1
|
Bougit E, Mas Fiol G, Lê-Bury P, Balière C, Caro V, Pizarro-Cerdá J, Dussurget O. Complete genome sequences of Yersinia pestis 6/69 strain isolated from a bubonic plague patient in Madagascar and its isogenic strain cured of pPCP1. Microbiol Resour Announc 2025:e0102124. [PMID: 39976462 DOI: 10.1128/mra.01021-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
We report the complete genome sequences of two valuable strains to investigate plague pathogenesis: (i) Yersinia pestis strain 6/69, which was isolated from a bubonic plague patient in Madagascar and contains pCD1, pMT1, and pPCP1 virulence plasmids, and (ii) the 6/69 strain cured of pPCP1.
Collapse
Affiliation(s)
- Emelyne Bougit
- Yersinia Research Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Guillem Mas Fiol
- Yersinia Research Unit, Institut Pasteur, Université Paris Cité, Paris, France
- WHO Collaborating Research and Reference Centre for Plague FRA-146, Institut Pasteur, Université Paris Cité, Paris, France
| | - Pierre Lê-Bury
- Yersinia Research Unit, Institut Pasteur, Université Paris Cité, Paris, France
- WHO Collaborating Research and Reference Centre for Plague FRA-146, Institut Pasteur, Université Paris Cité, Paris, France
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Charlotte Balière
- Environment and Infectious Risk Unit, Laboratory for Urgent Response to Biological Threats, Institut Pasteur, Université Paris Cité, Paris, France
| | - Valérie Caro
- Environment and Infectious Risk Unit, Laboratory for Urgent Response to Biological Threats, Institut Pasteur, Université Paris Cité, Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Institut Pasteur, Université Paris Cité, Paris, France
- WHO Collaborating Research and Reference Centre for Plague FRA-146, Institut Pasteur, Université Paris Cité, Paris, France
- Yersinia National Reference Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Olivier Dussurget
- Yersinia Research Unit, Institut Pasteur, Université Paris Cité, Paris, France
- WHO Collaborating Research and Reference Centre for Plague FRA-146, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Brangulis K, Sürth V, Marcinkiewicz AL, Akopjana I, Kazaks A, Bogans J, Huber A, Lin YP, Kraiczy P. CspZ variant-specific interaction with factor H incorporates a metal site to support Lyme borreliae complement evasion. J Biol Chem 2025; 301:108083. [PMID: 39675703 PMCID: PMC11773018 DOI: 10.1016/j.jbc.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Polymorphic microbial immune evasion proteins dictate the pathogen species- or strain-specific virulence. Metals can impact how microbial proteins confer host-pathogen interactions, but whether this activity can be allelically variable is unclear. Here, we investigate the polymorphic CspZ protein of Lyme disease spirochete bacteria to assess the role of metals in protein-protein interaction. CspZ facilitates evasion of the complement system, the first line of immune defense through binding to the complement regulator factor H (FH). By obtaining a high-resolution cocrystal CspZ-FH structure, we identified a zinc coordinating the binding of FH SCR6-7 domains to a Glu65 on a loop from CspZ of Borrelia burgdorferi B31. However, zinc is dispensable for human FH binding for CspZ orthologs with a different loop orientation and/or lacking this glutamate. Phylogenetic analysis of all known human FH-binding CspZ variants further grouped the proteins into three unique lineages correlating with loop sequences. This suggests multiple FH-binding mechanisms evolved through Lyme disease spirochete-host interactions. Overall, this multidisciplinary work elucidates how the allelically specific immune evasion role of metals is impacted by microbial protein polymorphisms.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Riga, Latvia; Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia.
| | - Valerie Sürth
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Alisa Huber
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA; Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA.
| | - Peter Kraiczy
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany.
| |
Collapse
|
3
|
Akhtar AA, Turner DP. The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: Therapeutic and vaccine potential. Microb Pathog 2022; 171:105734. [PMID: 36007845 DOI: 10.1016/j.micpath.2022.105734] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is found in all domains of life, facilitating critical biological processes through the translocation of a wide variety of substrates from, ions to proteins, across cellular membranes in an ATP-coupled process. The role of ABC transporters in eukaryotes has been well established: the facilitation of genetic diseases and multi-drug resistance (MDR) in cancer patients. In contrast, the role of ABC transporters in prokaryotes has been ambiguous due to their diverse functions and the sheer number of organisms in which they reside. This review examines the role of bacterial ABC transporters in pathogenesis and virulence, and their potential for therapeutic and vaccine application. We demonstrate how ABC transporters play a vital role in the virulence and pathogenesis of several pathogenic bacteria through the import of essential molecules, such as metal ions, amino acids, peptides, vitamins and osmoprotectants, as well as, the export of virulent determinants involved in glycoconjugate biosynthesis and Type I secretion. Furthermore, ABC exporters facilitate the persistence of pathogenic bacteria through the export of toxic xenobiotic substances, thus, contributing to the development of antimicrobial resistance. We also show that ABC transporters display considerable potential for therapeutic application through immunisation and resistance reversal. In conclusion, bacterial ABC transporters play an immense role in virulence and pathogenesis and display desirable traits for clinical use, therefore, potentially aiding in the battle against MDR.
Collapse
Affiliation(s)
- Armaan A Akhtar
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - David Pj Turner
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
4
|
Zhang Y, Wang X, Li Z, Zhang J, Wang Y, Wu C, Chen C, Li J, Zhang H. Brucella melitensis outer membrane protein 25 interacts with ferritin heavy polypeptide 1 in human trophoblast cells. Mol Med Rep 2022; 26:224. [PMID: 35593274 DOI: 10.3892/mmr.2022.12740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/04/2021] [Indexed: 11/06/2022] Open
Abstract
Outer membrane protein 25 (OMP25) is involved in Brucella virulence and serves an important role in Brucella pathogenesis during infection. However, the protein interacting with OMP25 in host cells remains to be elucidated. The present study constructed a cDNA library from Brucella melitensis 16M‑infected human placenta trophoblastic cells (HPT‑8) and identified and confirmed the interaction between Brucella OMP25 and ferritin heavy polypeptide 1 (FTH1) of HPT‑8 using yeast two‑hybrid and co‑immunoprecipitation technologies. The expression of Toll‑like receptor (TLR)4, myeloid differentiation primary response protein MyD88 (MyD88) mRNA and inflammatory factors was detected by RNA interference. The results showed that OMP25 interacted with FTH1. Subsequently, TLR4 and MyD88 mRNA expression levels and inflammatory factors, such as nitric oxide, lactate dehydrogenase and TNF‑α, significantly increased after inserting OMP25 into the HPT‑8 cells. Notably, a low dose of OMP25 resulted in immunological protection, whereas high dose of OMP25 resulted in a cytotoxic effect on the HPT‑8 cells. It is suggested that OMP25 and FTH1 serve important roles in intracellular parasitism of Brucella and inhibition of expression.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Xiaofeng Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan 476000, P.R. China
| | - Jing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Yong Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi 030006, P.R. China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Jie Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, P.R. China
| |
Collapse
|
5
|
Sy BM, Tree JJ. The Small RNA CyaR Activates Translation of the Outer Membrane Haem Receptor chuA in Enterohemorrhagic Escherichia coli. Front Microbiol 2022; 13:821196. [PMID: 35422774 PMCID: PMC9002310 DOI: 10.3389/fmicb.2022.821196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
To sense the transition from environment to host, bacteria use a range of environmental cues to control expression of virulence genes. Iron is tightly sequestered in host tissues and in the human pathogen enterohemorrhagic Escherichia coli (EHEC) iron-limitation induces transcription of the outer membrane haem transporter encoded by chuAS. ChuA expression is post-transcriptionally activated at 37°C by a FourU RNA thermometer ensuring that the haem receptor is only expressed under low iron, high temperature conditions that indicate the host. Here we demonstrate that expression of chuA is also independently regulated by the cAMP-responsive small RNA (sRNA) CyaR and transcriptional terminator Rho. These results indicate that chuAS expression is regulated at the transcription initiation, transcript elongation, and translational level. We speculate that additional sensing of the gluconeogenic environment allows further precision in determining when EHEC is at the gastrointestinal epithelium of the host. With previous studies, it appears that the chuAS transcript is controlled by eight regulatory inputs that control expression through six different transcriptional and post-transcriptional mechanisms. The results highlight the ability of regulatory sRNAs to integrate multiple environmental signals into a layered hierarchy of signal input.
Collapse
Affiliation(s)
- Brandon M Sy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Oliveira F, Rohde H, Vilanova M, Cerca N. Fighting Staphylococcus epidermidis Biofilm-Associated Infections: Can Iron Be the Key to Success? Front Cell Infect Microbiol 2021; 11:798563. [PMID: 34917520 PMCID: PMC8670311 DOI: 10.3389/fcimb.2021.798563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus epidermidis is one of the most important commensal microorganisms of human skin and mucosae. However, this bacterial species is also the cause of severe infections in immunocompromised patients, specially associated with the utilization of indwelling medical devices, that often serve as a scaffold for biofilm formation. S. epidermidis strains are often multidrug resistant and its association with biofilm formation makes these infections hard to treat. Their remarkable ability to form biofilms is widely regarded as its major pathogenic determinant. Although a significant amount of knowledge on its biofilm formation mechanisms has been achieved, we still do not understand how the species survives when exposed to the host harsh environment during invasion. A previous RNA-seq study highlighted that iron-metabolism associated genes were the most up-regulated bacterial genes upon contact with human blood, which suggested that iron acquisition plays an important role in S. epidermidis biofilm development and escape from the host innate immune system. In this perspective article, we review the available literature on the role of iron metabolism on S. epidermidis pathogenesis and propose that exploiting its dependence on iron could be pursued as a viable therapeutic alternative.
Collapse
Affiliation(s)
- Fernando Oliveira
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel Vilanova
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| |
Collapse
|
7
|
Porphyromonas gingivalis HmuY and Streptococcus gordonii GAPDH-Novel Heme Acquisition Strategy in the Oral Microbiome. Int J Mol Sci 2020; 21:ijms21114150. [PMID: 32532033 PMCID: PMC7312356 DOI: 10.3390/ijms21114150] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
The oral cavity of healthy individuals is inhabited by commensals, with species of Streptococcus being the most abundant and prevalent in sites not affected by periodontal diseases. The development of chronic periodontitis is linked with the environmental shift in the oral microbiome, leading to the domination of periodontopathogens. Structure-function studies showed that Streptococcus gordonii employs a "moonlighting" protein glyceraldehyde-3-phosphate dehydrogenase (SgGAPDH) to bind heme, thus forming a heme reservoir for exchange with other proteins. Secreted or surface-associated SgGAPDH coordinates Fe(III)heme using His43. Hemophore-like heme-binding proteins of Porphyromonas gingivalis (HmuY), Prevotella intermedia (PinO) and Tannerella forsythia (Tfo) sequester heme complexed to SgGAPDH. Co-culturing of P. gingivalis with S. gordonii results in increased hmuY gene expression, indicating that HmuY might be required for efficient inter-bacterial interactions. In contrast to the DhmuY mutant strain, the wild type strain acquires heme and forms deeper biofilm structures on blood agar plates pre-grown with S. gordonii. Therefore, our novel paradigm of heme acquisition used by P. gingivalis appears to extend to co-infections with other oral bacteria and offers a mechanism for the ability of periodontopathogens to obtain sufficient heme in the host environment. Importantly, P. gingivalis is advantaged in terms of acquiring heme, which is vital for its growth survival and virulence.
Collapse
|
8
|
Latham RD, Torrado M, Atto B, Walshe JL, Wilson R, Guss JM, Mackay JP, Tristram S, Gell DA. A heme-binding protein produced by Haemophilus haemolyticus inhibits non-typeable Haemophilus influenzae. Mol Microbiol 2019; 113:381-398. [PMID: 31742788 DOI: 10.1111/mmi.14426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023]
Abstract
Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.
Collapse
Affiliation(s)
- Roger D Latham
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - James L Walshe
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - J Mitchell Guss
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - David A Gell
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
9
|
Dai J, Liu Y, Liu S, Li S, Gao N, Wang J, Zhou J, Qiu D. Differential gene content and gene expression for bacterial evolution and speciation of Shewanella in terms of biosynthesis of heme and heme-requiring proteins. BMC Microbiol 2019; 19:173. [PMID: 31362704 PMCID: PMC6664582 DOI: 10.1186/s12866-019-1549-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/19/2019] [Indexed: 01/31/2023] Open
Abstract
Background Most species of Shewanella harbor two ferrochelatase paralogues for the biosynthesis of c-type cytochromes, which are crucial for their respiratory versatility. In our previous study of the Shewanella loihica PV-4 strain, we found that the disruption of hemH1 but not hemH2 resulted in a significant accumulation of extracellular protoporphyrin IX (PPIX), but it is different in Shewanella oneidensis MR-1. Hence, the function and transcriptional regulation of two ferrochelatase genes, hemH1 and hemH2, are investigated in S. oneidensis MR-1. Result In the present study, deletion of either hemH1 or hemH2 in S. oneidensis MR-1 did not lead to overproduction of extracellular protoporphyrin IX (PPIX) as previously described in the hemH1 mutants of S. loihica PV-4. Moreover, supplement of exogenous hemins made it possible to generate the hemH1 and hemH2 double mutant in MR-1, but not in PV-4. Under aerobic condition, exogenous hemins were required for the growth of MR-1ΔhemH1ΔhemH2, which also overproduced extracellular PPIX. These results suggest that heme is essential for aerobic growth of Shewanella species and MR-1 could also uptake hemin for biosynthesis of essential cytochrome(s) and respiration. Besides, the exogenous hemin mediated CymA cytochrome maturation and the cellular KatB catalase activity. Both hemH paralogues were transcribed in wild-type MR-1, and the hemH2 transcription was remarkably up-regulated in MR-1ΔhemH1 mutant to compensate for the loss of hemH1. The periplasmic glutathione peroxidase gene pgpD, located in the same operon with hemH2, and a large gene cluster coding for iron, heme (hemin) uptake systems are absent in the PV-4 genome. Conclusion Our results indicate that the genetic divergence in gene content and gene expression between these Shewanella species, accounting for the phenotypic difference described here, might be due to their speciation and adaptation to the specific habitats (iron-rich deep-sea vent versus iron-poor freshwater) in which they evolved and the generated mutants could potentially be utilized for commercial production of PPIX. Electronic supplementary material The online version of this article (10.1186/s12866-019-1549-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingcheng Dai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqi Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyang Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Gao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA.,Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94270, USA
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei Province, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Electrochemical characterization of Fe center from hemin binding with Yersinia pestis heme-protein acquisition system. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Freitas-Mesquita AL, Dick CF, Dos-Santos ALA, Nascimento MTC, Rochael NC, Saraiva EM, Meyer-Fernandes JR. Cloning, expression and purification of 3'-nucleotidase/nuclease, an enzyme responsible for the Leishmania escape from neutrophil extracellular traps. Mol Biochem Parasitol 2019; 229:6-14. [PMID: 30772424 DOI: 10.1016/j.molbiopara.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 01/04/2023]
Abstract
Leishmaniasis is one of the most significant of the neglected tropical diseases, with 350 million people in 98 countries worldwide living at risk of developing one of the many forms of the disease. During the transmission of the parasite from its vector to the vertebrate host, neutrophils are rapidly recruited to the site of the sandfly bite. Using different strategies, neutrophils can often kill a large number of parasites. However, some parasites can resist neutrophil-killing mechanisms and survive until macrophage arrival at the infection site. One of the strategies for neutrophil-mediated killing is the production of neutrophil extracellular traps (NETs). Because of its ecto-localized nuclease activity, the enzyme 3'-nucleotidase/nuclease (3'NT/NU), present in different Leishmania species, was recently identified as part of a possible parasite escape mechanism from NET-mediated death. Previous studies showed that 3'NT/NU also plays an important role in the establishment of Leishmania infection by generating extracellular adenosine that favors the parasite and macrophage interaction. This study aims to deepen the knowledge about 3'NT/NU, mainly with respect to its nuclease activity that is little studied in the current literature. For this, we cloned, expressed and purified the recombinant La3'NT/NU and have confirmed its contribution to the parasite escape from NET-mediated killing.
Collapse
Affiliation(s)
- Anita Leocadio Freitas-Mesquita
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Claudia F Dick
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - André L A Dos-Santos
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Michelle T C Nascimento
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Natalia C Rochael
- Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Elvira M Saraiva
- Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Willcocks SJ, Stabler RA, Atkins HS, Oyston PF, Wren BW. High-throughput analysis of Yersinia pseudotuberculosis gene essentiality in optimised in vitro conditions, and implications for the speciation of Yersinia pestis. BMC Microbiol 2018; 18:46. [PMID: 29855259 PMCID: PMC5984423 DOI: 10.1186/s12866-018-1189-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
Background Yersinia pseudotuberculosis is a zoonotic pathogen, causing mild gastrointestinal infection in humans. From this comparatively benign pathogenic species emerged the highly virulent plague bacillus, Yersinia pestis, which has experienced significant genetic divergence in a relatively short time span. Much of our knowledge of Yersinia spp. evolution stems from genomic comparison and gene expression studies. Here we apply transposon-directed insertion site sequencing (TraDIS) to describe the essential gene set of Y. pseudotuberculosis IP32953 in optimised in vitro growth conditions, and contrast these with the published essential genes of Y. pestis. Results The essential genes of an organism are the core genetic elements required for basic survival processes in a given growth condition, and are therefore attractive targets for antimicrobials. One such gene we identified is yptb3665, which encodes a peptide deformylase, and here we report for the first time, the sensitivity of Y. pseudotuberculosis to actinonin, a deformylase inhibitor. Comparison of the essential genes of Y. pseudotuberculosis with those of Y. pestis revealed the genes whose importance are shared by both species, as well as genes that were differentially required for growth. In particular, we find that the two species uniquely rely upon different iron acquisition and respiratory metabolic pathways under similar in vitro conditions. Conclusions The discovery of uniquely essential genes between the closely related Yersinia spp. represent some of the fundamental, species-defining points of divergence that arose during the evolution of Y. pestis from its ancestor. Furthermore, the shared essential genes represent ideal candidates for the development of novel antimicrobials against both species. Electronic supplementary material The online version of this article (10.1186/s12866-018-1189-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel J Willcocks
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Richard A Stabler
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Helen S Atkins
- Microbiology, CBR Division, DSTL Porton Down, Salisbury, SP4 0JQ, UK
| | - Petra F Oyston
- Microbiology, CBR Division, DSTL Porton Down, Salisbury, SP4 0JQ, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
13
|
The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Rep 2018; 20:949-959. [PMID: 28746878 DOI: 10.1016/j.celrep.2017.06.081] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
The type VI secretion system was recently reported to be involved in zinc acquisition, but the underlying mechanism remains unclear. Here, we report that Burkholderia thailandensis T6SS4 is involved in zinc acquisition via secretion of a zinc-scavenging protein, TseZ, that interacts with the outer membrane heme transporter HmuR. We find that HmuR is a redox-regulated dual-functional transporter that transports heme iron under normal conditions but zinc upon sensing extracellular oxidative stress, triggered by formation of an intramolecular disulfide bond. Acting as the first line of defense against oxidative stress, HmuR not only guarantees an immediate response to the changing environment but also provides a fine-tuned mechanism that allows a gradual response to perceived stress. The T6SS/HmuR-mediated active zinc transport system is also involved in bacterial virulence and contact-independent bacterial competition. We describe a sophisticated bacterial zinc acquisition mechanism affording insights into the role of metal ion transport systems.
Collapse
|
14
|
Schwiesow L, Mettert E, Wei Y, Miller HK, Herrera NG, Balderas D, Kiley PJ, Auerbuch V. Control of hmu Heme Uptake Genes in Yersinia pseudotuberculosis in Response to Iron Sources. Front Cell Infect Microbiol 2018. [PMID: 29520342 PMCID: PMC5827684 DOI: 10.3389/fcimb.2018.00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite the mammalian host actively sequestering iron to limit pathogenicity, heme (or hemin when oxidized) and hemoproteins serve as important sources of iron for many bloodborne pathogens. The HmuRSTUV hemin uptake system allows Yersinia species to uptake and utilize hemin and hemoproteins as iron sources. HmuR is a TonB-dependent outer membrane receptor for hemin and hemoproteins. HmuTUV comprise a inner membrane ABC transporter that transports hemin and hemoproteins from the periplasmic space into the bacterial cytoplasm, where it is degraded by HmuS. Here we show that hmuSTUV but not hmuR are expressed under iron replete conditions, whereas hmuR as well as hmuSTUV are expressed under iron limiting conditions, suggesting complex transcriptional control. Indeed, expression of hmuSTUV in the presence of inorganic iron, but not in the presence of hemin, requires the global regulator IscR acting from a promoter in the intergenic region between hmuR and hmuS. This effect of IscR appears to be direct by binding a site mapped by DNaseI footprinting. In contrast, expression of hmuR under iron limiting conditions requires derepression of the ferric uptake regulator Fur acting from the hmuR promoter, as Fur binding upstream of hmuR was demonstrated biochemically. Differential expression by both Fur and IscR would facilitate maximal hemin uptake and utilization when iron and heme availability is low while maintaining the capacity for periplasmic removal and cytosolic detoxification of heme under a wider variety of conditions. We also demonstrate that a Y. pseudotuberculosis ΔiscR mutant has a survival defect when incubated in whole blood, in which iron is sequestered by heme-containing proteins. Surprisingly, this phenotype was independent of the Hmu system, the type III secretion system, complement, and the ability of Yersinia to replicate intracellularly. These results suggest that IscR regulates multiple virulence factors important for Yersinia survival and growth in mammalian tissues and reveal a surprising complexity of heme uptake expression and function under differing conditions of iron.
Collapse
Affiliation(s)
- Leah Schwiesow
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Erin Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Yahan Wei
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Halie K Miller
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Natalia G Herrera
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David Balderas
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
15
|
Radka CD, Chen D, DeLucas LJ, Aller SG. The crystal structure of the Yersinia pestis iron chaperone YiuA reveals a basic triad binding motif for the chelated metal. Acta Crystallogr D Struct Biol 2017; 73:921-939. [PMID: 29095164 PMCID: PMC5683015 DOI: 10.1107/s2059798317015236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Abstract
Biological chelating molecules called siderophores are used to sequester iron and maintain its ferric state. Bacterial substrate-binding proteins (SBPs) bind iron-siderophore complexes and deliver these complexes to ATP-binding cassette (ABC) transporters for import into the cytoplasm, where the iron can be transferred from the siderophore to catalytic enzymes. In Yersinia pestis, the causative agent of plague, the Yersinia iron-uptake (Yiu) ABC transporter has been shown to improve iron acquisition under iron-chelated conditions. The Yiu transporter has been proposed to be an iron-siderophore transporter; however, the precise siderophore substrate is unknown. Therefore, the precise role of the Yiu transporter in Y. pestis survival remains uncharacterized. To better understand the function of the Yiu transporter, the crystal structure of YiuA (YPO1310/y2875), an SBP which functions to present the iron-siderophore substrate to the transporter for import into the cytoplasm, was determined. The 2.20 and 1.77 Å resolution X-ray crystal structures reveal a basic triad binding motif at the YiuA canonical substrate-binding site, indicative of a metal-chelate binding site. Structural alignment and computational docking studies support the function of YiuA in binding chelated metal. Additionally, YiuA contains two mobile helices, helix 5 and helix 10, that undergo 2-3 Å shifts across crystal forms and demonstrate structural breathing of the c-clamp architecture. The flexibility in both c-clamp lobes suggest that YiuA substrate transfer resembles the Venus flytrap mechanism that has been proposed for other SBPs.
Collapse
Affiliation(s)
- Christopher D. Radka
- Graduate Biomedical Sciences Microbiology Theme, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dongquan Chen
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lawrence J. DeLucas
- Office of the Provost, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen G. Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
17
|
Abstract
Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.
Collapse
|
18
|
Abstract
Iron is essential for the survival of most bacteria but presents a significant challenge given its limited bioavailability. Furthermore, the toxicity of iron combined with the need to maintain physiological iron levels within a narrow concentration range requires sophisticated systems to sense, regulate, and transport iron. Most bacteria have evolved mechanisms to chelate and transport ferric iron (Fe3+) via siderophore receptor systems, and pathogenic bacteria have further lowered this barrier by employing mechanisms to utilize the host's hemoproteins. Once internalized, heme is cleaved by both oxidative and nonoxidative mechanisms to release iron. Heme, itself a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such, pathogenic bacteria have evolved sophisticated cell surface signaling and transport systems to obtain heme from the host. In this review, we summarize the structure and function of the heme-sensing and transport systems of pathogenic bacteria and the potential of these systems as antimicrobial targets.
Collapse
Affiliation(s)
- Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201;
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|
19
|
Diverse structural approaches to haem appropriation by pathogenic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:422-433. [PMID: 28130069 DOI: 10.1016/j.bbapap.2017.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/24/2022]
Abstract
The critical need for iron presents a challenge for pathogenic bacteria that must survive in an environment bereft of accessible iron due to a natural low bioavailability and their host's nutritional immunity. Appropriating haem, either direct from host haemoproteins or by secreting haem-scavenging haemophores, is one way pathogenic bacteria can overcome this challenge. After capturing their target, haem appropriation systems must remove haem from a high-affinity binding site (on the host haemoprotein or bacterial haemophore) and transfer it to a binding site of lower affinity on a bacterial receptor. Structural information is now available to show how, using a combination of induced structural changes and steric clashes, bacteria are able to extract haem from haemophores, haemopexin and haemoglobin. This review focuses on structural descriptions of these bacterial haem acquisition systems, summarising how they bind haem and their target haemoproteins with particularly emphasis on the mechanism of haem extraction.
Collapse
|
20
|
Abstract
The review highlights the intrinsic problems in the acquisition of ferric iron (FeIII) by pathogenic microorganisms, and bacteria in particular, during their infection of animals. Acquisition of iron from host sources, such as ferritin, transferrin, and heme compounds, is discussed. Acquisition can be by direct contact, via a surface receptor protein of the bacterium, with one of the iron-containing compounds, but more frequently iron is acquired by the production of a siderophore. Over 500 different siderophores are now known; they work by having a superior binding power to that of the host iron-containing materials. They literally strip the iron out of these molecules. They are low-molecular-weight (< 1,000 Da) compounds that are produced in response to iron deprivation, which is a primary host defense mechanism against infections. The iron–siderophore complex is small enough to be taken up into the bacterial cells, usually via an active transport process; the iron is removed from the siderophore, normally by a reductive process, and is then incorporated into the various apoproteins of the bacterial cell or is stored within the bacteria in the form of bacterioferritin. To combat the effectiveness of the siderophores, animals may synthesize specific proteins to bind and nullify their action. The role of one such protein, siderocalin (= lipocalin 2), is discussed. However, these countermeasures have, in turn, been thwarted by at least one bacterium, Salmonella, glycosylating its siderophore (enterobactin/enterochelin) so that binding of the modified siderophore (now termed salmochelin) with lipocalin can no longer occur.
Collapse
|
21
|
Perry RD, Bobrov AG, Fetherston JD. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis. Metallomics 2016; 7:965-78. [PMID: 25891079 DOI: 10.1039/c4mt00332b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
22
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
23
|
Delepelaire P, Izadi-Pruneyre N, Delepierre M, Ghigo JM, Schwartz M. A tribute to Cécile Wandersman. Res Microbiol 2015; 166:393-8. [PMID: 26258186 DOI: 10.1016/j.resmic.2015.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Kanaujia PK, Bajaj P, Virdi JS. Analysis of iron acquisition and storage-related genes in clinical and non-clinical strains of Yersinia enterocolitica biovar 1A. APMIS 2015. [PMID: 26223204 DOI: 10.1111/apm.12425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Possession of mechanisms for iron acquisition and its storage enhances the ability of the bacteria to survive in the iron-limiting environment of the host. In this study, 81 strains of Yersinia enterocolitica biovar 1A isolated from various clinical (n = 51) and non-clinical (n = 30) sources were investigated for the presence of the genes related to iron acquisition and storage. Important genes which were present in more than 85% of the strains included hasA, foxA, bfr, bfd, ftnA, and hmsT as well as the fhuCDB, fepBDGCfesfepA, feoAB, yfuABCD, hemPRSTUV, and hmsHFRS gene clusters. Majority of these genes is being reported for the first time in biovar 1A strains and showed significant homology with genes present in the known pathogenic biovars of Y. enterocolitica. However, no significant difference was observed in the distribution of iron acquisition and storage-related genes among clinical and non-clinical biovar 1A strains. Thus, it may be suggested that the presence of iron acquisition and storage-related genes per se might not be responsible for the supposedly better ability of clinical biovar 1A strains to cause infections in humans. However, in the backdrop of this data, the need to undertake functional studies are highly recommended.
Collapse
Affiliation(s)
- Pawan Kumar Kanaujia
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Priyanka Bajaj
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Jugsharan Singh Virdi
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
25
|
Smith AD, Modi AR, Sun S, Dawson JH, Wilks A. Spectroscopic Determination of Distinct Heme Ligands in Outer-Membrane Receptors PhuR and HasR of Pseudomonas aeruginosa. Biochemistry 2015; 54:2601-12. [PMID: 25849630 DOI: 10.1021/acs.biochem.5b00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pseudomonas aeruginosa PAO1 encodes two outer membrane receptors, PhuR (Pseudomonas heme uptake) and HasR (heme assimilation system). The HasR receptor acquires heme through interaction with a secreted hemophore, HasAp. The non-hemophore-dependent PhuR is encoded along with proteins required for heme translocation into the cytoplasm. Herein, we report the isolation and characterization of the HasR and PhuR receptors. Absorption and MCD spectroscopy confirmed that, similar to other Gram-negative OM receptors, HasR coordinates heme through the conserved N-terminal plug His-221 and His-624 of the surface-exposed FRAP-loop. In contrast, PhuR showed distinct absorption and MCD spectra consistent with coordination through a Tyr residue. Sequence alignment of PhuR with all known Gram-negative OM heme receptors revealed a lack of a conserved His within the FRAP loop but two Tyr residues at positions 519 and 529. Site-directed mutagenesis and spectroscopic characterization confirmed Tyr-519 and the N-terminal plug His-124 provide the heme ligands in PhuR. We propose that PhuR and HasR represent nonredundant heme receptors capable of sensing and accessing heme across a wide range of physiological conditions on colonization and infection of the host.
Collapse
Affiliation(s)
- Aaron D Smith
- †Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Anuja R Modi
- ‡Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shengfang Sun
- ‡Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - John H Dawson
- ‡Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Angela Wilks
- †Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
26
|
Smith AD, Wilks A. Differential contributions of the outer membrane receptors PhuR and HasR to heme acquisition in Pseudomonas aeruginosa. J Biol Chem 2015; 290:7756-66. [PMID: 25616666 DOI: 10.1074/jbc.m114.633495] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa PAO1 encodes two outer membrane receptors, PhuR (Pseudomonas heme uptake) and HasR (heme assimilation system). The HasR and PhuR receptors have distinct heme coordinating ligands and substrate specificities. HasR is encoded in an operon with a secreted hemophore, HasAp. In contrast the non-hemophore-dependent PhuR is encoded within an operon along with proteins required for heme translocation into the cytoplasm. Herein we report on the contributions of the HasR and PhuR receptors to heme uptake and utilization. Employing bacterial genetics and isotopic [(13)C]heme labeling studies we have shown both PhuR and HasR are required for optimal heme utilization. However, the unique His-Tyr-ligated PhuR plays a major role in the acquisition of heme. In contrast the HasR receptor plays a primary role in the sensing of extracellular heme and a supplementary role in heme uptake. We propose PhuR and HasR represent non-redundant heme receptors, capable of accessing heme across a wide range of physiological conditions on colonization of the host.
Collapse
Affiliation(s)
- Aaron D Smith
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Angela Wilks
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
27
|
Ascenzi P, di Masi A, Leboffe L, Frangipani E, Nardini M, Verde C, Visca P. Structural Biology of Bacterial Haemophores. Adv Microb Physiol 2015; 67:127-76. [PMID: 26616517 DOI: 10.1016/bs.ampbs.2015.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron plays a key role in a wide range of metabolic and signalling functions representing an essential nutrient for almost all forms of life. However, the ferric form is hardly soluble, whereas the ferrous form is highly toxic. Thus, in biological fluids, most of the iron is sequestered in iron- or haem-binding proteins and the level of free iron is low, making haem and iron acquisition a challenge for pathogenic bacteria during infections. Although toxic to the host, free haem is a major and readily available source of iron for several pathogenic microorganisms. Both Gram-positive and Gram-negative bacteria have developed several strategies to acquire free haem-Fe and protein-bound haem-Fe. Haemophores are a class of secreted and cell surface-exposed proteins promoting free-haem uptake, haem extraction from host haem proteins, and haem presentation to specific outer-membrane receptors that internalize the metal-porphyrins. Here, structural biology of bacterial haemophores is reviewed focusing on haem acquisition, haem internalization, and haem-degrading systems.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Roma, Italy; Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy.
| | | | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | | | - Marco Nardini
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy
| | - Cinzia Verde
- Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy; Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | - Paolo Visca
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| |
Collapse
|
28
|
Pradel E, Lemaître N, Merchez M, Ricard I, Reboul A, Dewitte A, Sebbane F. New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague. PLoS Pathog 2014; 10:e1004029. [PMID: 24675805 PMCID: PMC3968184 DOI: 10.1371/journal.ppat.1004029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/11/2014] [Indexed: 12/22/2022] Open
Abstract
Bubonic plague (a fatal, flea-transmitted disease) remains an international public health concern. Although our understanding of the pathogenesis of bubonic plague has improved significantly over the last few decades, researchers have still not been able to define the complete set of Y. pestis genes needed for disease or to characterize the mechanisms that enable infection. Here, we generated a library of Y. pestis mutants, each lacking one or more of the genes previously identified as being up-regulated in vivo. We then screened the library for attenuated virulence in rodent models of bubonic plague. Importantly, we tested mutants both individually and using a novel, “per-pool” screening method that we have developed. Our data showed that in addition to genes involved in physiological adaption and resistance to the stress generated by the host, several previously uncharacterized genes are required for virulence. One of these genes (ympt1.66c, which encodes a putative helicase) has been acquired by horizontal gene transfer. Deletion of ympt1.66c reduced Y. pestis' ability to spread to the lymph nodes draining the dermal inoculation site – probably because loss of this gene decreased the bacteria's ability to survive inside macrophages. Our results suggest that (i) intracellular survival during the early stage of infection is important for plague and (ii) horizontal gene transfer was crucial in the acquisition of this ability. In order to understand and combat infectious diseases, it is essential to characterize the full set of genes required by pathogenic bacteria to overcome the many immunological and physiological challenges encountered during infection. Here, we used a genome-scale approach to identify genes required by the bacterium Yersinia pestis in the production of bubonic plague (a fatal, flea-borne zoonosis). Our results suggest that when colonizing the mammalian host, the bacterium (i) relies on carbohydrates as its carbon source, (ii) shifts to anaerobic respiration or fermentation and (iii) experiences and resists several (but not all) types of stress generated by the host's innate immune system. Strikingly, only a small set of genes (including horizontally acquired and uncharacterized sequences) are required for these infectious processes. Further investigations of the ypmt1,66c gene provided evidence to suggest that accretion of genetic material via horizontal transfer has played a key role in Yersinia pestis' ability to successfully initiate infection after the dermal fleabite. Lastly, we believe that (i) application of our approach to other pathogens and (ii) additional studies of selected Yersinia pestis genes important for plague pathogenesis (some of which are shared with other pathogens) will provide a better understanding of bacterial pathogenesis in general.
Collapse
Affiliation(s)
- Elizabeth Pradel
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Nadine Lemaître
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
- CHU Lille, Lille, France
| | - Maud Merchez
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Isabelle Ricard
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Angéline Reboul
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Amélie Dewitte
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Florent Sebbane
- Equipe Peste et Yersinia pestis; INSERM U1019, Lille, France
- Centre National de la Recherche Scientifique UMR8204, Lille, France
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Univ Lille Nord de France, Lille, France
- UDSL, Centre d'Infection et d'Immunité de Lille, Lille, France
- * E-mail:
| |
Collapse
|
29
|
Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 2013; 3:90. [PMID: 24367764 PMCID: PMC3852070 DOI: 10.3389/fcimb.2013.00090] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/18/2013] [Indexed: 02/05/2023] Open
Abstract
For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Amélie Garénaux
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Julie Proulx
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Mourad Sabri
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Charles M Dozois
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada ; Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| |
Collapse
|
30
|
Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 2013; 3:80. [PMID: 24312900 PMCID: PMC3832793 DOI: 10.3389/fcimb.2013.00080] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/30/2013] [Indexed: 12/12/2022] Open
Abstract
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense.
Collapse
Affiliation(s)
| | - James W. Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
31
|
Liu M, Biville F. Managing iron supply during the infection cycle of a flea borne pathogen, Bartonella henselae. Front Cell Infect Microbiol 2013; 3:60. [PMID: 24151576 PMCID: PMC3799009 DOI: 10.3389/fcimb.2013.00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022] Open
Abstract
Bartonella are hemotropic bacteria responsible for emerging zoonoses. Most Bartonella species appear to share a natural cycle that involves an arthropod transmission, followed by exploitation of a mammalian host in which they cause long-lasting intra-erythrocytic bacteremia. Persistence in erythrocytes is considered an adaptation to transmission by bloodsucking arthropod vectors and a strategy to obtain heme required for Bartonella growth. Bartonella genomes do not encode for siderophore biosynthesis or a complete iron Fe3+ transport system. Only genes, sharing strong homology with all components of a Fe2+ transport system, are present in Bartonella genomes. Also, Bartonella genomes encode for a complete heme transport system. Bartonella must face various environments in their hosts and vectors. In mammals, free heme and iron are rare and oxygen concentration is low. In arthropod vectors, toxic heme levels are found in the gut where oxygen concentration is high. Bartonella genomes encode for 3–5 heme-binding proteins. In Bartonella henselae heme-binding proteins were shown to be involved in heme uptake process, oxidative stress response, and survival inside endothelial cells and in the flea. In this report, we discuss the use of the heme uptake and storage system of B. henselae during its infection cycle. Also, we establish a comparison with the iron and heme uptake systems of Yersinia pestis used during its infection cycle.
Collapse
Affiliation(s)
- Mafeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Avian Disease Research Center, Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu/Ya'an , Sichuan, China
| | | |
Collapse
|
32
|
Runyen-Janecky LJ. Role and regulation of heme iron acquisition in gram-negative pathogens. Front Cell Infect Microbiol 2013; 3:55. [PMID: 24116354 PMCID: PMC3792355 DOI: 10.3389/fcimb.2013.00055] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022] Open
Abstract
Bacteria that reside in animal tissues and/or cells must acquire iron from their host. However, almost all of the host iron is sequestered in iron-containing compounds and proteins, the majority of which is found within heme molecules. Thus, likely iron sources for bacterial pathogens (and non-pathogenic symbionts) are free heme and heme-containing proteins. Furthermore, the cellular location of the bacterial within the host (intra or extracellular) influences the amount and nature of the iron containing compounds available for transport. The low level of free iron in the host, coupled with the presence of numerous different heme sources, has resulted in a wide range of high-affinity iron acquisition strategies within bacteria. However, since excess iron and heme are toxic to bacteria, expression of these acquisition systems is highly regulated. Precise expression in the correct host environment at the appropriate times enables heme iron acquisitions systems to contribute to the growth of bacterial pathogens within the host. This mini-review will highlight some of the recent findings in these areas for gram-negative pathogens.
Collapse
|
33
|
Kelson AB, Carnevali M, Truong-Le V. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms. Curr Opin Pharmacol 2013; 13:707-16. [DOI: 10.1016/j.coph.2013.07.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/22/2013] [Accepted: 07/01/2013] [Indexed: 11/28/2022]
|
34
|
RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLoS One 2013; 8:e63781. [PMID: 23704938 PMCID: PMC3660397 DOI: 10.1371/journal.pone.0063781] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/07/2013] [Indexed: 12/29/2022] Open
Abstract
The initiation, progression and transmission of most bacterial infections is dependent upon the ability of the invading pathogen to acquire iron from each of the varied environments encountered during the course of a natural infection. In total, 95% of iron within the human body is complexed within heme, making heme a potentially rich source of host-associated nutrient iron for invading bacteria. As heme is encountered only within the host, pathogenic bacteria often regulate synthesis of heme utilization factors such that production is maximal under host-associated environmental conditions. This study examines the regulated production of ShuA, an outer-membrane receptor required for the utilization of heme as a source of nutrient iron by Shigella dysenteriae, a pathogenic bacterium that causes severe diarrheal diseases in humans. Specifically, the impact of the distinct environmental temperatures encountered during infection within a host (37°C) and transmission between hosts (25°C) on shuA expression is investigated. We show that shuA expression is subject to temperature-dependent post-transcriptional regulation resulting in increased ShuA production at 37°C. The observed thermoregulation is mediated by nucleic acid sequences within the 5' untranslated region. In addition, we have identified similar nucleotide sequences within the 5' untranslated region of the orthologous chuA transcript of enteropathogenic E. coli and have demonstrated that it also functions to confer temperature-dependent post-transcriptional regulation. In both function and predicted structure, the regulatory element within the shuA and chuA 5' untranslated regions closely resembles a FourU RNA thermometer, a zipper-like RNA structure that occludes the Shine-Dalgarno sequence at low temperatures. Increased production of ShuA and ChuA in response to the host body temperature allows for maximal production of these heme acquisition factors within the environment where S. dysenteriae and pathogenic E. coli strains would encounter heme, a host-specific iron source.
Collapse
|
35
|
Kumar R, Lovell S, Matsumura H, Battaile KP, Moënne-Loccoz P, Rivera M. The hemophore HasA from Yersinia pestis (HasAyp) coordinates hemin with a single residue, Tyr75, and with minimal conformational change. Biochemistry 2013; 52:2705-7. [PMID: 23578210 DOI: 10.1021/bi400280z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemophores from Serratia marcescens (HasA(sm)) and Pseudomonas aeruginosa (HasA(p)) bind hemin between two loops, which harbor the axial ligands H32 and Y75. Hemin binding to the Y75 loop triggers closing of the H32 loop and enables binding of H32. Because Yersinia pestis HasA (HasA(yp)) presents a Gln at position 32, we determined the structures of apo- and holo-HasA(yp). Surprisingly, the Q32 loop in apo-HasA(yp) is already in the closed conformation, but no residue from the Q32 loop binds hemin in holo-HasA(yp). In agreement with the minimal reorganization between the apo- and holo-structures, the hemin on-rate is too fast to detect by conventional stopped-flow measurements.
Collapse
Affiliation(s)
- Ritesh Kumar
- Center for Bioinformatics, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
All but a few bacterial species have an absolute need for heme, and most are able to synthesize it via a pathway that is highly conserved among all life domains. Because heme is a rich source for iron, many pathogenic bacteria have also evolved processes for sequestering heme from their hosts. The heme biosynthesis pathways are well understood at the genetic and structural biology levels. In comparison, much less is known about the heme acquisition, trafficking, and degradation processes in bacteria. Gram-positive and Gram-negative bacteria have evolved similar strategies but different tactics for importing and degrading heme, likely as a consequence of their different cellular architectures. The differences are manifested in distinct structures for molecules that perform similar functions. Consequently, the aim of this chapter is to provide an overview of the structural biology of proteins and protein-protein interactions that enable Gram-positive and Gram-negative bacteria to sequester heme from the extracellular milieu, import it to the cytosol, and degrade it to mine iron.
Collapse
Affiliation(s)
- David R Benson
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS, 66047, USA,
| | | |
Collapse
|
37
|
Lewis VG, Ween MP, McDevitt CA. The role of ATP-binding cassette transporters in bacterial pathogenicity. PROTOPLASMA 2012; 249:919-942. [PMID: 22246051 DOI: 10.1007/s00709-011-0360-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The ATP-binding cassette transporter superfamily is present in all three domains of life. This ubiquitous class of integral membrane proteins have diverse biological functions, but their fundamental role involves the unidirectional translocation of compounds across cellular membranes in an ATP coupled process. The importance of this class of proteins in eukaryotic systems is well established as typified by their association with genetic diseases and roles in the multi-drug resistance of cancer. In stark contrast, the ABC transporters of prokaryotes have not been exhaustively investigated due to the sheer number of different roles and organisms in which they function. In this review, we examine the breadth of functions associated with microbial ABC transporters in the context of their contribution to bacterial pathogenicity and virulence.
Collapse
Affiliation(s)
- Victoria G Lewis
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | |
Collapse
|
38
|
Kumar P, Virdi JS. Identification and distribution of putative virulence genes in clinical strains of Yersinia enterocolitica biovar 1A by suppression subtractive hybridization. J Appl Microbiol 2012; 113:1263-72. [PMID: 22897337 DOI: 10.1111/j.1365-2672.2012.05427.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/29/2012] [Accepted: 08/02/2012] [Indexed: 01/13/2023]
Abstract
AIMS To detect putative virulence genes in clinical strains of Yersinia enterocolitica biovar 1A by suppression subtractive hybridization between two closely related strains of clinical and nonclinical origin having the same serotype (O:6,30-6,31). METHODS AND RESULTS Suppression Subtractive Hybridization (SSH) was used to identify genomic differences between clinical (serotype O:6,30-6,31, from diarrhoeic human stools) and nonclinical (serotype O:6,30-6,31, from wastewater) strains of Y. enterocolitica biovar 1A. Following genomic subtraction and DNA sequencing, nine DNA sequences that were present only in clinical biovar 1A strains were identified. The sequences identified using SSH showed similarity to conserved hypothetical proteins, proteins related to iron acquisition and haemin storage, type 1 secretion proteins, flagellar hook proteins, exported protein and ABC transport system. All these sequences showed high similarity with Y. enterocolitica 8081 (biovar 1B). The distribution of these genes was further analysed using PCR in 26 clinical strains of Y. enterocolitica biovar 1A. The results revealed that the distribution of these genes was not uniform. CONCLUSIONS Genes related to iron acquisition and storage, and flagellar proteins might be responsible for virulence of some of the clinical strains of Y. enterocolitica biovar 1A. SIGNIFICANCE AND IMPACT OF THE STUDY Genes identified in this study might be useful in understanding the pathogenic potential of clinical strains of Y. enterocolitica biovar 1A.
Collapse
Affiliation(s)
- P Kumar
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
39
|
Abstract
Haem is the major iron source for bacteria that develop in higher organisms. In these hosts, bacteria have to cope with nutritional immunity imposed by the host, since haem and iron are tightly bound to carrier and storage proteins. Siderophores were the first recognized fighters in the battle for iron between bacteria and host. They are non-proteinaceus organic molecules having an extremely high affinity for Fe(3+) and able to extract it from host proteins. Haemophores, that display functional analogy with siderophores, were more recently discovered. They are a class of secreted proteins with a high affinity for haem; they are able to extract haem from host haemoproteins and deliver it to specific receptors that internalize haem. In the past few years, a wealth of data has accumulated on haem acquisition systems that are dependent on surface exposed/secreted bacterial proteins. They promote haem transfer from its initial source (in most cases, a eukaryotic haem binding protein) to the transporter that carries out the membrane crossing step. Here we review recent discoveries in this field, with particular emphasis on similar and dissimilar mechanisms in haemophores and siderophores, from the initial host source to the binding protein/receptor at the cell surface.
Collapse
Affiliation(s)
- Cécile Wandersman
- Unité des Membranes Bactériennes, Institut Pasteur, Département de Microbiologie, 25-28, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
40
|
Caillet-Saguy C, Piccioli M, Turano P, Lukat-Rodgers G, Wolff N, Rodgers KR, Izadi-Pruneyre N, Delepierre M, Lecroisey A. Role of the iron axial ligands of heme carrier HasA in heme uptake and release. J Biol Chem 2012; 287:26932-43. [PMID: 22700962 DOI: 10.1074/jbc.m112.366385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hemophore protein HasA from Serratia marcescens cycles between two states as follows: the heme-bound holoprotein, which functions as a carrier of the metal cofactor toward the membrane receptor HasR, and the heme-free apoprotein fishing for new porphyrin to be taken up after the heme has been delivered to HasR. Holo- and apo-forms differ for the conformation of the two loops L1 and L2, which provide the axial ligands of the iron through His(32) and Tyr(75), respectively. In the apo-form, loop L1 protrudes toward the solvent far away from loop L2; in the holoprotein, closing of the loops on the heme occurs upon establishment of the two axial coordination bonds. We have established that the two variants obtained via single point mutations of either axial ligand (namely H32A and Y75A) are both in the closed conformation. The presence of the heme and one out of two axial ligands is sufficient to establish a link between L1 and L2, thanks to the presence of coordinating solvent molecules. The latter are stabilized in the iron coordination environment by H-bond interactions with surrounding protein residues. The presence of such a water molecule in both variants is revealed here through a set of different spectroscopic techniques. Previous studies had shown that heme release and uptake processes occur via intermediate states characterized by a Tyr(75)-iron-bound form with open conformation of loop L1. Here, we demonstrate that these states do not naturally occur in the free protein but can only be driven by the interaction with the partner proteins.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité de RMN des Biomolecules (CNRS URA 2185), Institut Pasteur, 28 Rue du Docteur Roux, 75015 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ekworomadu MT, Poor CB, Owens CP, Balderas MA, Fabian M, Olson JS, Murphy F, Balkabasi E, Honsa ES, He C, Goulding CW, Maresso AW. Differential function of lip residues in the mechanism and biology of an anthrax hemophore. PLoS Pathog 2012; 8:e1002559. [PMID: 22412371 PMCID: PMC3297588 DOI: 10.1371/journal.ppat.1002559] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/16/2012] [Indexed: 11/19/2022] Open
Abstract
To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 310-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 310-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with upstream ligands. Pathogenic bacteria need to acquire host iron to replicate during infection. Approximately 80% of mammalian iron is associated with a small molecule termed heme, most of which is bound to circulating hemoglobin and involved in O2 transport in red cells. Bacteria secrete proteins, termed hemophores, to acquire the heme from hemoglobin, a process thought to accelerate delivery of the heme to the bacterial surface for iron import into the cell. The mechanisms by which hemophores extract host heme from hemoglobin are not known. Here, we report that the IsdX1 hemophore from B. anthracis, the causative agent of anthrax disease, uses a conserved structural feature to link hemoglobin association with heme binding and extraction, thereby facilitating bacterial growth in low-iron environments. Such “molecular coupling” suggests that specific inhibition of the hemophore-hemoglobin interaction for this class of proteins may serve as a starting point for new anti-infective therapeutics aimed at short-circuiting iron uptake networks in bacterial pathogens.
Collapse
Affiliation(s)
- MarCia T. Ekworomadu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Catherine B. Poor
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - Cedric P. Owens
- Departments of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, California, United States of America
| | - Miriam A. Balderas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marian Fabian
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - John S. Olson
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Frank Murphy
- Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Erol Balkabasi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Erin S. Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - Celia W. Goulding
- Departments of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, California, United States of America
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
A proteome reference map and virulence factors analysis of Yersinia pestis 91001. J Proteomics 2012; 75:894-907. [DOI: 10.1016/j.jprot.2011.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/27/2011] [Accepted: 10/08/2011] [Indexed: 01/06/2023]
|
43
|
Smith AD, Wilks A. Extracellular heme uptake and the challenges of bacterial cell membranes. CURRENT TOPICS IN MEMBRANES 2012; 69:359-92. [PMID: 23046657 PMCID: PMC3731948 DOI: 10.1016/b978-0-12-394390-3.00013-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In bacteria, the fine balance of maintaining adequate iron levels while preventing the deleterious effects of excess iron has led to the evolution of sophisticated cellular mechanisms to obtain, store, and regulate iron. Iron uptake provides a significant challenge given its limited bioavailability and need to be transported across the bacterial cell wall and membranes. Pathogenic bacteria have circumvented the iron-availability issue by utilizing the hosts' heme-containing proteins as a source of iron. Once internalized, iron is liberated from the porphyrin enzymatically for cellular processes within the bacterial cell. Heme, a lipophilic and toxic molecule, poses a significant challenge in terms of transport given its chemical reactivity. As such, pathogenic bacteria have evolved sophisticated membrane transporters to coordinate, sequester, and transport heme. Recent advances in the biochemical and structural characterization of the membrane-bound heme transport proteins are discussed in the context of ligand coordination, protein-protein interaction, and heme transfer.
Collapse
Affiliation(s)
- Aaron D. Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, USA
| |
Collapse
|
44
|
Sánchez-Cruz C, López-Casamichana M, Cruz-Castañeda A, de Jesús Olivares-Trejo J. Transferrin regulates mRNA levels of a gene involved in iron utilization in Entamoeba histolytica. Mol Biol Rep 2011; 39:4545-51. [PMID: 21947947 DOI: 10.1007/s11033-011-1244-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/14/2011] [Indexed: 11/29/2022]
Abstract
Entamoeba histolytica is a human pathogen, which can survive using haemoglobin (Hb) as only iron supply. Two probable haemophores (Ehhmbp26 and Ehhmbp45) are involved in iron acquisition in this parasite. However, mechanisms related to their transcriptional regulation have not been studied yet. In the present work, transcriptional profiles of both genes were evaluated in trophozoites cultures grown with different iron sources. ehhmbp26 gene was repressed totally by free iron, whereas ehhmbp45 gene showed clearly detectable mRNA levels. Expression profiles for both genes were significantly increased under iron privation condition. Interestingly, ehhmbp26 transcript was highly expressed by Holo-transferrin presence. This induction appears to be independent of direct contact between these proteins, because, in vitro assays evidenced that Ehhmbp26 protein was unable to bind this metalloprotein. Besides, in silico analysis of promoter nucleotide sequences of ehhmbp26 and ehhmbp45 genes revealed some distinctive core promoter elements described in E. histolytica and T-rich regions. Taking altogether these data suggest in E. histolytica dissimilar transcriptional mechanisms involved on iron acquisition control the expression of these genes, and they are unlike to those previously described for instance: in bacteria. Our findings evidenced this pathogen regulates the expression of ehhmbp26 and ehhmbp45 genes depending on the available iron supply, always ensuring the success of its infective process.
Collapse
Affiliation(s)
- Cristhian Sánchez-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290 C.P. 03100, México, D.F., México
| | | | | | | |
Collapse
|
45
|
González-López MA, Olivares-Trejo JJ. The gene frpB2 of Helicobacter pylori encodes an hemoglobin-binding protein involved in iron acquisition. Biometals 2011; 22:889-94. [PMID: 19357969 DOI: 10.1007/s10534-009-9240-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/26/2009] [Indexed: 11/27/2022]
Abstract
Human hemoglobin (Hb) is a metalloprotein used by pathogens as a source of iron during invasive process. It can support the Helicobacter pylori growth and several proteins are induced during iron starvation. However, the identity of those proteins remains unknown. In this work, by in silico analysis we identified FrpB2 in H. pylori genome. This protein was annotated as an iron-regulated outer membrane protein. Multiple amino acid alignment showed the motifs necessary for Hb-binding. We demonstrate the ability of FrpB2 to bind Hb by overlay experiments. In addition, the overexpression of this gene allowed the cell growth in media without free iron but supplemented with Hb. All these results support the idea that frpB2 is a gene of H. pylori involved in iron acquisition when Hb is used as a sole iron source.
Collapse
Affiliation(s)
- Marco A González-López
- Posgrado en Ciencias Genómicas, Universidad Autónoma de Ciudad de México, San Lorenzo 290, 03100 México, DF, México
| | | |
Collapse
|
46
|
Abstract
Entamoeba histolytica is a human pathogen which can grow using different sources of iron such as free iron, lactoferrin, transferrin, ferritin or haemoglobin. In the present study, we found that E. histolytica was also capable of supporting its growth in the presence of haem as the sole iron supply. In addition, when trophozoites were maintained in cultures supplemented with haemoglobin as the only iron source, the haem was released and thus it was introduced into cells. Interestingly, the Ehhmbp26 and Ehhmbp45 proteins could be related to the mechanism of iron acquisition in this protozoan, since they were secreted to the medium under iron-starvation conditions, and presented higher binding affinity for haem than for haemoglobin. In addition, both proteins were unable to bind free iron or transferrin in the presence of haem. Taken together, our results suggest that Ehhmbp26 and Ehhmbp45 could function as haemophores, secreted by this parasite to facilitate the scavenging of haem from the host environment during the infective process.
Collapse
|
47
|
Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci U S A 2011; 108:5051-6. [PMID: 21383189 DOI: 10.1073/pnas.1009516108] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis must import iron from its host for survival, and its siderophore-dependent iron acquisition pathways are well established. Here we demonstrate a newly characterized pathway, whereby M. tuberculosis can use free heme and heme from hemoglobin as an iron source. Significantly, we identified the genomic region, Rv0202c-Rv0207c, responsible for the passage of heme iron across the mycobacterial membrane. Key players of this heme uptake system were characterized including a secreted protein and two transmembrane proteins, all three specific to mycobacteria. Furthermore, the crystal structure of the key heme carrier protein Rv0203 was found to have a unique fold. The discovery of a unique mycobacterial heme acquisition pathway opens new avenues of exploration into mycobacterial therapeutics.
Collapse
|
48
|
Honsa ES, Maresso AW. Mechanisms of iron import in anthrax. Biometals 2011; 24:533-45. [PMID: 21258843 DOI: 10.1007/s10534-011-9413-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/08/2011] [Indexed: 12/18/2022]
Abstract
During an infection, bacterial pathogens must acquire iron from the host to survive. However, free iron is sequestered in host proteins, which presents a barrier to iron-dependent bacterial replication. In response, pathogens have developed mechanisms to acquire iron from the host during infection. Interestingly, a significant portion of the iron pool is sequestered within heme, which is further bound to host proteins such as hemoglobin. The copious amount of heme-iron makes hemoglobin an ideal molecule for targeted iron uptake during infection. While the study of heme acquisition is well represented in Gram-negative bacteria, the systems and mechanism of heme uptake in Gram-positive bacteria has only recently been investigated. Bacillus anthracis, the causative agent of anthrax disease, represents an excellent model organism to study iron acquisition processes owing to a multifaceted lifecycle consisting of intra- and extracellular phases and a tremendous replicative potential upon infection. This review provides an in depth description of the current knowledge of B. anthracis iron acquisition and applies these findings to a general understanding of how pathogenic Gram-positive bacteria transport this critical nutrient during infection.
Collapse
Affiliation(s)
- Erin Sarah Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
49
|
Two Stacked Heme Molecules in the Binding Pocket of the Periplasmic Heme-Binding Protein HmuT from Yersinia pestis. J Mol Biol 2010; 404:220-31. [DOI: 10.1016/j.jmb.2010.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 09/01/2010] [Accepted: 09/03/2010] [Indexed: 11/21/2022]
|
50
|
Evaluation of Psn, HmuR and a modified LcrV protein delivered to mice by live attenuated Salmonella as a vaccine against bubonic and pneumonic Yersinia pestis challenge. Vaccine 2010; 29:274-82. [PMID: 20979987 DOI: 10.1016/j.vaccine.2010.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/13/2010] [Indexed: 01/09/2023]
Abstract
We evaluated the ability of Yersinia pestis antigens HmuR, Psn and modified forms of LcrV delivered by live attenuated Salmonella strains to stimulate a protective immune response against subcutaneous or intranasal challenge with Y. pestis CO92. LcrV196 is a previously described truncated protein that includes aa 131-326 of LcrV and LcrV5214 has been modified to replace five key amino acids required for interaction with the TLR2 receptor. Psn is the outer membrane receptor for the siderophore, yersiniabactin, and the bacteriocin, pesticin. Mice immunized with Salmonella synthesizing Psn, LcrV196 or LcrV5214 developed serum IgG responses to the respective Yersinia antigen and were protected against pneumonic challenge with Y. pestis. Immunization with Salmonella synthesizing Psn or LcrV196 was sufficient to afford nearly full protection against bubonic challenge, while immunization with the strain synthesizing LcrV5214 was not protective. Immunization with Salmonella synthesizing HmuR, an outer membrane protein involved in heme acquisition in Y. pestis, was poorly immunogenic and did not elicit a protective response against either challenge route. These findings indicate that both Psn and LcrV196 delivered by Salmonella provide protection against both bubonic and pneumonic plague.
Collapse
|