1
|
Schoellkopf J, Mueller T, Hippchen L, Mueller T, Reuten R, Backofen R, Orth J, Schmidt G. Genome wide CRISPR screen for Pasteurella multocida toxin (PMT) binding proteins reveals LDL Receptor Related Protein 1 (LRP1) as crucial cellular receptor. PLoS Pathog 2022; 18:e1010781. [PMID: 36516199 PMCID: PMC9797058 DOI: 10.1371/journal.ppat.1010781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/28/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
PMT is a protein toxin produced by Pasteurella multocida serotypes A and D. As causative agent of atrophic rhinitis in swine, it leads to rapid degradation of the nasal turbinate bone. The toxin acts as a deamidase to modify a crucial glutamine in heterotrimeric G proteins, which results in constitutive activation of the G proteins and permanent stimulation of numerous downstream signaling pathways. Using a lentiviral based genome wide CRISPR knockout screen in combination with a lethal toxin chimera, consisting of full length inactive PMT and the catalytic domain of diphtheria toxin, we identified the LRP1 gene encoding the Low-Density Lipoprotein Receptor-related protein 1 as a critical host factor for PMT function. Loss of LRP1 reduced PMT binding and abolished the cellular response and deamidation of heterotrimeric G proteins, confirming LRP1 to be crucial for PMT uptake. Expression of LRP1 or cluster 4 of LRP1 restored intoxication of the knockout cells. In summary our data demonstrate LRP1 as crucial host entry factor for PMT intoxication by acting as its primary cell surface receptor.
Collapse
Affiliation(s)
- Julian Schoellkopf
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Thomas Mueller
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Lena Hippchen
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Teresa Mueller
- Bioinformatics—Department of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
| | - Raphael Reuten
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics—Department of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University, Freiburg, Germany
| | - Joachim Orth
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- * E-mail:
| |
Collapse
|
2
|
Wu MC, Lo YT, Wu HC, Wang HY, Chu CY. Cross-protection of recombinant Pasteurella multocida toxin proteins against atrophic rhinitis in mice. Res Vet Sci 2021; 137:138-143. [PMID: 33975192 DOI: 10.1016/j.rvsc.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/02/2021] [Accepted: 05/03/2021] [Indexed: 11/25/2022]
Abstract
Pasteurella multocida (P. multocida) infects the swine respiratory tract and mainly causes atrophic rhinitis (AR). Recently, many commercially inactivated and subunit vaccines have been used as preventive strategies. However, the best antigenic protein portion has not been selected, and the aluminum gel was used as the adjuvant, which may not induce full protection. P. multocida toxin (PMT) is the major virulence factor responsible for AR. PMT is a monomeric 146 kDa protein (approximately 1285 amino acids) encoded by the tox A gene. In this study, we expressed different fragments of recombinant PMT proteins, combined them with a water-in-oil-in-water adjuvant, and evaluated mice's immune response. The results indicated that the rPMT-C-immunized group showed significantly higher levels (p < 0.05) of IgG, IgG2a antibody and interferon-γ, IL-12 cytokine expression than other groups. Furthermore, vaccination with rPMT-C recombinant protein can provide homologous and heterologous protection against P. multocida challenge. In conclusion, our approach may be feasible for developing an effective subunit vaccine against atrophic rhinitis with a cost-down simple ingredient.
Collapse
Affiliation(s)
- Min-Chia Wu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yi-Ting Lo
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Hsing-Chieh Wu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Hsian-Yu Wang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chun-Yen Chu
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
3
|
Siddaramappa S. Comparative genomics of the Pasteurella multocida toxin. Genome 2021; 64:679-692. [PMID: 33471631 DOI: 10.1139/gen-2020-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pasteurella multocida is a zoonotic pathogen whose genetic heterogeneity is well known. Five serogroups (A, B, D, E, and F) and 16 serotypes of P. multocida have been recognized thus far based on capsular polysaccharide typing and lipopolysaccharide typing, respectively. Progressive atrophic rhinitis in domestic pigs is caused by P. multocida strains containing toxA, which encodes a 146 kDa heat-labile toxin. Among the five serogroups, only some strains of serogroups A and D are toxigenic. In this study, by comparative analyses of the genomes of many strains, it has been shown that toxA is sparsely distributed in P. multocida. Furthermore, full-length homologs of P. multocida toxA were found only in two other bacterial species. It has also been shown that toxA is usually associated with a prophage, and that some strains contain an orthologous prophage but not toxA. Among the toxA-containing prophages that were compared, an operon putatively encoding a type II restriction-modification system was present only in strains LFB3, HN01, and HN06. These results indicate that the selection and maintenance of the heat-labile toxin and the type II restriction-modification system are evolutionarily less favorable among P. multocida strains. Phylogenetic analysis using the alignment- and parameter-free method CVTree3 showed that deduced proteome sequences can be used as effectively as whole/core genome single nucleotide polymorphisms to group P. multocida strains in relation to their serotypes and (or) genotypes. It remains to be determined if the toxA-containing prophages in strains HN01 and HN06 are inducible, and if they can be used for lysogenic transfer of toxA to other bacteria.
Collapse
Affiliation(s)
- Shivakumara Siddaramappa
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bengaluru, Karnataka 560100, India.,Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bengaluru, Karnataka 560100, India
| |
Collapse
|
4
|
Ebner JK, König GM, Kostenis E, Siegert P, Aktories K, Orth JHC. Activation of G q signaling by Pasteurella multocida toxin inhibits the osteoblastogenic-like actions of Activin A in C2C12 myoblasts, a cell model of fibrodysplasia ossificans progressiva. Bone 2019; 127:592-601. [PMID: 31376533 DOI: 10.1016/j.bone.2019.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/15/2023]
Abstract
The human disease fibrodysplasia ossificans progressiva (FOP) is a rare and highly disabling disorder of extensive heterotopic bone growth that is caused by a point mutation (R206H) in the activation domain of Alk2, a BMP (bone morphogenic protein) type 1 receptor. The mutation leads to extensive BMP-signaling induced by Activin A, which is normally an antagonist for wildtype receptors, resulting in excessive and uncontrolled bone formation. Here, we studied the effects of Pasteurella multocida toxin (PMT), which activates osteoclasts and inhibits osteoblast activity, in C2C12 myoblasts expressing the mutant Alk2(R206H) receptor as model of FOP. In our study, we mainly used alkaline phosphatase (ALP) activity as marker to determine osteoblast differentiation. BMP-4 stimulated an increase in ALP activity in C2C12-Alk2wt and C2C12-Alk2(R206H) cells. By contrast, Activin A only induced ALP activity in C2C12-Alk2(R206H) cells. In both cases, PMT acted as a potent inhibitor of ALP activity. PMT-induced inhibition of ALP activity was paralleled by a constitutive activation of the heterotrimeric Gq protein. Expression of a permanently active Gαq blocked Activin A/Alk2(R206H)-dependent increase in ALP activity. Inactivation of Gq by specific inhibitor FR900359 blocked the PMT effect. Similarly, canonical second messengers and effectors of Gαq (e.g. ionophore A23187-induced increase in intracellular Ca2+ and activation of PKC by PMA (phorbol 12-myristate 13-acetate)) inhibited Alk2(R206H)-mediated induction of ALP activity. Notably, Activin A-induced increase in ALP activity in C2C12-Alk2(R206H) cells was also inhibited by stimulation of the α1A-adrenoceptor, which couples to Gαq, by phenylephrine. PMT did not alter tail phosphorylation of the major downstream effectors of the Alk2 receptor, Smad1/5/9; neither did the toxin affect nuclear translocation of the Smad-complex. However, PMT diminished BMP responsive element-induced gene expression. The data indicate that PMT potently inhibits the induction of osteoblast markers in a FOP model via activation of G proteins. Moreover, our findings indicate that activation of G protein-coupled receptors and of G protein signaling might be a rationale for pharmacological therapy of FOP.
Collapse
Affiliation(s)
- Julia K Ebner
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany; Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany
| | - Gabriele M König
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Peter Siegert
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany; Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany.
| | - Joachim H C Orth
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Brink T, Leiss V, Siegert P, Jehle D, Ebner JK, Schwan C, Shymanets A, Wiese S, Nürnberg B, Hensel M, Aktories K, Orth JHC. Salmonella Typhimurium effector SseI inhibits chemotaxis and increases host cell survival by deamidation of heterotrimeric Gi proteins. PLoS Pathog 2018; 14:e1007248. [PMID: 30102745 PMCID: PMC6107295 DOI: 10.1371/journal.ppat.1007248] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/23/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica serotype Typhimurium (S. Typhimurium) is one of the most frequent causes of food-borne illness in humans and usually associated with acute self-limiting gastroenteritis. However, in immunocompromised patients, the pathogen can disseminate and lead to severe systemic diseases. S. Typhimurium are facultative intracellular bacteria. For uptake and intracellular life, Salmonella translocate numerous effector proteins into host cells using two type-III secretion systems (T3SS), which are encoded within Salmonella pathogenicity islands 1 (SPI-1) and 2 (SPI-2). While SPI-1 effectors mainly promote initial invasion, SPI-2 effectors control intracellular survival and proliferation. Here, we elucidate the mode of action of Salmonella SPI-2 effector SseI, which is involved in control of systemic dissemination of S. Typhimurium. SseI deamidates a specific glutamine residue of heterotrimeric G proteins of the Gαi family, resulting in persistent activation of the G protein. Gi activation inhibits cAMP production and stimulates PI3-kinase γ by Gαi-released Gβγ subunits, resulting in activation of survival pathways by phosphorylation of Akt and mTOR. Moreover, SseI-induced deamidation leads to non-polarized activation of Gαi and, thereby, to loss of directed migration of dendritic cells. Salmonella Typhimurium is one of the most common causes of gastroenteritis in humans. In immunocompromised patients, the pathogen can cause systemic infections. Crucial virulence factors are encoded on two Salmonella pathogenicity islands SPI-1 and SPI-2. While SPI-1 encodes virulence factors essential for host cell invasion, intracellular proliferation of the pathogen depends mainly on SPI-2 effectors. Here, we elucidate the mode of action of Salmonella SPI-2 effector SseI. SseI activates heterotrimeric G proteins of the Gαi family by deamidation of a specific glutamine residue. Deamidation blocks GTP hydrolysis by Gαi, resulting in a persistently active G protein. Gi activation inhibits cAMP production and stimulates PI3Kγ by Gαi-released Gβγ subunits, resulting in activation of survival pathways by phosphorylation of Akt and mTOR. Moreover, deamidation of Gαi leads to a loss of directed migration in dendritic cells. The data offers a new perspective in the understanding of the actions of SseI.
Collapse
Affiliation(s)
- Thorsten Brink
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Veronika Leiss
- Abteilung für Pharmakologie und Experimentelle Therapie, Medizinische Fakultät und ICePhA, Eberhard-Karls-Universität Tübingen, Germany
| | - Peter Siegert
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Doris Jehle
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Julia K. Ebner
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Carsten Schwan
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Aliaksei Shymanets
- Abteilung für Pharmakologie und Experimentelle Therapie, Medizinische Fakultät und ICePhA, Eberhard-Karls-Universität Tübingen, Germany
| | - Sebastian Wiese
- Zentrum für Biosystemanalyse, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Bernd Nürnberg
- Abteilung für Pharmakologie und Experimentelle Therapie, Medizinische Fakultät und ICePhA, Eberhard-Karls-Universität Tübingen, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- * E-mail:
| | - Joachim H. C. Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Castonguay J, Orth JHC, Müller T, Sleman F, Grimm C, Wahl-Schott C, Biel M, Mallmann RT, Bildl W, Schulte U, Klugbauer N. The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes. Sci Rep 2017; 7:10038. [PMID: 28855648 PMCID: PMC5577145 DOI: 10.1038/s41598-017-10607-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023] Open
Abstract
Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca2+ concentrations required for SNARE-mediated vesicle fusion.
Collapse
Affiliation(s)
- Jan Castonguay
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Joachim H C Orth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Thomas Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Faten Sleman
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Christian Grimm
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Christian Wahl-Schott
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Robert Theodor Mallmann
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.,Logopharm GmbH, Schlossstrasse 14, 79232, March-Buchheim, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Norbert Klugbauer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Albertstrasse 25, 79104, Freiburg, Germany.
| |
Collapse
|
7
|
Carle S, Brink T, Orth JHC, Aktories K, Barth H. Auranofin Inhibits the Enzyme Activity of Pasteurella multocida Toxin PMT in Human Cells and Protects Cells from Intoxication. Toxins (Basel) 2017; 9:toxins9010032. [PMID: 28098782 PMCID: PMC5308264 DOI: 10.3390/toxins9010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 11/16/2022] Open
Abstract
The AB-type protein toxin from Pasteurella multocida (PMT) contains a functionally important disulfide bond within its catalytic domain, which must be cleaved in the host cell cytosol to render the catalytic domain of PMT into its active conformation. Here, we found that the reductive potential of the cytosol of target cells, and more specifically, the activity of the thioredoxin reductase (TrxR) is crucial for this process. This was demonstrated by the strong inhibitory effect of the pharmacological TrxR inhibitor auranofin, which inhibited the intoxication of target cells with PMT, as determined by analyzing the PMT-catalyzed deamidation of GTP-binding proteins (G-proteins) in the cytosol of cells. The amount of endogenous substrate levels modified by PMT in cells pretreated with auranofin was reduced compared to cells treated with PMT alone. Auranofin had no inhibitory effect on the activity of the catalytic domain of constitutively active PMT in vitro, demonstrating that auranofin did not directly inhibit PMT activity, but interferes with the mode of action of PMT in cells. In conclusion, the results show that TrxR is crucial for the mode of action of PMT in mammalian cells, and that the drug auranofin can serve as an efficient inhibitor, which might be a starting point for novel therapeutic options against toxin-associated diseases.
Collapse
Affiliation(s)
- Stefan Carle
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany.
| | - Thorsten Brink
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany.
| | - Joachim H C Orth
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany.
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany.
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg 79104, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, Ulm 89081, Germany.
| |
Collapse
|
8
|
Noncanonical G-protein-dependent modulation of osteoclast differentiation and bone resorption mediated by Pasteurella multocida toxin. mBio 2014; 5:e02190. [PMID: 25389180 PMCID: PMC4235216 DOI: 10.1128/mbio.02190-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pasteurella multocida toxin (PMT) induces atrophic rhinitis in animals, which is characterized by a degradation of nasal turbinate bones, indicating an effect of the toxin on bone cells such as osteoblasts and osteoclasts. The underlying molecular mechanism of PMT was defined as a persistent activation of heterotrimeric G proteins by deamidation of a specific glutamine residue. Here, we show that PMT acts directly on osteoclast precursor cells such as bone marrow-derived CD14+ monocytes and RAW246.7 cells to induce osteoclastogenesis as measured by expression of osteoclast-specific markers such as tartrate-resistant acid phosphatase and bone resorption activity. Treatment performed solely with PMT stimulates osteoclast differentiation, showing a receptor activator of nuclear factor-κB ligand (RANKL)-independent action of the toxin. The underlying signal transduction pathway was defined as activation of the heterotrimeric G proteins Gαq/11 leading to the transactivation of Ras and the mitogen-activated protein kinase pathway. Gαq/11 transactivates Ras via its effector phospholipase Cβ-protein kinase C (PKC) involving proline-rich tyrosine kinase 2 (Pyk2). PMT-induced activation of the mitogen-activated protein kinase pathway results in stimulation of the osteoclastogenic transcription factors AP-1, NF-κB, and NFATc1. In addition, Ca2+-dependent calcineurin activation of NFAT is crucial for PMT-induced osteoclastogenesis. The data not only elucidate a rationale for PMT-dependent bone loss during atrophic rhinitis but also highlight a noncanonical, G-protein-dependent pathway toward bone resorption that is distinct from the RANKL-RANK pathway but mimics it. We define heterotrimeric G proteins as as-yet-underestimated entities/players in the maturation of osteoclasts which might be of pharmacological relevance. Pasteurella multocida toxin (PMT) induces degradation of nasal turbinate bones, leading to the syndrome of atrophic rhinitis. Recently, the molecular mechanism and substrate specificity of PMT were identified. The toxin activates heterotrimeric G proteins by a covalent modification. However, the mechanism by which PMT induces bone degradation is poorly understood. Our report demonstrates a direct effect of PMT on osteoclast precursor cells, leading to maturation of bone-degrading osteoclasts. Interestingly, PMT stimulates osteoclastogenesis independently of the cytokine RANKL, which is a key factor in induction of osteoclast differentiation. This implicates a noncanonical osteoclastogenic signaling pathway induced by PMT. The elucidated Gαq/11-dependent osteoclastogenic signal transduction pathway ends in osteoclastogenic NFAT signaling. The noncanonical, heterotrimeric G protein-dependent osteoclast differentiation process may be of pharmacological relevance, as members of this pathway are highly druggable. In particular, modulation of G protein-coupled receptor activity in osteoclast progenitors by small molecules might be of specific interest.
Collapse
|
9
|
Antic I, Biancucci M, Satchell KJF. Cytotoxicity of the Vibrio vulnificus MARTX toxin effector DUF5 is linked to the C2A subdomain. Proteins 2014; 82:2643-56. [PMID: 24935440 DOI: 10.1002/prot.24628] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/02/2014] [Accepted: 06/11/2014] [Indexed: 12/19/2022]
Abstract
The multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins are bacterial protein toxins that serve as delivery platforms for cytotoxic effector domains. The domain of unknown function in position 5 (DUF5) effector domain is present in at least six different species' MARTX toxins and as a hypothetical protein in Photorhabdus spp. Its presence increases the potency of the Vibrio vulnificus MARTX toxin in mouse virulence studies, indicating DUF5 directly contributes to pathogenesis. In this work, DUF5 is shown to be cytotoxic when transiently expressed in HeLa cells. DUF5 localized to the plasma membrane dependent upon its C1 domain and the cells become rounded dependent upon its C2 domain. Both full-length DUF5 and the C2 domain caused growth inhibition when expressed in Saccharomyces cerevisiae. A structural model of DUF5 was generated based on the structure of Pasteurella multocida toxin facilitating localization of the cytotoxic activity to a 186 amino acid subdomain termed C2A. Within this subdomain, an alanine scanning mutagenesis revealed aspartate-3721 and arginine-3841 as residues critical for cytotoxicity. These residues were also essential for HeLa cell intoxication when purified DUF5 fused to anthrax toxin lethal factor was delivered cytosolically. Thermal shift experiments indicated that these conserved residues are important to maintain protein structure, rather than for catalysis. The Aeromonas hydrophila MARTX toxin DUF5(Ah) domain was also cytotoxic, while the weakly conserved C1-C2 domains from P. multocida toxin were not. Overall, this study is the first demonstration that DUF5 as found in MARTX toxins has cytotoxic activity that depends on conserved residues in the C2A subdomain.
Collapse
Affiliation(s)
- Irena Antic
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, 60611
| | | | | |
Collapse
|
10
|
Siegert P, Schmidt G, Papatheodorou P, Wieland T, Aktories K, Orth JHC. Pasteurella multocida toxin prevents osteoblast differentiation by transactivation of the MAP-kinase cascade via the Gα(q/11)--p63RhoGEF--RhoA axis. PLoS Pathog 2013; 9:e1003385. [PMID: 23696743 PMCID: PMC3656108 DOI: 10.1371/journal.ppat.1003385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
The 146-kDa Pasteurella multocida toxin (PMT) is the main virulence factor to induce P. multocida-associated progressive atrophic rhinitis in various animals. PMT leads to a destruction of nasal turbinate bones implicating an effect of the toxin on osteoblasts and/or osteoclasts. The toxin induces constitutive activation of Gα proteins of the Gq/11-, G12/13- and Gi-family by deamidating an essential glutamine residue. To study the PMT effect on bone cells, we used primary osteoblasts derived from rat calvariae and stromal ST-2 cells as differentiation model. As marker of functional osteoblasts the expression and activity of alkaline phosphatase, formation of mineralization nodules or expression of specific transcription factors as osterix was determined. Here, we show that the toxin inhibits differentiation and/or function of osteoblasts by activation of Gαq/11. Subsequently, Gαq/11 activates RhoA via p63RhoGEF, which specifically interacts with Gαq/11 but not with other G proteins like Gα12/13 and Gαi. Activated RhoA transactivates the mitogen-activated protein (MAP) kinase cascade via Rho kinase, involving Ras, MEK and ERK, resulting in inhibition of osteoblast differentiation. PMT-induced inhibition of differentiation was selective for the osteoblast lineage as adipocyte-like differentiation of ST-2 cells was not hampered. The present work provides novel insights, how the bacterial toxin PMT can control osteoblastic development by activating heterotrimeric G proteins of the Gαq/11-family and is a molecular pathogenetic basis for understanding the role of the toxin in bone loss during progressive atrophic rhinitis induced by Pasteurella multocida. Pasteurella multocida causes as a facultative pathogen various diseases in men and animals. One induced syndrome is atrophic rhinitis, which is a form of osteopenia, mainly characterized by facial distortion due to degradation of nasal turbinate bones. Strains, which especially affect bone tissue, produce the protein toxin P. multocida toxin (PMT). Importantly, PMT alone is capable to induce all symptoms of atrophic rhinitis. To cause osteopenia PMT influences the development and/or activity of specialized bone cells like osteoblasts and osteoclasts. Recently, we could identify the molecular mechanism of PMT. The toxin constitutively activates certain heterotrimeric G proteins by deamidation. Here, we studied the effect of PMT on the differentiation of osteoblasts. We demonstrate the direct action of PMT on osteoblasts and osteoblast-like cells and as a consequence inhibition of osteoblastic differentiation. Moreover, we revealed the underlying signal transduction pathway to impair proper osteoblast development. We show that PMT activates small GTPases in a Gαq/11 dependent manner via a non-ubiquitously expressed RhoGEF. In turn the mitogen-activated protein kinase pathway is transactivated leading to inhibition of osteoblastogenesis. Our findings present a mechanism how PMT hijacks host cell signaling pathways to hinder osteoblast development, which contributes to the syndrome of atrophic rhinitis.
Collapse
Affiliation(s)
- Peter Siegert
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Hermann–Staudinger–Graduiertenschule Universität Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
- * E-mail: (KA); (JO)
| | - Joachim H. C. Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- * E-mail: (KA); (JO)
| |
Collapse
|
11
|
Pasteurella multocida toxin as a transporter of non-cell-permeating proteins. Infect Immun 2013; 81:2459-67. [PMID: 23630953 DOI: 10.1128/iai.00429-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The protein toxin Pasteurella multocida toxin (PMT) is the causative agent of atrophic rhinitis in pigs, leading to atrophy of the nasal turbinate bones by affecting osteoblasts and osteoclasts. The mechanism of PMT-induced intoxication is a deamidation of α-subunits of heterotrimeric G proteins, including Gαq, Gα13, and Gαi, thereby causing persistent activation of the G proteins. Here we utilized PMT as a transporter of the non-cell-permeating A domain of diphtheria toxin (DTa). Fusion proteins of PMT and DTa ADP-ribosylated elongation factor 2, the natural target of diphtheria toxin, leading to cell toxicity. PMT-DTa effects were competed by PMT, indicating binding to the same cell surface receptor. Fluorescently labeled PMT-DTa and PMT colocalized with specific markers of early and late endosomes. Bafilomycin A, which inhibits vacuolar H(+)-ATPase, blocked PMT-DTa-induced intoxication of HEK-293 cells. By constructing various PMT-DTa chimeras, we identified a minimal region of PMT necessary for uptake of DTa. The data suggest that PMT is able to transport cargo proteins into eukaryotic cells by utilizing the PMT-specific uptake route.
Collapse
|
12
|
Orth JHC, Fester I, Siegert P, Weise M, Lanner U, Kamitani S, Tachibana T, Wilson BA, Schlosser A, Horiguchi Y, Aktories K. Substrate specificity of Pasteurella multocida toxin for α subunits of heterotrimeric G proteins. FASEB J 2012; 27:832-42. [PMID: 23150526 DOI: 10.1096/fj.12-213900] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pasteurella multocida is the causative agent of a number of epizootic and zoonotic diseases. Its major virulence factor associated with atrophic rhinitis in animals and dermonecrosis in bite wounds is P. multocida toxin (PMT). PMT stimulates signal transduction pathways downstream of heterotrimeric G proteins, leading to effects such as mitogenicity, blockade of apoptosis, or inhibition of osteoblast differentiation. On the basis of Gα(i2), it was demonstrated that the toxin deamidates an essential glutamine residue of the Gα(i2) subunit, leading to constitutive activation of the G protein. Here, we studied the specificity of PMT for its G-protein targets by mass spectrometric analyses and by utilizing a monoclonal antibody, which recognizes specifically G proteins deamidated by PMT. The studies revealed deamidation of 3 of 4 families of heterotrimeric G proteins (Gα(q/11), Gα(i1,2,3), and Gα(12/13) of mouse or human origin) by PMT but not by a catalytic inactive toxin mutant. With the use of G-protein fragments and chimeras of responsive or unresponsive G proteins, the structural basis for the discrimination of heterotrimeric G proteins was studied. Our results elucidate substrate specificity of PMT on the molecular level and provide evidence for the underlying structural reasons of substrate discrimination.
Collapse
Affiliation(s)
- Joachim H C Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Protective immunity conferred by the C-terminal fragment of recombinant Pasteurella multocida toxin. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1526-31. [PMID: 22837096 DOI: 10.1128/cvi.00238-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pasteurella multocida serogroup D, producing P. multocida toxin (PMT), is a causative pathogen of progressive atrophic rhinitis (PAR) in swine. To evaluate the protective immunity and vaccination efficacy of the truncated form of PMT, a C-terminal form of recombinant PMT (designated PMT2.3; amino acid residues 505 to 1285 of PMT) was expressed in an Escherichia coli expression system, and the humoral and cellular immune responses to PMT2.3 were investigated. PMT2.3 vaccination in mice led to high levels of the anti-PMT antibody with a high neutralizing antibody titer. PMT2.3 also induced a cellular immune response to PMT, as demonstrated by the lymphocyte proliferation assay. Furthermore, strong protection against a homologous challenge with P. multocida was also observed in mice vaccinated with PMT2.3. In PMT2.3 vaccination in swine, high levels of serum antibody titers were observed in offspring from sows vaccinated with PMT2.3. Offspring from sows vaccinated with PMT2.3 or toxoid showed a good growth performance as depicted by mean body weight at the time of sacrifice, as well as in average daily gain in the postweaning period. Low levels of pathological lesions in turbinate atrophy and pneumonia were also observed in these offspring. Therefore, we consider PMT2.3--in the truncated and nontoxic recombinant PMT form--to be an attractive candidate for a subunit vaccine against PAR induced by P. multocida infection.
Collapse
|
14
|
Swine atrophic rhinitis caused by pasteurella multocida toxin and bordetella dermonecrotic toxin. Curr Top Microbiol Immunol 2012; 361:113-29. [PMID: 22411430 DOI: 10.1007/82_2012_206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Atrophic rhinitis is a widespread and economically important swine disease caused by Pasteurella multocida and Bordetella bronchiseptica. The disease is characterized by atrophy of the nasal turbinate bones, which results in a shortened and deformed snout in severe cases. P. multocida toxin and B. bronchiseptica dermonecrotic toxin have been considered to independently or cooperatively disturb the osteogenesis of the turbinate bone by inhibiting osteoblastic differentiation and/or stimulating bone resorption by osteoclasts. Recently, the intracellular targets and molecular actions of both toxins have been clarified, enabling speculation on the intracellular signals leading to the inhibition of osteogenesis.
Collapse
|
15
|
Pasteurella multocida toxin interaction with host cells: entry and cellular effects. Curr Top Microbiol Immunol 2012; 361:93-111. [PMID: 22552700 PMCID: PMC4408768 DOI: 10.1007/82_2012_219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mitogenic dermonecrotic toxin from Pasteurella multocida (PMT) is a 1285-residue multipartite protein that belongs to the A-B family of bacterial protein toxins. Through its G-protein-deamidating activity on the α subunits of heterotrimeric G(q)-, G(i)- and G(12/13)-proteins, PMT potently stimulates downstream mitogenic, calcium, and cytoskeletal signaling pathways. These activities lead to pleiotropic effects in different cell types, which ultimately result in cellular proliferation, while inhibiting cellular differentiation, and account for the myriad of physiological outcomes observed during infection with toxinogenic strains of P. multocida.
Collapse
|
16
|
Orth JHC, Aktories K. Molecular biology of Pasteurella multocida toxin. Curr Top Microbiol Immunol 2012; 361:73-92. [PMID: 22371145 DOI: 10.1007/82_2012_201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pasteurella multocida toxin (PMT) is the causative agent of progressive atrophic rhinitis in swine. The 146 kDa single-chain toxin harbours discrete domains important for receptor binding, internalisation and biological activity. The molecular basis of the toxin's activity is the deamidation of a specific glutamine residue in the α-subunit of heterotrimeric G proteins. This results in an inhibition of the inherent GTPase activity leading to a constitutively active phenotype of the G protein. Due to the ability of the toxin to act on various families of heterotrimeric G proteins, a large subset of signal transduction pathways is stimulated.
Collapse
Affiliation(s)
- Joachim H C Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| | | |
Collapse
|
17
|
Kamitani S, Ao S, Toshima H, Tachibana T, Hashimoto M, Kitadokoro K, Fukui-Miyazaki A, Abe H, Horiguchi Y. Enzymatic actions of Pasteurella multocida toxin detected by monoclonal antibodies recognizing the deamidated α subunit of the heterotrimeric GTPase Gq. FEBS J 2011; 278:2702-12. [PMID: 21624053 DOI: 10.1111/j.1742-4658.2011.08197.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pasteurella multocida toxin (PMT) is a virulence factor responsible for the pathogenesis of some Pasteurellosis. PMT exerts its toxic effects through the activation of heterotrimeric GTPase (G(q), G(12/13) and G(i))-dependent pathways, by deamidating a glutamine residue in the α subunit of these GTPases. However, the enzymatic characteristics of PMT are yet to be analyzed in detail because the deamidation has only been observed in cell-based assays. In the present study, we developed rat monoclonal antibodies, specifically recognizing the deamidated Gα(q), to detect the actions of PMT by immunological techniques such as western blotting. Using the monoclonal antibodies, we found that the toxin deamidated Gα(q) only under reducing conditions. The C-terminal region of PMT, C-PMT, was more active than the full-length PMT. The C3 domain possessing the enzyme core catalyzed the deamidation in vitro without any other domains. These results not only support previous observations on toxicity, but also provide insights into the enzymatic nature of PMT. In addition, we present several lines of evidence that Gα(11), as well as Gα(q), could be a substrate for PMT.
Collapse
Affiliation(s)
- Shigeki Kamitani
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wilson BA, Ho M. Recent insights into Pasteurella multocida toxin and other G-protein-modulating bacterial toxins. Future Microbiol 2010; 5:1185-201. [PMID: 20722598 DOI: 10.2217/fmb.10.91] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over the past few decades, our understanding of the bacterial protein toxins that modulate G proteins has advanced tremendously through extensive biochemical and structural analyses. This article provides an updated survey of the various toxins that target G proteins, ending with a focus on recent mechanistic insights in our understanding of the deamidating toxin family. The dermonecrotic toxin from Pasteurella multocida (PMT) was recently added to the list of toxins that disrupt G-protein signal transduction through selective deamidation of their targets. The C3 deamidase domain of PMT has no sequence similarity to the deamidase domains of the dermonecrotic toxins from Escherichia coli (cytotoxic necrotizing factor [CNF]1-3), Yersinia (CNFY) and Bordetella (dermonecrotic toxin). The structure of PMT-C3 belongs to a family of transglutaminase-like proteins, with active site Cys-His-Asp catalytic triads distinct from E. coli CNF1.
Collapse
Affiliation(s)
- Brenda A Wilson
- Department of Microbiology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, B128 CLSL, Urbana, IL 61801, USA.
| | | |
Collapse
|
19
|
Kamitani S, Kitadokoro K, Miyazawa M, Toshima H, Fukui A, Abe H, Miyake M, Horiguchi Y. Characterization of the membrane-targeting C1 domain in Pasteurella multocida toxin. J Biol Chem 2010; 285:25467-75. [PMID: 20534589 DOI: 10.1074/jbc.m110.102285] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pasteurella multocida toxin (PMT) is a virulence factor responsible for the pathogenesis of some forms of pasteurellosis. The toxin activates G(q)- and G(12/13)-dependent pathways through the deamidation of a glutamine residue in the alpha-subunit of heterotrimeric GTPases. We recently reported the crystal structure of the C terminus (residues 575-1285) of PMT (C-PMT), which is composed of three domains (C1, C2, and C3), and that the C1 domain is involved in the localization of C-PMT to the plasma membrane, and the C3 domain possesses a cysteine protease-like catalytic triad. In this study, we analyzed the membrane-targeting function of the C1 domain in detail. The C1 domain consists of seven helices of which the first four (residues 590-670), showing structural similarity to the N terminus of Clostridium difficile toxin B, were found to be involved in the recruitment of C-PMT to the plasma membrane. C-PMT lacking these helices (C-PMT DeltaC1(4H)) neither localized to the plasma membrane nor stimulated the G(q/12/13)-dependent signaling pathways. When the membrane-targeting property was complemented by a peptide tag with an N-myristoylation motif, C-PMT DeltaC1(4H) recovered the PMT activity. Direct binding between the C1 domain and liposomes containing phospholipids was evidenced by surface plasmon resonance analyses. These results indicate that the C1 domain of C-PMT functions as a targeting signal for the plasma membrane.
Collapse
Affiliation(s)
- Shigeki Kamitani
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Preuß I, Hildebrand D, Orth JHC, Aktories K, Kubatzky KF. Pasteurella multocida toxin is a potent activator of anti-apoptotic signalling pathways. Cell Microbiol 2010; 12:1174-85. [DOI: 10.1111/j.1462-5822.2010.01462.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Pasteurella multocida toxin activates various heterotrimeric G proteins by deamidation. Toxins (Basel) 2010; 2:205-14. [PMID: 22069582 PMCID: PMC3202810 DOI: 10.3390/toxins2020205] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/19/2010] [Accepted: 01/27/2010] [Indexed: 12/17/2022] Open
Abstract
Pasteurella multocida produces a 146-kDa protein toxin (Pasteurella multocida toxin, PMT), which stimulates diverse cellular signal transduction pathways by activating heterotrimeric G proteins. PMT deamidates a conserved glutamine residue of the α-subunit of heterotrimeric G proteins that is essential for GTP-hydrolysis, thereby arresting the G protein in the active state. The toxin substrates are Gα(q) Gα(13) and the Gα(i)-family proteins. Activation of these α-subunits causes stimulation of phospholipase Cβ, Rho-guanine nucleotide exchange factors or inhibition of adenylyl cyclase. This article provides the current knowledge on PMT concerning the structure-function analysis based on the crystal structure and recently elucidated molecular mode of action. Furthermore, the impact of PMT on cellular signaling is discussed.
Collapse
|
22
|
McLaughlin LM, Govoni GR, Gerke C, Gopinath S, Peng K, Laidlaw G, Chien YH, Jeong HW, Li Z, Brown MD, Sacks DB, Monack D. The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration. PLoS Pathog 2009; 5:e1000671. [PMID: 19956712 PMCID: PMC2777311 DOI: 10.1371/journal.ppat.1000671] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 10/28/2009] [Indexed: 11/24/2022] Open
Abstract
Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time despite the presence of a robust immune response. Chronically infected hosts are asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. We show that the bacterial effector protein SseI (also called SrfH), which is translocated into host cells by the Salmonella Pathogenicity Island 2 (SPI2) type III secretion system (T3SS), is required for Salmonella typhimurium to maintain a long-term chronic systemic infection in mice. SseI inhibits normal cell migration of primary macrophages and dendritic cells (DC) in vitro, and such inhibition requires the host factor IQ motif containing GTPase activating protein 1 (IQGAP1), an important regulator of cell migration. SseI binds directly to IQGAP1 and co-localizes with this factor at the cell periphery. The C-terminal domain of SseI is similar to PMT/ToxA, a bacterial toxin that contains a cysteine residue (C1165) that is critical for activity. Mutation of the corresponding residue in SseI (C178A) eliminates SseI function in vitro and in vivo, but not binding to IQGAP1. In addition, infection with wild-type (WT) S. typhimurium suppressed DC migration to the spleen in vivo in an SseI-dependent manner. Correspondingly, examination of spleens from mice infected with WT S. typhimurium revealed fewer DC and CD4+ T lymphocytes compared to mice infected with ΔsseI S. typhimurium. Taken together, our results demonstrate that SseI inhibits normal host cell migration, which ultimately counteracts the ability of the host to clear systemic bacteria. Bacteria belonging to the genus Salmonella are capable of causing long-term chronic systemic infections, and bacteria primarily reside within macrophages in lymphoid tissues and sporadically are shed in the feces. These persistently infected individuals serve as a significant reservoir for disease transmission. Despite the importance of Salmonella as a human pathogen, relatively little is known about the host immune response or virulence mechanisms of long-term systemic infections. Host-adapted Salmonella strains invade and manipulate host cells by releasing specialized bacterial effector proteins into the host cell. We show that one of these bacterial effector proteins, SseI (SrfH), is required for Salmonella to maintain a long-term chronic systemic infection in mice. SseI is able to block the migration of host immune cells and consequentially attenuate the host's ability to clear systemic bacteria. SseI accomplishes this inhibitory activity in part by associating with the host protein IQGAP1, an important regulator of cell migration. The amino acid sequence of SseI is similar to several other protein sequences of known bacterial pathogens, including PMT/ToxA, a toxin, indicating that these factors may function similarly to one another and may comprise a new family of bacterial effector proteins.
Collapse
Affiliation(s)
- Laura M. McLaughlin
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Gregory R. Govoni
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Christiane Gerke
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Smita Gopinath
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Kaitian Peng
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Grace Laidlaw
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Yueh-Hsiu Chien
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
| | - Ha-Won Jeong
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Zhigang Li
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Matthew D. Brown
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - David B. Sacks
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Denise Monack
- Department of Microbiology and Immunology, Stanford University Medical Center, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Seo J, Pyo H, Lee S, Lee J, Kim T. Expression of 4 truncated fragments of Pasteurella multocida toxin and their immunogenicity. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2009; 73:184-189. [PMID: 19794890 PMCID: PMC2705072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/04/2008] [Indexed: 05/28/2023]
Abstract
Pasteurella multocida toxin (PMT) is a poor antigen that becomes more immunogenic after its native structure has been destroyed. In contrast, partially truncated PMT proteins, which are predicted to be good antigens when used as a vaccine, might be used to improve the control of atrophic rhinitis in pigs. In this study, 4 truncated PMT fragments were expressed in Escherichia coli, and those 4 fragments were inoculated into mice to produce the polyclonal antibodies. The results of an enzyme-linked immunosorbent assay (ELISA) revealed that #1 and #4 fragments were the most immunogenic. Immunized mice were subsequently challenged intraperitoneally with P. multocida type D. Five of the eight #1 fragment-immunized mice showed some protection against death and bacterial clearance. Pigs immunized with #1 fragment produced no or mild atrophic rhinitis (turbinate conchal score) after challenge, suggesting that this #1 fragment could be a good candidate for a subunit recombinant-type vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Taejung Kim
- Address all correspondence to Dr. Taejung Kim; telephone: +82-62-530-2858; fax: +82-62-530-2857; e-mail:
| |
Collapse
|
24
|
Pasteurella multocida toxin activation of heterotrimeric G proteins by deamidation. Proc Natl Acad Sci U S A 2009; 106:7179-84. [PMID: 19369209 DOI: 10.1073/pnas.0900160106] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pasteurella multocida toxin is a major virulence factor of Pasteurella multocida, which causes pasteurellosis in men and animals and atrophic rhinitis in rabbits and pigs. The approximately 145 kDa protein toxin stimulates various signal transduction pathways by activating heterotrimeric G proteins of the Galpha(q), Galpha(i), and Galpha(12/13) families by using an as yet unknown mechanism. Here, we show that Pasteurella multocida toxin deamidates glutamine-205 of Galpha(i2) to glutamic acid. Therefore, the toxin inhibits the intrinsic GTPase activity of Galpha(i) and causes persistent activation of the G protein. A similar modification is also evident for Galpha(q), but not for the closely related Galpha(11), which is not a substrate of Pasteurella multocida toxin. Our data identify the alpha-subunits of heterotrimeric G proteins as the direct molecular target of Pasteurella multocida toxin and indicate that the toxin does not act like a protease, which was suggested from its thiol protease-like catalytic triad, but instead causes constitutive activation of G proteins by deamidase activity.
Collapse
|
25
|
Preuß I, Kurig B, Nürnberg B, Orth JH, Aktories K. Pasteurella multocida toxin activates Gβγ dimers of heterotrimeric G proteins. Cell Signal 2009; 21:551-8. [DOI: 10.1016/j.cellsig.2008.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/12/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
|
26
|
Orth JHC, Fester I, Preuss I, Agnoletto L, Wilson BA, Aktories K. Activation of Galpha (i) and subsequent uncoupling of receptor-Galpha(i) signaling by Pasteurella multocida toxin. J Biol Chem 2008; 283:23288-94. [PMID: 18583341 DOI: 10.1074/jbc.m803435200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacterial protein toxins are powerful tools for elucidating signaling mechanisms in eukaryotic cells. A number of bacterial protein toxins, e.g. cholera toxin, pertussis toxin (PTx), or Pasteurella multocida toxin (PMT), target heterotrimeric G proteins and have been used to stimulate or block specific signaling pathways or to demonstrate the contribution of their target proteins in cellular effects. PMT is a major virulence factor of P. multocida causing pasteurellosis in man and animals and is responsible for atrophic rhinitis in pigs. PMT modulates various signaling pathways, including phospholipase Cbeta and RhoA, by acting on the heterotrimeric G proteins Galpha(q) and Galpha(12/13), respectively. Here we report that PMT is a powerful activator of G(i) protein. We show that PMT decreases basal isoproterenol and forskolin-stimulated cAMP accumulation in intact Swiss 3T3 cells, inhibits adenylyl cyclase activity in cell membrane preparations, and enhances the inhibition of cAMP accumulation caused by lysophosphatidic acid via endothelial differentiation gene receptors. PMT-mediated inhibition of cAMP production is independent of toxin activation of Galpha(q) and/or Galpha(12/13). Although the effects of PMT are not inhibited by PTx, PMT blocks PTx-catalyzed ADP-ribosylation of G(i). PMT also inhibits steady-state GTPase activity and GTP binding of G(i) in Swiss 3T3 cell membranes stimulated by lysophosphatidic acid. The data indicate that PMT is a novel activator of G(i), modulating its GTPase activity and converting it into a PTx-insensitive state.
Collapse
Affiliation(s)
- Joachim H C Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Aminova LR, Luo S, Bannai Y, Ho M, Wilson BA. The C3 domain of Pasteurella multocida toxin is the minimal domain responsible for activation of Gq-dependent calcium and mitogenic signaling. Protein Sci 2008; 17:945-9. [PMID: 18369188 DOI: 10.1110/ps.083445408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The large 1285-amino-acid protein toxin from Pasteurella multocida (PMT) is a multifunctional single-chain polypeptide that binds to and enters eukaryotic cells and acts intracellularly to promote G(q) and G(12/13) protein-dependent calcium and mitogenic signal transduction. Previous studies indicated that the intracellular activity domain responsible for PMT action was located within the C-terminal 600-700 amino acids. In this study, we have exogenously expressed a series of N- and C-terminal PMT fragments directly in mammalian cells and have used the dual luciferase reporter system to assay for toxin-mediated activation of calcium-calcineurin-NFAT signaling (NFAT-luciferase) and mitogenic serum response signaling (SRE-luciferase). Using this approach, we have defined the last 180 amino acids, which encompass the C3 domain in the crystal structure, as the minimum domain sufficient to activate both NFAT and SRE signaling pathways.
Collapse
Affiliation(s)
- Leila R Aminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
28
|
Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J Bacteriol 2008; 190:3026-35. [PMID: 18281405 DOI: 10.1128/jb.01798-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular pathogen responsible for severe lung disease in humans, known as legionellosis or Legionnaires' disease. Previously, we reported on the approximately 60-kDa glucosyltransferase (Lgt1) from Legionella pneumophila, which modified eukaryotic elongation factor 1A. In the present study, using L. pneumophila Philadelphia-1, Lens, Paris, and Corby genome databases, we identified several genes coding for proteins with considerable sequence homology to Lgt1. These new enzymes form three subfamilies, termed Lgt1 to -3, glucosylate mammalian elongation factor eEF1A at serine-53, inhibit its activity, and subsequently kill target eukaryotic cells. Expression studies on L. pneumophila grown in broth medium or in Acanthamoeba castellanii revealed that production of Lgt1 was maximal at stationary phase of broth culture or during the late phase of Legionella-host cell interaction, respectively. In contrast, synthesis of Lgt3 peaked during the lag phase of liquid culture and at early steps of bacterium-amoeba interaction. Thus, the data indicate that members of the L. pneumophila glucosyltransferase family are differentially regulated, affect protein synthesis of host cells, and represent potential virulence factors of Legionella.
Collapse
|
29
|
Hennig B, Orth J, Aktories K, Diener M. Anion secretion evoked by Pasteurella multocida toxin across rat colon. Eur J Pharmacol 2008; 583:156-63. [PMID: 18279849 DOI: 10.1016/j.ejphar.2008.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 11/08/2007] [Accepted: 01/14/2008] [Indexed: 11/19/2022]
Abstract
Stimulation of muscarinic receptors is known to have a biphasic effect on colonic Cl(-) secretion: a short-lasting activation, which is followed by a long-lasting inhibition. In order to find out, which role Gq proteins play in both processes, Pasteurella multocida toxin was used, a known activator of G alpha q. This toxin (1.5 microg/ml) had a dual action on short-circuit current (Isc) across rat distal colon: it stimulated transiently Isc and subsequently down-regulated the Isc evoked by Ca2+-dependent secretagogues such as acetylcholine or ATP. The inactive mutant (P. multocida toxin C1165S), which does not stimulate G alpha q), was ineffective. Cl(-) dependence and sensitivity against bumetanide, a blocker of the Na+-K+-2Cl(-) cotransporter, confirmed that the increase in Isc evoked by the toxin represented Cl(-) secretion. The effect of P. multocida toxin was suppressed by YM-254890 (10(-7) M), a blocker of G alpha q. Experiments with apically permeabilized tissues revealed that the secretory response to P. multocida toxin was concomitant with an increase in basolateral K+ conductance as it is observed for other agonists inducing Ca2+-dependent anion secretion. Consequently, these results suggest that Gq proteins are not only involved in the activation of secretion, e.g. after stimulation of muscarinic or purinergic receptors, but also play a central role in the long-term down-regulation of intestinal secretion after activation of these types of receptors.
Collapse
Affiliation(s)
- Britta Hennig
- Institut für Veterinär-Physiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
30
|
Luo S, Ho M, Wilson BA. Application of intact cell-based NFAT-beta-lactamase reporter assay for Pasteurella multocida toxin-mediated activation of calcium signaling pathway. Toxicon 2007; 51:597-605. [PMID: 18190943 DOI: 10.1016/j.toxicon.2007.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 11/18/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
Pasteurella multocida toxin (PMT) stimulates and subsequently uncouples phospholipase C beta1 (PLCbeta1) signal transduction through its selective action on the alpha subunit of the Gq-protein. Here, we describe the application of an NFAT-beta-lactamase reporter assay as a functional readout for PMT-induced activation of the Gq-protein-coupled PLCbeta1-IP(3)-Ca(2+) signaling pathway. Use of the NFAT-beta-lactamase reporter assay with a cell-permeable fluorogenic substrate provides high sensitivity due to the absence of endogenous beta-lactamase activity in mammalian cells. This assay system was optimized for cell density, dose and time exposure of PMT stimulation. It is suited for quantitative characterization of PMT activity in mammalian cells and for use as a high-throughput screening method for PMT deletion and point mutants suitable for vaccine development. This method has application's for diagnostic screening of clinical isolates of toxinogenic P. multocida.
Collapse
Affiliation(s)
- Shuhong Luo
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, B128 CLSL, Urbana, IL 61801, USA
| | | | | |
Collapse
|
31
|
Affiliation(s)
- Karla J Fullner Satchell
- Department of Microbiology-Immunology, Northwestern University Medical School, Tarry 3-713, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| |
Collapse
|
32
|
Orth JHC, Lang S, Preuss I, Milligan G, Aktories K. Action of Pasteurella multocida toxin on Galpha(q) is persistent and independent of interaction with G-protein-coupled receptors. Cell Signal 2007; 19:2174-82. [PMID: 17669624 DOI: 10.1016/j.cellsig.2007.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/19/2007] [Indexed: 11/30/2022]
Abstract
Pasteurella multocida toxin (PMT) activates Galpha(q) and facilitates stimulation of inositol phosphate accumulation induced by agonists via G(q)-coupled membrane receptors. Here, we studied the effects of PMT on agonist-induced GTPgammaS binding to G(q) in cell membranes and a role of G-protein-coupled receptors in the action of PMT. Pre-treatment of Swiss 3T3 cells with PMT increased bombesin or vasopressin-induced GTPgammaS-binding in cell membranes by about 50 to 150%. Increase in agonist-stimulated GTPgammaS-binding caused by PMT pretreatment was specific for Galpha(q) and not observed with Galpha(11). PMT-induced effects on GTPgammaS-binding were persistent after removing the toxin or in the presence of anti-PMT antibody. Stimulation of agonist-induced GTPgammaS-binding by PMT was independent of phosphorylation of the C-terminal tyrosine356 of Galpha(q). Activation of phospholipase C by PMT occurred via Galpha(q) which was fused to the alpha(1b)-adrenoceptor and also with a C-terminally deleted Galpha(q), which is not able to interact with G protein-coupled membrane receptors. The data indicate that activation of Galpha(q) by PMT is persistent and independent of a functional interaction of G(q) with G-protein-coupled receptors.
Collapse
Affiliation(s)
- Joachim H C Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Pullinger GD, Lax AJ. Histidine Residues at the Active Site of the Pasteurella multocida Toxin. Open Biochem J 2007; 1:7-11. [PMID: 18949067 PMCID: PMC2570546 DOI: 10.2174/1874091x00701010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 05/31/2007] [Accepted: 06/04/2007] [Indexed: 11/22/2022] Open
Abstract
We have investigated histidine residues near the active site of the mitogenic Pasteurella multocida toxin. Mutation of H1202 or H1228 had little effect, while the effect of mutation on H1223 depended on the amino acid substituted. Mutation of H1205 caused complete loss of activity, indicating its importance in PMT activity.
Collapse
Affiliation(s)
- Gillian D Pullinger
- King's College London, Dental Institute, Department of Microbiology, London SE1 9RT, UK
| | | |
Collapse
|
34
|
Register KB, Sacco RE, Brockmeier SL. Immune response in mice and swine to DNA vaccines derived from the Pasteurella multocida toxin gene. Vaccine 2007; 25:6118-28. [PMID: 17590484 DOI: 10.1016/j.vaccine.2007.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/17/2007] [Accepted: 05/02/2007] [Indexed: 10/23/2022]
Abstract
DNA vaccines were constructed with either a 5'-truncated or full-length, genetically detoxified toxin gene from Pasteurella multocida and two different DNA vaccine vectors, distinguished by the presence or absence of a secretion signal sequence. Optimal PMT-specific antibody responses and spleen cell secretion of interferon-gamma following immunization of mice were achieved with pMM4, the construct containing a signal sequence and encoding the entire toxin. Antibody responses were also induced in pigs immunized with pMM4 and levels increased significantly following booster injections and experimental infection with P. multocida. Significantly increased expression of interferon-gamma was detected in only a small subset of pMM4-immunized pigs. This report documents, for the first time, the ability of a DNA vaccine to elicit immune responses to the P. multocida toxin in both mice and swine.
Collapse
Affiliation(s)
- Karen B Register
- Respiratory Diseases of Livestock Research Unit, USDA/Agricultural Research, Service/National Animal Disease Center, P.O. Box 70, Ames, IA 50010, United States.
| | | | | |
Collapse
|
35
|
Kitadokoro K, Kamitani S, Miyazawa M, Hanajima-Ozawa M, Fukui A, Miyake M, Horiguchi Y. Crystal structures reveal a thiol protease-like catalytic triad in the C-terminal region of Pasteurella multocida toxin. Proc Natl Acad Sci U S A 2007; 104:5139-44. [PMID: 17360394 PMCID: PMC1829276 DOI: 10.1073/pnas.0608197104] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pasteurella multocida toxin (PMT), one of the virulence factors produced by the bacteria, exerts its toxicity by up-regulating various signaling cascades downstream of the heterotrimeric GTPases Gq and G12/13 in an unknown fashion. Here, we present the crystal structure of the C-terminal region (residues 575-1,285) of PMT, which carries an intracellularly active moiety. The overall structure of C-terminal region of PMT displays a Trojan horse-like shape, composed of three domains with a "feet"-,"body"-, and "head"-type arrangement, which were designated C1, C2, and C3 from the N to the C terminus, respectively. The C1 domain, showing marked similarity in steric structure to the N-terminal domain of Clostridium difficile toxin B, was found to lead the toxin molecule to the plasma membrane. The C3 domain possesses the Cys-His-Asp catalytic triad that is organized only when the Cys is released from a disulfide bond. The steric alignment of the triad corresponded well to that of papain or other enzymes carrying Cys-His-Asp. PMT toxicities on target cells were completely abrogated when one of the amino acids constituting the triad was mutated. Our results indicate that PMT is an enzyme toxin carrying the cysteine protease-like catalytic triad dependent on the redox state and functions on the cytoplasmic face of the plasma membrane of target cells.
Collapse
Affiliation(s)
- Kengo Kitadokoro
- *Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; and
| | - Shigeki Kamitani
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Yamada-oka 3-1, Suita, Osaka 565-0871, Japan
| | - Masayuki Miyazawa
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Yamada-oka 3-1, Suita, Osaka 565-0871, Japan
| | - Miyuki Hanajima-Ozawa
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Yamada-oka 3-1, Suita, Osaka 565-0871, Japan
| | - Aya Fukui
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Yamada-oka 3-1, Suita, Osaka 565-0871, Japan
| | - Masami Miyake
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Yamada-oka 3-1, Suita, Osaka 565-0871, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Yamada-oka 3-1, Suita, Osaka 565-0871, Japan
- To whom correspondence should be sent. E-mail:
| |
Collapse
|
36
|
Orth JHC, Aktories K, Kubatzky KF. Modulation of host cell gene expression through activation of STAT transcription factors by Pasteurella multocida toxin. J Biol Chem 2006; 282:3050-7. [PMID: 17150962 DOI: 10.1074/jbc.m609018200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Pasteurella multocida toxin (PMT) is highly mitogenic and has potential carcinogenic properties. PMT causes porcine atrophic rhinitis that is characterized by bone resorption and loss of nasal turbinates, but experimental nasal infection also leads to excess proliferation of bladder epithelial cells. PMT acts intracellularly and activates phospholipase C-linked signals and MAPK pathways via the heterotrimeric Galpha(q) and Galpha(12/13) proteins. We found that PMT induces activation of STAT proteins, and we identified STAT1, STAT3, and STAT5 as new targets of PMT-induced Galpha(q) signaling. Inhibition of Janus kinases completely abolished STAT activation. PMT-dependent STAT phosphorylation remained constitutive for at least 18 h. PMT caused down-regulation of the expression of the suppressor of cytokine signaling-3, indicating a novel mechanism to maintain activation of STATs. Moreover, stimulation of Swiss 3T3 cells with PMT increased transcription of the cancer-associated STAT-dependent gene cyclooxygenase-2. Because constitutive activation of STATs has been found in a number of cancers, our findings offer a new mechanism for a carcinogenic role of PMT.
Collapse
Affiliation(s)
- Joachim H C Orth
- Institut für Experimentelle and Klinische Pharmakologie and Toxikologie, Albert-Ludwigs-Universität, Albertstrasse 25, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
37
|
Belyi Y, Niggeweg R, Opitz B, Vogelsgesang M, Hippenstiel S, Wilm M, Aktories K. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A 2006; 103:16953-8. [PMID: 17068130 PMCID: PMC1636560 DOI: 10.1073/pnas.0601562103] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila, the causal agent of Legionnaires' disease, is an intracellular parasite and invades and proliferates within different eukaryotic cells, including human alveolar macrophages. After several 100-fold multiplication within host cells, the pathogens are released for new invasion by induction of apoptosis or necrosis. Here we report that L. pneumophila produces a glucosyltransferase, which selectively modifies an approximately 50-kDa mammalian protein by using UDP-glucose as a cosubstrate. MS analysis identified the protein substrate as the mammalian elongation factor (EF)1A. Legionella glucosyltransferase modifies its eukaryotic protein substrate at serine-53, which is located in the GTPase domain of the EF. Glucosylation of EF1A results in inhibition of eukaryotic protein synthesis and death of target cells. Our findings show a mode of inhibition of protein synthesis by microbial pathogens and offer a perspective for understanding of the host-pathogen interaction of L. pneumophila.
Collapse
Affiliation(s)
- Yury Belyi
- Gamaleya Research Institute, Ulitsa Gamalei 18, Moscow 123098, Russia
| | - Ricarda Niggeweg
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious and Pulmonary Diseases, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; and
| | - Martin Vogelsgesang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious and Pulmonary Diseases, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; and
| | - Matthias Wilm
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Miyazawa M, Kitadokoro K, Kamitani S, Shime H, Horiguchi Y. Crystallization and preliminary crystallographic studies of the Pasteurella multocida toxin catalytic domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:906-8. [PMID: 16946476 PMCID: PMC2242868 DOI: 10.1107/s1744309106030375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 08/03/2006] [Indexed: 11/10/2022]
Abstract
The C-terminal catalytic domain of Pasteurella multocida toxin, which is the virulence factor of the organism in P. multocida, has been expressed, purified and subsequently crystallized using the sitting-drop vapour-diffusion technique. Native diffraction data to 1.9 A resolution were obtained at the BL44XU beamline of SPring-8 from a flash-frozen crystal at 100 K. The crystals belong to space group C2, with unit-cell parameters a = 111.0, b = 150.4, c = 77.1 A, beta = 105.5 degrees, and are likely to contain one C-PMT (726 residues) per asymmetric unit.
Collapse
Affiliation(s)
- Masayuki Miyazawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Kengo Kitadokoro
- Research Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigeki Kamitani
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Hiroaki Shime
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Yasuhiko Horiguchi
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
- Correspondence e-mail:
| |
Collapse
|
39
|
Liao CM, Huang C, Hsuan SL, Chen ZW, Lee WC, Liu CI, Winton JR, Chien MS. Immunogenicity and efficacy of three recombinant subunit Pasteurella multocida toxin vaccines against progressive atrophic rhinitis in pigs. Vaccine 2006; 24:27-35. [PMID: 16122849 DOI: 10.1016/j.vaccine.2005.07.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 07/25/2005] [Indexed: 11/20/2022]
Abstract
Three short fragments of recombinant subunit Pasteurella multocida toxin (rsPMT) were constructed for evaluation as candidate vaccines against progressive atrophic rhinitis (PAR) of swine. PMT-specific antibody secreting cells and evidence of cellular immunity were detected in rsPMT-immunized pigs following authentic PMT challenge or homologous antigen booster. Piglets immunized with rsPMT fragments containing either the N-terminal or the C-terminal portions of PMT developed high titers of neutralizing antibodies. Pregnant sows immunized with rsPMT had higher levels of maternal antibodies in their colostrum than did those immunized with a conventional PAR-toxoid vaccine. Offspring from rsPMT vaccinated sows had better survival after challenge with a five-fold lethal dose of authentic PMT and had better growth performance after challenge with a sublethal dose of toxin. Our findings indicate these non-toxic rsPMT proteins are attractive candidates for development of a subunit vaccine against PAR in pigs.
Collapse
Affiliation(s)
- Chih-Ming Liao
- Graduate Institute of Veterinary Pathology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Orth JHC, Lang S, Taniguchi M, Aktories K. Pasteurella multocida Toxin-induced Activation of RhoA Is Mediated via Two Families of Gα Proteins, Gαq and Gα12/13. J Biol Chem 2005; 280:36701-7. [PMID: 16141214 DOI: 10.1074/jbc.m507203200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pasteurella multocida toxin (PMT) is a potent mitogen, which is known to activate phospholipase Cbeta by stimulating the alpha-subunit of the heterotrimeric G protein G(q). PMT also activates RhoA and RhoA-dependent pathways. Using YM-254890, a specific inhibitor of G(q/11), we studied whether activation of RhoA involves G proteins other than G(q/11). YM-254890 inhibited PMT or muscarinic M3-receptor-mediated stimulation of phospholipase Cbeta at similar concentrations in HEK293m3 cells. In these cells, PMT-induced RhoA activation and enhancement of RhoA-dependent luciferase activity were partially inhibited by YM-254890. In Galpha(q/11)-deficient fibroblasts, PMT induced activation of RhoA, increase in RhoA-dependent luciferase activity, and increase in ERK phosphorylation. None of these effects were influenced by YM-254890. However, RhoA activation by PMT was inhibited by RGS2, RGS16, lscRGS, and dominant negative G(13)(GA), indicating involvement of Galpha(12/13) in the PMT effect on RhoA. In Galpha(12/13) gene-deficient cells, PMT-induced stimulation of RhoA, luciferase activity, and ERK phosphorylation were blocked by YM-254890, indicating the involvement of G(q). Infection with a virus harboring the gene of Galpha(13) reconstituted the increase in RhoA-dependent luciferase activity by PMT even in the presence of YM-254890. The data show that YM-254890 is able to block PMT activation of Galpha(q) and indicate that, in addition to Galpha(q), the Galpha(12/13) G proteins are targets of PMT.
Collapse
Affiliation(s)
- Joachim H C Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
41
|
To H, Someno S, Nagai S. Development of a genetically modified nontoxigenic Pasteurella multocida toxin as a candidate for use in vaccines against progressive atrophic rhinitis in pigs. Am J Vet Res 2005; 66:113-8. [PMID: 15691045 DOI: 10.2460/ajvr.2005.66.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To construct a genetically modified nontoxigenic Pasteurella multocida toxin (PMT) and examine its immunoprotective activity against challenge exposure with wild-type PMT in pigs. ANIMALS 5 healthy pigs. PROCEDURE A nontoxigenic PMT was created by replacing the serine at position 1164 with alanine (S1164A) and the cysteine at position 1165 with serine (C1165S). Toxic activity was determined by use of the guinea pig skin test and mouse lethality test. Three pigs were vaccinated twice with the modified PMT, and the remaining 2 pigs served as nonvaccinated control animals. Vaccinated and control pigs were challenge exposed with wild-type PMT. Pigs were euthanatized and necropsied on day 14 after challenge exposure. Turbinate atrophy was examined macroscopically and assigned a score. Serum anti-PMT antibodies were determined by use of an ELISA. RESULTS The genetically modified PMT was characterized by a total lack of toxic activity. Pigs vaccinated with the modified PMT became seropositive; in contrast, control pigs remained seronegative. Necropsy revealed that the 2 control pigs had moderate and severe turbinate atrophy, respectively, whereas the 3 vaccinated pigs did not have any lesions in the turbinates or abnormalities in other organs. CONCLUSIONS AND CLINICAL RELEVANCE Modification by use of S1164A and C1165S leads to a complete loss of toxic effects of PMT without impairment of the ability to induce protective immunity in pigs. Analysis of these results suggests that genetically modified PMT may represent a good candidate for use in developing a vaccine against progressive atrophic rhinitis in pigs.
Collapse
Affiliation(s)
- Ho To
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | | | | |
Collapse
|
42
|
Baldwin MR, Lakey JH, Lax AJ. Identification and characterization of the Pasteurella multocida toxin translocation domain. Mol Microbiol 2004; 54:239-50. [PMID: 15458419 DOI: 10.1111/j.1365-2958.2004.04264.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Pasteurella multocida toxin (PMT) is a potent mitogen which enters the cytosol of eukaryotic cells via a low pH membrane translocation event. In common with the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), the core of the PMT translocation domain is composed of two predicted hydrophobic helices (H1 - residues 402-423, H2 - 437-457) linked by a hydrophilic loop (PMT-TL - 424-436). The peptide loop contains three acidic residues (D425, D431 and E434), which may play a role equivalent to D373, D379 and E382/383 in CNF1. To test this hypothesis, a series of point mutants was generated in which acidic residues were mutated into the permanently charged positive residue lysine. Individual mutation of D425, D431 and E434 each caused a four- to sixfold reduction in toxin activity. Interestingly, mutation of D401 located immediately outside the predicted helix-loop-helix motif completely abolished toxin activity. Individual mutations did not affect cell binding nor greatly altered toxin structure, but did prevent translocation of the surface-bound proteins into the cytosol after a low pH pulse. Moreover, we demonstrate using an in vitro assay that PMT undergoes a pH-dependent membrane insertion.
Collapse
Affiliation(s)
- Michael R Baldwin
- Microbiology, Dental Institute, King's College London, Floor 28, Guy's Tower, Guy's Hospital, London SE1 9RT, UK
| | | | | |
Collapse
|
43
|
Orth JHC, Lang S, Aktories K. Action of Pasteurella multocida toxin depends on the helical domain of Galphaq. J Biol Chem 2004; 279:34150-5. [PMID: 15192096 DOI: 10.1074/jbc.m405353200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pasteurella multocida produces a 146-kDa protein toxin (PMT), which activates multiple cellular signal transduction pathways, resulting in the activation of phospholipase Cbeta, RhoA, Jun kinase, and extracellular signal-regulated kinase. Using Galpha(q)/Galpha(11) -deficient cells, it was shown that the PMT-induced pleiotropic effects are mediated by Galpha(q) but not by the highly related Galpha(11) protein (Zywietz, A., Gohla, A., Schmelz, M., Schultz, G., and Offermanns, S. (2001) J. Biol. Chem. 276, 3840-3845). Here we studied the molecular basis of the unique specificity of PMT to distinguish between Galpha(q) and/or Galpha(11). Infection of Galpha(q) -deficient cells with retrovirus-encoding Galpha(q) caused reconstitution of PMT-induced activation of phospholipase Cbeta, whereas Galpha(11) -encoding virus did not reconstitute PMT activity. Chimeras between Galpha(q) and/or Galpha(11) revealed that a peptide region of Galpha(q), covering amino acid residues 105-113, is essential for the action of PMT to activate phospholipase Cbeta. Exchange of glutamine 105 or asparagine 109 of Galpha(11), which are located in the all-helical domain of the Galpha subunit, with the equally positioned histidines of Galpha(q), renders Galpha(11) capable of transmission PMT-induced phospholipase Cbeta activation. The data indicate that the all-helical domain of Galpha(q) is essential for the action of PMT and suggest an essential functional role of this domain in signal transduction via G(q) proteins.
Collapse
Affiliation(s)
- Joachim H C Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs Universität Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
44
|
Pullinger GD, Bevir T, Lax AJ. The Pasteurella multocida toxin is encoded within a lysogenic bacteriophage. Mol Microbiol 2004; 51:255-69. [PMID: 14651626 DOI: 10.1046/j.1365-2958.2003.03829.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Toxigenic strains of Pasteurella multocida produce a 146 kDa toxin (PMT) that acts as a potent mitogen. Sequence analysis of the structural gene for PMT, toxA, previously suggested it was horizontally acquired, because it had a low G + C content relative to the P. multocida genome. To address this, the sequence of DNA flanking toxA was determined. The sequence analysis showed the presence of homologues to bacteriophage tail protein genes and a bacteriophage antirepressor, suggesting that the toxin gene resides within a prophage. In addition to phage genes, the toxA flanking DNA contained a homologue of a restriction/modification system that was shown to be functional. The presence of a bacteriophage was demonstrated in spent medium from toxigenic P. multocida isolates. Its production was increased by mitomycin C addition, a treatment that is known to induce the lytic cycle of many temperate bacteriophages. The genomes of bacteriophages from three different toxigenic P. multocida strains had similar but not identical restriction profiles, and were approximately 45-50 kb in length. The prophages from two of these had integrated at the same site in the chromosome, in a tRNA gene. Southern blot analysis confirmed that these bacteriophages contained the toxA gene.
Collapse
Affiliation(s)
- Gillian D Pullinger
- Department of Microbiology, Dental Institute, King's College London, London, UK.
| | | | | |
Collapse
|
45
|
Lax AJ, Pullinger GD, Baldwin MR, Harmey D, Grigoriadis AE, Lakey JH. The Pasteurella multocida toxin interacts with signalling pathways to perturb cell growth and differentiation. Int J Med Microbiol 2004; 293:505-12. [PMID: 15149025 DOI: 10.1078/1438-4221-00287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some years ago we showed that the Pasteurella multocida toxin (PMT) is a potent mitogen for cells in culture. It is an intracellularly acting toxin that stimulates several signal transduction pathways. The heterotrimeric G-protein, Gq, is stimulated, which in turn causes activation of protein kinase C and an increase in inositol trisphosphates. The Rho GTPase is also activated, leading via the Rho kinase, to activation of the focal adhesion kinase and to cytoskeletal rearrangements. Analysis of the PMT sequence suggested the presence of three domains that encode receptor binding, translocation and catalytic domains. The location of all three domains has been confirmed directly. Competitive binding assays confirmed that the N-terminus of PMT encoded the receptor-binding domain, while cytoplasmic microinjection of expressed PMT fragments identified the location of the C-terminal catalytic domain. Recently, we have demonstrated the presence of key amino acids that affect membrane insertion within the putative transmembrane domain. Several lines of evidence suggest that PMT activates Galphaq, and that this is one potential molecular target for the toxin. Galphaq is known to be tyrosine phosphorylated when activated normally via a G-protein-coupled receptor (GPCR), and it has been suggested that this is an essential part of the activation process. We have shown that PMT induces Galphaq tyrosine phosphorylation, but that this is not essential for activation of the G-protein. Furthermore, a totally inactive mutant of PMT stimulates Galpha phosphorylation without leading to its activation. Phosphorylation of Galphaq triggered by the inactive mutant potentiates activation of Gq via a GPCR, demonstrating that phosphorylation of Gq cannot lead to receptor uncoupling. Natural or experimental infection of animals with toxigenic P. multocida, or injection with purified recombinant PMT causes loss of nasal turbinate bone. The effects on bone have been analysed in vitro using cultures of osteoblasts--cells that lay down bone. PMT blocks the formation of mature calcified bone nodules and the expression of differentiation markers such as CBFA-1, alkaline phosphatase and osteocalcin. These effects can be partially prevented by inhibitors of Rho or Rho kinase function, implicating this pathway in osteoblast differentiation. Indeed, inhibitors of Rho stimulate the formation of bone nodules in vitro. In summary, PMT is a novel toxin that acts via signalling pathways to promote proliferation in many cells, while specifically inhibiting differentiation in osteoblast cells.
Collapse
Affiliation(s)
- Alistair J Lax
- Department of Microbiology, Dental Institute, King's College London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
46
|
Shime H, Ohnishi T, Nagao K, Oka K, Takao T, Horiguchi Y. Association of Pasteurella multocida toxin with vimentin. Infect Immun 2002; 70:6460-3. [PMID: 12379728 PMCID: PMC130396 DOI: 10.1128/iai.70.11.6460-6463.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Revised: 07/10/2002] [Accepted: 07/29/2002] [Indexed: 11/20/2022] Open
Abstract
To help understand the molecular mechanisms of Pasteurella multocida toxin (PMT) action, we searched for a cellular protein interacting with PMT. The ligand overlay assay revealed a 60-kDa cellular protein that binds to a region from the 840th to 985th amino acids of the toxin. This protein was identified as vimentin by peptide mass fingerprinting. The N-terminal head domain of vimentin was further found to be responsible for the binding to the toxin.
Collapse
Affiliation(s)
- Hiroaki Shime
- Department of Bacterial Toxinology, Research Institute for Microbial Diseases. Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Pullinger GD, Sowdhamini R, Lax AJ. Localization of functional domains of the mitogenic toxin of Pasteurella multocida. Infect Immun 2001; 69:7839-50. [PMID: 11705966 PMCID: PMC98880 DOI: 10.1128/iai.69.12.7839-7850.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The locations of the catalytic and receptor-binding domains of the Pasteurella multocida toxin (PMT) were investigated. N- and C-terminal fragments of PMT were cloned and expressed as fusion proteins with affinity tags. Purified fusion proteins were assessed in suitable assays for catalytic activity and cell-binding ability. A C-terminal fragment (amino acids 681 to 1285) was catalytically active. When microinjected into quiescent Swiss 3T3 cells, it induced changes in cell morphology typical of toxin-treated cells and stimulated DNA synthesis. An N-terminal fragment with a His tag at the C terminus (amino acids 1 to 506) competed with full-length toxin for binding to surface receptors and therefore contains the cell-binding domain. The inactive mutant containing a mutation near the C terminus (C1165S) also bound to cells in this assay. Polyclonal antibodies raised to the N-terminal PMT region bound efficiently to full-length native toxin, suggesting that the N terminus is surface located. Antibodies to the C terminus of PMT were microinjected into cells and inhibited the activity of toxin added subsequently to the medium, confirming that the C terminus contains the active site. Analysis of the PMT sequence predicted a putative transmembrane domain with predicted hydrophobic and amphipathic helices near the N terminus over the region of homology to the cytotoxic necrotizing factors. The C-terminal end of PMT was predicted to be a mixed alpha/beta domain, a structure commonly found in catalytic domains. Homology to proteins of known structure and threading calculations supported these assignments.
Collapse
Affiliation(s)
- G D Pullinger
- Department of Oral Microbiology, Kings College London, Guy's Hospital, London SE1 9RT, United Kingdom.
| | | | | |
Collapse
|