1
|
Wu R, Nahm M, Yang J, Bush CA, Wu H. Identification and genetic engineering of pneumococcal capsule-like polysaccharides in commensal oral streptococci. Microbiol Spectr 2024; 12:e0188523. [PMID: 38488366 PMCID: PMC10986556 DOI: 10.1128/spectrum.01885-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 04/06/2024] Open
Abstract
Capsular polysaccharides (CPS) in Streptococcus pneumoniae are pivotal for bacterial virulence and present extensive diversity. While oral streptococci show pronounced antigenicity toward pneumococcal capsule-specific sera, insights into evolution of capsule diversity remain limited. This study reports a pneumococcal CPS-like genetic locus in Streptococcus parasanguinis, a predominant oral Streptococcus. The discovered locus comprises 15 genes, mirroring high similarity to those from the Wzy-dependent CPS locus of S. pneumoniae. Notably, S. parasanguinis elicited a reaction with pneumococcal 19B antiserum. Through nuclear magnetic resonance analysis, we ascertained that its CPS structure matches the chemical composition of the pneumococcal 19B capsule. By introducing the glucosyltransferase gene cps19cS from a pneumococcal serotype 19C, we successfully transformed S. parasanguinis antigenicity from 19B to 19C. Furthermore, substituting serotype-specific genes, cpsI and cpsJ, with their counterparts from pneumococcal serotype 19A and 19F enabled S. parasanguinis to generate 19A- and 19F-specific CPS, respectively. These findings underscore that S. parasanguinis harbors a versatile 19B-like CPS adaptable to other serotypes. Remarkably, after deleting the locus's initial gene, cpsE, responsible for sugar transfer, we noted halted CPS production, elongated bacterial chains, and diminished biofilm formation. A similar phenotype emerged with the removal of the distinct gene cpsZ, which encodes a putative autolysin. These data highlight the importance of S. parasanguinis CPS for biofilm formation and propose a potential shared ancestry of its CPS locus with S. pneumoniae. IMPORTANCE Diverse capsules from Streptococcus pneumoniae are vital for bacterial virulence and pathogenesis. Oral streptococci show strong responses to a wide range of pneumococcal capsule-specific sera. Yet, the evolution of this capsule diversity in relation to microbe-host interactions remains underexplored. Our research delves into the connection between commensal oral streptococcal and pneumococcal capsules, highlighting the potential for gene transfer and evolution of various capsule types. Understanding the genetic and evolutionary factors that drive capsule diversity in S. pneumoniae and its related oral species is essential for the development of effective pneumococcal vaccines. The present findings provide fresh perspectives on the cross-reactivity between commensal streptococci and S. pneumoniae, its influence on bacteria-host interactions, and the development of new strategies to manage and prevent pneumococcal illnesses by targeting and modulating commensal streptococci.
Collapse
Affiliation(s)
- Ren Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama, USA
| | - Moon Nahm
- Department of Medicine, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Jinghua Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - C. Allen Bush
- Department of Chemistry and Biochemistry, University of Maryland at Baltimore, Baltimore, Maryland, USA
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, Alabama, USA
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University School of Dentistry, Portland, Oregon, USA
| |
Collapse
|
2
|
Brar NK, Dhariwal A, Åmdal HA, Junges R, Salvadori G, Baker JL, Edlund A, Petersen FC. Exploring ex vivo biofilm dynamics: consequences of low ampicillin concentrations on the human oral microbiome. NPJ Biofilms Microbiomes 2024; 10:37. [PMID: 38565843 PMCID: PMC10987642 DOI: 10.1038/s41522-024-00507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Prolonged exposure to antibiotics at low concentration can promote processes associated with bacterial biofilm formation, virulence and antibiotic resistance. This can be of high relevance in microbial communities like the oral microbiome, where commensals and pathogens share a common habitat and where the total abundance of antibiotic resistance genes surpasses the abundance in the gut. Here, we used an ex vivo model of human oral biofilms to investigate the impact of ampicillin on biofilm viability. The ecological impact on the microbiome and resistome was investigated using shotgun metagenomics. The results showed that low concentrations promoted significant shifts in microbial taxonomic profile and could enhance biofilm viability by up to 1 to 2-log. For the resistome, low concentrations had no significant impact on antibiotic resistance gene (ARG) diversity, while ARG abundance decreased by up to 84%. A positive correlation was observed between reduced microbial diversity and reduced ARG abundance. The WHO priority pathogens Streptococcus pneumoniae and Staphylococcus aureus were identified in some of the samples, but their abundance was not significantly altered by ampicillin. Most of the antibiotic resistance genes that increased in abundance in the ampicillin group were associated with streptococci, including Streptococcus mitis, a well-known potential donor of ARGs to S. pneumoniae. Overall, the results highlight the potential of using the model to further our understanding of ecological and evolutionary forces driving antimicrobial resistance in oral microbiomes.
Collapse
Affiliation(s)
- N K Brar
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - A Dhariwal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - H A Åmdal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - R Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - G Salvadori
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - J L Baker
- Department of Oral Rehabilitation & Biosciences, Oregon Health & Science University, Portland, OR, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, USA
| | - A Edlund
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, USA
| | - F C Petersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Colomba C, Garbo V, Boncori G, Albano C, Bagarello S, Condemi A, Giordano S, Canduscio LA, Gallo C, Parrinello G, Cascio A. Streptococcus mitis as a New Emerging Pathogen in Pediatric Age: Case Report and Systematic Review. Antibiotics (Basel) 2023; 12:1222. [PMID: 37508318 PMCID: PMC10376791 DOI: 10.3390/antibiotics12071222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Streptococcus mitis, a normal inhabitant of the oral cavity, is a member of Viridans Group Streptococci (VGS). Generally recognized as a causative agent of invasive diseases in immunocompromised patients, S. mitis is considered to have low pathogenic potential in immunocompetent individuals. We present a rare case of sinusitis complicated by meningitis and cerebral sino-venous thrombosis (CSVT) caused by S. mitis in a previously healthy 12-year-old boy with poor oral health status. With the aim of understanding the real pathogenic role of this microorganism, an extensive review of the literature about invasive diseases due to S. mitis in pediatric patients was performed. Our data define the critical role of this microorganism in invasive infections, especially in immunocompetent children and in the presence of apparently harmful conditions such as sinusitis and caries. Attention should be paid to the choice of therapy because of VGS's emerging antimicrobial resistance patterns.
Collapse
Affiliation(s)
- Claudia Colomba
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
- Division of Pediatric Infectious Diseases, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Valeria Garbo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Giovanni Boncori
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Chiara Albano
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Sara Bagarello
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Anna Condemi
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Salvatore Giordano
- Division of Pediatric Infectious Diseases, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Laura A Canduscio
- Division of Pediatric Infectious Diseases, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Cristina Gallo
- Division of Radiology, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Gaspare Parrinello
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
- Infectious and Tropical Diseases Unit, AOU Policlinico "P. Giaccone", 90100 Palermo, Italy
| |
Collapse
|
4
|
Wambugu P, Shah MM, Nguyen HA, Le KA, Le HH, Vo HM, Toizumi M, Bui MX, Dang DA, Yoshida LM. Molecular Epidemiology of Streptococcus pneumoniae Detected in Hospitalized Pediatric Acute Respiratory Infection Cases in Central Vietnam. Pathogens 2023; 12:943. [PMID: 37513790 PMCID: PMC10385502 DOI: 10.3390/pathogens12070943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Streptococcus pneumoniae is the major bacterial pathogen causing high pneumonia morbidity and mortality in children <5 years of age. This study aimed to determine the molecular epidemiology of S. pneumoniae detected among hospitalized pediatric ARI cases at Khanh Hoa General Hospital, Nha Trang, Vietnam, from October 2015 to September 2016 (pre-PCV). We performed semi-quantitative culture to isolate S. pneumoniae. Serotyping, antimicrobial susceptibility testing, resistance gene detection and multi-locus sequence typing were also performed. During the study period, 1300 cases were enrolled and 413 (31.8%) S. pneumoniae were isolated. School attendance, age <3 years old and prior antibiotic use before admission were positively associated with S. pneumoniae isolation. Major serotypes were 6A/B (35.9%), 19F (23.7%) and 23F (12.7%), which accounted for 80.3% of vaccine-type pneumococci. High resistance to Clarithromycin, Erythromycin and Clindamycin (86.7%, 85%, 78.2%) and the mutant drug-resistant genes pbp1A (98.1%), pbp2b (98.8%), pbp2x (99.6%) ermB (96.6%) and mefA (30.3%) were detected. MLST data showed high genetic diversity among the isolates with dominant ST 320 (21.2%) and ST 13223 (19.3%), which were mainly found in Vietnam. Non-typeables accounted for most of the new STs found in the study. Vaccine-type pneumococcus and macrolide resistance were commonly detected among hospitalized pediatric ARI cases.
Collapse
Affiliation(s)
- Peris Wambugu
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi 54840-00200, Kenya
| | - Mohammad-Monir Shah
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hien-Anh Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Kim-Anh Le
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Huy-Hoang Le
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Hien-Minh Vo
- Department of Pediatrics, Khanh Hoa General Hospital, Nha Trang 650000, Vietnam
| | - Michiko Toizumi
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Minh-Xuan Bui
- Khanh Hoa Health Service Department, Nha Trang 650000, Vietnam
| | - Duc-Anh Dang
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Lay-Myint Yoshida
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
5
|
Im H, Pearson ML, Martinez E, Cichos KH, Song X, Kruckow KL, Andrews RM, Ghanem ES, Orihuela CJ. Targeting NAD+ regeneration enhances antibiotic susceptibility of Streptococcus pneumoniae during invasive disease. PLoS Biol 2023; 21:e3002020. [PMID: 36928033 PMCID: PMC10019625 DOI: 10.1371/journal.pbio.3002020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023] Open
Abstract
Anaerobic bacteria are responsible for half of all pulmonary infections. One such pathogen is Streptococcus pneumoniae (Spn), a leading cause of community-acquired pneumonia, bacteremia/sepsis, and meningitis. Using a panel of isogenic mutants deficient in lactate, acetyl-CoA, and ethanol fermentation, as well as pharmacological inhibition, we observed that NAD(H) redox balance during fermentation was vital for Spn energy generation, capsule production, and in vivo fitness. Redox balance disruption in fermentation pathway-specific fashion substantially enhanced susceptibility to killing in antimicrobial class-specific manner. Blocking of alcohol dehydrogenase activity with 4-methylpyrazole (fomepizole), an FDA-approved drug used as an antidote for toxic alcohol ingestion, enhanced susceptibility of multidrug-resistant Spn to erythromycin and reduced bacterial burden in the lungs of mice with pneumonia and prevented the development of invasive disease. Our results indicate fermentation enzymes are de novo targets for antibiotic development and a novel strategy to combat multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Hansol Im
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Madison L. Pearson
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eriel Martinez
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kyle H. Cichos
- Department of Orthopaedic Surgery Arthroplasty Section, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiuhong Song
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Katherine L. Kruckow
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rachel M. Andrews
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elie S. Ghanem
- Department of Orthopaedic Surgery Arthroplasty Section, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
6
|
Hoshino T, Fujiwara T. The findings of glucosyltransferase enzymes derived from oral streptococci. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:328-335. [PMID: 36340584 PMCID: PMC9630777 DOI: 10.1016/j.jdsr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
Glucosyltransferase enzymes (Gtfs) distribute among some streptococcal species in oral cavity and are known as key enzymes contributing to the development of oral biofilm such as dental plaque. In 18 streptococcal species, 45 glucosyltransferase genes (gtf) are detected from genome database. Gtfs catalyze the synthesis of the glucans, which are polymers of glucose, from sucrose and they are main component of oral biofilm. Especially, the Gtfs from Streptococcus mutans are recognized as one of dental caries pathogens since they contribute to the formation of dental plaque and the establishment of S. mutans in the tooth surface. Therefore, Gtfs has been studied particularly by many researchers in the dentistry field to develop the anti- caries vaccine. However, it is not still accomplished. In these days, the phylogenetic and crystal structure analyses of Gtfs were performed and the study of Gtfs will enter new situation from the technique in the past old viewpoint. The findings from those analyses will affect the development of the anti-caries vaccine very much after this. In this review, we summarize the findings of oral streptococcal Gtfs and consider the perspectives of the dental caries prevention which targeted Gtf.
Collapse
|
7
|
Gisch N, Peters K, Thomsen S, Vollmer W, Schwudke D, Denapaite D. Commensal Streptococcus mitis produces two different lipoteichoic acids of type I and type IV. Glycobiology 2021; 31:1655-1669. [PMID: 34314482 DOI: 10.1093/glycob/cwab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
The opportunistic pathogen Streptococcus mitis possesses, like other members of the Mitis group of viridans streptococci, phosphorylcholine (P-Cho)-containing teichoic acids (TAs) in its cell wall. Bioinformatic analyses predicted the presence of TAs that are almost identical with those identified in the pathogen S. pneumoniae, but a detailed analysis of S. mitis lipoteichoic acid (LTA) was not performed to date. Here we determined the structures of LTA from two S. mitis strains, the high-level beta-lactam and multiple antibiotic resistant strain B6 and the penicillin-sensitive strain NCTC10712. In agreement with bioinformatic predictions we found that the structure of one LTA (type IV) was like pneumococcal LTA, except the exchange of a glucose moiety with a galactose within the repeating units. Further genome comparisons suggested that the majority of S. mitis strains should contain the same type IV LTA as S. pneumoniae, providing a more complete understanding of the biosynthesis of these P-Cho-containing TAs in members of the Mitis group of streptococci. Remarkably, we observed besides type IV LTA an additional polymer belonging to LTA type I in both investigated S. mitis strains. This LTA consists of β-galactofuranosyl-(1,3)-diacylglycerol as glycolipid anchor and a poly-glycerol-phosphate chain at the O-6 position of the furanosidic galactose. Hence, these bacteria are capable of synthesizing two different LTA polymers, most likely produced by distinct biosynthesis pathways. Our bioinformatics analysis revealed the prevalence of the LTA synthase LtaS, most probably responsible for the second LTA version (type I), amongst S. mitis and S. pseudopneumoniae strains.
Collapse
Affiliation(s)
- Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX Newcastle upon Tyne, UK
| | - Simone Thomsen
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX Newcastle upon Tyne, UK
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research (DZIF), Thematic Translational Unit Tuberculosis, Partner Site: Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Dalia Denapaite
- Department of Microbiology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
D'Aeth JC, van der Linden MPG, McGee L, de Lencastre H, Turner P, Song JH, Lo SW, Gladstone RA, Sá-Leão R, Ko KS, Hanage WP, Breiman RF, Beall B, Bentley SD, Croucher NJ. The role of interspecies recombination in the evolution of antibiotic-resistant pneumococci. eLife 2021; 10:e67113. [PMID: 34259624 PMCID: PMC8321556 DOI: 10.7554/elife.67113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-β-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome.
Collapse
Affiliation(s)
- Joshua C D'Aeth
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| | - Mark PG van der Linden
- Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital RWTH AachenAachenGermany
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Herminia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeirasPortugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller UniversityNew YorkUnited States
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Jae-Hoon Song
- Department of Molecular Cell Biology, Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - Stephanie W Lo
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Rebecca A Gladstone
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeirasPortugal
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - William P Hanage
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Robert F Breiman
- Department of Global Health, Rollins School of Public Health, Emory UniversityAtlantaUnited States
| | - Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Bombaywala S, Mandpe A, Paliya S, Kumar S. Antibiotic resistance in the environment: a critical insight on its occurrence, fate, and eco-toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24889-24916. [PMID: 33765260 DOI: 10.1007/s11356-021-13143-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The overuse, misuse, and underuse of antibiotics tend to increase the antibiotic burden in the environment resulting into the evolution in microbial community to possess resistance that renders antibiotics ineffective against them. The current review recapitulates the present state of knowledge about the occurrence and fate of antibiotics in various environmental matrices. Also, the prevalence of antibiotic-resistant bacteria/antibiotic-resistant genes (ARB/ARGs) in various biological and non-biological systems, eco-toxicity of antibiotics on non-target organisms, and remediation methods for antibiotics and ARB/ARGs removal were critically reviewed. Furthermore, a comparison of various technologies for their efficiency to eliminate antibiotic residues and ARB/ARGs is made. The study identified gaps in the investigation of toxic effects of low concentration of antibiotics and the mixture of multiple antibiotics on non-target organisms. The study of antibiotics' phytotoxicity and toxicity towards sediment and soil-dwelling organisms are also recognized as a knowledge gap. The review also details policies implemented across the globe to fight against antibiotic resistance, and the scarcity of data on lab to land transferred remediation technology was identified. The present study entails a critical review of literature providing guidelines for the articulation of policies for prudent use of antibiotics, limits on the amount of antibiotics in pharmaceutical formulations, and regular surveillance in the Indian context.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Ashootosh Mandpe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sonam Paliya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India.
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
10
|
Varghese R, Neeravi A, Subramanian N, Baskar P, Anandhan K, Veeraraghavan B. Analysis of Amino Acid Sequences of Penicillin-Binding Proteins 1a, 2b, and 2x in Invasive Streptococcus pneumoniae Nonsusceptible to Penicillin Isolated from Children in India. Microb Drug Resist 2021; 27:311-319. [DOI: 10.1089/mdr.2020.0204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rosemol Varghese
- Department of Clinical Microbiology and Christian Medical College and Hospital, Vellore, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology and Christian Medical College and Hospital, Vellore, India
| | - Nithya Subramanian
- Department of Child Health, Christian Medical College and Hospital, Vellore, India
| | - Pavithra Baskar
- Department of Clinical Microbiology and Christian Medical College and Hospital, Vellore, India
| | - Kavipriya Anandhan
- Department of Clinical Microbiology and Christian Medical College and Hospital, Vellore, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology and Christian Medical College and Hospital, Vellore, India
| |
Collapse
|
11
|
Nahm MH, Brissac T, Kilian M, Vlach J, Orihuela CJ, Saad JS, Ganaie F. Pneumococci Can Become Virulent by Acquiring a New Capsule From Oral Streptococci. J Infect Dis 2020; 222:372-380. [PMID: 31605125 PMCID: PMC7457184 DOI: 10.1093/infdis/jiz456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
Pneumococcal conjugate vaccines have been successful, but their use has increased infections by nonvaccine serotypes. Oral streptococci often harbor capsular polysaccharide (PS) synthesis loci (cps). Although this has not been observed in nature, if pneumococcus can replace its cps with oral streptococcal cps, it may increase its serotype repertoire. In the current study, we showed that oral Streptococcus strain SK95 and pneumococcal strain D39 both produce structurally identical capsular PS, and their genetic backgrounds influence the amount of capsule production and shielding from nonspecific killing. SK95 is avirulent in a well-established in vivo mouse model. When acapsular pneumococcus was transformed with SK95 cps, the transformant became virulent and killed all mice. Thus, cps from oral Streptococcus strains can make acapsular pneumococcus virulent, and interspecies cps transfer should be considered a potential mechanism of serotype replacement. Our findings, along with publications from the US Centers for Disease Control and Prevention, highlight potential limitations of the 2013 World Health Organization criterion for studying pneumococcal serotypes carried without isolating bacteria. We show that an oral streptococcal strain, SK95, and a pneumococcal strain, D39, both produce chemically identical capsular PS. We also show that transferring SK95 cps into noncapsulated, avirulent pneumococcus gave it the capacity for virulence in a mouse model.
Collapse
Affiliation(s)
- Moon H Nahm
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Terry Brissac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jiri Vlach
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Feroze Ganaie
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
12
|
Varghese R, Neeravi A, Subramanian N, Pavithra B, Kavipriya A, Kumar JL, Girish Kumar CP, Jeyraman Y, Karthik G, Verghese VP, Veeraraghavan B. Clonal similarities and sequence-type diversity of invasive and carriage Streptococcus pneumoniae in India among children under 5 Years. Indian J Med Microbiol 2019; 37:358-362. [PMID: 32003333 DOI: 10.4103/ijmm.ijmm_19_348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Pneumococcal pneumonia is one of the major causes of mortality in children less than 5 years in Asia, especially in India. Available PCVs have less serotype coverage in India compared to western countries. Moreover, the baseline pneumococcal serotype and sequence type data is limited and available data doesn't represent the entire India. With this background we aimed to characterize invasive and carriage isolates of S. pneumoniae from a tertiary care hospital in South India. Materials and Methods A total of 221 S. pneumoniae isolates, invasive (n=138) and carriage (n=83) between the time period of 2012-2018 were included. Isolates was identified and confirmed using standard laboratory protocols. Serotyping was performed by Customized sequential multiplex PCR and MLST as described in www.pubmlst.org. Results The major serotypes were 19F, 6B, 14, 6A and 19A and the sequence types (ST) were ST63, 236 and 230. Predominant STs in invasive was ST 63 whereas in carriage were ST4894 and 1701. High level ST diversity in carriage was observed. Majority of the STs were SLVs or DLVs of previously reported STs or PMEN clones. Phylogenetic analyses of the STs revealed gradual expansion of three PMEN CCs CC320, 63 and 230. Conclusion The vaccine serotypes were the predominant ones found to be associated with IPD, PMEN clones, new STs and antimicrobial resistance. Accordingly, PCV13 is expected to provide invasive serotype coverage of 75% in Indian children less than 5 years. This study provides baseline serotype and sequence type data prior to the introduction of PCV in South India.
Collapse
Affiliation(s)
- Rosemol Varghese
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Nithya Subramanian
- Department of Paediatrics, Christian Medical College, Chennai, Tamil Nadu, India
| | - B Pavithra
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - A Kavipriya
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jones Lionel Kumar
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - C P Girish Kumar
- ICMR, National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Yuvraj Jeyraman
- ICMR, National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - G Karthik
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Valsan P Verghese
- Department of Paediatrics, Christian Medical College, Chennai, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Salvadori G, Junges R, Morrison DA, Petersen FC. Competence in Streptococcus pneumoniae and Close Commensal Relatives: Mechanisms and Implications. Front Cell Infect Microbiol 2019; 9:94. [PMID: 31001492 PMCID: PMC6456647 DOI: 10.3389/fcimb.2019.00094] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022] Open
Abstract
The mitis group of streptococci comprises species that are common colonizers of the naso-oral-pharyngeal tract of humans. Streptococcus pneumoniae and Streptococcus mitis are close relatives and share ~60–80% of orthologous genes, but still present striking differences in pathogenic potential toward the human host. S. mitis has long been recognized as a reservoir of antibiotic resistance genes for S. pneumoniae, as well as a source for capsule polysaccharide variation, leading to resistance and vaccine escape. Both species share the ability to become naturally competent, and in this context, competence-associated killing mechanisms such as fratricide are thought to play an important role in interspecies gene exchange. Here, we explore the general mechanism of natural genetic transformation in the two species and touch upon the fundamental clinical and evolutionary implications of sharing similar competence, fratricide mechanisms, and a large fraction of their genomic DNA.
Collapse
Affiliation(s)
- Gabriela Salvadori
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Roger Junges
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Donald A Morrison
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Fernanda C Petersen
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Draft Genome Sequence of a Potentially Novel Streptococcus Species Belonging to the Streptococcus mitis Group. GENOME ANNOUNCEMENTS 2018; 6:6/26/e00620-18. [PMID: 29954913 PMCID: PMC6025937 DOI: 10.1128/genomea.00620-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here the draft genome sequence of a Streptococcus species belonging to the S. mitis group. While a clear species identification cannot be made for the isolate, it appears that its most recent common ancestor is the species S. pseudopneumoniae. We report here the draft genome sequence of a Streptococcus species belonging to the S. mitis group. While a clear species identification cannot be made for the isolate, it appears that its most recent common ancestor is the species S. pseudopneumoniae.
Collapse
|
15
|
Salvadori G, Junges R, Åmdal HA, Chen T, Morrison DA, Petersen FC. High-resolution profiles of the Streptococcus mitis CSP signaling pathway reveal core and strain-specific regulated genes. BMC Genomics 2018; 19:453. [PMID: 29898666 PMCID: PMC6001120 DOI: 10.1186/s12864-018-4802-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In streptococci of the mitis group, competence for natural transformation is a transient physiological state triggered by competence stimulating peptides (CSPs). Although low transformation yields and the absence of a widespread functional competence system have been reported for Streptococcus mitis, recent studies revealed that, at least for some strains, high efficiencies can be achieved following optimization protocols. To gain a deeper insight into competence in this species, we used RNA-seq, to map the global CSP response of two transformable strains: the type strain NCTC12261T and SK321. RESULTS All known genes induced by ComE in Streptococcus pneumoniae, including sigX, were upregulated in the two strains. Likewise, all sets of streptococcal SigX core genes involved in extracellular DNA uptake, recombination, and fratricide were upregulated. No significant differences in the set of induced genes were observed when the type strain was grown in rich or semi-defined media. Five upregulated operons unique to S. mitis with a SigX-box in the promoter region were identified, including two specific to SK321, and one specific to NCTC12261T. Two of the strain-specific operons coded for different bacteriocins. Deletion of the unique S. mitis sigX regulated genes had no effect on transformation. CONCLUSIONS Overall, comparison of the global transcriptome in response to CSP shows the conservation of the ComE and SigX-core regulons in competent S. mitis isolates, as well as species and strain-specific genes. Although some S. mitis exhibit truncations in key competence genes, this study shows that in transformable strains, competence seems to depend on the same core genes previously identified in S. pneumoniae.
Collapse
Affiliation(s)
- G Salvadori
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Postboks 1052, Blindern, 0316, Oslo, Norway
| | - R Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Postboks 1052, Blindern, 0316, Oslo, Norway
| | - H A Åmdal
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Postboks 1052, Blindern, 0316, Oslo, Norway
| | - T Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - D A Morrison
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - F C Petersen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Postboks 1052, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
16
|
Carvalho SM, Kloosterman TG, Manzoor I, Caldas J, Vinga S, Martinussen J, Saraiva LM, Kuipers OP, Neves AR. Interplay Between Capsule Expression and Uracil Metabolism in Streptococcus pneumoniae D39. Front Microbiol 2018; 9:321. [PMID: 29599757 PMCID: PMC5863508 DOI: 10.3389/fmicb.2018.00321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars (NDP-sugars). NDP-sugars are the precursors of structural polysaccharides in bacteria, including capsule, which is a major virulence factor of the human pathogen S. pneumoniae. In this work, we identified a spontaneous non-reversible mutant of strain D39 that displayed a non-producing capsule phenotype. Whole-genome sequencing analysis of this mutant revealed several non-synonymous single base modifications, including in genes of the de novo synthesis of pyrimidines and in the -10 box of capsule operon promoter (Pcps). By directed mutagenesis we showed that the point mutation in Pcps was solely responsible for the drastic decrease in capsule expression. We also demonstrated that D39 subjected to uracil deprivation shows increased biomass and decreased Pcps activity and capsule amounts. Importantly, Pcps expression is further decreased by mutating the first gene of the de novo synthesis of pyrimidines, carA. In contrast, the absence of uracil from the culture medium showed no effect on the spontaneous mutant strain. Co-cultivation of the wild-type and the mutant strain indicated a competitive advantage of the spontaneous mutant (non-producing capsule) in medium devoid of uracil. We propose a model in that uracil may act as a signal for the production of different capsule amounts in S. pneumoniae.
Collapse
Affiliation(s)
- Sandra M Carvalho
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Irfan Manzoor
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - José Caldas
- Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento (INESC-ID), Lisbon, Portugal
| | - Susana Vinga
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jan Martinussen
- DTU Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Ana R Neves
- Instituto de Tecnologia Química e Biológica NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
17
|
Ginders M, Leschnik M, Künzel F, Kampner D, Mikula C, Steindl G, Eichhorn I, Feßler AT, Schwarz S, Spergser J, Loncaric I. Characterization of Streptococcus pneumoniae isolates from Austrian companion animals and horses. Acta Vet Scand 2017; 59:79. [PMID: 29137652 PMCID: PMC5686899 DOI: 10.1186/s13028-017-0348-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of the present study was to investigate the genetic relatedness and the antimicrobial resistance profiles of a collection of Austrian Streptococcus pneumoniae isolates from companion animals and horses. A total of 12 non-repetitive isolates presumptively identified as S. pneumoniae were obtained during routinely diagnostic activities between March 2009 and January 2017. RESULTS Isolates were confirmed as S. pneumoniae by bile solubility and optochin susceptibility testing, matrix-assisted laser desorption-ionization-time of flight (MALDI-TOF) mass spectrometry and sequence analysis of a part recA and the 16S rRNA genes. Isolates were further characterized by pneumolysin polymerase chain reaction (PCR) and genotyped by multilocus sequence typing (MLST). Antimicrobial susceptibility testing was performed and resistance genes were detected by specific PCR assays. All isolates were serotyped. Four sequence types (ST) (ST36, ST3546, ST6934 and ST6937) and four serotypes (3, 19A, 19F and 23F) were detected. Two isolates from twelve displayed a multidrug-resistance pheno- and genotype. CONCLUSIONS This study represents the first comprehensive investigation on characteristics of S. pneumoniae isolates recovered from Austrian companion animals and horses. The obtained results indicate that common human sero- (23F) and sequence type (ST36) implicated in causing invasive pneumococcal disease (IPD) may circulate in dogs. Isolates obtained from other examined animals seem to be host-adapted.
Collapse
|
18
|
El Khoury JY, Boucher N, Bergeron MG, Leprohon P, Ouellette M. Penicillin induces alterations in glutamine metabolism in Streptococcus pneumoniae. Sci Rep 2017; 7:14587. [PMID: 29109543 PMCID: PMC5673960 DOI: 10.1038/s41598-017-15035-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/19/2017] [Indexed: 11/09/2022] Open
Abstract
Penicillin is a bactericidal antibiotic that inhibits the synthesis of the peptidoglycan by targeting penicillin-binding proteins. This study aimed to assess through transcriptional profiling the stress response of S. pneumoniae strains after exposure to lethal penicillin concentrations to understand further the mode of action of penicillin. Two experimental designs (time-course and dose-response) were used for monitoring the effect of penicillin on the transcriptional profile. The expression of some genes previously shown to be modulated by penicillin was altered, including ciaRH, pstS and clpL. Genes of the glnRA and glnPQ operons were among the most downregulated genes in the three strains. These genes are involved in glutamine synthesis and uptake and LC-MS work confirmed that penicillin treatment increases the intracellular glutamine concentrations. Glutamine conferred a protective role against penicillin when added to the culture medium. Glutamine synthetase encoded by glnA catalyses the transformation of glutamate and ammonium into glutamine and its chemical inhibition by the inhibitor L-methionine sulfoximine is shown to sensitize S. pneumoniae to penicillin, including penicillin-resistant clinical isolates. In summary, a combination of RNA-seq and metabolomics revealed that penicillin interferes with glutamine metabolism suggesting strategies that could eventually be exploited for combination therapy or for reversal of resistance.
Collapse
Affiliation(s)
- Jessica Y El Khoury
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Nancy Boucher
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Michel G Bergeron
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
19
|
Current challenges in the accurate identification of Streptococcus pneumoniae and its serogroups/serotypes in the vaccine era. J Microbiol Methods 2017; 141:48-54. [DOI: 10.1016/j.mimet.2017.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/21/2022]
|
20
|
New Aspects of the Interplay between Penicillin Binding Proteins, murM, and the Two-Component System CiaRH of Penicillin-Resistant Streptococcus pneumoniae Serotype 19A Isolates from Hungary. Antimicrob Agents Chemother 2017; 61:AAC.00414-17. [PMID: 28483958 PMCID: PMC5487634 DOI: 10.1128/aac.00414-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022] Open
Abstract
The Streptococcus pneumoniae clone Hungary19A-6 expresses unusually high levels of β-lactam resistance, which is in part due to mutations in the MurM gene, encoding a transferase involved in the synthesis of branched peptidoglycan. Moreover, it contains the allele ciaH232, encoding the histidine kinase CiaH (M. Müller, P. Marx, R. Hakenbeck, and R. Brückner, Microbiology 157:3104–3112, 2011, https://doi.org/10.1099/mic.0.053157-0). High-level penicillin resistance primarily requires the presence of low-affinity (mosaic) penicillin binding protein (PBP) genes, as, for example, in strain Hu17, a closely related member of the Hungary19A-6 lineage. Interestingly, strain Hu15 is β-lactam sensitive due to the absence of mosaic PBPs. This unique situation prompted us to investigate the development of cefotaxime resistance in transformation experiments with genes known to play a role in this phenotype, pbp2x, pbp1a, murM, and ciaH, and penicillin-sensitive recipient strains R6 and Hu15. Characterization of phenotypes, peptidoglycan composition, and CiaR-mediated gene expression revealed several novel aspects of penicillin resistance. The murM gene of strain Hu17 (murMHu17), which is highly similar to murM of Streptococcus mitis, induced morphological changes which were partly reversed by ciaH232. murMHu17 conferred cefotaxime resistance only in the presence of the pbp2x of strain Hu17 (pbp2xHu17). The ciaH232 allele contributed to a remarkable increase in cefotaxime resistance in combination with pbp2xHu17 and pbp1a of strain Hu17 (pbp1aHu17), accompanied by higher levels of expression of CiaR-regulated genes, documenting that ciaH232 responds to PBP1aHu17-mediated changes in cell wall synthesis. Most importantly, the proportion of branched peptides relative to the proportion of linear muropeptides increased in cells containing mosaic PBPs, suggesting an altered enzymatic activity of these proteins.
Collapse
|
21
|
Long Persistence of a Streptococcus pneumoniae 23F Clone in a Cystic Fibrosis Patient. mSphere 2017; 2:mSphere00201-17. [PMID: 28596991 PMCID: PMC5463027 DOI: 10.1128/msphere.00201-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae is a common resident in the human nasopharynx. However, carriage can result in severe diseases due to a unique repertoire of pathogenicity factors that are rare in closely related commensal streptococci. We investigated a penicillin-resistant S. pneumoniae clone of serotype 23F isolated from a cystic fibrosis patient on multiple occasions over an unusually long period of over 3 years that was present without causing disease. Genome comparisons revealed an apparent nonfunctional pneumococcus-specific gene encoding a hyaluronidase, supporting the view that this enzyme adds to the virulence potential of the bacterium. The 23F clone harbored unique mosaic genes encoding penicillin resistance determinants, the product of horizontal gene transfer involving the commensal S. mitis as donor species. Sequences identical to one such mosaic gene were identified in an S. mitis strain from the same patient, suggesting that in this case S. pneumoniae played the role of donor. Streptococcus pneumoniae isolates of serotype 23F with intermediate penicillin resistance were recovered on seven occasions over a period of 37 months from a cystic fibrosis patient in Berlin. All isolates expressed the same multilocus sequence type (ST), ST10523. The genome sequences of the first and last isolates, D122 and D141, revealed the absence of two phage-related gene clusters compared to the genome of another ST10523 strain, D219, isolated earlier at a different place in Germany. Genomes of all three strains carried the same novel mosaic penicillin-binding protein (PBP) genes, pbp2x, pbp2b, and pbp1a; these genes were distinct from those of other penicillin-resistant S. pneumoniae strains except for pbp1a of a Romanian S. pneumoniae isolate. All PBPs contained mutations that have been associated with the penicillin resistance phenotype. Most interestingly, a mosaic block identical to an internal pbp2x sequence of ST10523 was present in pbp2x of Streptococcus mitis strain B93-4, which was isolated from the same patient. This suggests interspecies gene transfer from S. pneumoniae to S. mitis within the host. Nearly all genes expressing surface proteins, which represent major virulence factors of S. pneumoniae and are typical for this species, were present in the genome of ST10523. One exception was the hyaluronidase gene hlyA, which contained a 12-nucleotide deletion within the promoter region and an internal stop codon. The lack of a functional hyaluronidase might contribute to the ability to persist in the host for an unusually long period of time. IMPORTANCEStreptococcus pneumoniae is a common resident in the human nasopharynx. However, carriage can result in severe diseases due to a unique repertoire of pathogenicity factors that are rare in closely related commensal streptococci. We investigated a penicillin-resistant S. pneumoniae clone of serotype 23F isolated from a cystic fibrosis patient on multiple occasions over an unusually long period of over 3 years that was present without causing disease. Genome comparisons revealed an apparent nonfunctional pneumococcus-specific gene encoding a hyaluronidase, supporting the view that this enzyme adds to the virulence potential of the bacterium. The 23F clone harbored unique mosaic genes encoding penicillin resistance determinants, the product of horizontal gene transfer involving the commensal S. mitis as donor species. Sequences identical to one such mosaic gene were identified in an S. mitis strain from the same patient, suggesting that in this case S. pneumoniae played the role of donor.
Collapse
|
22
|
Draft Genome Sequences of Two Streptococcus pneumoniae Serotype 19A Sequence Type 226 Clinical Isolates from Hungary, Hu17 with High-Level Beta-Lactam Resistance and Hu15 of a Penicillin-Sensitive Phenotype. GENOME ANNOUNCEMENTS 2017; 5:5/20/e00401-17. [PMID: 28522729 PMCID: PMC5442385 DOI: 10.1128/genomea.00401-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The draft genome sequences of two multiple-antibiotic-resistant Streptococcus pneumoniae isolates from Hungary, Hu15 and Hu17, are reported here. Strain Hu15 is penicillin susceptible, whereas Hu17 is a high-level-penicillin-resistant strain. Both isolates belong to the serotype 19A sequence type 226, a single-locus variant (in the ddl locus) of the Hungary19A-6 clone.
Collapse
|
23
|
Calvez P, Breukink E, Roper DI, Dib M, Contreras-Martel C, Zapun A. Substitutions in PBP2b from β-Lactam-resistant Streptococcus pneumoniae Have Different Effects on Enzymatic Activity and Drug Reactivity. J Biol Chem 2017; 292:2854-2865. [PMID: 28062575 DOI: 10.1074/jbc.m116.764696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Pneumococcus resists β-lactams by expressing variants of its target enzymes, the penicillin-binding proteins (PBPs), with many amino acid substitutions. Up to 10% of the sequence can be modified. These altered PBPs have a much reduced reactivity with the drugs but retain their physiological activity of cross-linking the peptidoglycan, the major constituent of the bacterial cell wall. However, because β-lactams are chemical and structural mimics of the natural substrate, resistance mediated by altered PBPs raises the following paradox: how PBPs that react poorly with the drugs maintain a sufficient level of activity with the physiological substrate. This question is addressed for the first time in this study, which compares the peptidoglycan cross-linking activity of PBP2b from susceptible and resistant strains with their inhibition by different β-lactams. Unexpectedly, the enzymatic activity of the variants did not correlate with their antibiotic reactivity. This finding indicates that some of the numerous amino acid substitutions were selected to restore a viable level of enzymatic activity by a compensatory molecular mechanism.
Collapse
Affiliation(s)
- Philippe Calvez
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Eefjan Breukink
- the Department of Chemical Biology and Organic Chemistry, Institute of Biomembranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, The Netherlands, and
| | - David I Roper
- the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mélanie Dib
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Carlos Contreras-Martel
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - André Zapun
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France,
| |
Collapse
|
24
|
Singh A, Singh R, Gupta N. Role of Supercomputers in Bioinformatics. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Due to the involvement of effective and client-friendly components (i.e. supercomputers), rapid data analysis is being accomplished. In Bioinformatics, it is expanding many areas of research such as genomics, proteomics, metabolomics, etc. Structure-based drug design is one of the major areas of research to cure human malady. This chapter initiates a discussion on supercomputing in sequence analysis with a detailed table summarizing the software and Web-based programs used for sequence analysis. A brief talk on the supercomputing in virtual screening is given where the databases like DOCK, ZINC, EDULISS, etc. are introduced. As the chapter transitions to the next phase, the intricacies of advanced Quantitative Structure-Activity Relationship technologies like Fragment-Based 2D QSAR, Multiple-Field 3D QSAR, and Amino Acid-Based Peptide Prediction are put forth in a manner similar to the concept of abstraction. The supercomputing in docking studies is stressed where docking software for Protein-Ligand docking, Protein-Protein docking, and Multi-Protein docking are provided. The chapter ends with the applications of supercomputing in widely used microarray data analysis.
Collapse
Affiliation(s)
- Anamika Singh
- Maitreyi College, India & University of Delhi, India
| | - Rajeev Singh
- Division of RCH, Indian Council of Medical Research, India
| | - Neha Gupta
- Northeastern University, USA & Osmania University, India
| |
Collapse
|
25
|
Martín V, Mediano P, Del Campo R, Rodríguez JM, Marín M. Streptococcal Diversity of Human Milk and Comparison of Different Methods for the Taxonomic Identification of Streptococci. J Hum Lact 2016; 32:NP84-NP94. [PMID: 26261225 DOI: 10.1177/0890334415597901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The genus Streptococcus is 1 of the dominant bacterial groups in human milk, but the taxonomic identification of some species remains difficult. OBJECTIVE The objective of this study was to investigate the discriminatory ability of different methods to identify streptococcal species in order to perform an assessment of the streptococcal diversity of human milk microbiota as accurately as possible. METHODS The identification of 105 streptococcal strains from human milk was performed by 16S rRNA, tuf, and sodA gene sequencing, phylogenetic analysis, and Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) mass spectrometry. RESULTS Streptococcus salivarius, Streptococcus mitis, and Streptococcus parasanguinis were the streptococcal dominant species in the human milk microbiota. Sequencing of housekeeping genes allowed the classification of 96.2% (16S rRNA), 84.8% ( sodA), and 88.6% ( tuf) of the isolates. Phylogenetic analysis showed 3 main streptococcal clusters corresponding with the mitis (73 isolates), salivarius (29), mutans (1)-pyogenic (2) groups, but many of the mitis group isolates (36) could not be assigned to any species. The application of the MALDI-TOF Bruker Biotyper system resulted in the identification of 56 isolates (53.33%) at the species level, but it could not discriminate between S pneumoniae and S mitis isolates, in contrast to the Vitek-MS system. CONCLUSION There was a good agreement among the different methods assessed in this study to identify those isolates of the salivarius, mutans, and pyogenic groups, whereas unambiguous discrimination could not be achieved concerning some species of the mitis group ( S mitis, S pneumoniae, S pseudopneumoniae, S oralis).
Collapse
Affiliation(s)
- Virginia Martín
- 1 Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Mediano
- 1 Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa Del Campo
- 2 Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Juan M Rodríguez
- 1 Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
| | - María Marín
- 1 Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Simões AS, Tavares DA, Rolo D, Ardanuy C, Goossens H, Henriques-Normark B, Linares J, de Lencastre H, Sá-Leão R. lytA-based identification methods can misidentify Streptococcus pneumoniae. Diagn Microbiol Infect Dis 2016; 85:141-8. [PMID: 27107535 DOI: 10.1016/j.diagmicrobio.2016.03.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/19/2016] [Accepted: 03/20/2016] [Indexed: 02/01/2023]
Abstract
During surveillance studies we detected, among over 1500 presumptive pneumococci, 11 isolates displaying conflicting or novel results when characterized by widely accepted phenotypic (optochin susceptibility and bile solubility) and genotypic (lytA-BsaAI-RFLP and MLST) identification methods. We aimed to determine the genetic basis for the unexpected results given by lytA-BsaAI-RFLP and investigate the accuracy of the WHO recommended lytA real-time PCR assay to classify these 11 isolates. Three novel lytA-BsaAI-RFLP signatures were found (one in pneumococcus and two in S. mitis). In addition, one pneumococcus displayed the atypical lytA-BsaAI-RFLP signature characteristic of non-pneumococci and two S. pseudopneumoniae displayed the typical lytA-BsaAI-RFLP pattern characteristic of pneumococci. lytA real-time PCR misidentified these three isolates. In conclusion, identification of pneumococci by lytA real-time PCR, and other lytA-based methodologies, may lead to false results. This is of particular relevance in the increasingly frequent colonization studies relying solely on culture-independent methods.
Collapse
Affiliation(s)
- Alexandra S Simões
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (UNL), Oeiras, Portugal
| | - Débora A Tavares
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (UNL), Oeiras, Portugal
| | - Dora Rolo
- Microbiology Department, Hospital Universitari de Bellvitge, Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBERES (Ciber de Enfermedades Respiratorias), ISCIII, Madrid, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBERES (Ciber de Enfermedades Respiratorias), ISCIII, Madrid, Spain
| | - Herman Goossens
- Department of Medical Microbiology, University of Antwerp, Antwerp, Belgium; Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Josefina Linares
- Microbiology Department, Hospital Universitari de Bellvitge, Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; CIBERES (Ciber de Enfermedades Respiratorias), ISCIII, Madrid, Spain
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, ITQB, UNL, Oeiras, Portugal; Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (UNL), Oeiras, Portugal.
| |
Collapse
|
27
|
Highly Variable Streptococcus oralis Strains Are Common among Viridans Streptococci Isolated from Primates. mSphere 2016; 1:mSphere00041-15. [PMID: 27303717 PMCID: PMC4863584 DOI: 10.1128/msphere.00041-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/06/2016] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae is a rare example of a human-pathogenic bacterium among viridans streptococci, which consist of commensal symbionts, such as the close relatives Streptococcus mitis and S. oralis. We have shown that S. oralis can frequently be isolated from primates and a variety of other viridans streptococci as well. Genes and genomic islands which are known pneumococcal virulence factors are present in S. oralis and S. mitis, documenting the widespread occurrence of these compounds, which encode surface and secreted proteins. The frequent occurrence of CRISP-Cas gene clusters and a surprising variation of a set of small noncoding RNAs are factors to be considered in future research to further our understanding of mechanisms involved in the genomic diversity driven by horizontal gene transfer among viridans streptococci. Viridans streptococci were obtained from primates (great apes, rhesus monkeys, and ring-tailed lemurs) held in captivity, as well as from free-living animals (chimpanzees and lemurs) for whom contact with humans is highly restricted. Isolates represented a variety of viridans streptococci, including unknown species. Streptococcus oralis was frequently isolated from samples from great apes. Genotypic methods revealed that most of the strains clustered on separate lineages outside the main cluster of human S. oralis strains. This suggests that S. oralis is part of the commensal flora in higher primates and evolved prior to humans. Many genes described as virulence factors in Streptococcus pneumoniae were present also in other viridans streptococcal genomes. Unlike in S. pneumoniae, clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) gene clusters were common among viridans streptococci, and many S. oralis strains were type PI-2 (pilus islet 2) variants. S. oralis displayed a remarkable diversity of genes involved in the biosynthesis of peptidoglycan (penicillin-binding proteins and MurMN) and choline-containing teichoic acid. The small noncoding cia-dependent small RNAs (csRNAs) controlled by the response regulator CiaR might contribute to the genomic diversity, since we observed novel genomic islands between duplicated csRNAs, variably present in some isolates. All S. oralis genomes contained a β-N-acetyl-hexosaminidase gene absent in S. pneumoniae, which in contrast frequently harbors the neuraminidases NanB/C, which are absent in S. oralis. The identification of S. oralis-specific genes will help us to understand their adaptation to diverse habitats. IMPORTANCEStreptococcus pneumoniae is a rare example of a human-pathogenic bacterium among viridans streptococci, which consist of commensal symbionts, such as the close relatives Streptococcus mitis and S. oralis. We have shown that S. oralis can frequently be isolated from primates and a variety of other viridans streptococci as well. Genes and genomic islands which are known pneumococcal virulence factors are present in S. oralis and S. mitis, documenting the widespread occurrence of these compounds, which encode surface and secreted proteins. The frequent occurrence of CRISP-Cas gene clusters and a surprising variation of a set of small noncoding RNAs are factors to be considered in future research to further our understanding of mechanisms involved in the genomic diversity driven by horizontal gene transfer among viridans streptococci.
Collapse
|
28
|
Bittaye M, Cash P. Streptococcus pneumoniae proteomics: determinants of pathogenesis and vaccine development. Expert Rev Proteomics 2015; 12:607-21. [PMID: 26524107 DOI: 10.1586/14789450.2015.1108844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Streptococcus pneumoniae is a major pathogen that is responsible for a variety of invasive diseases. The bacteria gain entry initially by establishing a carriage state in the nasopharynx from where they migrate to other sites in the body. The worldwide distribution of the bacteria and the severity of the diseases have led to a significant level of interest in the development of vaccines against the bacteria. Current vaccines, based on the bacterial polysaccharide, have a number of limitations including poor immunogenicity and limited effectiveness against all pneumococcal serotypes. There are many challenges in developing vaccines that will be effective against the diverse range of isolates and serotypes for this highly variable bacterial pathogen. This review considers how proteomic technologies have extended our understanding of the pathogenic mechanisms of nasopharyngeal colonization and disease development as well as the critical areas in developing protein-based vaccines.
Collapse
Affiliation(s)
- Mustapha Bittaye
- a Division of Applied Medicine , University of Aberdeen , Aberdeen , Scotland
| | - Phil Cash
- a Division of Applied Medicine , University of Aberdeen , Aberdeen , Scotland
| |
Collapse
|
29
|
Bogaardt C, van Tonder AJ, Brueggemann AB. Genomic analyses of pneumococci reveal a wide diversity of bacteriocins - including pneumocyclicin, a novel circular bacteriocin. BMC Genomics 2015. [PMID: 26215050 PMCID: PMC4517551 DOI: 10.1186/s12864-015-1729-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background One of the most important global pathogens infecting all age groups is Streptococcus pneumoniae (the ‘pneumococcus’). Pneumococci reside in the paediatric nasopharynx, where they compete for space and resources, and one competition strategy is to produce a bacteriocin (antimicrobial peptide or protein) to attack other bacteria and an immunity protein to protect against self-destruction. We analysed a collection of 336 diverse pneumococcal genomes dating from 1916 onwards, identified bacteriocin cassettes, detailed their genetic composition and sequence diversity, and evaluated the data in the context of the pneumococcal population structure. Results We found that all genomes maintained a blp bacteriocin cassette and we identified several novel blp cassettes and genes. The composition of the ‘bacteriocin/immunity region’ of the blp cassette was highly variable: one cassette possessed six bacteriocin genes and eight putative immunity genes, whereas another cassette had only one of each. Both widely-distributed and highly clonal blp cassettes were identified. Most surprisingly, one-third of pneumococcal genomes also possessed a cassette encoding a novel circular bacteriocin that we called pneumocyclicin, which shared a similar genetic organisation to well-characterised circular bacteriocin cassettes in other bacterial species. Pneumocyclicin cassettes were mainly of one genetic cluster and largely found among seven major pneumococcal clonal complexes. Conclusions These detailed genomic analyses revealed a novel pneumocyclicin cassette and a wide variety of blp bacteriocin cassettes, suggesting that competition in the nasopharynx is a complex biological phenomenon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1729-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlijn Bogaardt
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.
| | - Andries J van Tonder
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.
| | - Angela B Brueggemann
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
30
|
Chaguza C, Cornick JE, Everett DB. Mechanisms and impact of genetic recombination in the evolution of Streptococcus pneumoniae. Comput Struct Biotechnol J 2015; 13:241-7. [PMID: 25904996 PMCID: PMC4404416 DOI: 10.1016/j.csbj.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a highly recombinogenic bacterium responsible for a high burden of human disease globally. Genetic recombination, a process in which exogenous DNA is acquired and incorporated into its genome, is a key evolutionary mechanism employed by the pneumococcus to rapidly adapt to selective pressures. The rate at which the pneumococcus acquires genetic variation through recombination is much higher than the rate at which the organism acquires variation through spontaneous mutations. This higher rate of variation allows the pneumococcus to circumvent the host innate and adaptive immune responses, escape clinical interventions, including antibiotic therapy and vaccine introduction. The rapid influx of whole genome sequence (WGS) data and the advent of novel analysis methods and powerful computational tools for population genetics and evolution studies has transformed our understanding of how genetic recombination drives pneumococcal adaptation and evolution. Here we discuss how genetic recombination has impacted upon the evolution of the pneumococcus.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, L69 7BE Liverpool, UK
| | - Jennifer E Cornick
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, L69 7BE Liverpool, UK
| | - Dean B Everett
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, L69 7BE Liverpool, UK
| |
Collapse
|
31
|
Chao Y, Marks LR, Pettigrew MM, Hakansson AP. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front Cell Infect Microbiol 2015; 4:194. [PMID: 25629011 PMCID: PMC4292784 DOI: 10.3389/fcimb.2014.00194] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/24/2014] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm formation and dispersion will elucidate novel avenues to interfere with the spread of antibiotic resistance and vaccine escape, as well as novel strategies to target the mechanisms involved in induction of pneumococcal disease.
Collapse
Affiliation(s)
- Yashuan Chao
- Division of Experimental Infection Medicine, Department of Laboratory Medicine, Lund UniversityMalmö, Sweden
| | - Laura R. Marks
- Department of Microbiology and Immunology, University at Buffalo, The State University of New YorkBuffalo, NY, USA
| | - Melinda M. Pettigrew
- Department of Epidemiology and Microbial Diseases, Yale School of Public HealthNew Haven, CT, USA
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Laboratory Medicine, Lund UniversityMalmö, Sweden
- Department of Microbiology and Immunology, University at Buffalo, The State University of New YorkBuffalo, NY, USA
| |
Collapse
|
32
|
Konkit M, Kim JH, Bora N, Kim W. Transcriptomic analysis of Lactococcus chungangensis sp. nov. and its potential in cheese making. J Dairy Sci 2014; 97:7363-72. [DOI: 10.3168/jds.2014-8299] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/04/2014] [Indexed: 02/02/2023]
|
33
|
GyrB polymorphisms accurately assign invasive viridans group streptococcal species. J Clin Microbiol 2014; 52:2905-12. [PMID: 24899021 DOI: 10.1128/jcm.01068-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Viridans group streptococci (VGS) are a heterogeneous group of medically important bacteria that cannot be accurately assigned to a particular species using conventional phenotypic methods. Although multilocus sequence analysis (MLSA) is considered the gold standard for VGS species-level identification, MLSA is not yet feasible in the clinical setting. Conversely, molecular methods, such as sodA and 16S rRNA gene sequencing, are clinically practical but not sufficiently accurate for VGS species-level identification. Here, we present data regarding the use of an ∼ 400-nucleotide internal fragment of the gene encoding DNA gyrase subunit B (GyrB) for VGS species-level identification. MLSA, internal gyrB, sodA, full-length, and 5' 16S gene sequences were used to characterize 102 unique VGS blood isolates collected from 2011 to 2012. When using the MLSA species assignment as a reference, full-length and 5' partial 16S gene and sodA sequence analyses failed to correctly assign all strains to a species. Precise species determination was particularly problematic for Streptococcus mitis and Streptococcus oralis isolates. However, the internal gyrB fragment allowed for accurate species designations for all 102 strains. We validated these findings using 54 VGS strains for which MLSA, 16S gene, sodA, and gyrB data are available at the NCBI, showing that gyrB is superior to 16S gene and sodA sequence analyses for VGS species identification. We also observed that specific polymorphisms in the 133-amino acid sequence of the internal GyrB fragment can be used to identify invasive VGS species. Thus, the GyrB amino acid sequence may offer a more practical and accurate method for classifying invasive VGS strains to the species level.
Collapse
|
34
|
Witherden EA, Bajanca-Lavado MP, Tristram SG, Nunes A. Role of inter-species recombination of the ftsI gene in the dissemination of altered penicillin-binding-protein-3-mediated resistance in Haemophilus influenzae and Haemophilus haemolyticus. J Antimicrob Chemother 2014; 69:1501-9. [PMID: 24562614 DOI: 10.1093/jac/dku022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To screen the ftsI gene sequences obtained from clinical isolates of non-typeable Haemophilus influenzae (NTHi) and Haemophilus haemolyticus for the presence of mosaic ftsI gene structures, and to evaluate the role of inter-species recombination of the ftsI gene in the formation and distribution of resistant ftsI genes. METHODS The ftsI genes of 100 Haemophilus isolates comprising genetically defined β-lactamase-negative ampicillin-susceptible (gBLNAS), β-lactamase-positive ampicillin-resistant (gBLPAR), β-lactamase-negative ampicillin-resistant (gBLNAR) and β-lactamase-positive amoxicillin/clavulanate-resistant (gBLPACR) isolates of NTHi (n = 50) and H. haemolyticus (n = 50) were analysed in this study. Both the flanking regions and the full-length ftsI gene sequences of all study isolates were screened for mosaic structures using H. influenzae Rd and H. haemolyticus ATCC 33390 as reference parental sequences, and bioinformatics methods were used for recombination analysis using SimPlot. RESULTS Of the 100 clinical isolates analysed 34% (34/100) harboured mosaic ftsI gene structures containing distinct ftsI gene fragments similar to both reference parental sequences. The inter-species recombination events were exclusively encountered in the ftsI gene of gBLNAR/gBLPACR isolates of both NTHi and H. haemolyticus, and were always associated with the formation of a mosaic fragment at the 3' end of the ftsI gene. There was no evidence supporting horizontal gene transfer (HGT) involving the entire ftsI gene among the clinical isolates in vivo. CONCLUSIONS We provide evidence for the HGT and inter-species recombination of the ftsI gene among gBLNAR/gBLPACR isolates of NTHi and H. haemolyticus in a clinical setting, highlighting the importance of recombination of the ftsI gene in the emergence of altered penicillin-binding protein 3 and BLNAR-mediated resistance.
Collapse
Affiliation(s)
- Elizabeth A Witherden
- School of Human Life Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Maria Paula Bajanca-Lavado
- Department of Infectious Disease, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Stephen G Tristram
- School of Human Life Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Alexandra Nunes
- Department of Infectious Disease, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| |
Collapse
|
35
|
Naveen Kumar V, van der Linden M, Menon T, Nitsche-Schmitz DP. Viridans and bovis group streptococci that cause infective endocarditis in two regions with contrasting epidemiology. Int J Med Microbiol 2013; 304:262-8. [PMID: 24220665 DOI: 10.1016/j.ijmm.2013.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/19/2013] [Accepted: 10/13/2013] [Indexed: 11/28/2022] Open
Abstract
Viridans group (VGS) or bovis group streptococci (BGS) are the major causes for streptococcal infective endocarditis (IE). However, the causative isolates are not sufficiently characterized. Using multilocus sequence analysis we have examined VGS and BGS (VGS/BGS) isolates that caused IE in southern India and Germany, two distant geographic regions with a contrasting IE epidemiology. Other than in Germany, the majority of patients (68%) in Chennai, southern India had an underlying rheumatic heart disease (RHD). In accord with the high prevalence of RHD in the younger population and with the expansive age structure of India, the median age (24 years) of the VGS/BGS endocarditis patients was lower than in Germany (63 years), where RHD is rare and the age structure is contractive. Both in Germany and in southern India, the majority of cases were caused by mitis group streptococci, however, with considerable differences in the spectra of causative (sub)species. BGS endocarditis was more frequent in Germany. The spectrum of VGS/BGS that cause IE differs considerably between distant geographic regions in which different predisposing conditions prevail. Therefore, improved microbiological diagnosis in IE may facilitate determination of the optimal therapy.
Collapse
Affiliation(s)
- Venkatesan Naveen Kumar
- Department of Microbiology, PG Institute of Basic Medical Sciences, University of Madras, Chennai 600113, Tamil Nadu, India
| | - Mark van der Linden
- German National Reference Center for Streptococci, Department of Medical Microbiology, University Hospital RWTH Aachen, D-52074 Aachen, Germany
| | - Thangam Menon
- Department of Microbiology, PG Institute of Basic Medical Sciences, University of Madras, Chennai 600113, Tamil Nadu, India
| | - D Patric Nitsche-Schmitz
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany.
| |
Collapse
|
36
|
Genomic characterization of ciprofloxacin resistance in a laboratory-derived mutant and a clinical isolate of Streptococcus pneumoniae. Antimicrob Agents Chemother 2013; 57:4911-9. [PMID: 23877698 DOI: 10.1128/aac.00418-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The broad-spectrum fluoroquinolone ciprofloxacin is a bactericidal antibiotic targeting DNA topoisomerase IV and DNA gyrase encoded by the parC and gyrA genes. Resistance to ciprofloxacin in Streptococcus pneumoniae mainly occurs through the acquisition of mutations in the quinolone resistance-determining region (QRDR) of the ParC and GyrA targets. A role in low-level ciprofloxacin resistance has also been attributed to efflux systems. To look into ciprofloxacin resistance at a genome-wide scale and to discover additional mutations implicated in resistance, we performed whole-genome sequencing of an S. pneumoniae isolate selected for resistance to ciprofloxacin in vitro (128 μg/ml) and of a clinical isolate displaying low-level ciprofloxacin resistance (2 μg/ml). Gene disruption and DNA transformation experiments with PCR fragments harboring the mutations identified in the in vitro S. pneumoniae mutant revealed that resistance is mainly due to QRDR mutations in parC and gyrA and to the overexpression of the ABC transporters PatA and PatB. In contrast, no QRDR mutations were identified in the genome of the S. pneumoniae clinical isolate with low-level resistance to ciprofloxacin. Assays performed in the presence of the efflux pump inhibitor reserpine suggested that resistance is likely mediated by efflux. Interestingly, the genome sequence of this clinical isolate also revealed mutations in the coding region of patA and patB that we implicated in resistance. Finally, a mutation in the NAD(P)H-dependent glycerol-3-phosphate dehydrogenase identified in the S. pneumoniae clinical strain was shown to protect against ciprofloxacin-mediated reactive oxygen species.
Collapse
|
37
|
Zervosen A, Zapun A, Frère JM. Inhibition of Streptococcus pneumoniae penicillin-binding protein 2x and Actinomadura R39 DD-peptidase activities by ceftaroline. Antimicrob Agents Chemother 2013; 57:661-3. [PMID: 23147739 PMCID: PMC3535952 DOI: 10.1128/aac.01593-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/04/2012] [Indexed: 11/20/2022] Open
Abstract
Although the rate of acylation of a penicillin-resistant form of Streptococcus pneumoniae penicillin-binding protein 2x (PBP2x) by ceftaroline is 80-fold lower than that of its penicillin-sensitive counterpart, it remains sufficiently high (k(2)/K = 12,600 M(-1) s(-1)) to explain the sensitivity of the penicillin-resistant strain to this new cephalosporin. Surprisingly, the Actinomadura R39 DD-peptidase is not very sensitive to ceftaroline.
Collapse
Affiliation(s)
- Astrid Zervosen
- Centre de Recherches du Cyclotron, Université de Liège, Sart-Tilman, Liège, Belgium.
| | | | | |
Collapse
|
38
|
Roth A, Reichmann P, Hakenbeck R. The capsule of Streptococcus pneumoniae contributes to virulence in the insect model Manduca sexta. J Mol Microbiol Biotechnol 2012; 22:326-34. [PMID: 23221622 DOI: 10.1159/000345327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is one of the most important virulence factors responsible for human infections and in mouse infection models as well. Larvae of Manduca sexta were used as an alternative animal model in order to test the impact of the pneumococcal capsule on virulence in the insect host. The unencapsulated S. pneumoniae strain R6 was able to cause disease and induce killing in the larvae, and similar results were obtained with related commensal species. However, using the same dose of S. pneumoniae, encapsulated strains including the type 2 D39 strain, the progenitor of R6, and genetically unrelated S. pneumoniae strains of serotype 2, 4, 6B, 23F and 19A, all had increased virulence potential compared to the R6 strain. Between 20 and 70% of the larvae were affected after 96 h compared to 12% observed with R6. Two type 6B S. pneumoniae strains were more virulent compared to the other strains. S. pneumoniae R6 transformants producing the type 6B capsule showed a similar elevated disease potential, confirming the contribution of the pneumococcal polysaccharide capsule to virulence in M. sexta.
Collapse
Affiliation(s)
- Angelika Roth
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany.
| | | | | |
Collapse
|
39
|
Donkor ES, Stabler RA, Hinds J, Adegbola RA, Antonio M, Wren BW. Comparative phylogenomics of Streptococcus pneumoniae isolated from invasive disease and nasopharyngeal carriage from West Africans. BMC Genomics 2012; 13:569. [PMID: 23107513 PMCID: PMC3534514 DOI: 10.1186/1471-2164-13-569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 10/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We applied comparative phylogenomics (whole genome comparisons of microbes using DNA microarrays combined with Bayesian-based phylogenies) to investigate S. pneumoniae isolates from West Africa, with the aim of providing insights into the pathogenicity and other features related to the biology of the organism. The strains investigated comprised a well defined collection of 58 invasive and carriage isolates that were sequenced typed and included eight different S. pneumoniae serotypes (1, 3, 5, 6A, 11, 14, 19 F and 23 F) of varying invasive disease potential. RESULTS The core genome of the isolates was estimated to be 38% and was mainly represented by gene functional categories associated with housekeeping functions. Comparison of the gene content of invasive and carriage isolates identified at least eleven potential genes that may be important in virulence including surface proteins, transport proteins, transcription factors and hypothetical proteins. Thirteen accessory regions (ARs) were also identified and did not show any loci association with the eleven virulence genes. Intraclonal diversity (isolates of the same serotype and MLST but expressing different patterns of ARs) was observed among some clones including ST 1233 (serotype 5), ST 3404 (serotype 5) and ST 3321 (serotype 14). A constructed phylogenetic tree of the isolates showed a high level of heterogeneity consistent with the frequent S. pneumoniae recombination. Despite this, a homogeneous clustering of all the serotype 1 strains was observed. CONCLUSIONS Comparative phylogenomics of invasive and carriage S. pneumoniae isolates identified a number of putative virulence determinants that may be important in the progression of S. pneumoniae from the carriage phase to invasive disease. Virulence determinants that contribute to S. pneumoniae pathogenicity are likely to be distributed randomly throughout its genome rather than being clustered in dedicated loci or islands. Compared to other S. pneumoniae serotypes, serotype 1 appears most genetically uniform.
Collapse
Affiliation(s)
- Eric S Donkor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Department of Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Richard A Stabler
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Jason Hinds
- Bacterial Microarray Group, St. George’s University of London, London, SW17 0RE, UK
| | | | - Martin Antonio
- Vaccinology Theme, Medical Research Council Unit, The Gambia
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
40
|
Williams TM, Loman NJ, Ebruke C, Musher DM, Adegbola RA, Pallen MJ, Weinstock GM, Antonio M. Genome analysis of a highly virulent serotype 1 strain of Streptococcus pneumoniae from West Africa. PLoS One 2012; 7:e26742. [PMID: 23082106 PMCID: PMC3474768 DOI: 10.1371/journal.pone.0026742] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/02/2011] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and bacteremia, estimated to cause 2 million deaths annually. The majority of pneumococcal mortality occurs in developing countries, with serotype 1 a leading cause in these areas. To begin to better understand the larger impact that serotype 1 strains have in developing countries, we characterized virulence and genetic content of PNI0373, a serotype 1 strain from a diseased patient in The Gambia. PNI0373 and another African serotype 1 strain showed high virulence in a mouse intraperitoneal challenge model, with 20% survival at a dose of 1 cfu. The PNI0373 genome sequence was similar in structure to other pneumococci, with the exception of a 100 kb inversion. PNI0373 showed only15 lineage specific CDS when compared to the pan-genome of pneumococcus. However analysis of non-core orthologs of pneumococcal genomes, showed serotype 1 strains to be closely related. Three regions were found to be serotype 1 associated and likely products of horizontal gene transfer. A detailed inventory of known virulence factors showed that some functions associated with colonization were absent, consistent with the observation that carriage of this highly virulent serotype is unusual. The African serotype 1 strains thus appear to be closely related to each other and different from other pneumococci despite similar genetic content.
Collapse
Affiliation(s)
- Tiffany M. Williams
- The Genome Institute, Washington University, St. Louis, Missouri, United States of America
| | - Nicholas J. Loman
- Centre for Systems Biology, University of Birmingham, Birmingham, United Kingdom
| | - Chinelo Ebruke
- Bacterial Diseases Programme, Medical Research Council Laboratories, Banjul, The Gambia
| | - Daniel M. Musher
- Infectious Diseases Section, Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
| | - Richard A. Adegbola
- Bacterial Diseases Programme, Medical Research Council Laboratories, Banjul, The Gambia
| | - Mark J. Pallen
- Centre for Systems Biology, University of Birmingham, Birmingham, United Kingdom
| | - George M. Weinstock
- The Genome Institute, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| | - Martin Antonio
- Bacterial Diseases Programme, Medical Research Council Laboratories, Banjul, The Gambia
| |
Collapse
|
41
|
High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. mBio 2012; 3:mBio.00200-12. [PMID: 23015736 PMCID: PMC3448161 DOI: 10.1128/mbio.00200-12] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transformation of genetic material between bacteria was first observed in the 1920s using Streptococcus pneumoniae as a model organism. Since then, the mechanism of competence induction and transformation has been well characterized, mainly using planktonic bacteria or septic infection models. However, epidemiological evidence suggests that genetic exchange occurs primarily during pneumococcal nasopharyngeal carriage, which we have recently shown is associated with biofilm growth, and is associated with cocolonization with multiple strains. However, no studies to date have comprehensively investigated genetic exchange during cocolonization in vitro and in vivo or the role of the nasopharyngeal environment in these processes. In this study, we show that genetic exchange during dual-strain carriage in vivo is extremely efficient (10−2) and approximately 10,000,000-fold higher than that measured during septic infection (10−9). This high transformation efficiency was associated with environmental conditions exclusive to the nasopharynx, including the lower temperature of the nasopharynx (32 to 34°C), limited nutrient availability, and interactions with epithelial cells, which were modeled in a novel biofilm model in vitro that showed similarly high transformation efficiencies. The nasopharyngeal environmental factors, combined, were critical for biofilm formation and induced constitutive upregulation of competence genes and downregulation of capsule that promoted transformation. In addition, we show that dual-strain carriage in vivo and biofilms formed in vitro can be transformed during colonization to increase their pneumococcal fitness and also, importantly, that bacteria with lower colonization ability can be protected by strains with higher colonization efficiency, a process unrelated to genetic exchange. Although genetic exchange between pneumococcal strains is known to occur primarily during colonization of the nasopharynx and colonization is associated with biofilm growth, this is the first study to comprehensively investigate transformation in this environment and to analyze the role of environmental and bacterial factors in this process. We show that transformation efficiency during cocolonization by multiple strains is very high (around 10−2). Furthermore, we provide novel evidence that specific aspects of the nasopharyngeal environment, including lower temperature, limited nutrient availability, and epithelial cell interaction, are critical for optimal biofilm formation and transformation efficiency and result in bacterial protein expression changes that promote transformation and fitness of colonization-deficient strains. The results suggest that cocolonization in biofilm communities may have important clinical consequences by facilitating the spread of antibiotic resistance and enabling serotype switching and vaccine escape as well as protecting and retaining poorly colonizing strains in the pneumococcal strain pool.
Collapse
|
42
|
Hoshino T, Fujiwara T, Kawabata S. Evolution of cariogenic character in Streptococcus mutans: horizontal transmission of glycosyl hydrolase family 70 genes. Sci Rep 2012; 2:518. [PMID: 22816041 PMCID: PMC3399136 DOI: 10.1038/srep00518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/03/2012] [Indexed: 12/04/2022] Open
Abstract
Acquisition of the ability to produce polysaccharides from sucrose, i.e. the gtf gene encoding glucosyltransferase (GTF), is the key evolutionary event enabling dental biofilm formation by streptococci. To clarify the ancestry of streptococcal GTFs, time of its occurrence, and order of specific events, we investigated the distribution of GTFs among bacteria by phylogenetic analysis of the glycosyl hydrolase family 70 enzymes. We found that streptococcal GTFs were derived from other lactic acid bacteria such as Lactobacillus and Leuconostoc, and propose the following evolutionary model: horizontal gene transfer via transposons occurred when streptococci encountered lactic acid bacteria contained in fermented food. Intra-genomic gene duplication occurred by a secondary selection pressure such as consumption of refined sugar. Our findings concerning this evolution in Streptococcus mutans provide an important background for studies of the relationship between the historical spread of dental caries and anthropological factors.
Collapse
Affiliation(s)
- Tomonori Hoshino
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | |
Collapse
|
43
|
Differentiation of Streptococcus pneumoniae from nonpneumococcal streptococci of the Streptococcus mitis group by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2012; 50:2863-7. [PMID: 22718935 DOI: 10.1128/jcm.00508-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The differentiation of species within the Streptococcus mitis group has posed a problem in the routine diagnostic microbiology laboratory for some time. It also constitutes a major weakness of recently introduced matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) fingerprinting systems. As the phylogenetic resolution of the spectral similarity measures employed by these systems is insufficient to reliably distinguish between the most closely related members of the group, the major pathogen Streptococcus pneumoniae is frequently misidentified. In this study, a comparative analysis of MALDI-TOF spectra of several species from the S. mitis group has been performed in order to identify single peaks that could be used to improve mass spectrometry-based identification of the respective species. A characteristic peak profile could be identified that unambiguously distinguished the 14 S. pneumoniae isolates studied from 33 nonpneumococcal isolates of the S. mitis group. In addition, specific peak combinations could be assigned to other members of the group. The findings of this study suggest that it is possible to distinguish different species of the S. mitis group by close analysis of their mass peak profiles.
Collapse
|
44
|
Novel molecular method for identification of Streptococcus pneumoniae applicable to clinical microbiology and 16S rRNA sequence-based microbiome studies. J Clin Microbiol 2012; 50:1968-73. [PMID: 22442329 DOI: 10.1128/jcm.00365-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The close phylogenetic relationship of the important pathogen Streptococcus pneumoniae and several species of commensal streptococci, particularly Streptococcus mitis and Streptococcus pseudopneumoniae, and the recently demonstrated sharing of genes and phenotypic traits previously considered specific for S. pneumoniae hamper the exact identification of S. pneumoniae. Based on sequence analysis of 16S rRNA genes of a collection of 634 streptococcal strains, identified by multilocus sequence analysis, we detected a cytosine at position 203 present in all 440 strains of S. pneumoniae but replaced by an adenosine residue in all strains representing other species of mitis group streptococci. The S. pneumoniae-specific sequence signature could be demonstrated by sequence analysis or indirectly by restriction endonuclease digestion of a PCR amplicon covering the site. The S. pneumoniae-specific signature offers an inexpensive means for validation of the identity of clinical isolates and should be used as an integrated marker in the annotation procedure employed in 16S rRNA-based molecular studies of complex human microbiotas. This may avoid frequent misidentifications such as those we demonstrate to have occurred in previous reports and in reference sequence databases.
Collapse
|
45
|
Bidossi A, Mulas L, Decorosi F, Colomba L, Ricci S, Pozzi G, Deutscher J, Viti C, Oggioni MR. A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PLoS One 2012; 7:e33320. [PMID: 22428019 PMCID: PMC3302838 DOI: 10.1371/journal.pone.0033320] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/10/2012] [Indexed: 01/02/2023] Open
Abstract
The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodium:solute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection.
Collapse
Affiliation(s)
- Alessandro Bidossi
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Laura Mulas
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Francesca Decorosi
- Sezione Microbiologia, Dip. Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy
| | - Leonarda Colomba
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Susanna Ricci
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
| | - Gianni Pozzi
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Carlo Viti
- Sezione Microbiologia, Dip. Biotecnologie Agrarie, Università degli Studi di Firenze, Firenze, Italy
| | - Marco Rinaldo Oggioni
- Lab. Microbiologia Molecolare e Biotecnologia, Dip. Biologia Molecolare, Università di Siena, Siena, Italy
- UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail:
| |
Collapse
|
46
|
Identification of a pheA gene associated with Streptococcus mitis by using suppression subtractive hybridization. Appl Environ Microbiol 2012; 78:3004-9. [PMID: 22307284 DOI: 10.1128/aem.07510-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We performed suppression subtractive hybridization to identify genomic differences between Streptococcus mitis and Streptococcus pneumoniae. Based on the pheA gene, a primer set specific to S. mitis detection was found in 18 out of 103 S. mitis-specific clones. Our findings would be useful for discrimination of S. mitis from other closely related cocci in the oral environment.
Collapse
|
47
|
Muzzi A, Donati C. Population genetics and evolution of the pan-genome of Streptococcus pneumoniae. Int J Med Microbiol 2011; 301:619-22. [PMID: 22000739 DOI: 10.1016/j.ijmm.2011.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
The genetic variability in bacterial species is much larger than in other kingdoms of life. The gene content between pairs of isolates can diverge by as much as 30% in species like Escherichia coli or Streptococcus pneumoniae. This unexpected finding led to the introduction of the concept of the pan-genome, the set of genes that can be found in a given bacterial species. The genome of any isolate is thus composed by a "core genome" shared by all strains and characteristic of the species, and a "dispensable genome" that accounts for many of the phenotypic differences between strains. The pan-genome is usually much larger than the genome of any single isolate and, given the ability of many bacteria to exchange genetic material with the environment, constitutes a reservoir that could enhance their ability to survive in a mutating environment. To understand the evolution of the pan-genome of an important pathogen and its interactions with the commensal microbial flora, we have analyzed the genomes of 44 strains of Streptococcus pneumoniae, one of the most important causes of microbial diseases in humans. Despite evidence of extensive homologous recombination, the S. pneumoniae phylogenetic tree reconstructed from polymorphisms in the core genome identified major groups of genetically related strains. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant evolutionary process of the core genome of S. pneumoniae. Genetic exchange with related species sharing the same ecological niche was the main mechanism of evolution of S. pneumonia; and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome of S. pneumoniae increased logarithmically with the number of strains and linearly with the variability of the sample, suggesting that acquired genes accumulate proportionately to the age of clones.
Collapse
Affiliation(s)
- Alessandro Muzzi
- Novartis Vaccines and Diagnostics, Via Fiorentina 1, 53100 Siena, Italy
| | | |
Collapse
|
48
|
Hyams C, Opel S, Hanage W, Yuste J, Bax K, Henriques-Normark B, Spratt BG, Brown JS. Effects of Streptococcus pneumoniae strain background on complement resistance. PLoS One 2011; 6:e24581. [PMID: 22022358 PMCID: PMC3192701 DOI: 10.1371/journal.pone.0024581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/15/2011] [Indexed: 01/04/2023] Open
Abstract
Background Immunity to infections caused by Streptococcus pneumoniae is dependent on complement. There are wide variations in sensitivity to complement between S. pneumoniae strains that could affect their ability to cause invasive infections. Although capsular serotype is one important factor causing differences in complement resistance between strains, there is also considerable other genetic variation between S. pneumoniae strains that may affect complement-mediated immunity. We have therefore investigated whether genetically distinct S. pneumoniae strains with the same capsular serotype vary in their sensitivity to complement mediated immunity. Methodology and Principal Findings C3b/iC3b deposition and neutrophil association were measured using flow cytometry assays for S. pneumoniae strains with different genetic backgrounds for each of eight capsular serotypes. For some capsular serotypes there was marked variation in C3b/iC3b deposition between different strains that was independent of capsule thickness and correlated closely to susceptibility to neutrophil association. C3b/iC3b deposition results also correlated weakly with the degree of IgG binding to each strain. However, the binding of C1q (the first component of the classical pathway) correlated more closely with C3b/iC3b deposition, and large differences remained in complement sensitivity between strains with the same capsular serotype in sera in which IgG had been cleaved with IdeS. Conclusions These data demonstrate that bacterial factors independent of the capsule and recognition by IgG have strong effects on the susceptibility of S. pneumoniae to complement, and could therefore potentially account for some of the differences in virulence between strains.
Collapse
Affiliation(s)
- Catherine Hyams
- Centre for Respiratory Research, Department of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Sophia Opel
- Centre for Respiratory Research, Department of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - William Hanage
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jose Yuste
- Spanish Pneumococcal Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Katie Bax
- Department of Anatomy, University College London, London, United Kingdom
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and the Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | - Brian G. Spratt
- Department of Infectious Disease Epidemiology, St. Mary's Hospital Campus, Imperial College London, London, United Kingdom
| | - Jeremy S. Brown
- Centre for Respiratory Research, Department of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Zähner D, Gandhi AR, Yi H, Stephens DS. Mitis group streptococci express variable pilus islet 2 pili. PLoS One 2011; 6:e25124. [PMID: 21966432 PMCID: PMC3178606 DOI: 10.1371/journal.pone.0025124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/25/2011] [Indexed: 11/25/2022] Open
Abstract
Background Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguinis are members of the Mitis group of streptococci and agents of oral biofilm, dental plaque and infective endocarditis, disease processes that involve bacteria-bacteria and bacteria-host interactions. Their close relative, the human pathogen S. pneumoniae uses pilus-islet 2 (PI-2)-encoded pili to facilitate adhesion to eukaryotic cells. Methodology/Principal Findings PI-2 pilus-encoding genetic islets were identified in S. oralis, S. mitis, and S. sanguinis, but were absent from other isolates of these species. The PI-2 islets resembled the genetic organization of the PI-2 islet of S. pneumoniae, but differed in the genes encoding the structural pilus proteins PitA and PitB. Two and three variants of pitA (a pseudogene in S. pneumoniae) and pitB, respectively, were identified that showed ≈20% difference in nucleotide as well as corresponding protein sequence. Species-independent combinations of pitA and pitB variants indicated prior intra- and interspecies horizontal gene transfer events. Polyclonal antisera developed against PitA and PitB of S. oralis type strain ATCC35037 revealed that PI-2 pili in oral streptococci were composed of PitA and PitB. Electronmicrographs showed pilus structures radiating >700 nm from the bacterial surface in the wild type strain, but not in an isogenic PI-2 deletion mutant. Anti-PitB-antiserum only reacted with pili containing the same PitB variant, whereas anti-PitA antiserum was cross-reactive with the other PitA variant. Electronic multilocus sequence analysis revealed that all PI-2-encoding oral streptococci were closely-related and cluster with non-PI-2-encoding S. oralis strains. Conclusions/Significance This is the first identification of PI-2 pili in Mitis group oral streptococci. The findings provide a striking example of intra- and interspecies horizontal gene transfer. The PI-2 pilus diversity provides a possible key to link strain-specific bacterial interactions and/or tissue tropisms with pathogenic traits in the Mitis group streptococci.
Collapse
Affiliation(s)
- Dorothea Zähner
- Division of Infectious Diseases, Department of Medicine, Atlanta, Georgia, United States of America.
| | | | | | | |
Collapse
|
50
|
Engelmoer DJP, Rozen DE. Competence increases survival during stress in Streptococcus pneumoniae. Evolution 2011; 65:3475-85. [PMID: 22133219 DOI: 10.1111/j.1558-5646.2011.01402.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Horizontal gene transfer mediated by transformation is of central importance in bacterial evolution. However, numerous questions remain about the maintenance of processes that underlie transformation. Most hypotheses for the benefits of transformation focus on what bacteria might do with DNA, but ignore the important fact that transformation is subsumed within the broader process of competence. Accordingly, the apparent benefits of transformation might rely less on recombination than on other potential benefits associated with the broader suite of traits regulated by competence. We examined the importance of this distinction in the naturally competent species Streptococcus pneumoniae, focusing specifically on predictions of the DNA-for-repair hypothesis. We confirm earlier results in other naturally competent species that transformation protects against DNA-damaging stress. In addition, we show that the stress-protection extends to non-DNA-damaging stress. More important, we find that for some forms of stress transformation is not required for cells to benefit from the induction of competence. This rejects the narrowly defined DNA-for-repair hypotheses and provides the first support for Claverys' hypothesis that competence, but not necessarily transformation, may act as a general process to relieve stress. Our results highlight the need to distinguish benefits of transformation from broader benefits of competence that do not rely on DNA uptake and recombination.
Collapse
Affiliation(s)
- Daniel J P Engelmoer
- Faculty of Life Sciences, University of Manchester, Michael Smith building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|