B. burgdorferi (sensu stricto) showed similar transmission phenotypes, how the transmission of these strains changed when a host was infected with one strain, re-infected with the same strain, or co-infected with two strains. Ixodes scapularis, the black-legged tick, nymphs were used to sequentially infect laboratory-bred Peromyscus leucopus, white-footed mice, with one strain only, homologous infection with the same stain, or heterologous infection with both strains. We used the results of this laboratory experiment to simulate long-term persistence and maintenance of each strain in a simple simulation model. Results Strain LG734 was more competitive than BL206, showing no difference in transmission between the heterologous infection groups and single-infection controls, while strain BL206 transmission was significantly reduced when strain LG734 infected first. The results of the model show that this asymmetry in competition could lead to extinction of strain BL206 unless there was a tick-to-host transmission advantage to this less competitive strain. Conclusions This asymmetric competitive interaction suggests that strain identity and the biotic context of co-infection is important to predict strain dynamics and persistence. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1964-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evelyn C Rynkiewicz
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Julia Brown
- Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Danielle M Tufts
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Ching-I Huang
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald, Germany
| | - Stephen J Bent
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Durland Fish
- Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Maria A Diuk-Wasser
- Ecology, Evolution, and Environmental Biology Department, Columbia University, 1200 Amsterdam Ave, New York, NY, 10027, USA.
| |
Collapse
|
44
|
Durand J, Herrmann C, Genné D, Sarr A, Gern L, Voordouw MJ. Multistrain Infections with Lyme Borreliosis Pathogens in the Tick Vector. Appl Environ Microbiol 2017; 83:e02552-16. [PMID: 27836839 PMCID: PMC5244308 DOI: 10.1128/aem.02552-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Mixed or multiple-strain infections are common in vector-borne diseases and have important implications for the epidemiology of these pathogens. Previous studies have mainly focused on interactions between pathogen strains in the vertebrate host, but little is known about what happens in the arthropod vector. Borrelia afzelii and Borrelia garinii are two species of spirochete bacteria that cause Lyme borreliosis in Europe and that share a tick vector, Ixodes ricinus Each of these two tick-borne pathogens consists of multiple strains that are often differentiated using the highly polymorphic ospC gene. For each Borrelia species, we studied the frequencies and abundances of the ospC strains in a wild population of I. ricinus ticks that had been sampled from the same field site over a period of 3 years. We used quantitative PCR (qPCR) and 454 sequencing to estimate the spirochete load and the strain diversity within each tick. For B. afzelii, there was a negative relationship between the two most common ospC strains, suggesting the presence of competitive interactions in the vertebrate host and possibly the tick vector. The flat relationship between total spirochete abundance and strain richness in the nymphal tick indicates that the mean abundance per strain decreases as the number of strains in the tick increases. Strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. The spirochete abundance in the nymphal tick appears to be an important life history trait that explains why some strains are more common than others in nature. IMPORTANCE Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere and is caused by spirochete bacteria that belong to the Borrelia burgdorferi sensu lato species complex. These tick-borne pathogens are transmitted among vertebrate hosts by hard ticks of the genus Ixodes Each Borrelia species can be further subdivided into genetically distinct strains. Multiple-strain infections are common in both the vertebrate host and the tick vector and can result in competitive interactions. To date, few studies on multiple-strain vector-borne pathogens have investigated patterns of cooccurrence and abundance in the arthropod vector. We demonstrate that the abundance of a given strain in the tick vector is negatively affected by the presence of coinfecting strains. In addition, our study suggests that the spirochete abundance in the tick is an important life history trait that can explain why some strains are more common in nature than others.
Collapse
Affiliation(s)
- Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Coralie Herrmann
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lise Gern
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
45
|
Stone BL, Brissette CA. Host Immune Evasion by Lyme and Relapsing Fever Borreliae: Findings to Lead Future Studies for Borrelia miyamotoi. Front Immunol 2017; 8:12. [PMID: 28154563 PMCID: PMC5243832 DOI: 10.3389/fimmu.2017.00012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
The emerging pathogen, Borrelia miyamotoi, is a relapsing fever spirochete vectored by the same species of Ixodes ticks that carry the causative agents of Lyme disease in the US, Europe, and Asia. Symptoms caused by infection with B. miyamotoi are similar to a relapsing fever infection. However, B. miyamotoi has adapted to different vectors and reservoirs, which could result in unique physiology, including immune evasion mechanisms. Lyme Borrelia utilize a combination of Ixodes-produced inhibitors and native proteins [i.e., factor H-binding proteins (FHBPs)/complement regulator-acquiring surface proteins, p43, BBK32, BGA66, BGA71, CD59-like protein] to inhibit complement, while some relapsing fever spirochetes use C4b-binding protein and likely Ornithodoros-produced inhibitors. To evade the humoral response, Borrelia utilize antigenic variation of either outer surface proteins (Osps) and the Vmp-like sequences (Vls) system (Lyme borreliae) or variable membrane proteins (Vmps, relapsing fever borreliae). B. miyamotoi possesses putative FHBPs and antigenic variation of Vmps has been demonstrated. This review summarizes and compares the common mechanisms utilized by Lyme and relapsing fever spirochetes, as well as the current state of understanding immune evasion by B. miyamotoi.
Collapse
Affiliation(s)
- Brandee L Stone
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota , Grand Forks, ND , USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota , Grand Forks, ND , USA
| |
Collapse
|
46
|
Vuong HB, Chiu GS, Smouse PE, Fonseca DM, Brisson D, Morin PJ, Ostfeld RS. Influences of Host Community Characteristics on Borrelia burgdorferi Infection Prevalence in Blacklegged Ticks. PLoS One 2017; 12:e0167810. [PMID: 28095423 PMCID: PMC5241014 DOI: 10.1371/journal.pone.0167810] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022] Open
Abstract
Lyme disease is a major vector-borne bacterial disease in the USA. The disease is caused by Borrelia burgdorferi, and transmitted among hosts and humans, primarily by blacklegged ticks (Ixodes scapularis). The ~25 B. burgdorferi genotypes, based on genotypic variation of their outer surface protein C (ospC), can be phenotypically separated as strains that primarily cause human diseases-human invasive strains (HIS)-or those that rarely do. Additionally, the genotypes are non-randomly associated with host species. The goal of this study was to examine the extent to which phenotypic outcomes of B. burgdorferi could be explained by the host communities fed upon by blacklegged ticks. In 2006 and 2009, we determined the host community composition based on abundance estimates of the vertebrate hosts, and collected host-seeking nymphal ticks in 2007 and 2010 to determine the ospC genotypes within infected ticks. We regressed instances of B. burgdorferi phenotypes on site-specific characteristics of host communities by constructing Bayesian hierarchical models that properly handled missing data. The models provided quantitative support for the relevance of host composition on Lyme disease risk pertaining to B. burgdorferi prevalence (i.e. overall nymphal infection prevalence, or NIPAll) and HIS prevalence among the infected ticks (NIPHIS). In each year, NIPAll and NIPHIS was found to be associated with host relative abundances and diversity. For mice and chipmunks, the association with NIPAll was positive, but tended to be negative with NIPHIS in both years. However, the direction of association between shrew relative abundance with NIPAll or NIPHIS differed across the two years. And, diversity (H') had a negative association with NIPAll, but positive association with NIPHIS in both years. Our analyses highlight that the relationships between the relative abundances of three primary hosts and the community diversity with NIPAll, and NIPHIS, are variable in time and space, and that disease risk inference, based on the role of host community, changes when we examine risk overall or at the phenotypic level. Our discussion focuses on the observed relationships between prevalence and host community characteristics and how they substantiate the ecological understanding of phenotypic Lyme disease risk.
Collapse
Affiliation(s)
- Holly B. Vuong
- Rutgers University, Department of Ecology, Evolution, and Natural Resources, New Brunswick, NJ, United States of America
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY, United States of America
- * E-mail:
| | - Grace S. Chiu
- Research School of Finance, Actuarial Studies and Statistics, College of Business and Economics, Building 26C, Australian National University, Canberra, ACT, Australia
| | - Peter E. Smouse
- Rutgers University, Department of Ecology, Evolution, and Natural Resources, New Brunswick, NJ, United States of America
| | - Dina M. Fonseca
- Rutgers University, Department of Ecology, Evolution, and Natural Resources, New Brunswick, NJ, United States of America
- Rutgers University, Department of Entomology, 180 Jones Ave., New Brunswick, NJ, United States of America
| | - Dustin Brisson
- University of Pennsylvania, Department of Biology, 209 Leidy Laboratories, Philadelphia, PA, United States of America
| | - Peter J. Morin
- Rutgers University, Department of Ecology, Evolution, and Natural Resources, New Brunswick, NJ, United States of America
| | - Richard S. Ostfeld
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY, United States of America
| |
Collapse
|
47
|
Lyme Disease. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Rowthorn R, Walther S. The optimal treatment of an infectious disease with two strains. J Math Biol 2016; 74:1753-1791. [PMID: 27837260 PMCID: PMC5420024 DOI: 10.1007/s00285-016-1074-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/29/2016] [Indexed: 12/11/2022]
Abstract
This paper explores the optimal treatment of an infectious disease in a Susceptible-Infected-Susceptible model, where there are two strains of the disease and one strain is more infectious than the other. The strains are perfectly distinguishable, instantly diagnosed and equally costly in terms of social welfare. Treatment is equally costly and effective for both strains. Eradication is not possible, and there is no superinfection. In this model, we characterise two types of fixed points: coexistence equilibria, where both strains prevail, and boundary equilibria, where one strain is asymptotically eradicated and the other prevails at a positive level. We derive regimes of feasibility that determine which equilibria are feasible for which parameter combinations. Numerically, we show that optimal policy exhibits switch points over time, and that the paths to coexistence equilibria exhibit spirals, suggesting that coexistence equilibria are never the end points of optimal paths.
Collapse
Affiliation(s)
- Robert Rowthorn
- Faculty of Economics, University of Cambridge, Cambridge, UK
| | - Selma Walther
- Department of Economics, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
49
|
Multiple independent transmission cycles of a tick-borne pathogen within a local host community. Sci Rep 2016; 6:31273. [PMID: 27498685 PMCID: PMC4976386 DOI: 10.1038/srep31273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/15/2016] [Indexed: 01/09/2023] Open
Abstract
Many pathogens are maintained by multiple host species and involve multiple strains with potentially different phenotypic characteristics. Disentangling transmission patterns in such systems is often challenging, yet investigating how different host species contribute to transmission is crucial to properly assess and manage disease risk. We aim to reveal transmission cycles of bacteria within the Borrelia burgdorferi species complex, which include Lyme disease agents. We characterized Borrelia genotypes found in 488 infected Ixodes ricinus nymphs collected in the Sénart Forest located near Paris (France). These genotypes were compared to those observed in three sympatric species of small mammals and network analyses reveal four independent transmission cycles. Statistical modelling shows that two cycles involving chipmunks, an introduced species, and non-sampled host species such as birds, are responsible for the majority of tick infections. In contrast, the cycle involving native bank voles only accounts for a small proportion of infected ticks. Genotypes associated with the two primary transmission cycles were isolated from Lyme disease patients, confirming the epidemiological threat posed by these strains. Our work demonstrates that combining high-throughput sequence typing with networks tools and statistical modeling is a promising approach for characterizing transmission cycles of multi-host pathogens in complex ecological settings.
Collapse
|
50
|
Oral Immunization with OspC Does Not Prevent Tick-Borne Borrelia burgdorferi Infection. PLoS One 2016; 11:e0151850. [PMID: 26990760 PMCID: PMC4798528 DOI: 10.1371/journal.pone.0151850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
Oral vaccination strategies are of interest to prevent transmission of Lyme disease as they can be used to deliver vaccines to humans, pets, and to natural wildlife reservoir hosts of Borrelia burgdorferi. We developed a number of oral vaccines based in E. coli expressing recombinant OspC type K, OspB, BBK32 from B. burgdorferi, and Salp25, Salp15 from Ixodes scapularis. Of the five immunogenic candidates only OspC induced significant levels of antigen-specific IgG and IgA when administered to mice via the oral route. Antibodies to OspC did not prevent dissemination of B. burgdorferi as determined by the presence of spirochetes in ear, heart and bladder tissues four weeks after challenge. Next generation sequencing of genomic DNA from ticks identified multiple phyletic types of B. burgdorferi OspC (A, D, E, F, I, J, K, M, Q, T, X) in nymphs that engorged on vaccinated mice. PCR amplification of OspC types A and K from flat and engorged nymphal ticks, and from heart and bladder tissues collected after challenge confirmed sequencing analysis. Quantification of spirochete growth in a borreliacidal assay shows that both types of spirochetes (A and K) survived in the presence of OspC-K specific serum whereas the spirochetes were killed by OspA specific serum. We show that oral vaccination of C3H-HeN mice with OspC-K induced significant levels of antigen-specific IgG. However, these serologic antibodies did not protect mice from infection with B. burgdorferi expressing homologous or heterologous types of OspC after tick challenge.
Collapse
|