1
|
Mintz KP, Danforth DR, Ruiz T. The Trimeric Autotransporter Adhesin EmaA and Infective Endocarditis. Pathogens 2024; 13:99. [PMID: 38392837 PMCID: PMC10892112 DOI: 10.3390/pathogens13020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Infective endocarditis (IE), a disease of the endocardial surface of the heart, is usually of bacterial origin and disproportionally affects individuals with underlying structural heart disease. Although IE is typically associated with Gram-positive bacteria, a minority of cases are caused by a group of Gram-negative species referred to as the HACEK group. These species, classically associated with the oral cavity, consist of bacteria from the genera Haemophilus (excluding Haemophilus influenzae), Aggregatibacter, Cardiobacterium, Eikenella, and Kingella. Aggregatibacter actinomycetemcomitans, a bacterium of the Pasteurellaceae family, is classically associated with Aggressive Periodontitis and is also concomitant with the chronic form of the disease. Bacterial colonization of the oral cavity serves as a reservoir for infection at distal body sites via hematological spreading. A. actinomycetemcomitans adheres to and causes disease at multiple physiologic niches using a diverse array of bacterial cell surface structures, which include both fimbrial and nonfimbrial adhesins. The nonfimbrial adhesin EmaA (extracellular matrix binding protein adhesin A), which displays sequence heterogeneity dependent on the serotype of the bacterium, has been identified as a virulence determinant in the initiation of IE. In this chapter, we will discuss the known biochemical, molecular, and structural aspects of this protein, including its interactions with extracellular matrix components and how this multifunctional adhesin may contribute to the pathogenicity of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Keith P. Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA;
| | - David R. Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA;
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA;
| |
Collapse
|
2
|
Vahvelainen N, Bozkurt E, Maula T, Johansson A, Pöllänen MT, Ihalin R. Pilus PilA of the naturally competent HACEK group pathogen Aggregatibacter actinomycetemcomitans stimulates human leukocytes and interacts with both DNA and proinflammatory cytokines. Microb Pathog 2022; 173:105843. [DOI: 10.1016/j.micpath.2022.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
|
3
|
Abstract
Bacterial genotoxins are peptide or protein virulence factors produced by several pathogens, which make single-strand breaks (SSBs) and/or double-strand DNA breaks (DSBs) in the target host cells. If host DNA inflictions are not resolved on time, host cell apoptosis, cell senescence, and/or even bacterial pathogen-related cancer may occur. Two multi-protein AB toxins, cytolethal distending toxin (CDT) produced by over 30 bacterial pathogens and typhoid toxin from Salmonella Typhi, as well as small polyketide-peptides named colibactin that causes the DNA interstrand cross-linking and subsequent DSBs is the most well-characterized bacterial genotoxins. Using these three examples, this review discusses the mechanisms by which these toxins deliver themselves into the nucleus of the target host cells and exert their genotoxic functions at the structural and functional levels.
Collapse
Affiliation(s)
- Liaoqi Du
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Chronic exposure to Cytolethal Distending Toxin (CDT) promotes a cGAS-dependent type I interferon response. Cell Mol Life Sci 2021; 78:6319-6335. [PMID: 34308492 PMCID: PMC8429409 DOI: 10.1007/s00018-021-03902-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/18/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
The Cytolethal Distending Toxin (CDT) is a bacterial genotoxin produced by pathogenic bacteria causing major foodborne diseases worldwide. CDT activates the DNA Damage Response and modulates the host immune response, but the precise relationship between these outcomes has not been addressed so far. Here, we show that chronic exposure to CDT in HeLa cells or mouse embryonic fibroblasts promotes a strong type I interferon (IFN) response that depends on the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) through the recognition of micronuclei. Indeed, despite active cell cycle checkpoints and in contrast to other DNA damaging agents, cells exposed to CDT reach mitosis where they accumulate massive DNA damage, resulting in chromosome fragmentation and micronucleus formation in daughter cells. These mitotic phenotypes are observed with CDT from various origins and in cancer or normal cell lines. Finally, we show that CDT exposure in immortalized normal colonic epithelial cells is associated to cGAS protein loss and low type I IFN response, implying that CDT immunomodulatory function may vary depending on tissue and cell type. Thus, our results establish a direct link between CDT-induced DNA damage, genetic instability and the cellular immune response that may be relevant in the context of natural infection associated to chronic inflammation or carcinogenesis.
Collapse
|
5
|
Lopez Chiloeches M, Bergonzini A, Frisan T. Bacterial Toxins Are a Never-Ending Source of Surprises: From Natural Born Killers to Negotiators. Toxins (Basel) 2021; 13:426. [PMID: 34204481 PMCID: PMC8235270 DOI: 10.3390/toxins13060426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The idea that bacterial toxins are not only killers but also execute more sophisticated roles during bacteria-host interactions by acting as negotiators has been highlighted in the past decades. Depending on the toxin, its cellular target and mode of action, the final regulatory outcome can be different. In this review, we have focused on two families of bacterial toxins: genotoxins and pore-forming toxins, which have different modes of action but share the ability to modulate the host's immune responses, independently of their capacity to directly kill immune cells. We have addressed their immuno-suppressive effects with the perspective that these may help bacteria to avoid clearance by the host's immune response and, concomitantly, limit detrimental immunopathology. These are optimal conditions for the establishment of a persistent infection, eventually promoting asymptomatic carriers. This immunomodulatory effect can be achieved with different strategies such as suppression of pro-inflammatory cytokines, re-polarization of the immune response from a pro-inflammatory to a tolerogenic state, and bacterial fitness modulation to favour tissue colonization while preventing bacteraemia. An imbalance in each of those effects can lead to disease due to either uncontrolled bacterial proliferation/invasion, immunopathology, or both.
Collapse
Affiliation(s)
| | | | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden; (M.L.C.); (A.B.)
| |
Collapse
|
6
|
Li L, Zhang YL, Liu XY, Meng X, Zhao RQ, Ou LL, Li BZ, Xing T. Periodontitis Exacerbates and Promotes the Progression of Chronic Kidney Disease Through Oral Flora, Cytokines, and Oxidative Stress. Front Microbiol 2021; 12:656372. [PMID: 34211440 PMCID: PMC8238692 DOI: 10.3389/fmicb.2021.656372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
Periodontitis is a type of systemic immune inflammation that is caused by the complex infection of a variety of microorganisms in the subgingival plaque and the imbalance of the microbial ecological environment in the mouth. Periodontitis and chronic kidney disease (CKD) share many risk factors, such as obesity, smoking, and age. A growing body of data supports a strong correlation between periodontitis and kidney disease. Evidence supports the role of periodontal inflammation and elevated serum inflammatory mediators in renal atherosclerosis, renal deterioration, and end-stage renal disease (ESRD) development. Periodontitis is a risk factor for kidney disease. However, to our knowledge, there are few studies detailing the possible link between periodontitis and CKD. This review summarizes the possible mechanisms underlying periodontitis and CKD. More importantly, it highlights novel and potential pathogenic factors for CKD, including bacteria, pro-inflammatory mediators and oxidative stress. However, most research on the relationship between periodontitis and systemic disease has not determined causality, and these diseases are largely linked by bidirectional associations. Future research will focus on exploring these links to contribute to new treatments for CKD.
Collapse
Affiliation(s)
- Ling Li
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Ya-Li Zhang
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Xing-Yu Liu
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Xiang Meng
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Rong-Quan Zhao
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Lin-Lin Ou
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Tian Xing
- School of Stomatology, Anhui Medical University, Hefei, China
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Silbergleit M, Vasquez AA, Miller CJ, Sun J, Kato I. Oral and intestinal bacterial exotoxins: Potential linked to carcinogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:131-193. [PMID: 32475520 DOI: 10.1016/bs.pmbts.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence suggests that imbalances in resident microbes (dysbiosis) can promote chronic inflammation, immune-subversion, and production of carcinogenic metabolites, thus leading to neoplasia. Yet, evidence to support a direct link of individual bacteria species to human sporadic cancer is still limited. This chapter focuses on several emerging bacterial toxins that have recently been characterized for their potential oncogenic properties toward human orodigestive cancer and the presence of which in human tissue samples has been documented. These include cytolethal distending toxins produced by various members of gamma and epsilon Proteobacteria, Dentilisin from mammalian oral Treponema, Pasteurella multocida toxin, two Fusobacterial toxins, FadA and Fap2, Bacteroides fragilis toxin, colibactin, cytotoxic necrotizing factors and α-hemolysin from Escherichia coli, and Salmonella enterica AvrA. It was clear that these bacterial toxins have biological activities to induce several hallmarks of cancer. Some toxins directly interact with DNA or chromosomes leading to their breakdowns, causing mutations and genome instability, and others modulate cell proliferation, replication and death and facilitate immune evasion and tumor invasion, prying specific oncogene and tumor suppressor pathways, such as p53 and β-catenin/Wnt. In addition, most bacterial toxins control tumor-promoting inflammation in complex and diverse mechanisms. Despite growing laboratory evidence to support oncogenic potential of selected bacterial toxins, we need more direct evidence from human studies and mechanistic data from physiologically relevant experimental animal models, which can reflect chronic infection in vivo, as well as take bacterial-bacterial interactions among microbiome into consideration.
Collapse
Affiliation(s)
| | - Adrian A Vasquez
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Carol J Miller
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
8
|
Martin OC, Frisan T. Bacterial Genotoxin-Induced DNA Damage and Modulation of the Host Immune Microenvironment. Toxins (Basel) 2020; 12:E63. [PMID: 31973033 PMCID: PMC7076804 DOI: 10.3390/toxins12020063] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 01/10/2023] Open
Abstract
: Bacterial genotoxins (BTGX) induce DNA damage, which results in senescence or apoptosis of the target cells if not properly repaired. Three BTGXs have been identified: the cytolethal distending toxin (CDT) family produced by several Gram-negative bacteria, the typhoid toxin produced by several Salmonella enterica serovars, and colibactin, a peptide-polyketide, produced mainly by the phylogenetic group B2 Escherichia coli. The cellular responses induced by BTGXs resemble those of well-characterized carcinogenic agents, and several lines of evidence indicate that bacteria carrying genotoxin genes can contribute to tumor development under specific circumstances. Given their unusual mode of action, it is still enigmatic why these effectors have been acquired by microbes and what is their role in the context of the biology of the producing bacterium, since it is unlikely that their primary purpose is to induce/promote cancer in the mammalian host. In this review, we will discuss the possibility that the DNA damage induced by BTGX modulates the host immune response, acting as immunomodulator, leading to the establishment of a suitable niche for the producing bacterium. We will further highlight open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Collapse
Affiliation(s)
- Océane C.B. Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33320 Bordeaux, France;
| | - Teresa Frisan
- Department of Cell and Molecular Biology Karolinska Institutet, 17177 Stockholm, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
9
|
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, Ihalin R, Johansson A. Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019; 8:E222. [PMID: 31698835 PMCID: PMC6963787 DOI: 10.3390/pathogens8040222] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen colonizing the oral cavity of a large proportion of the human population. It is equipped with several potent virulence factors that can cause cell death and induce or evade inflammation. Because of the large genetic diversity within the species, both harmless and highly virulent genotypes of the bacterium have emerged. The oral condition and age, as well as the geographic origin of the individual, influence the risk to be colonized by a virulent genotype of the bacterium. In the present review, the virulence and pathogenicity properties of A. actinomycetemcomitans will be addressed.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Terhi Maula
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Mark Lindholm
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Jan Oscarsson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Anders Johansson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
10
|
Zhu H, Lu S, Wei M, Cai X, Wang G. Identification of novel genes involved in gingival epithelial cells responding to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis infections. Arch Oral Biol 2018; 96:113-121. [PMID: 30223242 DOI: 10.1016/j.archoralbio.2018.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study aimed to identify the differentially expressed genes (DEGs) in gingiva epithelial cells responding to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis infections using bioinformatics method. STUDY DESIGN GSE9723 dataset was downloaded from Gene Expression Omnibus, and DEGs between the infected cells and controls were identified using unpaired t-test. Overlapping DEGs in responding to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis infections were extracted. Protein-protein interaction networks were constructed and functional modules were isolated using Molecular Complex Detection algorithm. Key genes in protein-protein interaction network and Molecular Complex Detection modules were subjected to functional enrichment analyses. In addition, the transcriptional factors were predicted. RESULTS A total of 533 co-up-regulated and 202 co-down-regulated genes were identified. The up-regulated genes, including IL6, CCL19, EDN1, ADCY9, and BCL2 and the down-regulated genes, including CCNB1, PLK1, and CCNA2 were the key genes in the protein-protein interaction network and modules. They were intensively enriched in chemokine signaling pathway, calcium signaling pathway and cell cycle. Finally, two transcriptional factors, E12 and NRSF, targeting to the up-regulated genes and one transcriptional factor, NRP1, targeting the down-regulated genes, were predicted. CONCLUSIONS CCNB1, PLK1, and CCNA2 might play important roles in the response of host epithelial cells to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis.
Collapse
Affiliation(s)
- Hongguang Zhu
- School of Stomatology of Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, 250012, China; Department of Dental Medicine, Weifang People's Hospital, Weifang 261041, China
| | - Shouyi Lu
- Department of Dentistry, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, China
| | - Meirong Wei
- Department of Dentistry, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, China
| | - Xiaoshan Cai
- Department of Pathology, Second People's Hospital of Weifang, Weifang, Shandong 261041, China
| | - Guoyou Wang
- Department of Dentistry, Weifang People's Hospital, Weifang Medical University, Weifang, 261041, China.
| |
Collapse
|
11
|
Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microb Pathog 2017; 113:303-311. [DOI: 10.1016/j.micpath.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
|
12
|
El-Aouar Filho RA, Nicolas A, De Paula Castro TL, Deplanche M, De Carvalho Azevedo VA, Goossens PL, Taieb F, Lina G, Le Loir Y, Berkova N. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections. Front Cell Infect Microbiol 2017; 7:208. [PMID: 28589102 PMCID: PMC5440457 DOI: 10.3389/fcimb.2017.00208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host.
Collapse
Affiliation(s)
- Rachid A El-Aouar Filho
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France.,Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Aurélie Nicolas
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Thiago L De Paula Castro
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Martine Deplanche
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Vasco A De Carvalho Azevedo
- Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Pierre L Goossens
- HistoPathologie et Modèles Animaux/Pathogénie des Toxi-Infections Bactériennes, Institut PasteurParis, France
| | - Frédéric Taieb
- CHU Purpan USC INRA 1360-CPTP, U1043 Institut National de la Santé et de la Recherche Médicale, Pathogénie Moléculaire et Cellulaire des Infections à Escherichia coliToulouse, France
| | - Gerard Lina
- International Center for Infectiology ResearchLyon, France.,Centre National de la Recherche Scientifique, UMR5308, Institut National de la Santé et de la Recherche Médicale U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1Lyon, France.,Département de Biologie, Institut des Agents Infectieux, Hospices Civils de LyonLyon, France
| | - Yves Le Loir
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| | - Nadia Berkova
- STLO, Agrocampus Ouest Rennes, Institut National de la Recherche AgronomiqueRennes, France
| |
Collapse
|
13
|
Li G, Niu H, Zhang Y, Li Y, Xie F, Langford PR, Liu S, Wang C. Haemophilus parasuis cytolethal distending toxin induces cell cycle arrest and p53-dependent apoptosis. PLoS One 2017; 12:e0177199. [PMID: 28545143 PMCID: PMC5436662 DOI: 10.1371/journal.pone.0177199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/24/2017] [Indexed: 01/20/2023] Open
Abstract
Haemophilus parasuis is the causative agent of Glasser’s disease in pigs. Cytolethal distending toxin (CDT) is an important virulence factor of H. parasuis. It is composed of three subunits: CdtA, CdtB and CdtC and all were successfully expressed in soluble form in Escherichia coli when the signal peptides were removed. Purified CdtB had DNase activity, i.e. caused DNA double strand damage, in vitro and in vivo prior to cell arrest and apoptosis. Flow cytometry analysis showed CdtB alone could induce cell cycle arrest and apoptosis in PK-15 porcine kidney and pulmonary alveolar macrophage (PAM) cells, which could be enhanced by CdtA or/and CdtC. CDT holotoxin could lead to significant cell distension, G2 arrest and apoptotic death in PK-15 and PAM cells. The apoptosis induced by CDT holotoxin was significantly inhibited by pifithrin-α, which indicates that it is p53-dependent. The results suggest that H. parasuis CDT holotoxin is a major virulence factor.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Niu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanling Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Paul R. Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
14
|
Teng YTA. Protective and Destructive Immunity in the Periodontium: Part 2—T-cell-mediated Immunity in the Periodontium. J Dent Res 2016; 85:209-19. [PMID: 16498066 DOI: 10.1177/154405910608500302] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Based on the results of recent research in the field and Part 1 of this article (in this issue), the present paper will discuss the protective and destructive aspects of the T-cell-mediated adaptive immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) osteoimmunology and periodontal disease; (ii) some molecular techniques developed and applied to identify critical microbial virulence factors or antigens associated with host immunity (with Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species); and (iii) summarizing the identified virulence factors/antigens associated with periodontal immunity. Thus, further understanding of the molecular mechanisms of the host’s T-cell-mediated immune responses and the critical microbial antigens related to disease pathogenesis will facilitate the development of novel therapeutics or protocols for future periodontal treatments. Abbreviations used in the paper are as follows: A. actinomycetemcomitans ( Aa), Actinobacillus actinomycetemcomitans; Ab, antibody; DC, dendritic cells; mAb, monoclonal antibody; pAb, polyclonal antibody; OC, osteoclast; PAMP, pathogen-associated molecular patterns; P. gingivalis ( Pg), Porphyromonas gingivalis; RANK, receptor activator of NF-κB; RANKL, receptor activator of NF-κB ligand; OPG, osteoprotegerin; TCR, T-cell-receptors; TLR, Toll-like receptors.
Collapse
Affiliation(s)
- Y-T A Teng
- Laboratory of Molecular Microbial Immunity, Eastman Department of Dentistry, Eastman Dental Center, Box-683, 625 Elmwood Ave., Rochester, NY 14620, USA.
| |
Collapse
|
15
|
Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Front Cell Infect Microbiol 2016; 6:168. [PMID: 27995094 PMCID: PMC5136569 DOI: 10.3389/fcimb.2016.00168] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt) plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K) in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: (1) disrupting epithelial barriers; (2) suppressing acquired immunity; (3) promoting pro-inflammatory responses. Thus, Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.
Collapse
Affiliation(s)
- Monika D Scuron
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
16
|
Impact of CDT Toxin on Human Diseases. Toxins (Basel) 2016; 8:toxins8070220. [PMID: 27429000 PMCID: PMC4963852 DOI: 10.3390/toxins8070220] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Cytolethal distending toxin (CDT) is found in Gram-negative bacteria, especially in certain Proteobacteria such as the Pasteurellaceae family, including Haemophilus ducreyi and Aggregatibacter (Actinobacillus) actinomycetemcomitans, in the Enterobacteriaceae family and the Campylobacterales order, including the Campylobacter and Helicobacter species. In vitro and in vivo studies have clearly shown that this toxin has a strong effect on cellular physiology (inflammation, immune response modulation, tissue damage). Some works even suggest a potential involvement of CDT in cancers. In this review, we will discuss these different aspects.
Collapse
|
17
|
Taieb F, Petit C, Nougayrède JP, Oswald E. The Enterobacterial Genotoxins: Cytolethal Distending Toxin and Colibactin. EcoSal Plus 2016; 7. [PMID: 27419387 DOI: 10.1128/ecosalplus.esp-0008-2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 06/06/2023]
Abstract
While the DNA damage induced by ionizing radiation and by many chemical compounds and drugs is well characterized, the genotoxic insults inflicted by bacteria are only scarcely documented. However, accumulating evidence indicates that we are exposed to bacterial genotoxins. The prototypes of such bacterial genotoxins are the Cytolethal Distending Toxins (CDTs) produced by Escherichia coli and Salmonella enterica serovar Typhi. CDTs display the DNase structure fold and activity, and induce DNA strand breaks in the intoxicated host cell nuclei. E. coli and certain other Enterobacteriaceae species synthesize another genotoxin, colibactin. Colibactin is a secondary metabolite, a hybrid polyketide/nonribosomal peptide compound synthesized by a complex biosynthetic machinery. In this review, we summarize the current knowledge on CDT and colibactin produced by E. coli and/or Salmonella Typhi. We describe their prevalence, genetic determinants, modes of action, and impact in infectious diseases or gut colonization, and discuss the possible involvement of these genotoxigenic bacteria in cancer.
Collapse
Affiliation(s)
- Frederic Taieb
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Claude Petit
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Eric Oswald
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| |
Collapse
|
18
|
Kawamoto D, Ando-Suguimoto ES, Bueno-Silva B, DiRienzo JM, Mayer MPA. Alteration of Homeostasis in Pre-osteoclasts Induced by Aggregatibacter actinomycetemcomitans CDT. Front Cell Infect Microbiol 2016; 6:33. [PMID: 27064424 PMCID: PMC4815040 DOI: 10.3389/fcimb.2016.00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 01/28/2023] Open
Abstract
The dysbiotic microbiota associated with aggressive periodontitis includes Aggregatibacter actinomycetemcomitans, the only oral species known to produce a cytolethal distending toxin (AaCDT). Give that CDT alters the cytokine profile in monocytic cells, we aimed to test the hypothesis that CDT plays a role in bone homeostasis by affecting the differentiation of precursor cells into osteoclasts. Recombinant AaCDT was added to murine bone marrow monocytes (BMMC) in the presence or absence of RANKL and the cell viability and cytokine profile of osteoclast precursor cells were determined. Multinucleated TRAP(+) cell numbers, and relative transcription of genes related to osteoclastogenesis were also evaluated. The addition of AaCDT did not lead to loss in cell viability but promoted an increase in the average number of TRAP(+) cells with 1-2 nuclei in the absence or presence of RANKL (Tukey, p < 0.05). This increase was also observed for TRAP(+) cells with ≥3nuclei, although this difference was not significant. Levels of TGF-β, TNF-α, and IL-6, in the supernatant fraction of cells, were higher when in AaCDT exposed cells, whereas levels of IL-1β and IL-10 were lower than controls under the same conditions. After interaction with AaCDT, transcription of the rank (encoding the receptor RANK), nfatc1 (transcription factor), and ctpK (encoding cathepsin K) genes was downregulated in pre-osteoclastic cells. The data indicated that despite the presence of RANKL and M-CSF, AaCDT may inhibit osteoclast differentiation by altering cytokine profiles and repressing transcription of genes involved in osteoclastogenesis. Therefore, the CDT may impair host defense mechanisms in periodontitis.
Collapse
Affiliation(s)
- Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Ellen S Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Joseph M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania PA, USA
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| |
Collapse
|
19
|
Péré-Védrenne C, Cardinaud B, Varon C, Mocan I, Buissonnière A, Izotte J, Mégraud F, Ménard A. The Cytolethal Distending Toxin Subunit CdtB of Helicobacter Induces a Th17-related and Antimicrobial Signature in Intestinal and Hepatic Cells In Vitro. J Infect Dis 2016; 213:1979-89. [PMID: 26908757 DOI: 10.1093/infdis/jiw042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/26/2016] [Indexed: 01/07/2023] Open
Abstract
Enterohepatic Helicobacter species are associated with several digestive diseases. Helicobacter pullorum is an emerging human foodborne pathogen, and Helicobacter hepaticus is a mouse pathogen; both species are associated with intestinal and/or hepatic diseases. They possess virulence factors, such as cytolethal distending toxin (CDT). Data indicate that CDT may be involved in chronic inflammatory responses, via its active subunit, CdtB. The proinflammatory properties of the CdtB of H. pullorum and H. hepaticus were assessed on human intestinal and hepatic epithelial cells in vitro. Interleukin 8 expression was evaluated by using wild-type strains and their corresponding CdtB isogenic mutants and by delivering CdtB directly into the cells. Nuclear factor κB nuclear translocation and transcriptomic characteristics in response to CdtB were also evaluated. The CdtB of these Helicobacter species induced nuclear factor κB nuclear translocation and exhibited proinflammatory properties, mainly the expression of T-helper type 17-related genes and genes encoding antimicrobial products also involved in cancer. The Histidine residue in position 265 of the CdtB catalytic site appeared to play a role in the regulation of most of these genes. As for flagellin or lipopolysaccharides, CdtB also induced expression of inflammation-associated genes related to antimicrobial activity.
Collapse
Affiliation(s)
- Christelle Péré-Védrenne
- Université de Bordeaux, Laboratoire de bactériologie, UMR1053 INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn
| | - Bruno Cardinaud
- Université de Bordeaux, Biothérapies des maladies génétiques et cancers, INSERM U1035 Bordeaux Institut National Polytechnique, France
| | - Christine Varon
- Université de Bordeaux, Laboratoire de bactériologie, UMR1053 INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn
| | - Iulia Mocan
- Université de Bordeaux, Laboratoire de bactériologie, UMR1053 INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn
| | - Alice Buissonnière
- Université de Bordeaux, Laboratoire de bactériologie, UMR1053 INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn
| | - Julien Izotte
- Université de Bordeaux, Laboratoire de bactériologie, UMR1053 INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn
| | - Francis Mégraud
- Université de Bordeaux, Laboratoire de bactériologie, UMR1053 INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn
| | - Armelle Ménard
- Université de Bordeaux, Laboratoire de bactériologie, UMR1053 INSERM UMR1053, Bordeaux Research in Translational Oncology, BaRITOn
| |
Collapse
|
20
|
Dixon SD, Huynh MM, Tamilselvam B, Spiegelman LM, Son SB, Eshraghi A, Blanke SR, Bradley KA. Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins. PLoS One 2015; 10:e0143977. [PMID: 26618479 PMCID: PMC4664275 DOI: 10.1371/journal.pone.0143977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/11/2015] [Indexed: 12/29/2022] Open
Abstract
Cytolethal distending toxins (CDTs) are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT) and enteropathogenic E. coli (Ec-CDT) are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways.
Collapse
Affiliation(s)
- Shandee D. Dixon
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Melanie M. Huynh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Batcha Tamilselvam
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Lindsey M. Spiegelman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sophia B. Son
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Aria Eshraghi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven R. Blanke
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Taieb F, Sváb D, Watrin C, Oswald E, Tóth I. Cytolethal distending toxin A, B and C subunit proteins are necessary for the genotoxic effect of Escherichia coli CDT-V. Acta Vet Hung 2015; 63:1-10. [PMID: 25655410 DOI: 10.1556/avet.2015.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytolethal distending toxins (CDT) are considered the prototype of inhibitory cyclomodulins, and are produced by a wide range of Gram-negative pathogenic bacteria, including Escherichia coli strains of various sero- and pathotypes. CDT is a heterotripartite toxin consisting of three protein subunits, CdtA, CdtB and CdtC. The active subunit, CdtB has DNase activity and causes DNA damage and cell cycle arrest in the target cell. However, several studies have highlighted different roles for CdtA and CdtC subunits. In order to reveal the necessity of CdtA and CdtC subunit proteins in the CDT-specific phenotype, expression clones containing the cdt-V subunit genes were constructed. Using cell culture assays, we demonstrated that clones expressing only the CdtB subunit or in combination with only CdtA or CdtC were unable to trigger the specific cell cycle arrest and changes in cell morphology in HeLa cells. At the same time, the recombinant clone harbouring the whole cdt-V operon caused all the CDT-associated characteristic phenotypes. All these results verify that all the three CDT subunit proteins are necessary for the genotoxic effect caused by CDT-V.
Collapse
Affiliation(s)
- Frederic Taieb
- 1 CHU Purpan USC INRA 1360-CPTP, U1043 INSERM, Pathogénie moléculaire et cellulaire des infections à Escherichia coli Toulouse France
| | - Domonkos Sváb
- 2 Hungarian Academy of Sciences Enteric Bacteriology and Foodborne Zoonoses Group, Institute for Veterinary Medical Research, Centre for Agriculture Research Hungária krt. 21 H-1143 Budapest Hungary
| | - Claude Watrin
- 1 CHU Purpan USC INRA 1360-CPTP, U1043 INSERM, Pathogénie moléculaire et cellulaire des infections à Escherichia coli Toulouse France
| | - Eric Oswald
- 1 CHU Purpan USC INRA 1360-CPTP, U1043 INSERM, Pathogénie moléculaire et cellulaire des infections à Escherichia coli Toulouse France
| | - István Tóth
- 2 Hungarian Academy of Sciences Enteric Bacteriology and Foodborne Zoonoses Group, Institute for Veterinary Medical Research, Centre for Agriculture Research Hungária krt. 21 H-1143 Budapest Hungary
| |
Collapse
|
22
|
Abstract
Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted.
Collapse
|
23
|
Breaking the Gingival Epithelial Barrier: Role of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin in Oral Infectious Disease. Cells 2014; 3:476-99. [PMID: 24861975 PMCID: PMC4092858 DOI: 10.3390/cells3020476] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans is part of the HACEK group that causes infective endocarditis, a constituent of the oral flora that promotes some forms of periodontal disease and a member of the family of species that secrete a cytolethal distending toxin (Cdt). The family of bacteria that express the cdt genes participate in diseases that involve the disruption of a mucosal or epithelial layer. In vitro studies have shown that human gingival epithelial cells (HGEC) are native targets of the Cdt that typically induces DNA damage that signals growth arrest at the G2/M interphase of the cell cycle. The gingival epithelium is an early line of defense in the oral cavity against microbial assault. When damaged, bacteria collectively gain entry into the underlying connective tissue where microbial products can affect processes and pathways in infiltrating inflammatory cells culminating in the destruction of the attachment apparatus of the tooth. One approach has been the use of an ex vivo gingival explant model to assess the effects of the Cdt on the morphology and integrity of the tissue. The goal of this review is to provide an overview of these studies and to critically examine the potential contribution of the Cdt to the breakdown of the protective gingival barrier.
Collapse
|
24
|
Belibasakis GN, Bostanci N. Inflammatory and bone remodeling responses to the cytolethal distending toxins. Cells 2014; 3:236-46. [PMID: 24709959 PMCID: PMC4092851 DOI: 10.3390/cells3020236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 11/16/2022] Open
Abstract
The cytolethal distending toxins (CDTs) are a family of exotoxins produced by a wide range of Gram-negative bacteria. They are known for causing genotoxic stress to the cell, resulting in growth arrest and eventually apoptotic cell death. Nevertheless, there is evidence that CDTs can also perturb the innate immune responses, by regulating inflammatory cytokine production and molecular mediators of bone remodeling in various cell types. These cellular and molecular events may in turn have an effect in enhancing local inflammation in diseases where CDT-producing bacteria are involved, such as Aggregatibacter actinomycetemcomitans, Haemophilus ducreyi, Campylobacter jejuni and Helicobacter hepaticus. One special example is the induction of pathological bone destruction in periodontitis. The opportunistic oral pathogen Aggregatibatcer actinoycemetemcomitans, which is involved in the aggressive form of the disease, can regulate the molecular mechanisms of bone remodeling in a manner that favors bone resorption, with the potential involvement of its CDT. The present review provides an overview of all known to-date inflammatory or bone remodeling responses of CDTs produced by various bacterial species, and discusses their potential contribution to the pathogenesis of the associated diseases.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Plattenstrasse 11, Zürich 8032, Switzerland.
| | - Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Plattenstrasse 11, Zürich 8032, Switzerland.
| |
Collapse
|
25
|
Ando-Suguimoto ES, da Silva MP, Kawamoto D, Chen C, DiRienzo JM, Mayer MPA. The cytolethal distending toxin of Aggregatibacter actinomycetemcomitans inhibits macrophage phagocytosis and subverts cytokine production. Cytokine 2014; 66:46-53. [PMID: 24548424 DOI: 10.1016/j.cyto.2013.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 11/19/2013] [Accepted: 12/24/2013] [Indexed: 02/06/2023]
Abstract
Aggregatibacter actinomycetemcomitans is an important periodontal pathogen that can participate in periodontitis and other non-oral infections. The cytolethal distending toxin (Cdt) is among the virulence factors produced by this bacterium. The Cdt is also secreted by several mucosa-associated Gram-negative pathogens and may play a role in perpetuating the infection by modulating the immune response. Although the toxin targets a wide range of eukaryotic cell types little is known about its activity on macrophages which play a key part in alerting the rest of the immune system to the presence of pathogens and their virulence factors. In view of this, we tested the hypothesis that the A. actinomycetemcomitans Cdt (AaCdt) disrupts macrophage function by inhibiting phagocytic activity as well as affecting the production of cytokines. Murine macrophages were co-cultured with either wild-type A. actinomycetemcomitans or a Cdt(-) mutant. Viable counts and qPCR showed that phagocytosis of the wild-type strain was significantly reduced relative to that of the Cdt(-) mutant. Addition of recombinant Aa(r)Cdt to co-cultures along with the Cdt(-) mutant diminished the phagocytic activity similar to that observed with the wild type strain. High concentrations of Aa(r)Cdt resulted in decreased phagocytosis of fluorescent bioparticles. Nitric oxide production was modulated by the presence of Cdt and the levels of IL-1β, IL-12 and IL-10 were increased. Production of TNF-α did not differ in the co-culture assays but was increased by the presence of Aa(r)Cdt. These data suggest that the Cdt may modulate macrophage function in A. actinomycetemcomitans infected sites by impairing phagocytosis and modifying the pro-inflammatory/anti-inflammatory cytokine balance.
Collapse
Affiliation(s)
| | - Maike Paulino da Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of University of Southern California, USA
| | - Joseph M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Liyanage NP, Dassanayake RP, Kuszynski CA, Duhamel GE. Contribution of Helicobacter hepaticus cytolethal distending toxin subunits to human epithelial cell cycle arrest and apoptotic death in vitro. Helicobacter 2013; 18:433-43. [PMID: 23895367 PMCID: PMC3808484 DOI: 10.1111/hel.12084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cytolethal distending toxin (CDT) is the only known virulence factor found in H. hepaticus, the cause of chronic typhlocolitis and hepatitis leading to colonic and hepatocellular carcinomas in mice. Interaction of the tripartite polypeptide CdtA, CdtB, and CdtC subunits produced by H. hepaticus CDT (HhepCDT) causes cell cycle arrest and apoptotic death of cultured cells; however, the contribution of individual subunit to these processes has not been investigated. MATERIALS AND METHODS The temporal relationship between cell cycle and apoptotic death of human epithelial HeLa and INT407 cells intoxicated with HhepCDT holotoxin or reconstituted recombinant HhepCDT was compared by flow cytometry. The genotoxic activity of individual and combinations of recombinant HhepCDT protein subunits or increasing concentrations of individual recombinant HhepCDT protein subunits transfected into HeLa cells was assessed at 72 hours post-treatment by flow cytometry. RESULTS Similar time course of HhepCDT-induced G2 /M cell cycle arrest and apoptotic death was found with both cell lines which reached a maximum at 72 hours. The presence of all three HhepCDT subunits was required for maximum cell cycle arrest and apoptosis of both cell lines. Transfection of HeLa cells with HhepCdtB, but not with HhepCdtA or HhepCdtC, resulted in a dose-dependent G2 /M arrest and apoptotic death. CONCLUSION All three subunits of HhepCDT are required for maximum epithelial cell cycle arrest and progression to apoptotic death, and HhepCdtB subunit alone is necessary and sufficient for epithelial cell genotoxicity.
Collapse
Affiliation(s)
- Namal P.M. Liyanage
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, U.S.A
| | - Rohana P. Dassanayake
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, U.S.A
| | - Charles A. Kuszynski
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, U.S.A
| | - Gerald E. Duhamel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, U.S.A
| |
Collapse
|
27
|
Bostanci N, Akgül B, Tsakanika V, Allaker RP, Hughes FJ, McKay IJ. Effects of low-dose doxycycline on cytokine secretion in human monocytes stimulated with Aggregatibacter actinomycetemcomitans. Cytokine 2011; 56:656-61. [PMID: 21962932 DOI: 10.1016/j.cyto.2011.08.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/22/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
Doxycycline is an antibiotic used in the treatment of a variety of inflammatory conditions, including periodontitis. Apart from its antimicrobial properties, this drug also has independent anti-inflammatory effects at sub-antimicrobial doses. The present study aimed to investigate the effects of low-doses of doxycycline (LDD) on cytokine production by human monocytic cells challenged with the periodontal pathogen Aggregatibacter actinomycetemcomitans, for up to 6 h. The simultaneous regulation of 12 cytokines were measured by a Human Cytokine Array Kit. To validate the array findings, selected cytokines were also measured by enzyme-linked immunosorbant assay (ELISA). A. actinomycetemcomitans stimulated the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β, IL-6 and IL-8 by the cells after 6 h of challenge, and doxycycline significantly inhibited this effect. The kinetics of this regulation demonstrated an early (within 2 h) and significant (P<0.05) inhibition of pro-inflammatory cytokines, with a mild (0.5-fold) up-regulation of the anti-inflammatory cytokine IL-10. The results indicate that LDD acts as an anti-inflammatory agent in human monocytic cells stimulated with A. actinomycetemcomitans. This model provides clear evidence that some of the clinically proven benefits of LDD may be related to its ability to regulate inflammatory mediator release by monocytic cells. This property may contribute to the clinically proven benefits of this antibiotic as an adjunctive treatment for periodontitis.
Collapse
Affiliation(s)
- N Bostanci
- Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
28
|
Jinadasa RN, Bloom SE, Weiss RS, Duhamel GE. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. MICROBIOLOGY-SGM 2011; 157:1851-1875. [PMID: 21565933 DOI: 10.1099/mic.0.049536-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytolethal distending toxin (CDT) is a heterotrimeric AB-type genotoxin produced by several clinically important Gram-negative mucocutaneous bacterial pathogens. Irrespective of the bacterial species of origin, CDT causes characteristic and irreversible cell cycle arrest and apoptosis in a broad range of cultured mammalian cell lineages. The active subunit CdtB has structural homology with the phosphodiesterase family of enzymes including mammalian DNase I, and alone is necessary and sufficient to account for cellular toxicity. Indeed, mammalian cells treated with CDT initiate a DNA damage response similar to that elicited by ionizing radiation-induced DNA double strand breaks resulting in cell cycle arrest and apoptosis. The mechanism of CDT-induced apoptosis remains incompletely understood, but appears to involve both p53-dependent and -independent pathways. While epithelial, endothelial and fibroblast cell lines respond to CDT by undergoing arrest of cell cycle progression resulting in nuclear and cytoplasmic distension that precedes apoptotic cell death, cells of haematopoietic origin display rapid apoptosis following a brief period of cell cycle arrest. In this review, the ecology of pathogens producing CDT, the molecular biology of bacterial CDT and the molecular mechanisms of CDT-induced cytotoxicity are critically appraised. Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens.
Collapse
Affiliation(s)
- Rasika N Jinadasa
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Stephen E Bloom
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gerald E Duhamel
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
29
|
Genetic constructions, hyperexpressing recombinant fragments of cytolethal distending toxin of Aggregatibacter actinomycetemcomitans. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-010-0567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Ohara M, Miyauchi M, Tsuruda K, Takata T, Sugai M. Topical application of Aggregatibacter actinomycetemcomitans cytolethal distending toxin induces cell cycle arrest in the rat gingival epithelium in vivo. J Periodontal Res 2011; 46:389-95. [PMID: 21361960 DOI: 10.1111/j.1600-0765.2011.01348.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Aggregatibacter actinomycetemcomitans is one of the etiological pathogens implicated in the onset of periodontal disease. This pathogen produces cytolethal distending toxin (CDT) that acts as a genotoxin to induce cell cycle arrest and cellular distension in cultured cell lines. Therefore, CDT is a possible virulence factor; however, the in vivo activity of CDT on periodontal tissue has not been explored. Here, CDT was topically applied into the rat molar gingival sulcus; and the periodontal tissue was histologically and immunohistochemically examined. MATERIALS AND METHODS Recombinant purified A. actinomycetemcomitans CDT was applied to gingival sulcus of male Wistar rats and tissue samples were immunohistochemmically examined. RESULTS One day after application, infiltration of neutrophils and dilation of blood vessels in the gingival connective tissue were found. At day three, desquamation and detachment of cells in the junctional epithelium was observed. This abrasion of junctional epithelium was not observed in rats treated with mutated CDT, in which a His274Ala mutation is present in the CdtB subunit. This indicates the tissue abrasion may be caused by the genotoxicity of CdtB. Expression of the proliferating cell nuclear antigen (PCNA), a marker for proliferating cells, was significantly suppressed using CDT treatment in the junctional epithelium and gingival epithelium. CONCLUSION Using the rat model, these data suggest CDT intoxication induces cell cycle arrest and damage in periodontal epithelial cells in vivo.
Collapse
Affiliation(s)
- M Ohara
- Departments of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | |
Collapse
|
31
|
Guerra L, Cortes-Bratti X, Guidi R, Frisan T. The biology of the cytolethal distending toxins. Toxins (Basel) 2011; 3:172-90. [PMID: 22069704 PMCID: PMC3202825 DOI: 10.3390/toxins3030172] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/14/2011] [Accepted: 02/22/2011] [Indexed: 12/11/2022] Open
Abstract
The cytolethal distending toxins (CDTs), produced by a variety of Gram-negative pathogenic bacteria, are the first bacterial genotoxins described, since they cause DNA damage in the target cells. CDT is an A-B(2) toxin, where the CdtA and CdtC subunits are required to mediate the binding on the surface of the target cells, allowing internalization of the active CdtB subunit, which is functionally homologous to the mammalian deoxyribonuclease I. The nature of the surface receptor is still poorly characterized, however binding of CDT requires intact lipid rafts, and its internalization occurs via dynamin-dependent endocytosis. The toxin is retrograde transported through the Golgi complex and the endoplasmic reticulum, and subsequently translocated into the nuclear compartment, where it exerts the toxic activity. Cellular intoxication induces DNA damage and activation of the DNA damage responses, which results in arrest of the target cells in the G1 and/or G2 phases of the cell cycle and activation of DNA repair mechanisms. Cells that fail to repair the damage will senesce or undergo apoptosis. This review will focus on the well-characterized aspects of the CDT biology and discuss the questions that still remain unanswered.
Collapse
Affiliation(s)
- Lina Guerra
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden, Box 285, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
32
|
Eshraghi A, Maldonado-Arocho FJ, Gargi A, Cardwell MM, Prouty MG, Blanke SR, Bradley KA. Cytolethal distending toxin family members are differentially affected by alterations in host glycans and membrane cholesterol. J Biol Chem 2010; 285:18199-207. [PMID: 20385557 DOI: 10.1074/jbc.m110.112912] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytolethal distending toxins (CDTs) are tripartite protein exotoxins produced by a diverse group of pathogenic Gram-negative bacteria. Based on their ability to induce DNA damage, cell cycle arrest, and apoptosis of cultured cells, CDTs are proposed to enhance virulence by blocking cellular division and/or directly killing epithelial and immune cells. Despite the widespread distribution of CDTs among several important human pathogens, our understanding of how these toxins interact with host cells is limited. Here we demonstrate that CDTs from Haemophilus ducreyi, Aggregatibacter actinomycetemcomitans, Escherichia coli, and Campylobacter jejuni differ in their abilities to intoxicate host cells with defined defects in host factors previously implicated in CDT binding, including glycoproteins, and glycosphingolipids. The absence of cell surface sialic acid sensitized cells to intoxication by three of the four CDTs tested. Surprisingly, fucosylated N-linked glycans and glycolipids, previously implicated in CDT-host interactions, were not required for intoxication by any of the CDTs tested. Finally, altering host-cellular cholesterol, also previously implicated in CDT binding, affected intoxication by only a subset of CDTs tested. The findings presented here provide insight into the molecular and cellular basis of CDT-host interactions.
Collapse
Affiliation(s)
- Aria Eshraghi
- Department of Microbiology, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Liyanage NPM, Manthey KC, Dassanayake RP, Kuszynski CA, Oakley GG, Duhamel GE. Helicobacter hepaticus cytolethal distending toxin causes cell death in intestinal epithelial cells via mitochondrial apoptotic pathway. Helicobacter 2010; 15:98-107. [PMID: 20402812 DOI: 10.1111/j.1523-5378.2010.00749.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Helicobacter hepaticus, the prototype for enterohepatic Helicobacter species, colonizes the lower intestinal and hepatobiliary tracts of mice and causes typhlocolitis, hepatitis, and hepatocellular carcinoma in susceptible mouse strains. Cytolethal distending toxin (CDT) is the only known virulence factor found in H. hepaticus. CDT of several Gram-negative bacteria is associated with double-stranded DNA breaks resulting in cell cycle arrest and death of a wide range of eukaryotic cells in vitro. We previously observed H. hepaticus CDT (HhCDT) mediated apoptosis in INT407 cells. However, the exact mechanism for the induction of the apoptotic pathway by HhCDT is unknown. The objective of this study was to identify the apoptotic signaling pathway induced by HhCDT in INT407 cells. MATERIALS AND METHODS INT407 cells were incubated with or without recombinant HhCDT for 0-72 hours. H2AX phosphorylation and apoptotic parameters were analyzed. RESULTS H2AX was phosphorylated 24 hours postexposure to HhCDT. Expression of pro-apoptotic Bax protein was upregulated after 24 hours, while Bcl(2) expression decreased. Cytochrome c was released from mitochondria after 12-24 hours of exposure. Concurrently, caspase 3/7 and 9 were activated. However, pretreatment of INT407 cells with caspase inhibitor (Z-VAD-FMK) inhibited the activation of caspase 3/7 and 9. Significant activity of caspase 8 was not observed in toxin treated cells. Activation of caspase 3/7 and caspase 9 confirms the involvement of the mitochondrial apoptotic pathway in HhCDT-treated cells. CONCLUSION These findings show, for the first time, the ability of HhCDT to induce apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Namal P M Liyanage
- School of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ando ES, De-Gennaro LA, Faveri M, Feres M, DiRienzo JM, Mayer MPA. Immune response to cytolethal distending toxin of Aggregatibacter actinomycetemcomitans in periodontitis patients. J Periodontal Res 2010; 45:471-80. [PMID: 20337882 DOI: 10.1111/j.1600-0765.2009.01260.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Cytolethal distending toxin (CDT) is a genotoxin produced by Aggregatibacter actinomycetemcomitans. In spite of its association with pathogenesis, little is known about the humoral immune response against the CDT. This study aimed to test whether subgingival colonization and humoral response to A. actinomycetemcomitans would lead to a response against CDT. MATERIAL AND METHODS Sera from periodontally healthy, localized and generalized aggressive periodontitis and chronic periodontitis subjects (n = 80) were assessed for immunoglobulin G titers to A. actinomycetemcomitans serotypes a/b/c and to each CDT subunit (CdtA, CdtB and CdtC) by ELISA. A. actinomycetemcomitans subgingival levels and neutralization of CDT activity were also analyzed. RESULTS Sera from 75.0% localized and 81.8% generalized aggressive periodontitis patients reacted to A. actinomycetemcomitans. A response to serotype b was detected in localized (66.7%) and generalized aggressive periodontitis (54.5%). Reactivity to A. actinomycetemcomitans correlated with subgingival colonization (R = 0.75, p < 0.05). There was no correlation between A. actinomycetemcomitans colonization or response to serotypes and the immunoglobulin G response to CDT subunits. Titers of immunoglobulin G to CdtA and CdtB did not differ among groups; however, sera of all generalized aggressive periodontitis patients reacted to CdtC. Neutralization of CDT was not correlated with levels of antibodies to CDT subunits. CONCLUSION Response to CdtA and CdtB did not correlate with the periodontal status of the subject in the context of an A. actinomycetemcomitans infection. However, a response to CdtC was found in sera of generalized but not of localized aggressive periodontitis subjects. Differences in response to CdtC between generalized and localized aggressive periodontitis subjects indicate that CDT could be expressed differently by the infecting strains. Alternatively, the antibody response to CdtC could require the colonization of multiple sites.
Collapse
Affiliation(s)
- E S Ando
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Aggregatibacter actinomycetemcomitans cytolethal distending toxin induces apoptosis in nonproliferating macrophages by a phosphatase-independent mechanism. Infect Immun 2009; 77:3161-9. [PMID: 19470743 DOI: 10.1128/iai.01227-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans strains that express cytolethal distending toxin (Cdt) are associated with localized aggressive periodontitis. However, the in vivo targets of Cdt in the human oral cavity have not been firmly established. Here, we demonstrate that A. actinomycetemcomitans Cdt kills proliferating and nonproliferating U937 monocytic cells at a comparable specific activity, approximately 1.5-fold lower than that against the Cdt-hypersensitive Jurkat T-cell line. Cdt functioned both as a DNase and a phosphatidylinositol 3-phosphate (PIP(3)) phosphatase, and these activities were distinguished by site-specific mutagenesis of the active site residues of CdtB. Using these mutants, we determined that the DNase activity of CdtB is required for cell cycle arrest and caspase-dependent induction of apoptosis in proliferating U937 cells. In contrast, Cdt holotoxin induced apoptosis by a mechanism independent of caspase- and apoptosis-inducing factor in nonproliferating U937 cells. Furthermore, apoptosis of nonproliferating U937 cells was unaffected by the Cdt mutant possessing reduced phosphatase activity or by the addition of a specific PIP(3) phosphatase inhibitor, suggesting that the induction of apoptosis is independent of phosphatase activity. These results indicate that Cdt intoxication of proliferating and nonproliferating U937 cells occurs by distinct mechanisms and suggest that macrophages may also be potential in vivo targets of Cdt.
Collapse
|
36
|
Fernandes KPS, Mayer MPA, Ando ES, Ulbrich AG, Amarente-Mendes JGP, Russo M. Inhibition of interferon-gamma-induced nitric oxide production in endotoxin-activated macrophages by cytolethal distending toxin. ACTA ACUST UNITED AC 2008; 23:360-6. [PMID: 18793357 DOI: 10.1111/j.1399-302x.2008.00434.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Cytolethal distending toxin (CDT) is a DNA-targeting agent produced by certain pathogenic gram-negative bacteria such as the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. CDT targets lymphocytes and other cells causing cell cycle arrest and apoptosis, impairing the host immune response and contributing to the persistence of infections caused by this microorganism. In this study we explored the effects of CDT on the innate immune response, by investigating how it affects production of nitric oxide (NO) by macrophages. METHODS Murine peritoneal macrophages were stimulated with Escherichia coli sonicates and NO production was measured in the presence or not of active CDT. RESULTS We observed that CDT promptly and significantly inhibited NO production by inducible nitric oxide synthase (iNOS) in a dose-dependent manner. This inhibition is directed towards interferon-gamma-dependent pathways and is not mediated by either interleukin-4 or interleukin-10. CONCLUSION This mechanism may constitute an important aspect of the immunosuppression mediated by CDT and may have potential clinical implications in A. actinomycetemcomitans infections.
Collapse
Affiliation(s)
- K P S Fernandes
- Department of Rehabilitation Sciences, Universidade Nove de Julho, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
37
|
Yamasaki S, Asakura M, Tsukamoto T, Faruque SM, Deb R, Ramamurthy T. CYTOLETHAL DISTENDING TOXIN (CDT): GENETIC DIVERSITY, STRUCTURE AND ROLE IN DIARRHEAL DISEASE. TOXIN REV 2008. [DOI: 10.1080/15569540500320938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
38
|
Role of aromatic amino acids in receptor binding activity and subunit assembly of the cytolethal distending toxin of Aggregatibacter actinomycetemcomitans. Infect Immun 2008; 76:2812-21. [PMID: 18426882 DOI: 10.1128/iai.00126-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The periodontal pathogen Aggregatibacter actinomycetemcomitans produces a cytolethal distending toxin (Cdt) that inhibits the proliferation of oral epithelial cells. Structural models suggest that the CdtA and CdtC subunits of the Cdt heterotrimer form two putative lectin domains with a central groove. A region of CdtA rich in heterocyclic amino acids (aromatic patch) appears to play an important role in receptor recognition. In this study site-specific mutagenesis was used to assess the contributions of aromatic amino acids (tyrosine and phenylalanine) to receptor binding and CdtA-CdtC assembly. Predominant surface-exposed aromatic residues that are adjacent to the aromatic patch region in CdtA or are near the groove located at the junction of CdtA and CdtC were studied. Separately replacing residues Y105, Y140, Y188, and Y189 with alanine in CdtA resulted in differential effects on binding related to residue position within the aromatic region. The data indicate that an extensive receptor binding domain extends from the groove across the entire face of CdtA that is oriented 180 degrees from the CdtB subunit. Replacement of residue Y105 in CdtA and residues Y61 and F141 in CdtC, which are located in or at the periphery of the groove, inhibited toxin assembly. Taken together, these results, along with the lack of an aromatic amino acid-rich region in CdtC similar to that in CdtA, suggest that binding of the heterotoxin to its cell surface receptor is mediated predominantly by the CdtA subunit. These findings are important for developing strategies designed to block the activity of this prominent virulence factor.
Collapse
|
39
|
Sakai A, Akifusa S, Itano N, Kimata K, Kawamura T, Koseki T, Takehara T, Nishihara T. Potential role of high molecular weight hyaluronan in the anti-Candida activity of human oral epithelial cells. Med Mycol 2007; 45:73-9. [PMID: 17325947 DOI: 10.1080/13693780601039607] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Candida albicans is both a commensal and a pathogen in the oral mucosa. Previous studies have indicated that epithelial cell-associated carbohydrate moiety can inhibit C. albicans growth. In the present study, the mechanisms by which epithelial cells inhibit Candida growth were studied by examining the effect of hyaluronan (HA). A coculture of C. albicans and KB cells or COS-7 cells inhibited in vitro growth of the fungus by 50-87% at an effector-to-target (E:T) ratio of 80:1. Removing extracellular HA by hyaluronidase caused a significant decrease in the anti-Candida activity of the cells. In addition anti-Candida activity was observed at 1 micro g/ml HA (2000 kDa). The antifungal activity of extracellular HA was further studied by transiently transfecting COS-7 cells with human HSA1, HSA2, or HSA3 in order to produce high levels of extracellular HA. All of the transfectants inhibited C. albicans growth in vitro by 51-65% compared to 38% inhibition by the vector control (P<0.05). These results suggest that the anti-Candida activity of epithelial-cells is mediated by extracellular HA.
Collapse
Affiliation(s)
- Akiyoshi Sakai
- Division of Community Oral Health Science, Department of Health Promotion, Kyushu Dental College, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Smith JL, Bayles DO. The contribution of cytolethal distending toxin to bacterial pathogenesis. Crit Rev Microbiol 2007; 32:227-48. [PMID: 17123907 DOI: 10.1080/10408410601023557] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytolethal distending toxin (CDT) is a bacterial toxin that initiates a eukaryotic cell cycle block at the G2 stage prior to mitosis. CDT is produced by a number of bacterial pathogens including: Campylobacter species, Escherichia coli, Salmonella enterica serovar Typhi, Shigella dystenteriae, enterohepatic Helicobacter species, Actinobacillus actinomycetemcomitans (the cause of aggressive periodontitis), and Haemophilus ducreyi (the cause of chancroid). The functional toxin is composed of three proteins; CdtB potentiates a cascade leading to cell cycle block, and CdtA and CdtC function as dimeric subunits, which bind CdtB and delivers it to the mammalian cell interior. Once inside the cell, CdtB enters the nucleus and exhibits a DNase I-like activity that results in DNA double-strand breaks. The eukaryotic cell responds to the DNA double-strand breaks by initiating a regulatory cascade that results in cell cycle arrest, cellular distension, and cell death. Mutations in CdtABC that cause any of the three subunits to lose function prevent the bacterial cell from inducing cytotoxicity. The result of CDT activity can differ somewhat depending on the eukaryotic cell types affected. Epithelial cells, endothelial cells, and keratinocytes undergo G2 cell cycle arrest, cellular distension, and death; fibroblasts undergo G1 and G2 arrest, cellular distension, and death; and immune cells undergo G2 arrest followed by apoptosis. CDT contributes to pathogenesis by inhibiting both cellular and humoral immunity via apoptosis of immune response cells, and by generating necrosis of epithelial-type cells and fibroblasts involved in the repair of lesions produced by pathogens resulting in slow healing and production of disease symptoms. Thus, CDT may function as a virulence factor in pathogens that produce the toxin.
Collapse
Affiliation(s)
- James L Smith
- Microbial Food Safety Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19083, USA.
| | | |
Collapse
|
41
|
Iwanaga K, Tominaga K, Yamamoto K, Habu M, Maeda H, Akifusa S, Tsujisawa T, Okinaga T, Fukuda J, Nishihara T. Local delivery system of cytotoxic agents to tumors by focused sonoporation. Cancer Gene Ther 2007; 14:354-63. [PMID: 17273182 DOI: 10.1038/sj.cgt.7701026] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, ultrasound-targeting microbubble destruction has been employed in molecular gene therapy, and a new potent nonviral gene transfer method known as 'sonoporation' has been developed. We investigated the efficiency of sonoporation toward growth inhibition of human gingival squamous carcinoma cell line, Ca9-22, in vitro and in vivo. The cytotoxicity of bleomycin (BLM) was investigated using flow-cytometric analysis and Hoechst's staining in vitro assay systems. We found that the delivery of BLM by sonoporation induced cytotoxic effect toward Ca9-22 cells in vitro. Our in vivo results showed that tumors nearly disappeared in Ca9-22 cell-implanted nude KSN/slc mice treated with a low dose of BLM followed by sonoporation during the 4-week experimental period. Histological analysis revealed that the cytotoxic effect was mainly apoptosis. We previously reported that the cytolethal distending toxin B (cdtB) from Actinobacillus actinomycetemcomitans, a periodontopathic bacterium, is responsible for cell cycle arrest and apoptosis in vitro. Thus, we used sonoporation to transfect a cdtB-expressing plasmid into Ca9-22 cells and examined cell viability in vitro and in vivo. We found that an administration of cdtB-expressing plasmid followed by sonoporation-induced marked growth inhibition of Ca9-22 cells and apoptotic cells were also observed in vitro and in vivo. These findings suggest that local administration of cytotoxic agents with sonoporation is a useful method for molecular cancer therapy.
Collapse
Affiliation(s)
- K Iwanaga
- Department of Health Promotion, Division of Infections and Molecular Biology, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cao L, Volgina A, Korostoff J, DiRienzo JM. Role of intrachain disulfides in the activities of the CdtA and CdtC subunits of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans. Infect Immun 2006; 74:4990-5002. [PMID: 16926390 PMCID: PMC1594843 DOI: 10.1128/iai.00697-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytolethal distending toxin (Cdt) of Actinobacillus actinomycetemcomitans is an atypical A-B-type toxin consisting of a heterotrimer composed of the cdtA, cdtB, and cdtC gene products. The CdtA and CdtC subunits form two heterogeneous ricin-like lectin domains which bind the holotoxin to the target cell. Point mutations were used to study CdtC structure and function. One (mutC216(F97C)) of eight single-amino-acid replacement mutants identified yielded a gene product that failed to form biologically active holotoxin. Based on the possibility that the F97C mutation destabilized a predicted disulfide, targeted mutagenesis was used to examine the contribution of each of four cysteine residues, in two predicted disulfides (C96/C107 and C135/C149), to CdtC activities. Cysteine replacement mutations in two predicted disulfides (C136/C149 and C178/C197) in CdtA were also characterized. Flow cytometry and CHO cell proliferation assays showed that changing either C96 or C149 in CdtC to alanine abolished the biological activity of holotoxin complexes. However, replacing C107 or C135 in CdtC and any of the four cysteines in CdtA with alanine or serine resulted in only partial or no loss of holotoxin activity. Changes in the biological activities of the mutant holotoxins correlated with altered subunit binding. In contrast to elimination of the B chain of ricin, the elimination of intrachain disulfides in CdtC and CdtA by genetic replacement of cysteines destabilizes these subunit proteins but not to the extent that cytotoxicity is lost. Reduction of the wild-type holotoxin did not affect cytotoxicity, and the reduced form of wild-type CdtA exhibited a statistically significant increase in binding to ligand. A diminished role for intrachain disulfides in stabilizing CdtA and CdtC may have clinical relevance for the A. actinomycetemcomitans Cdt. The cdt gene products secreted by this pathogen assemble and bind to target cells in periodontally involved sites, which are decidedly reduced environments in the human oral cavity.
Collapse
Affiliation(s)
- Linsen Cao
- Department of Microbiology, University of Pennsylvania, School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104-6030, USA
| | | | | | | |
Collapse
|
43
|
Yamada T, Komoto J, Saiki K, Konishi K, Takusagawa F. Variation of loop sequence alters stability of cytolethal distending toxin (CDT): crystal structure of CDT from Actinobacillus actinomycetemcomitans. Protein Sci 2006; 15:362-72. [PMID: 16434747 PMCID: PMC2242449 DOI: 10.1110/ps.051790506] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cytolethal distending toxin (CDT) secreted by Actinobacillus actinomycetemcomitans induces cell cycle arrest of cultured cells in the G2 phase. The crystal structure of the natural form of A. actinomycetemcomitans DCT (aCDT) has been determined at 2.4 A resolution. aCDT is a heterotrimer consisting of the three subunits, aCdtA, aCdtB, and aCdtC. Two crystallographically independent aCDTs form a dimer through interactions of the aCdtB subunits. The primary structure of aCDT has 94.3% identity with that of Haemophilus ducreyi CDT (hCDT), and the structure of aCDT is quite similar to that of hCDT reconstituted from the three subunits determined recently. However, the molecular packings in the crystal structures of aCDT and hCDT are quite different. A careful analysis of molecular packing suggests that variation of the amino acid residues in a nonconserved loop (181TSSPSSPERRGY192 of aCdtB and 181NSSSSPPERRVY192 of hCdtB) is responsible for the different oligomerization of very similar CDTs. The loop of aCdtB has a conformation to form a dimer, while the loop conformation of hCdtB prevents hCDT from forming a dimer. Although dimerization of aCDT does not affect toxic activity, it changes the stability of protein. aCDT rapidly aggregates and loses toxic activity in the absence of sucrose in a buffered solution, while hCDT is stable and retains toxic activity. Another analysis of crystal structures of aCDT and hCDT suggests that the receptor contact area is in the deep groove between CdtA and CdtC, and the characteristic "aromatic patch" on CdtA.
Collapse
Affiliation(s)
- Taro Yamada
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045-7534, USA
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Zhimin Feng
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
45
|
Cao L, Volgina A, Huang CM, Korostoff J, DiRienzo JM. Characterization of point mutations in the cdtA gene of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans. Mol Microbiol 2006; 58:1303-21. [PMID: 16313618 PMCID: PMC1435350 DOI: 10.1111/j.1365-2958.2005.04905.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Cdt is a family of gram-negative bacterial toxins that typically arrest eukaryotic cells in the G0/G1 or G2/M phase of the cell cycle. The toxin is a heterotrimer composed of the cdtA, cdtB and cdtC gene products. Although it has been shown that the CdtA protein subunit binds to cells in culture and in an enzyme-linked immunosorbent assay (CELISA) the precise mechanisms by which CdtA interacts with CdtB and CdtC has not yet been clarified. In this study we employed a random mutagenesis strategy to construct a library of point mutations in cdtA to assess the contribution of individual amino acids to binding activity and to the ability of the subunit to form biologically active holotoxin. Single unique amino acid substitutions in seven CdtA mutants resulted in reduced binding of the purified recombinant protein to Chinese hamster ovary cells and loss of binding to the fucose-containing glycoprotein, thyroglobulin. These mutations clustered at the 5'- and 3'-ends of the cdtA gene resulting in amino acid substitutions that resided outside of the aromatic patch region and a conserved region in CdtA homologues. Three of the amino acid substitutions, at positions S165N (mutA81), T41A (mutA121) and C178W (mutA221) resulted in gene products that formed holotoxin complexes that exhibited a 60% reduction (mutA81) or loss (mutA121, mutA221) of proliferation inhibition. A similar pattern was observed when these mutant holotoxins were tested for their ability to induce cell cycle arrest and to convert supercoiled DNA to relaxed and linear forms in vitro. The mutations in mutA81 and mutA221 disrupted holotoxin formation. The positions of the amino acid substitutions were mapped in the Haemophilus ducreyi Cdt crystal structure providing some insight into structure and function.
Collapse
Affiliation(s)
- Linsen Cao
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | | | | | | | | |
Collapse
|
46
|
Madianos PN, Bobetsis YA, Kinane DF. Generation of inflammatory stimuli: how bacteria set up inflammatory responses in the gingiva. J Clin Periodontol 2005; 32 Suppl 6:57-71. [PMID: 16128830 DOI: 10.1111/j.1600-051x.2005.00821.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The primary aetiologic factor of periodontal disease is the bacterial biofilm. Gram-positive and gram-negative bacteria possess a plethora of structural or secreted components that may cause direct destruction to periodontal tissues or stimulate host cells to activate a wide range of inflammatory responses. These responses are intended to eliminate the microbial challenge, but may often cause further tissue damage. METHODS This review has been divided into three parts: (a) bacterial virulence factors, which includes basic information on bacterial virulence factors, and the principle inflammatory responses that host cells elicit against these factors, (b) main receptors and signalling pathways, which includes basic information about the main receptors that interact with the bacterial virulence factors, the nature of these interactions, and the activated signalling pathways that lead to inflammatory responses, and (c) initiation of inflammation, which includes a model by which the virulence factors may interact with host cells and lead to inflammatory responses in the gingiva. FINDINGS AND CONCLUSIONS Bacterial components/virulence factors may be involved in modulating inflammatory responses and include: lipopolysaccharides (LPS), peptidoglycans, lipotechoic acids, fimbriae, proteases, heat-shock proteins, formyl-methionyl peptides, and toxins. Potential host cell receptors involved in recognizing bacterial components and initiating signalling pathways that lead to inflammatory responses include: Toll-like receptors (TLRs), CD14, nucleotide-binding oligomerization domain proteins (Nod) and G-protein-coupled receptors, including formyl-methionyl peptide receptors and protease-activated receptors. Of the above bacterial and host molecules, evidence from experimental animal studies implicate LPS, fimbriae, proteases, TLRs, and CD14 in periodontal tissue or alveolar bone destruction. However, evidence verifying the involvement of any of the above molecules in periodontal tissue destruction in humans does not exist.
Collapse
Affiliation(s)
- P N Madianos
- Department of Periodontology, School of Dentistry, University of Athens, Athens, Greece.
| | | | | |
Collapse
|
47
|
Kang P, Korostoff J, Volgina A, Grzesik W, DiRienzo JM. Differential effect of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans on co-cultures of human oral cells. J Med Microbiol 2005; 54:785-794. [PMID: 16014433 PMCID: PMC1434796 DOI: 10.1099/jmm.0.46077-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The periodontal pathogen Actinobacillus actinomycetemcomitans expresses a cytolethal distending toxin (CDT) that typically arrests the growth of eukaryotic cells at either the G0/G1 or G2/M phase of the cell cycle. It was previously found that CDT failed to arrest the growth of human periodontal ligament fibroblasts (HPLFs) when grown in pure culture. In contrast, proliferation of an oral epithelial cell line was rapidly inhibited by the toxin. In this study, the feasibility of using mixed-cell cultures and cell-specific markers to evaluate the response of oral cells, when in heterogeneous populations, to CDT was established. Proliferation of epithelial cells was rapidly inhibited and the cells were selectively eliminated in co-culture with HPLFs or cementoblasts by 24-48 h post-intoxication. Epithelial cells and HPLFs were detected and counted in co-cultures following cell-specific immunolabelling with antibodies against simian virus 40 large T antigen and the Ab-1 surface antigen, respectively. These results demonstrated that the activities of potential virulence factors, such as CDT, from periodontal pathogens can be successfully examined in mixed-cell cultures. This approach is especially relevant to infectious diseases that affect tissues with a diverse cellular composition, such as the periodontium.
Collapse
Affiliation(s)
- Philip Kang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA, USA
| | - Jonathan Korostoff
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA, USA
| | - Alla Volgina
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA, USA
| | - Wojciech Grzesik
- Department of Anatomy & Cell Biology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA, USA
| | - Joseph M. DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA, USA
| |
Collapse
|
48
|
Kanno F, Korostoff J, Volgina A, DiRienzo JM. Resistance of human periodontal ligament fibroblasts to the cytolethal distending toxin of Actinobacillus actinomycetemcomitans. J Periodontol 2005; 76:1189-201. [PMID: 16018764 PMCID: PMC1482779 DOI: 10.1902/jop.2005.76.7.1189] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The cytolethal distending toxin (CDT) of Actinobacillus actinomycetemcomitans is a typical member of this Gram-negative bacterium holotoxin family that targets a wide spectrum of eukarytotic cells, typically causing cell cycle arrest at either the G(1) or G(2)/M phase of the cell cycle. In view of the possible role of the CDT as a prominent A. actinomycetemcomitans virulence factor in periodontal diseases, we have examined the effects of the toxin on primary cultures of human periodontal ligament fibroblasts (HPLF). METHODS HPLF and an immortalized human gingival epithelial cell line, GMSM-K, were exposed to recombinant A. actinomycetemcomitans CDT. Effects of the toxin on cell proliferation and cell cycle were assessed by a cell viability assay and flow cytometry, respectively. Double-strand DNA damage was detected by pulsed field gel electrophoresis. Binding of the toxin and its individual subunits to HPLF was examined by immunofluorescence microscopy. RESULTS Viability of HPLF was not reduced following prolonged exposure to the CDT. There was no indication of cell cycle arrest or double-strand DNA damage. GMSM-K cells exhibited morphological alterations and a rapid decrease in cell viability within 6 and 12 hours, respectively, following exposure to the toxin for 5 minutes. These effects were dependent on toxin dose and age of the cultures and occurred more rapidly compared to CDT-treated HeLa cells. CDT-treated GMSM-K cells displayed cell cycle arrest at the S phase of growth and double-strand DNA damage was observed by 6 hours post-intoxication. Holotoxin and the CdtA subunit were detected on the surface of both HPLF and epithelial cells. CONCLUSIONS These results demonstrate that HPLF are resistant to the cytotoxic effects of the A. actinomycetemcomitans CDT. The mechanism of resistance is not known but may be related to the inability of the toxin to cause DNA damage. The difference in sensitivities of HPLF and oral epithelial cells to the CDT has important implications for the role of this putative microbial virulence factor in periodontal pathogenesis.
Collapse
Affiliation(s)
- Fumio Kanno
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA 19104-6030, USA
| | | | | | | |
Collapse
|
49
|
Mise K, Akifusa S, Watarai S, Ansai T, Nishihara T, Takehara T. Involvement of ganglioside GM3 in G(2)/M cell cycle arrest of human monocytic cells induced by Actinobacillus actinomycetemcomitans cytolethal distending toxin. Infect Immun 2005; 73:4846-52. [PMID: 16040998 PMCID: PMC1201191 DOI: 10.1128/iai.73.8.4846-4852.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinobacillus actinomycetemcomitans produces a toxin called cytolethal distending toxin (CDT), which causes host cell DNA damage leading to the induction of DNA damage checkpoint pathways. CDT consists of three subunits, CdtA, CdtB, and CdtC. CdtB is the active subunit of CDT and exerts its effect as a nuclease that damages nuclear DNA, triggering cell cycle arrest. In the present study, we confirmed that the only combination of toxin proteins causing cell cycle arrest was that of all three recombinant CDT (rCDT) protein subunits. Furthermore, in order for rCDT to demonstrate toxicity, it was necessary for CdtA and CdtC to access the cell before CdtB. The coexistence of CdtA and CdtC was necessary for these subunits to bind to the cell. Cells treated with the glucosylceramide synthesis inhibitor 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol showed resistance to the cytotoxicity induced by rCDT. Furthermore, LY-B cells, which are deficient in the biosynthesis of sphingolipid, also showed resistance to the cytotoxicity induced by rCDT. To evaluate the binding of each subunit for glucosylceramides, we performed thin-layer chromatography immunostaining. The results indicated that each subunit reacted with the glycosphingolipids GM1, GM2, GM3, Gb3, and Gb4. The rCDT mixture incubated with liposomes containing GM3 displayed partially reduced toxicity. These results indicate that GM3 can act as a CDT receptor.
Collapse
Affiliation(s)
- Koji Mise
- Department of Preventive Dentistry, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Belibasakis GN, Johansson A, Wang Y, Chen C, Lagergård T, Kalfas S, Lerner UH. Cytokine responses of human gingival fibroblasts to Actinobacillus actinomycetemcomitans cytolethal distending toxin. Cytokine 2005; 30:56-63. [PMID: 15804596 DOI: 10.1016/j.cyto.2004.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 11/26/2004] [Accepted: 11/29/2004] [Indexed: 11/23/2022]
Abstract
Actinobacillus actinomycetemcomitans is implicated in the pathogenesis of localized aggressive periodontitis, and has the capacity to express a cytolethal distending toxin (Cdt). Gingival fibroblasts (GF) are resident cells of the periodontium, which can express several osteolytic cytokines. The aims of this study were a) to investigate the role of Cdt in A. actinomycetemcomitans-induced expression of osteolytic cytokines and their cognate receptors in GF and b) to determine if the previously demonstrated induction of receptor activator of NFkappaB ligand (RANKL) by A. actinomycetemcomitans is mediated by these pro-inflammatory cytokines or by prostaglandin E(2) (PGE(2)). A. actinomycetemcomitans clearly induced interleukin (IL)-6, IL-1beta, and to a minimal extent, tumor necrosis factor (TNF)-alpha mRNA expression. At the protein level, IL-6 but not IL-1beta or TNF-alpha expression was stimulated. The mRNA expression of the different receptor subtypes recognizing IL-6, IL-1beta and TNF-alpha was not affected. A cdt-knockout strain of A. actinomycetemcomitans had similar effects on cytokine and cytokine receptor mRNA expression, compared to its parental wild-type strain. Purified Cdt stimulated IL-6, but not IL-1beta or TNF-alpha protein biosynthesis. Antibodies neutralizing IL-6, IL-1 or TNF-alpha, and the PGE(2) synthesis inhibitor indomethacin, did not affect A. actinomycetemcomitans-induced RANKL expression. In conclusion, a) A. actinomycetemcomitans induces IL-6 production in GF by a mechanism largely independent of its Cdt and b) A. actinomycetemcomitans-induced RANKL expression in GF occurs independently of IL-1, IL-6, TNF-alpha, or PGE(2).
Collapse
MESH Headings
- Aggregatibacter actinomycetemcomitans/genetics
- Aggregatibacter actinomycetemcomitans/pathogenicity
- Bacterial Toxins/toxicity
- Carrier Proteins/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cytokines/drug effects
- Cytokines/genetics
- Cytokines/metabolism
- Dinoprostone/metabolism
- Fibroblasts/drug effects
- Fibroblasts/immunology
- Gene Expression Regulation/drug effects
- Gingiva/drug effects
- Gingiva/metabolism
- Gingiva/microbiology
- Humans
- Indomethacin/pharmacology
- Inflammation Mediators/immunology
- Inflammation Mediators/metabolism
- Interleukin 1 Receptor Antagonist Protein
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mutation
- RANK Ligand
- Receptor Activator of Nuclear Factor-kappa B
- Receptors, Interleukin-1/drug effects
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Receptors, Interleukin-1 Type II
- Receptors, Interleukin-6/drug effects
- Receptors, Interleukin-6/genetics
- Receptors, Interleukin-6/metabolism
- Receptors, Tumor Necrosis Factor, Type I/drug effects
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/drug effects
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Sialoglycoproteins/pharmacology
Collapse
Affiliation(s)
- G N Belibasakis
- Division of Oral Microbiology, Department of Odontology, S-901 87 Umeå University, Umeå, Sweden.
| | | | | | | | | | | | | |
Collapse
|