1
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
2
|
Kim EY, Kim JE, Chung SH, Park JE, Yoon D, Min HJ, Sung Y, Lee SB, Kim SW, Chang EJ. Concomitant induction of SLIT3 and microRNA-218-2 in macrophages by toll-like receptor 4 activation limits osteoclast commitment. Cell Commun Signal 2023; 21:213. [PMID: 37596575 PMCID: PMC10436635 DOI: 10.1186/s12964-023-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) conducts a highly regulated inflammatory process by limiting the extent of inflammation to avoid toxicity and tissue damage, even in bone tissues. Thus, it is plausible that strategies for the maintenance of normal bone-immunity to prevent undesirable bone damage by TLR4 activation can exist, but direct evidence is still lacking. METHODS Osteoclast precursors (OCPs) obtained from WT or Slit3-deficient mice were differentiated into osteoclast (OC) with macrophage colony-stimulating factor (M-CSF), RANK ligand (RANKL) and lipopolysaccharide (LPS) by determining the number of TRAP-positive multinuclear cells (TRAP+ MNCs). To determine the alteration of OCPs population, fluorescence-activated cell sorting (FACS) was conducted in bone marrow cells in mice after LPS injection. The severity of bone loss in LPS injected WT or Slit3-deficient mice was evaluated by micro-CT analysis. RESULT We demonstrate that TLR4 activation by LPS inhibits OC commitment by inducing the concomitant expression of miR-218-2-3p and its host gene, Slit3, in mouse OCPs. TLR4 activation by LPS induced SLIT3 and its receptor ROBO1 in BMMs, and this SLIT3-ROBO1 axis hinders RANKL-induced OC differentiation by switching the protein levels of C/EBP-β isoforms. A deficiency of SLIT3 resulted in increased RANKL-induced OC differentiation, and the elevated expression of OC marker genes including Pu.1, Nfatc1, and Ctsk. Notably, Slit3-deficient mice showed expanded OCP populations in the bone marrow. We also found that miR-218-2 was concomitantly induced with SLIT3 expression after LPS treatment, and that this miRNA directly suppressed Tnfrsf11a (RANK) expression at both gene and protein levels, linking it to a decrease in OC differentiation. An endogenous miR-218-2 block rescued the expression of RANK and subsequent OC formation in LPS-stimulated OCPs. Aligned with these results, SLIT3-deficient mice displayed increased OC formation and reduced bone density after LPS challenge. CONCLUSION Our findings suggest that the TLR4-dependent concomitant induction of Slit3 and miR-218-2 targets RANK in OCPs to restrain OC commitment, thereby avoiding an uncoordinated loss of bone through inflammatory processes. These observations provide a mechanistic explanation for the role of TLR4 in controlling the commitment phase of OC differentiation. Video Abstract.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ji-Eun Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo-Hyun Chung
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Ji-Eun Park
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
| | - Dohee Yoon
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyo-Jin Min
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Yoolim Sung
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Soo Been Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center and AMIST, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
3
|
Nugraha AP, Ramadhani NF, Riawan W, Ihsan IS, Ernawati DS, Ridwan RD, Narmada IB, Saskianti T, Rezkita F, Sarasati A, Noor TNEBTA, Inayatillah B, Nugraha AP, Joestandari F. Gingival Mesenchymal Stem Cells Metabolite Decreasing TRAP, NFATc1, and Sclerostin Expression in LPS-Associated Inflammatory Osteolysis In Vivo. Eur J Dent 2023; 17:881-888. [PMID: 35728613 PMCID: PMC10569879 DOI: 10.1055/s-0042-1748529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Bone is a dynamic tissue that undergoes remodeling. During bone remodeling, there are transcription factors such as nuclear factor-activated T cells-1 (NFATc1), sclerostin, and tartrate-resistant acid phosphatase (TRAP) that are released for bone resorption. Metabolite from gingival mesenchymal stem cells (GMSCs) has the ability to activate proliferation, migration, immunomodulation, and tissue regeneration of bone cells and tissues. Furthermore, the aim of this study is to investigate the metabolite of GMSCs' effect on expression of NFATc1, TRAP, and sclerostin in calvaria bone resorption of Wistar rats. MATERIALS AND METHODS Twenty male healthy Wistar rats (Rattus norvegicus), 1 to 2 months old, 250 to 300 g body were divided into four groups, namely group 1 (G1): 100 µg phosphate-buffered saline day 1 to 7; group 2 (G2): 100 μg lipopolysaccharide (LPS) day 1 to 7; group 3 (G3): 100 μg LPS + 100 μg GMSCs metabolite day 1 to 7; and group 4 (G4): 100 μg GMSCs metabolite day 1 to 7. Escherichia coli LPS was used to induce inflammatory osteolysis on the calvaria with subcutaneous injection. GMSCs metabolite was collected after passage 4 to 5, then injected subcutaneously on the calvaria. All samples were sacrificed on the day 8 through cervical dislocation. The expression of TRAP, NFATc1, and sclerostin of osteoclast in the calvaria was observed with 1,000× magnification. STATISTICAL ANALYSIS One-way analysis of variance and Tukey honest significant different were conducted to analyze differences between groups (p < 0.05). RESULTS The administration of GMSCs metabolite can significantly decrease TRAP, NFATc1, and sclerostin expression (p < 0.05) in LPS-associated inflammatory osteolysis calvaria in Wistar rats (R. norvegicus). There were significantly different TRAP, NFATc1, and sclerostin expressions between groups (p < 0.05). CONCLUSION GMSCs metabolite decrease TRAP, NFATc1, and sclerostin expression in LPS-associated osteolysis calvaria in Wistar rats (R. norvegicus) as documented immunohistochemically.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nastiti Faradilla Ramadhani
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Igo Syaiful Ihsan
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rini Devijanti Ridwan
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ida Bagus Narmada
- Dental Regenerative Research Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tania Saskianti
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fianza Rezkita
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Andari Sarasati
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Bilqis Inayatillah
- Department of Basic Medical of Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | |
Collapse
|
4
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Contino KF, Yadav H, Shiozawa Y. The gut microbiota can be a potential regulator and treatment target of bone metastasis. Biochem Pharmacol 2022; 197:114916. [PMID: 35041811 PMCID: PMC8858876 DOI: 10.1016/j.bcp.2022.114916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023]
Abstract
The gut microbiota, an often forgotten organ, have a tremendous impact on human health. It has long been known that the gut microbiota are implicated in cancer development, and more recently, the gut microbiota have been shown to influence cancer metastasis to distant organs. Although one of the most common sites of distant metastasis is the bone, and the skeletal system has been shown to be a subject of interactions with the gut microbiota to regulate bone homeostasis, little research has been done regarding how the gut microbiota control the development of bone metastasis. This review will discuss the mechanisms through which the gut microbiota and derived microbial compounds (i) regulate gastrointestinal cancer disease progression and metastasis, (ii) influence skeletal remodeling and potentially modulate bone metastasis, and (iii) affect and potentially enhance immunotherapeutic treatments for bone metastasis.
Collapse
Affiliation(s)
- Kelly F Contino
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair and Institute for Microbiome, University of South Florida, Tampa, FL 33612, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
6
|
Hancock WD, Lei X, Clines GA, Tusing YG, Nozell SE, Ramanadham S. Ca 2+-independent phospholipase A 2β-derived PGE 2 contributes to osteogenesis. Prostaglandins Other Lipid Mediat 2022; 158:106605. [PMID: 34923151 PMCID: PMC8753754 DOI: 10.1016/j.prostaglandins.2021.106605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Bone modeling can be modulated by lipid signals such as arachidonic acid (AA) and its cyclooxygenase 2 (COX2) metabolite, prostaglandin E2 (PGE2), which are recognized mediators of optimal bone formation. Hydrolysis of AA from membrane glycerophospholipids is catalyzed by phospholipases A2 (PLA2s). We reported that mice deficient in the Ca2+- independent PLA2beta (iPLA2β), encoded by Pla2g6, exhibit a low bone phenotype, but the cause for this remains to be identified. Here, we examined the mechanistic and molecular roles of iPLA2β in bone formation using bone marrow stromal cells and calvarial osteoblasts from WT and iPLA2β-deficient mice, and the MC3T3-E1 osteoblast precursor cell line. Our data reveal that transcription of osteogenic factors (Bmp2, Alpl, and Runx2) and osteogenesis are decreased with iPLA2β-deficiency. These outcomes are corroborated and recapitulated in WT cells treated with a selective inhibitor of iPLA2 β (10 μM S-BEL), and rescued in iPLA2β-deficient cells by additions of 10 μM PGE2. Further, under osteogenic conditions we find that PGE2 production is through iPLA2β activity and that this leads to induction of Runx2 and iPLA2β transcription. These findings reveal a strong link between osteogenesis and iPLA2β-derived lipids and raise the intriguing possibility that iPLA2β-derived PGE2 participates in osteogenesis and in the regulation of Runx2 and also iPLA2β.
Collapse
Affiliation(s)
- William D Hancock
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A Clines
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ying G Tusing
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Nozell
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Kwon Y, Park C, Lee J, Park DH, Jeong S, Yun CH, Park OJ, Han SH. Regulation of Bone Cell Differentiation and Activation by Microbe-Associated Molecular Patterns. Int J Mol Sci 2021; 22:ijms22115805. [PMID: 34071605 PMCID: PMC8197933 DOI: 10.3390/ijms22115805] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota has emerged as an important regulator of bone homeostasis. In particular, the modulation of innate immunity and bone homeostasis is mediated through the interaction between microbe-associated molecular patterns (MAMPs) and the host pattern recognition receptors including Toll-like receptors and nucleotide-binding oligomerization domains. Pathogenic bacteria such as Porphyromonas gingivalis and Staphylococcus aureus tend to induce bone destruction and cause various inflammatory bone diseases including periodontal diseases, osteomyelitis, and septic arthritis. On the other hand, probiotic bacteria such as Lactobacillus and Bifidobacterium species can prevent bone loss. In addition, bacterial metabolites and various secretory molecules such as short chain fatty acids and cyclic nucleotides can also affect bone homeostasis. This review focuses on the regulation of osteoclast and osteoblast by MAMPs including cell wall components and secretory microbial molecules under in vitro and in vivo conditions. MAMPs could be used as potential molecular targets for treating bone-related diseases such as osteoporosis and periodontal diseases.
Collapse
Affiliation(s)
- Yeongkag Kwon
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Jueun Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
- Correspondence: (O.-J.P.); (S.H.H.); Tel.: +82-2-880-2312 (O.-J.P.); +82-2-880-2310 (S.H.H.)
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
- Correspondence: (O.-J.P.); (S.H.H.); Tel.: +82-2-880-2312 (O.-J.P.); +82-2-880-2310 (S.H.H.)
| |
Collapse
|
8
|
Abstract
Bone homeostasis is maintained by a balance in the levels of osteoclast and osteoblast activity. Osteoclasts are bone-resorbing cells and have been shown to act as key players in various osteolytic diseases. Osteoclasts differentiate from monocyte/macrophage lineage cells in the presence of receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. Osteoblasts support osteoclastogenesis by producing several osteoclast differentiation factors. Toll-like receptors (TLRs) are members of the pattern recognition receptor family that are involved in recognizing pathogen-associated molecular patterns and damage-associated molecular patterns in response to pathogen infection. TLRs regulate osteoclastogenesis and bone resorption through either the myeloid differentiation primary response 88 or the Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-β signaling pathways. Since osteoclasts play a central role in the progression of osteolytic diseases, extensive research focusing on TLR downstream signaling in these cells should be conducted to advance the development of effective TLR modulators. In this review, we summarize the currently available information on the role of TLRs in osteoclast differentiation and osteolytic diseases.
Collapse
Affiliation(s)
- Mijung Yim
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
9
|
Sapkota M, Gao M, Li L, Yang M, Shrestha SK, Choi H, Soh Y. Macrolactin A protects against LPS-induced bone loss by regulation of bone remodeling. Eur J Pharmacol 2020; 883:173305. [PMID: 32673673 DOI: 10.1016/j.ejphar.2020.173305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
An imbalance between bone resorption and bone formation leads to several kinds of bone diseases such as rheumatoid arthritis, osteoporosis and Paget's disease. The imbalance between bone formations relative to bone resorption is responsible in bone remodeling. Several studies have suggested that macrolactin A (MA) has potent anti-inflammatory, anti-cancer and anti-angiogenic effects in various cell types. We investigate whether macrolactin A (MA) could inhibit bone loss and enhance bone formation. We used bone marrow monocytes/macrophages (BMMs) cells to study osteoclast activity and MC3T3-E1 cells to study osteoblast activity. MA suppressed tartrate resistant acid phosphatase (TRAP) positive multinucleated cells in a concentration-dependent manner, as well as at a specific time point. MA markedly reduced bone resorption activity and F-actin ring formation. Moreover, MA markedly suppressed receptor activator of nuclear factor k-B ligand (RANKL)-induced osteoclastogenic marker genes and transcription factors in-vitro. MA repressed osteoclast differentiation via activation of the phosphoinositide kinase-3/Akt, extracellular signal-regulated kinase 1/2 (ERK 1/2), c-Jun N-terminal kinase (JNK), nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) and c-Fos signaling pathways. MA enhanced pre-osteoblast cell differentiation on mineralization activity, alkaline phosphatase (ALP) activity, and the expression of osteoblastogenic markers including osterix, RUNX-2, SMAD4, BMP-2, and ALP. Importantly, MA repressed lipopolysaccharide (LPS)-induced inflammatory bone loss in mice as shown by TRAP staining of femurs and μCT analysis. Therefore, MA could be a promising candidate for the inhibition and management of osteoporosis, arthritis, and bone lytic diseases.
Collapse
Affiliation(s)
- Mahesh Sapkota
- School of Pharmacy, Jeonbuk National University, Jeonju, 561-756, South Korea
| | - Ming Gao
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Liang Li
- School of Pharmacy, Jeonbuk National University, Jeonju, 561-756, South Korea
| | - Ming Yang
- School of Pharmacy, Jeonbuk National University, Jeonju, 561-756, South Korea
| | | | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| | - Yunjo Soh
- School of Pharmacy, Jeonbuk National University, Jeonju, 561-756, South Korea.
| |
Collapse
|
10
|
Bourebaba L, Michalak I, Baouche M, Kucharczyk K, Fal AM, Marycz K. Cladophora glomerata enriched by biosorption with Mn(II) ions alleviates lipopolysaccharide-induced osteomyelitis-like model in MC3T3-E1, and 4B12 osteoclastogenesis. J Cell Mol Med 2020; 24:7282-7300. [PMID: 32497406 PMCID: PMC7339214 DOI: 10.1111/jcmm.15294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic osteomyelitis, a bone infectious disease, is characterized by dysregulation of bone homeostasis, which results in excessive bone resorption. Lipopolysaccharide (LPS) which is a gram‐negative endotoxin was shown to inhibit osteoblast differentiation and to induce apoptosis and osteoclasts formation in vitro. While effective therapy against bacteria‐induced bone destruction is quite limited, the investigation of potential drugs that restore down‐regulated osteoblast function remains a major goal in the prevention of bone destruction in infective bone diseases. This investigation aimed to rescue LPS‐induced MC3T3‐E1 pre‐osteoblastic cell line using the methanolic extract of Cladophora glomerata enriched with Mn(II) ions by biosorption. LPS‐induced MC3T3‐E1 cultures supplemented with C. glomerata methanolic extract were tested for expression of the main genes and microRNAs involved in the osteogenesis pathway using RT‐PCR. Moreover, osteoclastogenesis of 4B12 cells was also investigated by tartrate‐resistant acid phosphatase (TRAP) assay. Treatment with algal extract significantly restored LPS‐suppressed bone mineralization and the mRNA expression levels of osteoblast‐specific genes such as runt‐related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteocalcin (OCN), osteopontin (OPN), miR‐27a and miR‐29b. The extract also inhibited osteoblast apoptosis, significantly restored the down‐regulated expression of Bcl‐2, and decreased the loss of MMP and reactive oxygen spices (ROS) production in MC3T3‐E1 cells induced by LPS. Furthermore, pre‐treatment with algal extract strongly decreased the activation of osteoclast in MC3T3‐E1‐4B12 coculture system stimulated by LPS. Our findings suggest that C. glomerata enriched with Mn(II) ions may be a potential raw material for the development of drug for preventing abnormal bone loss induced by LPS in bacteria‐induced bone osteomyelitis.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.,International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Meriem Baouche
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.,International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Katarzyna Kucharczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Andrzej M Fal
- Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszyński University (UKSW), Warsaw, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.,International Institute of Translational Medicine, Wisznia Mała, Poland.,Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszyński University (UKSW), Warsaw, Poland
| |
Collapse
|
11
|
Ren X, Zhu Y, Xie L, Zhang M, Gao L, He H. Yunnan Baiyao diminishes lipopolysaccharide-induced inflammation in osteoclasts. J Food Biochem 2020; 44:e13182. [PMID: 32189353 DOI: 10.1111/jfbc.13182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/23/2023]
Abstract
Yunnan Baiyao (YNBY) has been refined for hundreds of years and has become a treasure of proprietary Chinese medicine that has significant curative effects in the field of hemostasis, blood circulation, and callus. In past years, YNBY has been demonstrated to play an anti-inflammatory role in bone-related diseases, such as rheumatoid arthritis and osteoporosis. However, the osteoclasts are multinucleated giant cells that resorb bone and participate in the occurrence, development, and progression of these bone-related diseases. Previous studies have reported that the inflammatory function is closely associated with arachidonic acid (AA) metabolism, as well as some inflammatory-related pathways, including the nuclear factor кB (NF-кB), mitogen-activated protein kinase (MAPK), and Wnt5a pathways. Therefore, we speculated that the anti-inflammatory effect of YNBY might be associated with the NF-кB, MAPK, and Wnt5a pathways. In order to further excavate the anti-inflammatory roles of YNBY, lipopolysaccharide (LPS) with an optimal concentration of 1,000 pg/ml was used to induce inflammation in osteoclasts. Our results showed that YNBY with a time- and dose-dependent method decreased the concentration of pro-inflammatory cytokines and the expression levels of cyclooxygenase-1 (COX-1), COX-2, 5-lipoxygenase, and prostaglandin E2. Moreover, it was found that COX-2 was the target gene regulated by YNBY. Finally, using NF-кB and MAPK pathway inhibitors or miRNA101b (involved in the Wnt5a pathway) in tandem with YNBY and the results exhibited that these groups caused a reduction in COX-1 and COX-2 expression, indicating that the anti-inflammatory function of YNBY might directly affect the NF-кB, MAPK, and Wnt5a pathways. PRACTICAL APPLICATIONS: Yunnan Baiyao (YNBY) is mainly extracted from precious Chinese medicines such as Panax notoginseng, borneol, musk, and yam and has a wide range of clinical applications. It is not only used to treat various types of traumatic injuries, but also used for upper gastrointestinal bleeding and wound ulcers, neonatal umbilitis, recurrent oral ulcers, esophagitis, bacterial dysentery, and so on. Although the detailed mechanism of action is not clear at present, it is believed that this is related to its anti-inflammatory, hemostatic, and immune-enhancing effects. Many bone-related diseases, such as rheumatoid arthritis and osteoporosis, are regarded to be intimately related to the inflammatory reaction. Thus, this study aimed to explore the underlying mechanisms of YNBY at anti-inflammatory roles. And our results suggested that YNBY directly affected the inflammatory cytokines and AA metabolic products which referred to the NF-кB, MAPK, and Wnt5a pathways, as well as AA metabolism, respectively. Hence, the practical applications of YNBY are the anti-inflammatory effects used to treat for bone-related diseases.
Collapse
Affiliation(s)
- Xiaobin Ren
- Department of Periodontology, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Yanping Zhu
- Digestive System Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liangkun Xie
- Department of Oral Implantology and Prosthodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Mingzhu Zhang
- Department of Periodontology, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Lihui Gao
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Hongbing He
- Department of Periodontology, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
|
13
|
Goel PN, Egol AJ, Moharrer Y, Brandfield-Harvey B, Ahn J, Ashley JW. Notch signaling inhibition protects against LPS mediated osteolysis. Biochem Biophys Res Commun 2019; 515:538-543. [PMID: 31176486 DOI: 10.1016/j.bbrc.2019.05.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Chronic inflammatory responses have profound effects on the differentiation and activity of both the bone-forming osteoblasts and bone-resorbing osteoclasts. Importantly, inflammatory bone diseases characterized by clinical osteolysis promote bone resorption and decrease bone formation by uncoupling the process in favor of excess resorption. Notch signaling regulates osteoclast development and thus its manipulation has the potential to suppress resorptive potential. Here, we have utilized a genetic model of Notch inhibition in osteoclasts by expression of dnMAML to prevent formation of transcriptional complex essential for downstream Notch signaling. Using this model and LPS as a tool for experimental inflammatory osteolysis, we have demonstrated that dnMAML-expressing osteoclasts exhibited significantly lower maturation and resorption/functional potential ex vivo using TRAP staining and calcium phosphate coated surfaces. Moreover, we observed that while LPS stimulated the formation of wildtype osteoclasts pre-treated with RANKL, dnMAML expression produced resistance to osteoclast maturation after LPS stimulation. Genetically, Notch-inhibited animals showed a significantly lower TRAP and CTX-1 levels in serum after LPS treatment compared to the control groups in addition to a marked reduction in osteoclast surfaces in calvaria sections. This report provides evidence for modulation of Notch signaling activity to protect against inflammatory osteolysis. Taken together, the findings of this study will help guide the development of Notch signaling-based therapeutic approaches to prevent bone loss.
Collapse
Affiliation(s)
- Peeyush N Goel
- University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Alexander J Egol
- University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Yasaman Moharrer
- University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Beatrix Brandfield-Harvey
- University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Jaimo Ahn
- University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| | | |
Collapse
|
14
|
Ohgi K, Kajiya H, Goto-T K, Okamoto F, Yoshinaga Y, Okabe K, Sakagami R. Toll-like receptor 2 activation primes and upregulates osteoclastogenesis via lox-1. Lipids Health Dis 2018; 17:132. [PMID: 29859535 PMCID: PMC5985062 DOI: 10.1186/s12944-018-0787-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lectin-like oxidized low-density-lipoprotein receptor 1 (Lox-1) is the receptor for oxidized low-density lipoprotein (oxLDL), a mediator in dyslipidemia. Toll-like receptor (TLR)-2 and - 4 are receptors of lipopolysaccharide (LPS) from Porphyromonas gingivalis, a major pathogen of chronic periodontitis. Although some reports have demonstrated that periodontitis has an adverse effect on dyslipidemia, little is clear that the mechanism is explained the effects of dyslipidemia on osteoclastogenesis. We have hypothesized that osteoclast oxLDL has directly effect on osteoclasts (OCs), and therefore alveolar bone loss on periodontitis may be increased by dyslipidemia. The present study aimed to elucidate the effect of Lox-1 on osteoclastogenesis associated with TLRs in vitro. METHODS Mouse bone marrow cells (BMCs) were stimulated with macrophage colony-stimulating factor into bone marrow macrophages (BMMs). The cells were also stimulated with synthetic ligands for TLR2 (Pam3CSK4) or TLR4 (Lipid A), with or without receptor activator of nuclear factor kappa-B ligand (RANKL), and assessed for osteoclastogenesis by tartrate-resistant acid phosphatase (TRAP) staining, immunostaining, western blotting, flow activated cell sorting (FACS) analysis, real-time polymerase chain reaction (PCR), and reverse transcription PCR. RESULTS Lox-1 expression was significantly upregulated by Pam3CSK4 and Lipid A in BMCs (p < 0.05), but not in BMMs. FACS analysis identified that Pam3CSK4 upregulated RANK and Lox-1 expression in BMCs. TRAP-positive cells were not increased by stimulation with Pam3CSK4 alone, but were increased by stimulation with combination combined Pam3CSK and oxLDL. Expression of both Lox-1 and myeloid differentiation factor 88 (MyD88), an essential adaptor protein in the TLR signaling pathway, were suppressed by inhibitors of TLR2, TLR4 and mitogen-activated protein kinase (MAPK). CONCLUSIONS This study supports that osteoclastogenesis is promoted under the coexistence of oxLDL by TLR2-induced upregulation of Lox-1 in BMCs. This indicates that periodontitis could worsen with progression of dyslipidemia.
Collapse
Affiliation(s)
- Kimiko Ohgi
- Department of Odontology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Hiroshi Kajiya
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 8140193, Japan.
| | - Kazuko Goto-T
- Department of Dental Hygiene, Fukuoka College of Health Sciences, Fukuoka, 8140193, Japan
| | - Fujio Okamoto
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Yasunori Yoshinaga
- Department of Odontology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Koji Okabe
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| | - Ryuji Sakagami
- Department of Odontology, Fukuoka Dental College, Fukuoka, 8140193, Japan
| |
Collapse
|
15
|
Lordén G, Sanjuán-García I, de Pablo N, Meana C, Alvarez-Miguel I, Pérez-García MT, Pelegrín P, Balsinde J, Balboa MA. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J Exp Med 2016; 214:511-528. [PMID: 28031477 PMCID: PMC5294860 DOI: 10.1084/jem.20161452] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/23/2016] [Accepted: 12/12/2016] [Indexed: 01/31/2023] Open
Abstract
Lordén et al. show that the phosphatidic acid phosphatase lipin-2 is a key regulator of the cellular machinery that generates IL-1β in macrophages. This work provides a molecular explanation for the development of the autoinflammatory disease known as Majeed syndrome. Mutations in human LPIN2 produce a disease known as Majeed syndrome, the clinical manifestations of which are ameliorated by strategies that block IL-1β or its receptor. However the role of lipin-2 during IL-1β production remains elusive. We show here that lipin-2 controls excessive IL-1β formation in primary human and mouse macrophages by several mechanisms, including activation of the inflammasome NLRP3. Lipin-2 regulates MAPK activation, which mediates synthesis of pro–IL-1β during inflammasome priming. Lipin-2 also inhibits the activation and sensitization of the purinergic receptor P2X7 and K+ efflux, apoptosis-associated speck-like protein with a CARD domain oligomerization, and caspase-1 processing, key events during inflammasome activation. Reduced levels of lipin-2 in macrophages lead to a decrease in cellular cholesterol levels. In fact, restoration of cholesterol concentrations in cells lacking lipin-2 decreases ion currents through the P2X7 receptor, and downstream events that drive IL-1β production. Furthermore, lipin-2–deficient mice exhibit increased sensitivity to high lipopolysaccharide doses. Collectively, our results unveil lipin-2 as a critical player in the negative regulation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Gema Lordén
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Itziar Sanjuán-García
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Nagore de Pablo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Inés Alvarez-Miguel
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - M Teresa Pérez-García
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, Murcia Biomedical Research Institute, Hospital Virgen de la Arrixaca, Carretera Buenavista, 30120 Murcia, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| |
Collapse
|
16
|
Oka H, Miyauchi M, Sakamoto K, Moriwaki S, Niida S, Noguchi K, Somerman MJ, Takata T. PGE2 Activates Cementoclastogenesis by Cementoblasts via EP4. J Dent Res 2016; 86:974-9. [PMID: 17890674 DOI: 10.1177/154405910708601011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Destruction of cementum and alveolar bone is the main causative event for the exfoliation of teeth as a consequence of periodontitis. Prostaglandin E2 (PGE2) and PGE receptor subtypes (EPs) play an important role in modulating osteoblast-mediated osteoclastogenesis; however, no information is available on the role of PGE2 and EPs in regulating cementoblast-mediated cementoclastogenesis. We hypothesized that the PGE2-EPs pathway also regulates cementoblasts’ ability to activate cementoclasts. For these studies, OCCM-30 cells (a mouse cementoblast cell line) were exposed to PGE2 and specific EP agonists. PGE2 (100 ng/mL) and EP4 agonist (1 μM) up-regulated RANKL and IL-6 mRNA levels, while they down-regulated OPG mRNA expression. The EP4 antagonist (1 μM) eliminated these effects of PGE2. PGE2 treatment of co-cultures of OCCM-30 cells with bone marrow cells induced TRAP-positive cells via the EP4 pathway. These findings suggest that PGE2 promotes cementoblast-mediated cementoclastogenesis by regulating the expression of RANKL and OPG via the EP4 pathway.
Collapse
Affiliation(s)
- H Oka
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim JY, Baek JM, Ahn SJ, Cheon YH, Park SH, Yang M, Choi MK, Oh J. Ethanolic extract of Schizonepeta tenuifolia attenuates osteoclast formation and activation in vitro and protects against lipopolysaccharide-induced bone loss in vivo. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:301. [PMID: 27550314 PMCID: PMC4994400 DOI: 10.1186/s12906-016-1300-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
Background Excessive osteoclast activity is a major cause of metabolic bone disorders, such as osteopenia, rheumatoid arthritis, and osteoporosis. Thus, discovery of agents targeting osteoclast differentiation and bone resorption is important for development of novel treatments for bone diseases. It has been demonstrated that ethanolic extract of schizonepeta tenuifolia (EEST) has potent anti-oxidant and anti-inflammatory activities. However, the beneficial effects of EEST on bone metabolism have not been studied. Therefore, we intend to investigate the effects of EEST on osteoclast differentiation. Methods We examined the effects and mechanisms of action of the EEST on osteoclastogenesis in vitro in bone marrow macrophages (BMMs) stimulated with receptor activator of nuclear factor kappa-B ligand (RANKL) and in vivo using a mouse model of lipopolysaccharide (LPS)-induced bone destruction. Results We found that EEST inhibited phosphorylation of Akt and IkB at early stages of RANKL-induced osteoclastogenesis. Furthermore, EEST negatively controlled the transcription and translation levels of nuclear factor of activated T cells c1 (NFATc1) and the translation level of c-Fos at the final stage of osteoclast differentiation. Reflecting these effects, EEST blocked both filamentous actin (F-actin) ring formation and bone resorbing activity of mature osteoclasts in vitro. The inhibitory effects of EEST on osteoclast formation and activity were observed in an LPS-mediated bone erosion mouse model using micro-CT and histological analysis. Conclusions EEST is a potential agent that is able to treat osteoclast-related bone diseases, such as osteoporosis.
Collapse
|
18
|
Zou YC, Yang XW, Yuan SG, Zhang P, Li YK. Celastrol inhibits prostaglandin E2-induced proliferation and osteogenic differentiation of fibroblasts isolated from ankylosing spondylitis hip tissues in vitro. Drug Des Devel Ther 2016; 10:933-48. [PMID: 27022241 PMCID: PMC4790082 DOI: 10.2147/dddt.s97463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Heterotopic ossification on the enthesis, which develops after subsequent inflammation, is one of the most distinctive features in ankylosing spondylitis (AS). Prostaglandin E2 (PGE-2) serves as a key mediator of inflammation and bone remodeling in AS. Celastrol, a well-known Chinese medicinal herb isolated from Tripterygium wilfordii, is widely used in treating inflammatory diseases, including AS. It has been proven that it can inhibit lipopolysac-charide-induced expression of various inflammation mediators, such as PGE-2. However, the mechanism by which celastrol inhibits inflammation-induced bone forming in AS is unclear. OBJECTIVE To investigate whether celastrol could inhibit isolated AS fibroblast osteogenesis induced by PGE-2. METHODS Hip synovial tissues were obtained from six AS patients undergoing total hip replacement in our hospital. Fibroblasts were isolated, primarily cultured, and then treated with PGE-2 for osteogenic induction. Different doses of celastrol and indometacin were added to observe their effects on osteogenic differentiation. Cell proliferation, osteogenic markers, alizarin red staining as well as the activity of alkaline phosphatase were examined in our study. RESULTS Celastrol significantly inhibits cell proliferation of isolated AS fibroblasts and in vitro osteogenic differentiation compared with control groups in a time- and dose-dependent manner. CONCLUSION Our results demonstrated that celastrol could inhibit isolated AS fibroblast proliferation and in vitro osteogenic differentiation. The interaction of PI3K/AKT signaling and Wnt protein may be involved in the process. Further studies should be performed in vivo and animal models to identify the potential effect of celastrol on the bone metabolism of AS patients.
Collapse
Affiliation(s)
- Yu-Cong Zou
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| | - Xian-Wen Yang
- The Third Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guang Zhou, People’s Republic of China
| | - Shi-Guo Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| | - Pei Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| | - Yi-Kai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| |
Collapse
|
19
|
Baek JM, Kim JY, Yoon KH, Oh J, Lee MS. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo. Int J Biol Sci 2016; 12:478-88. [PMID: 27019631 PMCID: PMC4807414 DOI: 10.7150/ijbs.13815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/16/2016] [Indexed: 12/11/2022] Open
Abstract
Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.
Collapse
|
20
|
Kim JY, Ahn SJ, Baek JM, Yoon KH, Lee MS, Oh J. Ostericum koreanum Reduces LPS-Induced Bone Loss Through Inhibition of Osteoclastogenesis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:495-512. [PMID: 25967665 DOI: 10.1142/s0192415x15500317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The roots of Ostericum koreanum (OK) Maximowicz have traditionally been used to produce an herbal medicine reported to possess anti-inflammatory, anti-oxidant, antimicrobial, and antitumor activities; however, its effect on bone metabolism has not yet been reported. The present study examined the effects of OK extract on lipopolysaccharide (LPS)-induced bone loss in mice by investigating bone structure and the levels of the receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) in serum and bone marrow fluid (BMF). The effects of OK extract on osteoclastogenesis were also investigated in mouse bone marrow macrophages by examining the formation of tartrate-resistant acid phosphatase (TRAP)-positive cells, the actin ring, and bone resorption activity. OK reduced LPS-induced bone destruction in vivo via a decrease in the RANKL/OPG ratio. Furthermore, it suppressed the formation of TRAP-positive cells and the actin ring, and reduced the bone-resorbing activity of mature osteoclasts. OK also significantly down-regulated the expression of various osteoclast-specific genes. However, it did not affect osteoblast differentiation, or the expression of genes involved in this process. These results demonstrated that OK prevented LPS-induced bone loss by decreasing the RANKL/OPG ratio in serum and BMF, and inhibited osteoclast differentiation and function, suggesting that OK represents a potential therapeutic drug for the treatment of osteoclast-associated bone diseases.
Collapse
Affiliation(s)
- Ju-Young Kim
- Imaging Science-Based Lung and Bone Diseases Research Center, Iksan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
5-Lipoxygenase inhibitors suppress RANKL-induced osteoclast formation via NFATc1 expression. Bioorg Med Chem 2015; 23:7069-78. [DOI: 10.1016/j.bmc.2015.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023]
|
22
|
Leis HJ, Windischhofer W. Molecular characterisation of group IVA (cytosolic) phospholipase A2 in murine osteoblastic MC3T3-E1 cells. Protein J 2015; 34:29-34. [PMID: 25504011 DOI: 10.1007/s10930-014-9594-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formation of the powerful osteogenic prostaglandin E2 by osteoblasts, a key modulatory event in the paracrine and autocrine regulation of bone cell activity, is preceded by release of the precursor arachidonic acid from phospholipid stores. The main routes of arachidonate liberation may involve phospholipase enzymes such as group IVA phospholipase A2 which is believed to be the main effector in many cell system due to its preference for arachidonate-containing lipids. MC3T3-E1 cells are non-transformed osteoblasts and are widely used as an in vitro model of osteoblast function. In these cells there is still no clarity about the main release pathway of arachidonic acid. Besides cytosolic phospholipase A2, phospholipase C and D pathways may play a key role in arachidonate release. Despite the crucial role of osteoblastic prostgalandin synthesis information on the occurrence of involved enzymes at the molecular level is scarse in MC3T3-E1 cells. We have characterised group IVA phospholipase A2 at the mRNA in these cells as a constitutively expressed enzyme which is cytosolic and translocates to the membrane upon endothelin-1 stimulation. Using immunopurification combined with Western blotting and high-resolution mass spectrometry, the enzyme was also identified at the protein level. Using specific gene silencing we were able to show that osteoblastic cytosolic phospholipase A2 is crucially involved in ET-1-induced prostaglandin formation.
Collapse
Affiliation(s)
- Hans Jörg Leis
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, University Hospital of Youth and Adolescence Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria,
| | | |
Collapse
|
23
|
Rhinacanthin C Inhibits Osteoclast Differentiation and Bone Resorption: Roles of TRAF6/TAK1/MAPKs/NF-κB/NFATc1 Signaling. PLoS One 2015; 10:e0130174. [PMID: 26083531 PMCID: PMC4471279 DOI: 10.1371/journal.pone.0130174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/17/2015] [Indexed: 11/19/2022] Open
Abstract
Rhinacanthin C is a naphthoquinone ester with anti-inflammatory activity, found in Rhinacanthus nasutus (L) Kurz (Acanthaceae). We found that rhinacanthin C inhibited osteoclast differentiation stimulated by the receptor activator of nuclear factor-κB ligand (RANKL) in mouse bone marrow macrophage cultures, although the precise molecular mechanisms underlying this phenomenon are unclear. In this study, we investigated the inhibitory mechanisms of rhinacanthin C in osteoclastogenesis. Rhinacanthin C suppressed RANKL-induced nuclear factor of activated T cells c1 (NFATc1) expression. Phosphorylation of ERK, JNK, and NF-κB, but not p38, was inhibited by rhinacanthin C, which also inhibited RANKL-stimulated TRAF6-TAK1 complex formation. Thus, the anti-osteoclastogenic effect of rhinacanthin C is mediated by a cascade of inhibition of RANKL-induced TRAF6-TAK1 association followed by activation of MAPKs/NF-κB; this leads to suppression of c-Fos and NFATc1, which regulate transcription of genes associated with osteoclast differentiation. In vivo, rhinacanthin C also reduced RANKL-induced osteoclast formation and bone resorption in mouse calvaria. Rhinacanthin C also suppressed LPS-stimulated osteoclastogenesis and bone resorption in vitro and in vivo. Rhinacanthin C may provide a novel therapy for abnormal bone lysis that occurs during inflammatory bone resorption.
Collapse
|
24
|
Gao S, Wang Y, Wang X, Lin P, Hu M. Effect of lithium ions on cementoblasts in the presence of lipopolysaccharide in vitro. Exp Ther Med 2015; 9:1277-1282. [PMID: 25780422 PMCID: PMC4353773 DOI: 10.3892/etm.2015.2276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
The applications of lithium ions as an agent to facilitate bone formation have been widely documented; however, the effect of lithium ions in the periodontitis model has not yet been elucidated. The aim of the present study, therefore, was to investigate the effect of single lithium ions in the presence of lipopolysaccharide (LPS). A periodontitis model was induced in cementoblasts using LPS. The cytotoxic effect of the lithium ions on the cementoblasts was studied through the MTT assay. Alkaline phosphatase analysis and alizarin red staining were performed to investigate the effect of the lithium ions on differentiation. To examine the effect of lithium ions on osteoclastogenesis, osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) mRNA and protein expression levels were assessed using reverse transcription-polymerase chain reaction analysis and ELISA, respectively. Compared with the effect induced by lithium ions on normal cementoblasts, proliferation and differentiation were downregulated following the co-incubation of the cementoblasts with LPS and lithium ions. Furthermore, the lithium ions appeared to alter osteoclastogenesis by regulating the OPG/RANKL ratio. In conclusion, the present findings suggest that lithium ions can downregulate proliferation and differentiation in a periodontitis model. Further studies should be undertaken prior to the acceptance of lithium ions for use in the clinic.
Collapse
Affiliation(s)
- Shang Gao
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuzhuo Wang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaolong Wang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Peng Lin
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Min Hu
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
25
|
Baek JM, Kim JY, Jung Y, Moon SH, Choi MK, Kim SH, Lee MS, Kim I, Oh J. Mollugin from Rubea cordifolia suppresses receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis and bone resorbing activity in vitro and prevents lipopolysaccharide-induced bone loss in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:27-35. [PMID: 25636867 DOI: 10.1016/j.phymed.2014.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/13/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Osteopenic diseases, such as osteoporosis, are characterized by progressive and excessive bone resorption mediated by enhanced receptor activator of nuclear factor-κB ligand (RANKL) signaling. Therefore, downregulation of RANKL downstream signals may be a valuable approach for the treatment of bone loss-associated disorders. In this study, we investigated the effects of the naphthohydroquinone mollugin on osteoclastogenesis and its function in vitro and in vivo. Mollugin efficiently suppressed RANKL-induced osteoclast differentiation of bone marrow macrophages (BMMs) and bone resorbing activity of mature osteoclasts by inhibiting RANKL-induced c-Fos and NFATc1 expression. Mollugin reduced the phosphorylation of signaling pathways activated in the early stages of osteoclast differentiation, including the MAP kinase, Akt, and GSK3β and inhibited the expression of different genes associated with osteoclastogenesis, such as OSCAR, TRAP, DC-STAMP, OC-STAMP, integrin αν, integrin β3, cathepsin K, and ICAM-1. Furthermore, mice treated with mollugin showed significant restoration of lipopolysaccharide (LPS)-induced bone loss as indicated by micro-CT and histological analysis of femurs. Consequently, these results suggested that mollugin could be a novel therapeutic candidate for bone loss-associated disorders including osteoporosis, rheumatoid arthritis, and periodontitis.
Collapse
Affiliation(s)
- Jong Min Baek
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Republic of Korea; BK21plus Program and Department of Smart Life-care Convergence, Graduate School, Wonkwang University, Iksan, Republic of Korea
| | - Ju-Young Kim
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Youngeun Jung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Seong-Hee Moon
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Min Kyu Choi
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Pharmacology Research Center, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Myeung Su Lee
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Republic of Korea; Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Republic of Korea; Department of Rheumatology, Wonkwang University, Iksan, Republic of Korea
| | - Ikyon Kim
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.
| | - Jaemin Oh
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Republic of Korea; BK21plus Program and Department of Smart Life-care Convergence, Graduate School, Wonkwang University, Iksan, Republic of Korea; Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
26
|
Madeira MFM, Queiroz-Junior CM, Cisalpino D, Werneck SMC, Kikuchi H, Fujise O, Ryffel B, Silva TA, Teixeira MM, Souza DG. MyD88 is essential for alveolar bone loss induced by Aggregatibacter actinomycetemcomitans lipopolysaccharide in mice. Mol Oral Microbiol 2013; 28:415-24. [PMID: 23906379 DOI: 10.1111/omi.12034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2013] [Indexed: 12/20/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacteria highly associated with localized aggressive periodontitis. The recognition of microbial factors, such as lipopolysaccharide from A. actinomycetemcomitans ((Aa)LPS), in the oral environment is made mainly by surface receptors known as Toll-like receptors (TLR). TLR4 is the major LPS receptor. This interaction leads to the production of inflammatory cytokines by myeloid differentiation primary-response protein 88 (MyD88) -dependent and -independent pathways, which may involve the adaptor Toll/interleukin-1 receptor-domain-containing adaptor inducing interferon-β (TRIF). The aim of this study was to assess the involvement of MyD88 in alveolar bone loss induced by (Aa)LPS in mice. C57BL6/J wild-type (WT) mice, MyD88, TRIF or TRIF/MyD88 knockout mice received 10 injections of Aa LPS strain FDC Y4 (5 μg in 3 μl), in the palatal gingival tissue of the right first molar, every 48 h. Phosphate-buffered saline was injected in the opposite side and used as control. Animals were sacrificed 24 h after the 10th injection and the maxillae were removed for macroscopic and biochemical analyses. The injections of Aa LPS induced significant alveolar bone loss in WT mice. In the absence of MyD88 or TRIF/MyD88 no bone loss induced by (Aa)LPS was observed. In contrast, responses in TRIF(-/-) mice were similar to those in WT mice. Diminished bone loss in the absence of MyD88 was associated with fewer TRAP-positive cells and increased expression of osteoblast markers, RUNX2 and osteopontin. There was also reduced tumor necrosis factor-α production in MyD88(-/-) mice. There was less osteoclast differentiation of hematopoietic bone marrow cells from MyD88(-/-) mice after (Aa)LPS stimulation. Hence, the signaling through MyD88 is pivotal for (Aa)LPS-induced osteoclast formation and alveolar bone loss.
Collapse
Affiliation(s)
- M F M Madeira
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil; Departamento de Bioquímica e Imunologia, ICB, UFMG, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kimura K, Kitaura H, Fujii T, Ishida M, Hakami ZW, Takano-Yamamoto T. An anti-c-Fms antibody inhibits osteoclastogenesis in a mouse periodontitis model. Oral Dis 2013; 20:319-24. [PMID: 23651419 DOI: 10.1111/odi.12117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 04/03/2013] [Accepted: 04/07/2013] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Bacterial lipopolysaccharide (LPS) can induce inflammatory bone loss such as periodontal disease. The formation of osteoclasts depends on macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kb ligand (RANKL). It has recently been reported that administration of an antibody of the M-CSF receptor c-Fms completely blocked osteoclastogenesis and bone erosion induced by LPS in mouse calvaria. In this study, the effect of antibody against c-Fms in the mouse periodontitis model by injection of LPS was investigated. MATERIALS AND METHODS C57BL6/J mice were injected with LPS and anti-c-Fms antibody into the mesial gingiva of the first molar in the left mandible. Histological sections of periodontal tissue were stained for tartrate-resistant acid phosphatase, and osteoclast numbers and ratio of alveolar bone resorption determined. RESULTS The number of osteoclasts and ratio of alveolar bone resorption in mice administered both LPS and anti-c-Fms antibody was lower than those in mice administered LPS alone. The expression of RANKL receptor, RANK, was inhibited by the anti-c-Fms antibody in periodontal tissue. CONCLUSION M-CSF and/or its receptor are potential therapeutic targets for the treatment of bone resorption, caused by LPS, in periodontitis. Injection of an anti-c-Fms antibody might be useful for inhibition of pathological bone resorption in periodontitis.
Collapse
Affiliation(s)
- K Kimura
- Department of Translational Medicine, Division of Orthodontics and Dentofacial Orthopedics, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Kukita A, Ichigi Y, Takigawa I, Watanabe T, Kukita T, Miyamoto H. Infection of RANKL-primed RAW-D macrophages with Porphyromonas gingivalis promotes osteoclastogenesis in a TNF-α-independent manner. PLoS One 2012; 7:e38500. [PMID: 22723864 PMCID: PMC3377672 DOI: 10.1371/journal.pone.0038500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 11/19/2022] Open
Abstract
Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of TNF-α produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse macrophages, and we show that TNF-α is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the production of TNF-α, whereas the production of TNF-α by similarly infected RANKL-primed RAW-D cells was markedly down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the presence of neutralizing antibody against TNF-α. Inhibitors of NFATc1 and p38MAPK, but not of NF-κB signaling, significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis infection, whereas re-treatment of RANKL-primed macrophages with TNF-α did not enhance osteoclastogenesis in the presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in a TNF-α independent manner, and RANKL but not TNF-α was effective in inducing osteoclastogenesis from RANKL-primed RAW-D cells in the presence of P. gingivalis.
Collapse
Affiliation(s)
- Akiko Kukita
- Department of Microbiology, Faculty of Medicine, Saga University, Saga, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Shibata-Nozaki T, Ito H, Mitomi H, Akaogi J, Komagata T, Kanaji T, Maruyama T, Mori T, Nomoto S, Ozaki S, Yamada H. Endogenous prostaglandin E2 inhibits aberrant overgrowth of rheumatoid synovial tissue and the development of osteoclast activity through EP4 receptor. ACTA ACUST UNITED AC 2011; 63:2595-605. [PMID: 21898865 DOI: 10.1002/art.30428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE We recently developed an ex vivo cellular model of pannus, the aberrant overgrowth of human synovial tissue. This study was undertaken to use that model to investigate the role of prostaglandin E2 (PGE2) and its receptor subtypes in the development of pannus growth and osteoclast activity in rheumatoid arthritis (RA). METHODS Inflammatory cells that infiltrated pannus from patients with RA were collected without enzyme digestion and designated synovial tissue-derived inflammatory cells. Their single-cell suspensions were cultured in medium alone to observe an aberrant overgrowth of inflammatory tissue in vitro. Levels of cytokines produced in culture supernatants were measured using enzyme-linked immunosorbent assay kits. Osteoclast activity was assessed by the development of resorption pits in calcium phosphate-coated slides. RESULTS Primary culture of the synovial tissue-derived inflammatory cells resulted in spontaneous reconstruction of inflammatory tissue in vitro within 4 weeks, during which tumor necrosis factor α, PGE2, macrophage colony-stimulating factor, and matrix metalloproteinase 9 were produced in the supernatant. This aberrant overgrowth was inhibited by antirheumatic drugs including methotrexate and infliximab. On calcium phosphate-coated slides, synovial tissue-derived inflammatory cells showed numerous resorption pits. In the presence of inhibitors of endogenous prostanoid production such as indomethacin and NS398, exogenous PGE1 and EP4-specific agonists significantly inhibited all these activities of synovial tissue-derived inflammatory cells in a dose-dependent manner. Addition of indomethacin, NS398, or EP4-specific antagonist resulted in the enhancement of these cells' activities. EP2-specific agonist had a partial effect, while EP1- and EP3-specific agonists had no significant effects. CONCLUSION These results suggest that endogenous PGE2 produced in rheumatoid synovium negatively regulates aberrant synovial overgrowth and the development of osteoclast activity via EP4.
Collapse
Affiliation(s)
- Toshiko Shibata-Nozaki
- Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Oka H, Miyauchi M, Furusho H, Nishihara T, Takata T. Oral administration of prostaglandin E(2)-specific receptor 4 antagonist inhibits lipopolysaccharide-induced osteoclastogenesis in rat periodontal tissue. J Periodontol 2011; 83:506-13. [PMID: 21910594 DOI: 10.1902/jop.2011.110301] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Lipopolysaccharide (LPS) from periodontal pathogens is one of the main causes of alveolar bone destruction. Prostaglandin E(2) (PGE(2)) produced by host cells after LPS stimulation may contribute to the bone destruction. PGE(2) regulates osteoblast-mediated osteoclastogenesis via PGE-specific receptor 4 (EP4). We examined the effects of the PGE(2)-EP4 pathway on the expression of osteoclastogenesis-related factors and studied the inhibitory effect of orally administered EP4-specific antagonist (EP4A) on LPS-induced bone destruction compared to complete inhibition of endogenous PGE(2) by indomethacin (IND). METHODS ST2 cells were treated with IND or EP4A and stimulated by LPS. The mRNA expressions of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), the receptor activator of nuclear factor-κB ligand (RANKL), and osteoprotegerin in ST2 cells were examined by quantitative reverse transcription-polymerase chain reaction. LPS-induced bone destruction was examined using a rat model for the periodontal tissue destruction with topically applied LPS. RESULTS IND and EP4A inhibited the upregulation of TNF-α mRNA expression, and only EP4A inhibited IL-6 and RANKL mRNA expressions in ST2 cells with LPS stimulation. Topically applied LPS induced a two-phase increase in osteoclasts along the alveolar bone margin, peaking after 3 hours and 3 days. Oral administration of EP4A and IND downregulated the later phase increase of osteoclasts. However, the early phase of increase at 3 hours was upregulated in IND-treated rats but not in EP4A-treated rats. CONCLUSION It appears that the PGE(2)-EP4 pathway has an important role in LPS-induced osteoclastogenesis, and the specific blocking of the PGE(2)-EP4 pathway by EP4A can effectively downregulate bone destruction caused by LPS without an unexpected increased number of osteoclasts.
Collapse
Affiliation(s)
- Hiroko Oka
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
31
|
Jones D, Glimcher LH, Aliprantis AO. Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection. J Clin Invest 2011; 121:2534-42. [PMID: 21737885 DOI: 10.1172/jci46262] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the past decade and a half, the biomedical community has uncovered a previously unappreciated reciprocal relationship between cells of the immune and skeletal systems. Work in this field, which has been termed "osteoimmunology," has resulted in the development of clinical therapeutics for seemingly disparate diseases linked by the common themes of inflammation and bone remodeling. Here, the important concepts and discoveries in osteoimmunology are discussed in the context of the diseases bridging these two organ systems, including arthritis, osteoporosis, cancer, and infection, and the targeted treatments used by clinicians to combat them.
Collapse
Affiliation(s)
- Dallas Jones
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
32
|
Dong L, Huang Z, Cai X, Xiang J, Zhu YA, Wang R, Chen J, Zhang J. Localized delivery of antisense oligonucleotides by cationic hydrogel suppresses TNF-α expression and endotoxin-induced osteolysis. Pharm Res 2010; 28:1349-56. [PMID: 21140285 DOI: 10.1007/s11095-010-0334-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/17/2010] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate the possibility of using localized nucleic drug delivery methods for the treatment of osteolysis-related bone disease. METHODS A bio-degradable cationic hydrogel composed of gelatin and chitosan was used to deliver an antisense oligonucleotide (ASO) targeting murine TNF-α for the treatment of endotoxin-induced osteolysis. RESULTS ASO combined with this hydrogel was released when it was digested by adhering cells. The released ASO was efficiently delivered into contacted cells and tissues in vitro and in vivo. When tested in animal models of edotoxin-induced bone resorption, ASO delivered by such means effectively suppressed the expression of TNF-α and subsequently the osteoclastogenesis in vivo. Osteolysis in the edotoxin-induced bone resorption animal models was blocked by the treatment. CONCLUSION This is a successful attempt to apply localized gene delivery method to treat inflammatory diseases in vivo.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mabilleau G, Chappard D, Sabokbar A. Role of the A20-TRAF6 axis in lipopolysaccharide-mediated osteoclastogenesis. J Biol Chem 2010; 286:3242-9. [PMID: 21127049 DOI: 10.1074/jbc.m110.150300] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS) has long been suggested as a potent inducer of bone loss in vivo despite controversial effects on osteoclast precursors. Recently, the role of the deubiquitinating protease A20 in regulating the LPS response in various organs was reported. In the present study, we investigated whether A20 is expressed in osteoclast cultures in response to RANKL or LPS and whether this protein plays a role in osteoclast formation and activation. Human peripheral blood mononuclear cells were cultured in the presence of M-CSF ± RANKL ± LPS. Although LPS induced the formation of multinucleated TRAP-positive cells expressing OSCAR, cathepsin K, and the calcitonin receptor, these cells were not capable of lacunar resorption. Release of TNF-α was noted in LPS-treated cultures, and the addition of a neutralizing anti-TNF-α antibody abrogated osteoclast formation in these cultures. A20 appeared to be a late-expressed gene in LPS-treated cultures and was associated with TRAF6 degradation and NF-κB inhibition. Silencing of A20 restored TRAF6 expression and NF-κB activation and resulted in increased bone resorption in LPS-treated cultures. A20 appeared important in the control of bone resorption and could represent a therapeutic target to treat patients with bone resorption associated with inflammatory diseases.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, OX3 7LD Oxford, United Kingdom.
| | | | | |
Collapse
|
34
|
Bandow K, Maeda A, Kakimoto K, Kusuyama J, Shamoto M, Ohnishi T, Matsuguchi T. Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochem Biophys Res Commun 2010; 402:755-61. [DOI: 10.1016/j.bbrc.2010.10.103] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 10/23/2010] [Indexed: 12/15/2022]
|
35
|
Madsen L, Pedersen LM, Lillefosse HH, Fjære E, Bronstad I, Hao Q, Petersen RK, Hallenborg P, Ma T, De Matteis R, Araujo P, Mercader J, Bonet ML, Hansen JB, Cannon B, Nedergaard J, Wang J, Cinti S, Voshol P, Døskeland SO, Kristiansen K. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS One 2010; 5:e11391. [PMID: 20613988 PMCID: PMC2894971 DOI: 10.1371/journal.pone.0011391] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/30/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis. METHODOLOGY/PRINCIPAL FINDINGS Here we report that cyclooxygenase (COX) activity and prostaglandin E(2) (PGE(2)) are crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed beta-adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE(2) receptor antagonists implicated EP(4) as a main PGE(2) receptor, and injection of the stable PGE(2) analog (EP(3/4) agonist) 16,16 dm PGE(2) induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity development.
Collapse
Affiliation(s)
- Lise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Lone M. Pedersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Haldis Haukaas Lillefosse
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Even Fjære
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | | | - Qin Hao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Philip Hallenborg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rita De Matteis
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Pedro Araujo
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Josep Mercader
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - M. Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Palma de Mallorca, Spain
| | - Jacob B. Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Cannon
- The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jun Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
| | - Saverio Cinti
- Department of Molecular Pathology and Innovative Therapies, University of Ancona, Ancona, Italy
| | - Peter Voshol
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | | | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
36
|
Jang S, Bak EJ, Kim M, Kim JM, Chung WY, Cha JH, Yoo YJ. Wogonin inhibits osteoclast formation induced by lipopolysaccharide. Phytother Res 2009; 24:964-8. [DOI: 10.1002/ptr.3013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Lysine-specific gingipain promotes lipopolysaccharide- and active-vitamin D3-induced osteoclast differentiation by degrading osteoprotegerin. Biochem J 2009; 419:159-66. [PMID: 19102726 DOI: 10.1042/bj20081469] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Porphyromonas gingivalis is one of the major pathogens of periodontitis, a condition characterized by excessive alveolar bone resorption by osteoclasts. The bacterium produces cysteine proteases called gingipains, which are classified according to their cleavage-site specificity into Kgps (lysine-specific gingipains) and Rgps (arginine-specific gingipains). In the present study we examined the effects of gingipains on osteoclast differentiation. In co-cultures of mouse bone-marrow cells and osteoblasts, formation of multinucleated osteoclasts induced by 1alpha,25(OH)(2)D(3) (1alpha,25-dihydroxyvitamin D(3)) was augmented by Kgp but not by RgpB. A physiological concentration (0.1 nM) of 1alpha,25(OH)(2)D(3) induced the osteoclast formation in the presence of 100 nM Kgp to an extent comparable with that induced by 10 nM 1alpha,25(OH)(2)D(3). Kgp also enhanced osteoclastogenesis induced by various microbial components, including lipopolysaccharide. Combined use of Kgp and 1alpha,25(OH)(2)D(3) or lipopolysaccharide also increased the number of resorption pits developed on dentin slices, indicating that the osteoclasts formed in the presence of Kgp possess bone-resorbing activity. The enhanced osteoclastogenesis by Kgp was correlated with a depletion of osteoprotegerin in co-culture medium and was proteolytic-activity-dependent, since benzyloxycarbonyl-L-phenylalanyl-L-lysylacycloxyketone, an inhibitor of Kgp, completely abolished osteoclastogenesis induced by Kgp. Kgp digested osteoprotegerin, since its recombinant protein was susceptible to degradation by Kgp in the presence of serum. As a result, Kgp did not augment osteoclastogenesis in co-cultures of osteoprotegerin-deficient osteoblasts and bone-marrow cells. In addition, enhanced osteoclastogenesis by Kgp was abolished by an excess amount of recombinant osteoprotegerin. These findings suggest that degradation of osteoprotegerin is one of the mechanisms underlying promotion of osteoclastogenesis by Kgp.
Collapse
|
38
|
Prostaglandin D2 receptors control osteoclastogenesis and the activity of human osteoclasts. J Bone Miner Res 2008; 23:1097-105. [PMID: 18302497 DOI: 10.1359/jbmr.080228] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We recently showed that human osteoblasts synthesize prostaglandin D(2) (PGD(2)) and express both DP and CRTH2 receptors. Activation of the DP receptor decreased osteoprotegerin production, whereas activation of the CRTH2 receptor induced osteoblast chemotaxis and decreased RANKL expression. Our objectives in this study were to determine the presence, distribution, and action of these receptors in the functions of human osteoclasts and in osteoclastogenesis. Immunohistochemistry was used to detect the presence of DP and CRTH2 in in vitro-differentiated human osteoclasts in culture and in osteoclasts in situ. The effects of the activation of PGD(2) receptors on the cytoskeleton were determined by fluorescence microscopy. Specific agonists and antagonists allowed the study of the roles of these receptors on bone resorption and osteoclast differentiation. Our results show that in vitro-differentiated human osteoclasts and authentic fetal osteoclasts express both DP and CRTH2 receptors, as shown by immunocytochemistry. Similar results were obtained in osteoclasts from normal, osteoporotic, pagetic, and osteoarthritic adult bone tissues. Stimulation of osteoclasts with PGD(2) induced a robust reorganization of the cytoskeleton with a decrease in the number of cells presenting actin rings and an increase of lamellipodia, effects mediated by the DP and CRTH2 receptors, respectively. PGD(2) showed an inhibitory effect on bone resorption activity acting through the DP receptor. In vitro osteoclastogenesis from peripheral blood mononuclear cells cultured in the presence of RANKL and macrophage-colony stimulating factor was decreased by activation of either DP or CRTH2 receptors. These results suggest that PGD(2) receptors could be useful targets in certain bone diseases because their specific activation/inhibition leads to a decrease in osteoclastogenesis and to inhibition of bone resorption by osteoclasts.
Collapse
|
39
|
Hikiji H, Takato T, Shimizu T, Ishii S. The roles of prostanoids, leukotrienes, and platelet-activating factor in bone metabolism and disease. Prog Lipid Res 2008; 47:107-26. [DOI: 10.1016/j.plipres.2007.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/29/2007] [Accepted: 12/04/2007] [Indexed: 12/11/2022]
|
40
|
Noguchi M, Kimoto A, Sasamata M, Miyata K. Micro-CT imaging analysis for the effect of celecoxib, a cyclooxygenase-2 inhibitor, on inflammatory bone destruction in adjuvant arthritis rats. J Bone Miner Metab 2008; 26:461-8. [PMID: 18758904 DOI: 10.1007/s00774-008-0855-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 01/17/2008] [Indexed: 10/14/2022]
Abstract
Cyclooxygenase (COX)-2 is known to play an important role in the differentiation and maturation of osteoclasts. However, the role of COX-1 in bone metabolism has not been well explored. In this study, the bone-conserving effects of COX-2-specific (celecoxib), COX-nonselective (loxoprofen), and COX-1-specific agents (SC-58560) were compared using an adjuvant-induced arthritis (AIA) rat model. Arthritis was induced by injecting 50 microl liquid paraffin containing 1 mg Mycobacterium butyricum into the left footpad of Lewis rats. Drugs were given orally twice daily for 10 days beginning 15 days after adjuvant injection. Celecoxib was administered at the rate of 3 mg/kg per day, loxoprofen at 3 mg/kg per day, and SC-58560 at 10 mg/kg per day. The therapeutic effects on 3-D architectural bone changes in the arthritic condition, e.g., the bone volume/total tissue volume ratio and the amount of trabecular bone pattern factor, were determined by analyzing the hindpaw calcaneus of AIA rats using microcomputed tomography (micro-CT). In addition, dual-energy X-ray absorptiometry 2-D bone analysis was performed to compare with micro-CT analysis. AIA rats are prone to substantial bone erosion, which allows for significant changes in the 3-D architectural index. This inflammatory bone destruction was suppressed potently by celecoxib, only moderately by loxoprofen, and not at all by SC-58560. These data suggest that COX-2 plays an important role in the inflammatory bone destruction that occurs with rheumatoid arthritis. The results also suggest that COX-2 is more effective than COX-1 at suppressing the destruction of bone associated with arthritis.
Collapse
Affiliation(s)
- Masahiro Noguchi
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
41
|
Battaglino R, Vokes M, Schulze-Späte U, Sharma A, Graves D, Kohler T, Müller R, Yoganathan S, Stashenko P. Fluoxetine treatment increases trabecular bone formation in mice. J Cell Biochem 2007; 100:1387-94. [PMID: 17041947 DOI: 10.1002/jcb.21131] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mounting evidence exists for the operation of a functional serotonin (5-HT) system in osteoclasts and osteoblasts, which involves both receptor activation and 5-HT reuptake. In previous work we showed that the serotonin transporter (5-HTT) is expressed in osteoclasts and that its activity is required by for osteoclast differentiation in vitro. The purpose of the current study was to determine the effect of treatment with fluoxetine, a specific serotonin reuptake inhibitor, on bone metabolism in vivo. Systemic administration of fluoxetine to Swiss-Webster mice for 6 weeks resulted in increased trabecular BV and BV/TV in femurs and vertebrae as determined by micro-computed tomography (microCT). This correlated with an increase in trabecular number, connectivity, and decreased trabecular spacing. Fluoxetine treatment also resulted in increased volume in vertebral trabecular bone. However, fluoxetine-treated mice were not protected against bone loss after ovariectomy, suggesting that its anabolic effect requires the presence of estrogen. The effect of blocking the 5-HTT on bone loss following an LPS-mediated inflammatory challenge was also investigated. Subcutaneous injections of LPS over the calvariae of Swiss-Webster mice for 5 days resulted in increased numbers of osteoclasts and net bone loss, whereas new bone formation and a net gain in bone mass was seen when LPS was given together with fluoxetine. We conclude that fluoxetine treatment in vivo leads to increased bone mass under normal physiologic or inflammatory conditions, but does not prevent bone loss associated with estrogen deficiency. These data suggest that commonly used anti-depressive agents may affect bone mass.
Collapse
Affiliation(s)
- R Battaglino
- Department of Cytokine Biology, Forsyth Institute, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee CM, Genetos DC, You Z, Yellowley CE. Hypoxia regulates PGE(2) release and EP1 receptor expression in osteoblastic cells. J Cell Physiol 2007; 212:182-8. [PMID: 17370287 PMCID: PMC2929130 DOI: 10.1002/jcp.21017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Changes in regional O(2) tension that occur during fracture and skeletal unloading may stimulate local bone cell activity and ultimately regulate bone maintenance and repair. The mechanisms by which bone cells sense and respond to changes in O(2) tension are unclear. In this study we investigated the effects of low O(2) on activation of the hypoxia response element (HRE), prostaglandin E(2) (PGE(2)) production, PGE(2) receptor (EP) expression and proliferation in MC3T3-E1 osteoblastic cells. Cells were cultured for up to 72 h in 2% O(2) (considered hypoxic), 5% O(2) (in the range of normal O(2) tension in vivo) or 21% O(2) (commonly used for cell culture). Cells cultured in 2% O(2) showed activation of the HRE, increased PGE(2) release, increased EP1 expression, and reduced cell proliferation compared to cells grown at 21% O(2). Similarly, cells cultured in 5% O(2) showed increased expression of EP1 and a trend toward a decrease in proliferation, but no activation of the HRE or increase in PGE(2) levels. Expression of EP2, EP3 and EP4 were not affected by O(2) tension. The differences in EP receptor profile observed in cells grown at 5% compared to 21% O(2) suggest that bone cell phenotype may be altered under routine cell culture conditions. Furthermore, our data suggest that hypoxia-dependent PGE(2) production and EP1 expression in bone cells may play a role in bone remodeling and repair in regions of compromised or damaged bone, where O(2) tension is low.
Collapse
Affiliation(s)
- Christina M. Lee
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, Davis CA, 95616 USA
| | - Damian C. Genetos
- Department of Orthopaedic Surgery, School of Medicine, University of California at Davis, Sacramento CA, 95817 USA
| | - Zongbing You
- Department of Orthopaedic Surgery, School of Medicine, University of California at Davis, Sacramento CA, 95817 USA
| | - Clare E. Yellowley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, Davis CA, 95616 USA
- Address manuscript correspondence to: Clare Yellowley, Dept. Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, 1321 Haring Hall, One Shields Ave. Davis, CA, 95616, Tel: (530) 754-6865, Fax: (530) 752-7690,
| |
Collapse
|
43
|
Shoji M, Tanabe N, Mitsui N, Suzuki N, Takeichi O, Katono T, Morozumi A, Maeno M. Lipopolysaccharide enhances the production of nicotine-induced prostaglandin E2 by an increase in cyclooxygenase-2 expression in osteoblasts. Acta Biochim Biophys Sin (Shanghai) 2007; 39:163-72. [PMID: 17342254 DOI: 10.1111/j.1745-7270.2007.00271.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Previous studies have indicated that lipopolysaccharide (LPS) from Gram-negative bacteria in plaque induces the release of prostaglandin E(2) (PGE(2)), which promotes alveolar bone resorption in periodontitis, and that tobacco smoking might be an important risk factor for the development and severity of periodontitis. We determined the effect of nicotine and LPS on alkaline phosphatase (ALPase) activity, PGE(2) production, and the expression of cyclooxygenase (COX-1, COX-2), PGE(2) receptors Ep1>4, and macrophage colony stimulating factor (M-CSF) in human osteoblastic Saos-2 cells. The cells were cultured with 10(-3) M nicotine in the presence of 0, 1, or 10 mug/ml LPS, or with LPS alone. ALPase activity decreased in cells cultured with nicotine or LPS alone, and decreased further in those cultured with both nicotine and LPS, whereas PGE(2) production significantly increased in the former and increased further in the latter. By itself, nicotine did not affect expression of COX-1, COX-2, any of the PGE(2) receptors, or M-CSF, but when both nicotine and LPS were present, expression of COX-2, Ep3, Ep4, and M-CSF increased significantly. Simultaneous addition of 10(-4) M indomethacin eliminated the effects of nicotine and LPS on ALPase activity, PGE(2) production, and M-CSF expression. Phosphorylation of protein kinase A was high in cells cultured with nicotine and LPS. These results suggest that LPS enhances the production of nicotine-induced PGE(2) by an increase in COX-2 expression in osteoblasts, that nicotine-LPS-induced PGE2 interacts with the osteoblast Ep4 receptor primarily in autocrine or paracrine mode, and that the nicotine-LPS-induced PGE(2) then decreases ALPase activity and increases M-CSF expression.
Collapse
Affiliation(s)
- Maiko Shoji
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sanchez-Alavez M, Klein I, Brownell SE, Tabarean IV, Davis CN, Conti B, Bartfai T. Night eating and obesity in the EP3R-deficient mouse. Proc Natl Acad Sci U S A 2007; 104:3009-14. [PMID: 17307874 PMCID: PMC1800735 DOI: 10.1073/pnas.0611209104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult mice carrying a null mutation of the prostanoid receptor EP3R (EP3R(-/-) mice) exhibit increased frequency of feeding during the light cycle of the day and develop an obese phenotype under a normal fat diet fed ad libitum. EP3R(-/-) mice show increased motor activity, which is not sufficient to offset the increased feeding leading to increased body weight. Altered "nocturnal" activity and feeding behavior is present from a very early age and does not seem to require age-dependent factors for the development of obesity. Obesity in EP3R(-/-) mice is characterized by elevated leptin and insulin levels and >20% higher body weight compared with WT littermates. Abdominal and subcutaneous fat and increased liver weight account for the weight increase in EP3R(-/-) mice. These observations expand the roles of prostaglandin E(2) signaling in metabolic regulation beyond the reported stimulation of leptin release from adipose tissue to involve actions mediated by EP3R in the regulation of sleep architecture and feeding behavior. The findings add to the growing literature on links between inflammatory signaling and obesity.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- The Harold L. Dorris Neurological Research Institute and Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Izabella Klein
- The Harold L. Dorris Neurological Research Institute and Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Sara E. Brownell
- The Harold L. Dorris Neurological Research Institute and Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Iustin V. Tabarean
- The Harold L. Dorris Neurological Research Institute and Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Christopher N. Davis
- The Harold L. Dorris Neurological Research Institute and Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Bruno Conti
- The Harold L. Dorris Neurological Research Institute and Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Tamas Bartfai
- The Harold L. Dorris Neurological Research Institute and Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Affiliation(s)
- Kazuyuki Noguchi
- Department of Hard Tissue Engineering, Division of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
46
|
Akhter MP, Cullen DM, Pan LC. Bone biomechanical properties in EP4 knockout mice. Calcif Tissue Int 2006; 78:357-62. [PMID: 16830205 DOI: 10.1007/s00223-005-0186-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 02/23/2006] [Indexed: 11/28/2022]
Abstract
Among the four prostaglandin E receptor subtypes, EP(4) has been implicated as an important regulator of both bone formation and bone resorption; however, the integrated activities of this receptor on bone biomechanical properties have not been examined previously. This study compared the bone biomechanical properties of EP(4) knockout (KO) transgenic mice to strain-matched wild-type (WT) controls. We examined two groups of adult female mice: WT (n = 12) and EP(4) KO (n = 12). Femurs were tested in three-point bending and the lumbar-4 (L4) vertebral body by compression. Distal femur and vertebral body trabecular bone architecture were quantified using micro-computed tomography. Biomechanical structural parameters (ultimate/yield load, stiffness) were measured and apparent material parameters (ultimate/yield stress, modulus) calculated. Body weights and bone sizes were not different between EP(4) KO and WT mice (P > 0.05, Student's t-test). EP(4) KO mice exhibited reduced structural (ultimate/yield load) and apparent material (ultimate/yield stress) strength in the femoral shaft and vertebral body compared to WT (P < 0.05). Vertebral body stiffness and femoral neck ultimate load (structural strength) were marginally lower in EP(4) KO than that in WT mice (P < 0.1). In addition, EP(4) KO mice have smaller distal femur and vertebral bone volume to total volume (BV/TV) trabecular thickness than WT mice (P < 0.05). These results suggest that the prostaglandin receptor EP(4) has an important role in determining biomechanical competence in the mouse skeleton. Despite similar bone size, the absence of an EP(4) receptor may have removed a necessary link for bone adaptation pathways, which resulted in relatively weaker bone properties.
Collapse
Affiliation(s)
- M P Akhter
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA.
| | | | | |
Collapse
|
47
|
Fujimura Y, Hotokezaka H, Ohara N, Naito M, Sakai E, Yoshimura M, Narita Y, Kitaura H, Yoshida N, Nakayama K. The hemoglobin receptor protein of porphyromonas gingivalis inhibits receptor activator NF-kappaB ligand-induced osteoclastogenesis from bone marrow macrophages. Infect Immun 2006; 74:2544-51. [PMID: 16622189 PMCID: PMC1459701 DOI: 10.1128/iai.74.5.2544-2551.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent fashion. HbR markedly inhibited RANKL-induced osteoclastogenesis when present in the culture for the first 24 h after addition of RANKL, whereas no significant inhibition was observed when HbR was added after 24 h or later, implying that HbR might interfere with only the initial stage of RANKL-mediated differentiation. HbR tightly bound to bone marrow macrophages and had the ability to induce phosphorylation of ERK, p38, NF-kappaB, and Akt. RANKL-induced phosphorylation of ERK, p38, and NF-kappaB was not suppressed by HbR, but that of Akt was markedly suppressed. HbR inhibited RANKL-mediated induction of c-Fos and NFATc1. HbR could induce beta interferon (IFN-beta) from bone marrow macrophages, but the induction level of IFN-beta might not be sufficient to suppress RANKL-mediated osteoclastogenesis, implying presence of an IFN-beta-independent pathway in HbR-mediated inhibition of osteoclastogenesis. Since rapid and extensive destruction of the alveolar bone causes tooth loss, resulting in loss of the gingival crevice that is an anatomical niche for periodontal pathogens such as P. gingivalis, the suppressive effect of HbR on osteoclastogenesis may help the microorganism exist long in the niche.
Collapse
Affiliation(s)
- Yuji Fujimura
- Division of Microbiology and Oral Infection, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Elkaim R, Obrecht-Pflumio S, Tenenbaum H. Paxillin phosphorylation and integrin expression in osteoblasts infected by Porphyromonas gingivalis. Arch Oral Biol 2006; 51:761-8. [PMID: 16620778 DOI: 10.1016/j.archoralbio.2006.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/27/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE We investigated early biological events initiated by Porphyromonas gingivalis infection of human osteoblasts, focusing on tyrosine-phosphorylation and the expression of key components in focal adhesion and cell signalling. DESIGN Human primary osteoblasts were challenged for 1h with Porphyromonas gingivalis. Tyrosine-phosphorylation of paxillin and focal adhesion kinase (FAK) was examined by Western blotting. Changes in alpha3- and beta1-integrin mRNA expression were quantified by RT-PCR. RESULTS Tyrosine-phosphorylation of paxillin was proportional to the size of the Porphyromonas gingivalis inoculum. FAK, a potential kinase for paxillin, was not activated. The amount of alpha3- and beta1-integrins, determined by Western blotting, did not vary significantly, while the corresponding mRNA levels fell significantly when a large bacterial inoculum was used. CONCLUSIONS These results indicate that Porphyromonas gingivalis infection of osteoblasts in vitro triggers tyrosine-phosphorylation of paxillin but not FAK and modify alpha3- and beta1-integrin mRNA expression. This infection thus appears to have different effects on components with essential roles in focal adhesion (paxillin) and cell signalling (FAK and integrins).
Collapse
Affiliation(s)
- René Elkaim
- Parogène, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | |
Collapse
|
49
|
Zhan P, Alander C, Kaneko H, Pilbeam CC, Guan Y, Zhang Y, Breyer MD, Raisz LG. Effect of deletion of the prostaglandin EP4 receptor on stimulation of calcium release from cultured mouse calvariae: impaired responsiveness in heterozygotes. Prostaglandins Other Lipid Mediat 2005; 78:19-26. [PMID: 16303601 DOI: 10.1016/j.prostaglandins.2004.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 09/30/2004] [Accepted: 10/17/2004] [Indexed: 10/25/2022]
Abstract
The ability of prostaglandin E2 (PGE2), selective receptor agonists for EP2 and EP4 receptors (EP2A and EP4A) and parathyroid hormone (PTH) to stimulate calcium release from cultured fetal mouse calvariae was compared in wild type (WT) mice and in mice heterozygous (HET) or homozygous (KO) for deletion of the EP4 receptor. Calvariae from 19 day fetal mice were used in order to avoid the problem of high neonatal mortality. Calcium release was increased by PGE2, EP4A or PTH in WT mice, but EP2A had no significant effect. There was a significant decrease in calcium release in response to PGE2, EP4A and PTH in calvariae from HET mice compared to WT mice. The response to PGE2 and EP4A was abrogated and the response to PTH was further diminished in EP4 receptor KO mice. These results suggest that the EP4 receptor may be rate limiting not only for PGE2 stimulated resorption but also for resorption stimulated by other agonists, like PTH that induce PGE2 production.
Collapse
Affiliation(s)
- Peili Zhan
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kobayashi Y, Take I, Yamashita T, Mizoguchi T, Ninomiya T, Hattori T, Kurihara S, Ozawa H, Udagawa N, Takahashi N. Prostaglandin E2 receptors EP2 and EP4 are down-regulated during differentiation of mouse osteoclasts from their precursors. J Biol Chem 2005; 280:24035-42. [PMID: 15834134 DOI: 10.1074/jbc.m500926200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin E2 (PGE2) has been proposed to be a potent stimulator of bone resorption. However, PGE2 itself has been shown to directly inhibit bone-resorbing activity of osteoclasts. We examined the role of PGE2 in the function of mouse osteoclasts formed in vitro. Bone marrow macrophage osteoclast precursors expressed PGE2 receptors EP1, EP2, EP3beta, and EP4, and the expression of EP2 and EP4 was down-regulated during osteoclastic differentiation induced by receptor activator of NF-kappaB ligand and macrophage colony-stimulating factor. In contrast, functional EP1 was continuously expressed in mature osteoclasts. PGE2 as well as calcitonin caused intracellular Ca2+ influx in osteoclasts. However, PGE2 and 17-phenyltrinol-PGE2 (an EP1 agonist) failed to inhibit actin-ring formation and pit formation by osteoclasts cultured on dentine slices. When EP4 was expressed in osteoclasts using an adenovirus carrying EP4 cDNA, both actin-ring and pit-forming activities of osteoclasts were inhibited in an infectious unit-dependent manner. Treatment of EP4-expressing osteoclasts with PGE2 further inhibited their actin-ring and pit-forming activities. Such inhibitory effects of EP4-mediated signals on osteoclast function are similar to those that are calcitonin receptor-mediated. Thus, osteoclast precursors down-regulate their own EP2 and EP4 levels during their differentiation into osteoclasts to escape inhibitory effects of PGE2 on bone resorption.
Collapse
Affiliation(s)
- Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399-0781, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|