1
|
Su HL, Lai SJ, Tsai KC, Fung KM, Lung TL, Hsu HM, Wu YC, Liu CH, Lai HX, Lin JH, Tseng TS. Structure-guided identification and characterization of potent inhibitors targeting PhoP and MtrA to combat mycobacteria. Comput Struct Biotechnol J 2024; 23:1477-1488. [PMID: 38623562 PMCID: PMC11016868 DOI: 10.1016/j.csbj.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Mycobacteria are causative agents of tuberculosis (TB), which is a global health concern. Drug-resistant TB strains are rapidly emerging, thereby necessitating the urgent development of new drugs. Two-component signal transduction systems (TCSs) are signaling pathways involved in the regulation of various bacterial behaviors and responses to environmental stimuli. Applying specific inhibitors of TCSs can disrupt bacterial signaling, growth, and virulence, and can help combat drug-resistant TB. We conducted a comprehensive pharmacophore-based inhibitor screening and biochemical and biophysical examinations to identify, characterize, and validate potential inhibitors targeting the response regulators PhoP and MtrA of mycobacteria. The constructed pharmacophore model Phar-PR-n4 identified effective inhibitors of formation of the PhoP-DNA complex: ST132 (IC50 = 29 ± 1.6 µM) and ST166 (IC50 = 18 ± 1.3 µM). ST166 (KD = 18.4 ± 4.3 μM) and ST132 (KD = 14.5 ± 0.1 μM) strongly targeted PhoP in a slow-on, slow-off manner. The inhibitory potency and binding affinity of ST166 and ST132 for MtrAC were comparable to those of PhoP. Structural analyses and molecular dynamics simulations revealed that ST166 and ST132 mainly interact with the α8-helix and C-terminal β-hairpin of PhoP, with functionally essential residue hotspots for structure-based inhibitor optimization. Moreover, ST166 has in vitro antibacterial activity against Macrobacterium marinum. Thus, ST166, with its characteristic 1,2,5,6-tetrathiocane and terminal sulphonic groups, has excellent potential as a candidate for the development of novel antimicrobial agents to combat pathogenic mycobacteria.
Collapse
Affiliation(s)
- Han-Li Su
- Department of Emergency Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 600, Taiwan
| | - Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kit-Man Fung
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei 11529, Taiwan
| | - Tse-Lin Lung
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Hsing-Mien Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Yi-Chen Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Ching-Hui Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Hui-Xiang Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei, Taiwan
- Food Industry Research and Development Institute, Hsinchu City, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung,Taiwan
| |
Collapse
|
2
|
Vemparala B, Valiya Parambathu A, Saini DK, Dixit NM. An Evolutionary Paradigm Favoring Cross Talk between Bacterial Two-Component Signaling Systems. mSystems 2022; 7:e0029822. [PMID: 36264076 PMCID: PMC9765234 DOI: 10.1128/msystems.00298-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/20/2022] [Indexed: 12/25/2022] Open
Abstract
The prevalent paradigm governing bacterial two-component signaling systems (TCSs) is specificity, wherein the histidine kinase (HK) of a TCS exclusively activates its cognate response regulator (RR). Cross talk, where HKs activate noncognate RRs, is considered evolutionarily disadvantageous because it can compromise adaptive responses by leaking signals. Yet cross talk is observed in several bacteria. Here, to resolve this paradox, we propose an alternative paradigm where cross talk can be advantageous. We envisioned programmed environments, wherein signals appear in predefined sequences. In such environments, cross talk that primes bacteria to upcoming signals may improve adaptive responses and confer evolutionary benefits. To test this hypothesis, we employed mathematical modeling of TCS signaling networks and stochastic evolutionary dynamics simulations. We considered the comprehensive set of bacterial phenotypes, comprising thousands of distinct cross talk patterns competing in varied signaling environments. Our simulations predicted that in programmed environments phenotypes with cross talk facilitating priming would outcompete phenotypes without cross talk. In environments where signals appear randomly, bacteria without cross talk would dominate, explaining the specificity widely seen. Additionally, a testable prediction was that the phenotypes selected in programmed environments would display one-way cross talk, ensuring priming to future signals. Interestingly, the cross talk networks we deduced from available data on TCSs of Mycobacterium tuberculosis all displayed one-way cross talk, which was consistent with our predictions. Our study thus identifies potential evolutionary underpinnings of cross talk in bacterial TCSs, suggests a reconciliation of specificity and cross talk, makes testable predictions of the nature of cross talk patterns selected, and has implications for understanding bacterial adaptation and the response to interventions. IMPORTANCE Bacteria use two-component signaling systems (TCSs) to sense and respond to environmental changes. The prevalent paradigm governing TCSs is specificity, where signal flow through TCSs is insulated; leakage to other TCSs is considered evolutionarily disadvantageous. Yet cross talk between TCSs is observed in many bacteria. Here, we present a potential resolution of this paradox. We envision programmed environments, wherein stimuli appear in predefined sequences. Cross talk that primes bacteria to upcoming stimuli could then confer evolutionary benefits. We demonstrate this benefit using mathematical modeling and evolutionary simulations. Interestingly, we found signatures of predicted cross talk patterns in Mycobacterium tuberculosis. Furthermore, specificity was selected in environments where stimuli occurred randomly, thus reconciling specificity and cross talk. Implications follow for understanding bacterial evolution and for interventions.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Arjun Valiya Parambathu
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
3
|
Farzand R, Haigh RD, Monk P, Haldar P, Patel H, Pareek M, Verma R, Barer MR, Woltmann G, Ahyow L, Jagatia H, Decker J, Mukamolova GV, Cooper AM, Garton NJ, O’Hare HM. A Persistent Tuberculosis Outbreak in the UK Is Characterized by Hydrophobic fadB4-Deficient Mycobacterium tuberculosis That Replicates Rapidly in Macrophages. mBio 2022; 13:e0265622. [PMID: 36374090 PMCID: PMC9765663 DOI: 10.1128/mbio.02656-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The genetic diversity of Mycobacterium tuberculosis can influence disease severity and transmissibility. To better understand how this diversity influences individuals and communities, we phenotyped M. tuberculosis that was causing a persistent outbreak in the East Midlands, United Kingdom. Compared to nonoutbreak isolates, bacilli had higher lipid contents and more hydrophobic cell surfaces. In macrophage infection models, the bacteria increased more rapidly, provoked the enhanced accumulation of macrophage lipid droplets and enhanced the secretion of IL-1β. Natural deletions in fadB4, nrdB, and plcC distinguished the outbreak isolates from other lineage 3 isolates in the region. fadB4 is annotated with a putative role in cell envelope biosynthesis, so the loss of this gene has the potential to alter the interactions of bacteria with immune cells. Reintroduction of fadB4 to the outbreak strain led to a phenotype that more closely resembled those of nonoutbreak strains. The improved understanding of the microbiological characteristics and the corresponding genetic polymorphisms that associate with outbreaks have the potential to inform tuberculosis control. IMPORTANCE Tuberculosis (TB) killed 1.5 million people in 2020 and affects every country. The extent to which the natural genetic diversity of Mycobacterium tuberculosis influences disease manifestation at both the individual and epidemiological levels remains poorly understood. Insights into how pathogen polymorphisms affect patterns of TB have the potential to translate into clinical and public health practice. Two distinct lineage 3 strains isolated from local TB outbreaks, one of which (CH) was rapidly terminated and the other of which (Lro) persistently transmitted for over a decade, provided us with an opportunity to study these issues. We compared genome sequences, microbiological characteristics, and early immune responses that were evoked upon infection. Our results indicate that the natural lack of fadB4 in the Lro strain contributes to its unique features.
Collapse
Affiliation(s)
- Robeena Farzand
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Richard D. Haigh
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Philip Monk
- Public Health England, Department of Health and Social Care in England, Government Agency, East Midlands, UK
| | - Pranabashis Haldar
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Hemu Patel
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
- University Hospitals Leicester NHS Trust, University of Leicestergrid.9918.9, Leicester, UK
| | - Manish Pareek
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
- University Hospitals Leicester NHS Trust, University of Leicestergrid.9918.9, Leicester, UK
| | - Raman Verma
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
- University Hospitals Leicester NHS Trust, University of Leicestergrid.9918.9, Leicester, UK
| | - Michael R. Barer
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Gerrit Woltmann
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
- University Hospitals Leicester NHS Trust, University of Leicestergrid.9918.9, Leicester, UK
| | - Lauren Ahyow
- National TB Unit, UK Health Security Agency, Government Agency, London, UK
| | - Heena Jagatia
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Jonathan Decker
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Galina V. Mukamolova
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Andrea M. Cooper
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Natalie J. Garton
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| | - Helen M. O’Hare
- Leicester TB Research Group, Department of Respiratory Sciences, University of Leicestergrid.9918.9, Leicester, UK
| |
Collapse
|
4
|
Giacalone D, Yap RE, Ecker AMV, Tan S. PrrA modulates Mycobacterium tuberculosis response to multiple environmental cues and is critically regulated by serine/threonine protein kinases. PLoS Genet 2022; 18:e1010331. [PMID: 35913986 PMCID: PMC9371303 DOI: 10.1371/journal.pgen.1010331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/11/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to adapt to its surrounding environment is critical for the bacterium to successfully colonize its host. Transcriptional changes are a vital mechanism by which Mtb responds to key environmental signals experienced, such as pH, chloride (Cl-), nitric oxide (NO), and hypoxia. However, much remains unknown regarding how Mtb coordinates its response to the disparate signals seen during infection. Utilizing a transcription factor (TF) overexpression plasmid library in combination with a pH/Cl--responsive luciferase reporter, we identified the essential TF, PrrA, part of the PrrAB two-component system, as a TF involved in modulation of Mtb response to pH and Cl-. Further studies revealed that PrrA also affected Mtb response to NO and hypoxia, with prrA overexpression dampening induction of NO and hypoxia-responsive genes. PrrA is phosphorylated not just by its cognate sensor histidine kinase PrrB, but also by serine/threonine protein kinases (STPKs) at a second distinct site. Strikingly, a STPK-phosphoablative PrrA variant was significantly dampened in its response to NO versus wild type Mtb, disrupted in its ability to adaptively enter a non-replicative state upon extended NO exposure, and attenuated for in vivo colonization. Together, our results reveal PrrA as an important regulator of Mtb response to multiple environmental signals, and uncover a critical role of STPK regulation of PrrA in its function. Vital to successful host colonization by Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the bacterium’s ability to respond and adapt to changes in its local environment during infection. Here, we discover that the essential transcription factor PrrA, part of the PrrAB two-component system (TCS), modulates Mtb response to four important environmental cues encountered within the host: pH, chloride, nitric oxide, and hypoxia. PrrA acts as a rheostat, adjusting the amplitude of Mtb gene expression changes upon bacterial exposure to each of the four environmental signals. Further, we reveal a critical impact of serine/threonine protein kinases (STPKs) on PrrA function, with prevention of STPK phosphorylation of PrrA disrupting adaptive response of Mtb to growth-inhibiting cues and attenuating the bacterium’s ability to colonize its host. Our work uncovers PrrA as a regulator with broad impact across environmental signals, and highlights how two regulatory systems, TCSs and STPKs, critically interact in coordinating Mtb response to environmental cues.
Collapse
Affiliation(s)
- David Giacalone
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Rochelle E. Yap
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Alwyn M. V. Ecker
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Tsui CKM, Sorrentino F, Narula G, Mendoza-Losana A, del Rio RG, Herrán EP, Lopez A, Bojang A, Zheng X, Remuiñán-Blanco MJ, Av-Gay Y. Hit Compounds and Associated Targets in Intracellular Mycobacterium tuberculosis. Molecules 2022; 27:molecules27144446. [PMID: 35889319 PMCID: PMC9324642 DOI: 10.3390/molecules27144446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is one of the most devastating infectious agents in the world. Chemical-genetic characterization through in vitro evolution combined with whole genome sequencing analysis was used identify novel drug targets and drug resistance genes in Mtb associated with its intracellular growth in human macrophages. We performed a genome analysis of 53 Mtb mutants resistant to 15 different hit compounds. We found nonsynonymous mutations/indels in 30 genes that may be associated with drug resistance acquisitions. Beyond confirming previously identified drug resistance mechanisms such as rpoB and lead targets reported in novel anti-tuberculosis drug screenings such as mmpL3, ethA, and mbtA, we have discovered several unrecognized candidate drug targets including prrB. The exploration of the Mtb chemical mutant genomes could help novel drug discovery and the structural biology of compounds and associated mechanisms of action relevant to tuberculosis treatment.
Collapse
Affiliation(s)
- Clement K. M. Tsui
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore 308442, Singapore
| | - Flavia Sorrentino
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Gagandeep Narula
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
| | - Alfonso Mendoza-Losana
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
- Department of Bioengineering and Aerospace Engineering, Carlos III University of Madrid, 28040 Madrid, Spain
| | - Ruben Gonzalez del Rio
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Esther Pérez Herrán
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Abraham Lopez
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Adama Bojang
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
| | - Xingji Zheng
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
| | - Modesto Jesus Remuiñán-Blanco
- GSK, Global Health Medicines R&D, PTM, Tres Cantos, 28760 Madrid, Spain; (A.M.-L.); (R.G.d.R.); (E.P.H.); (M.J.R.-B.)
| | - Yossef Av-Gay
- Department of Medicine and Microbiology and Immunology, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (C.K.M.T.); (F.S.); (G.N.); (A.L.); (A.B.); (X.Z.)
- Correspondence: ; Tel.: +1-604-822-3432
| |
Collapse
|
6
|
Malhotra V, Okon BP, Satsangi AT, Das S, Waturuocha UW, Vashist A, Clark-Curtiss JE, Saini DK. Mycobacterium tuberculosis PknK Substrate Profiling Reveals Essential Transcription Terminator Protein Rho and Two-Component Response Regulators PrrA and MtrA as Novel Targets for Phosphorylation. Microbiol Spectr 2022; 10:e0135421. [PMID: 35404097 PMCID: PMC9045387 DOI: 10.1128/spectrum.01354-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis protein kinase K regulates growth adaptation by facilitating mycobacterial survival in response to a variety of in vitro and in vivo stress conditions. Here, we further add that pknK transcription is responsive to carbon and nitrogen starvation signals. The increased survival of an M. tuberculosis ΔpknK mutant strain under carbon- and nitrogen-limiting growth conditions compared to the wild-type (WT) H37Rv suggests an integral role of PknK in regulating growth during metabolic stress. To identify the downstream targets of PknK-mediated signaling, we compared phosphoproteomic and transcription profiles of mycobacterial strains overexpressing WT and phosphorylation-defective PknK. Results implicate PknK as a signaling protein that can regulate several enzymes involved in central metabolism, transcription regulation, and signal transduction. A key finding of this study was the identification of two essential two-component response regulator (RR) proteins, PrrA and MtrA, and Rho transcription terminator, as unique targets for PknK. We confirm that PknK interacts with and phosphorylates PrrA, MtrA, and Rho in vivo. PknK-mediated phosphorylation of MtrA appears to increase binding of the RR to the cognate probe DNA. However, dual phosphorylation of MtrA and PrrA response regulators by PknK and their respective cognate sensor kinases in vitro showed nominal additive effect on the mobility of the protein-DNA complex, suggesting the presence of a potential fine-tuning of the signal transduction pathway which might respond to multiple cues. IMPORTANCE Networks of gene regulation and signaling cascades are fundamental to the pathogenesis of Mycobacterium tuberculosis in adapting to the continuously changing intracellular environment in the host. M. tuberculosis protein kinase K is a transcription regulator that responds to diverse environmental signals and facilitates stress-induced growth adaptation in culture and during infection. This study identifies multiple signaling interactions of PknK and provides evidence that PknK can change the transcriptional landscape during growth transitions by connecting distinctly different signal transduction and regulatory pathways essential for mycobacterial survival.
Collapse
Affiliation(s)
- Vandana Malhotra
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Blessing P. Okon
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Akash T. Satsangi
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Sumana Das
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Uchenna Watson Waturuocha
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Josephine E. Clark-Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Sulman S, Savidge BO, Alqaseer K, Das MK, Nezam Abadi N, Pearl JE, Turapov O, Mukamolova GV, Akhtar MW, Cooper AM. Balance between Protection and Pathogenic Response to Aerosol Challenge with Mycobacterium tuberculosis (Mtb) in Mice Vaccinated with TriFu64, a Fusion Consisting of Three Mtb Antigens. Vaccines (Basel) 2021; 9:vaccines9050519. [PMID: 34070048 PMCID: PMC8158147 DOI: 10.3390/vaccines9050519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis vaccines capable of reducing disease worldwide have proven difficult to develop. BCG is effective in limiting childhood disease, but adult TB is still a major public health issue. Development of new vaccines requires identification of antigens that are both spatially and temporally available throughout infection, and immune responses to which reduce bacterial burden without increasing pathologic outcomes. Subunit vaccines containing antigen require adjuvants to drive appropriate long-lived responses. We generated a triple-antigen fusion containing the virulence-associated EsxN (Rv1793), the PPE42 (Rv2608), and the latency associated Rv2628 to investigate the balance between bacterial reduction and weight loss in an animal model of aerosol infection. We found that in both a low pattern recognition receptor (PRR) engaging adjuvant and a high PRR-engaging adjuvant (MPL/TDM/DDA) the triple-antigen fusion could reduce the bacterial burden, but also induced weight loss in the mice upon aerosol infection. The weight loss was associated with an imbalance between TNFα and IL-17 transcription in the lung upon challenge. These data indicate the need to assess both protective and pathogenic responses when investigating subunit vaccine activity.
Collapse
Affiliation(s)
- Sadaf Sulman
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan;
| | - Benjamin O. Savidge
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Kawther Alqaseer
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
- Department of Basic Science, Faculty of Nursing, University of Kufa, P.O. Box 21, Kufa, Najaf Governorate, Najaf 540011, Iraq
| | - Mrinal K. Das
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Neda Nezam Abadi
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - John E. Pearl
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Obolbek Turapov
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - Galina V. Mukamolova
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
| | - M. Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan;
| | - Andrea May Cooper
- Department Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK; (S.S.); (B.O.S.); (K.A.); (M.K.D.); (N.N.A.); (J.E.P.); (O.T.); (G.V.M.)
- Leicester Tuberculosis Research Group—LTBRG, University of Leicester, Leicester LE1 7RH, UK
- Correspondence: ; Tel.: +44-(0)116-252-2957; Fax: +44-(0)116-252-5030
| |
Collapse
|
8
|
Li M, Gašparovič H, Weng X, Chen S, Korduláková J, Jessen-Trefzer C. The Two-Component Locus MSMEG_0244/0246 Together With MSMEG_0243 Affects Biofilm Assembly in M. smegmatis Correlating With Changes in Phosphatidylinositol Mannosides Acylation. Front Microbiol 2020; 11:570606. [PMID: 33013801 PMCID: PMC7516205 DOI: 10.3389/fmicb.2020.570606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Ferric and ferrous iron is an essential transition metal for growth of many bacterial species including mycobacteria. The genomic region msmeg_0234 to msmeg_0252 from Mycobacterium smegmatis is putatively involved in iron/heme metabolism. We investigate the genes encoding the presumed two component system MSMEG_0244/MSMEG_0246, the neighboring gene msmeg_0243 and their involvement in this process. We show that purified MSMEG_0243 indeed is a heme binding protein. Deletion of msmeg_0243/msmeg_0244/msmeg_0246 in Mycobacterium smegmatis leads to a defect in biofilm formation and colony growth on solid agar, however, this phenotype is independent of the supplied iron source. Further, analysis of the corresponding mutant and its lipids reveals that changes in morphology and biofilm formation correlate with altered acylation patterns of phosphatidylinositol mannosides (PIMs). We provide the first evidence that msmeg_0244/msmeg_0246 work in concert in cellular lipid homeostasis, especially in the maintenance of PIMs, with the heme-binding protein MSMEG_0243 as potential partner.
Collapse
Affiliation(s)
- Miaomaio Li
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Henrich Gašparovič
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Xing Weng
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Si Chen
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Chang J, Lee RE, Lee W. A pursuit of Staphylococcus aureus continues: a role of persister cells. Arch Pharm Res 2020; 43:630-638. [PMID: 32627141 DOI: 10.1007/s12272-020-01246-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a pathogen that causes critical diseases, such as pneumonia, endocarditis, and bacteremia, upon gaining access to the bloodstream of the host. Because host innate immunity alone cannot fight against this rapidly expanding pathogen, the use of antibiotic agents is necessary to clear out S. aureus. However, sub-populations of S. aureus fail to respond to the antibiotics resulting in ineffective clearance of the bacteria. One mechanism by which S. aureus does not respond to the antibiotics is by developing resistance through alterations in its genetic makeup, and genetic studies have revealed a major portion of mechanisms that are responsible for the rise of these antibiotic-resistant strains. Another sub-population that fails to respond to the antibiotics is called persister cells. There is a mounting clinical evidence that these persister cells significantly contribute to the antibiotic failure and persistent infection, but a clear mechanistic picture of the formation of the S. aureus persister cells is unavailable. This review focuses on drawing out a mechanistic map of factors that contribute to the formation of S. aureus persister cells. Understanding the mechanism will provide future direction for the development of novel antibiotic strategies to more efficiently tackle infections caused by S. aureus.
Collapse
Affiliation(s)
- JuOae Chang
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Rho-Eun Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Gyeonggi-do, South Korea.
| |
Collapse
|
10
|
Makarov V, Salina E, Reynolds RC, Kyaw Zin PP, Ekins S. Molecule Property Analyses of Active Compounds for Mycobacterium tuberculosis. J Med Chem 2020; 63:8917-8955. [PMID: 32259446 DOI: 10.1021/acs.jmedchem.9b02075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) continues to claim the lives of around 1.7 million people per year. Most concerning are the reports of multidrug drug resistance. Paradoxically, this global health pandemic is demanding new therapies when resources and interest are waning. However, continued tuberculosis drug discovery is critical to address the global health need and burgeoning multidrug resistance. Many diverse classes of antitubercular compounds have been identified with activity in vitro and in vivo. Our analyses of over 100 active leads are representative of thousands of active compounds generated over the past decade, suggests that they come from few chemical classes or natural product sources. We are therefore repeatedly identifying compounds that are similar to those that preceded them. Our molecule-centered cheminformatics analyses point to the need to dramatically increase the diversity of chemical libraries tested and get outside of the historic Mtb property space if we are to generate novel improved antitubercular leads.
Collapse
Affiliation(s)
- Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Elena Salina
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Robert C Reynolds
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, NP 2540 J, 1720 Second Avenue South, Birmingham, Alabama 35294-3300, United States
| | - Phyo Phyo Kyaw Zin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, North Carolina 27606, United States
| |
Collapse
|
11
|
Abstract
Progress against tuberculosis (TB) requires faster-acting drugs. Mycobacterium tuberculosis (Mtb) is the leading cause of death by an infectious disease and its treatment is challenging and lengthy. Mtb is remarkably successful, in part, due to its ability to become dormant in response to host immune pressures. The DosRST two-component regulatory system is induced by hypoxia, nitric oxide and carbon monoxide and remodels Mtb physiology to promote nonreplicating persistence (NRP). NRP bacteria are thought to play a role in the long course of TB treatment. Therefore, inhibitors of DosRST-dependent adaptation may function to kill this reservoir of persisters and potentially shorten therapy. This review examines the function of DosRST, newly discovered compounds that inhibit DosRST signaling and considers future development of DosRST inhibitors as adjunct therapies.
Collapse
|
12
|
Kullapanich C, Dubbs JM, Mongkolsuk S. Inactivation of the Agrobacterium tumefaciens ActSR system affects resistance to multiple stresses with increased H 2O 2 sensitivity due to reduced expression of hemH. MICROBIOLOGY-SGM 2020; 165:1117-1134. [PMID: 31339484 DOI: 10.1099/mic.0.000838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Agrobacterium tumefaciens ActSR two-component regulatory system is a member of a homologous group of global redox-responsive regulatory systems that adjust the expression of energy-consuming and energy-supplying metabolic pathways in order to maintain cellular redox balance. In this study, the transcriptional organization of the hrpB-actSR locus was determined and the effect of actSR system inactivation on stress resistance was investigated. It was found that hrpB is transcribed as a monocistronic mRNA and actS is transcribed along with actR as a bicistronic mRNA, while actR is also transcribed as a monocistronic message. Each message is initiated from a separate promoter. Inactivation of actR resulted in decreased resistance to membrane stress (sodium dodecyl sulfate), acid stress (pH 5.5), iron starvation (bipyridyl) and iron excess (FeCl3), and antibiotic stress (tetracycline and ciprofloxacin). Resistance to oxidative stress in the form of organic peroxide (cumene hydroperoxide) increased, while resistance to inorganic peroxide (H2O2) decreased. An actR insertion mutant displayed reduced catalase activity, even though transcription of katA and catE remained unchanged. Complementation of the actR inactivation mutant with plasmid-encoded actR or overexpression of hemH, encoding ferrochelatase, restored wild-type catalase activity and H2O2 resistance levels. Gel mobility shift and hemH promoter-lacZ fusion results indicated that ActR is a positive regulator of hemH that binds directly to the hemH promoter region. Thus, inactivation of the A. tumefaciens ActSR system affects resistance to multiple stresses, including reduced resistance to H2O2 resulting from a reduction in catalase activity due to reduced expression of hemH.
Collapse
Affiliation(s)
- Chitrasak Kullapanich
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Center of Excellence on Environmental Health and Toxicology, EHT Ministry of Education, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
13
|
Maarsingh JD, Yang S, Park JG, Haydel SE. Comparative transcriptomics reveals PrrAB-mediated control of metabolic, respiration, energy-generating, and dormancy pathways in Mycobacterium smegmatis. BMC Genomics 2019; 20:942. [PMID: 31810444 PMCID: PMC6898941 DOI: 10.1186/s12864-019-6105-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/13/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mycobacterium smegmatis is a saprophytic bacterium frequently used as a genetic surrogate to study pathogenic Mycobacterium tuberculosis. The PrrAB two-component genetic regulatory system is essential in M. tuberculosis and represents an attractive therapeutic target. In this study, transcriptomic analysis (RNA-seq) of an M. smegmatis ΔprrAB mutant was used to define the PrrAB regulon and provide insights into the essential nature of PrrAB in M. tuberculosis. RESULTS RNA-seq differential expression analysis of M. smegmatis wild-type (WT), ΔprrAB mutant, and complementation strains revealed that during in vitro exponential growth, PrrAB regulates 167 genes (q < 0.05), 57% of which are induced in the WT background. Gene ontology and cluster of orthologous groups analyses showed that PrrAB regulates genes participating in ion homeostasis, redox balance, metabolism, and energy production. PrrAB induced transcription of dosR (devR), a response regulator gene that promotes latent infection in M. tuberculosis and 21 of the 25 M. smegmatis DosRS regulon homologues. Compared to the WT and complementation strains, the ΔprrAB mutant exhibited an exaggerated delayed growth phenotype upon exposure to potassium cyanide and respiratory inhibition. Gene expression profiling correlated with these growth deficiency results, revealing that PrrAB induces transcription of the high-affinity cytochrome bd oxidase genes under both aerobic and hypoxic conditions. ATP synthesis was ~ 64% lower in the ΔprrAB mutant relative to the WT strain, further demonstrating that PrrAB regulates energy production. CONCLUSIONS The M. smegmatis PrrAB two-component system regulates respiratory and oxidative phosphorylation pathways, potentially to provide tolerance against the dynamic environmental conditions experienced in its natural ecological niche. PrrAB positively regulates ATP levels during exponential growth, presumably through transcriptional activation of both terminal respiratory branches (cytochrome c bc1-aa3 and cytochrome bd oxidases), despite transcriptional repression of ATP synthase genes. Additionally, PrrAB positively regulates expression of the dormancy-associated dosR response regulator genes in an oxygen-independent manner, which may serve to fine-tune sensory perception of environmental stimuli associated with metabolic repression.
Collapse
Affiliation(s)
- Jason D Maarsingh
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Shanshan Yang
- Bioinformatics Core, Knowledge Enterprise Development, Arizona State University, Tempe, AZ, USA
| | - Jin G Park
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Shelley E Haydel
- School of Life Sciences, Arizona State University, Tempe, AZ, USA. .,The Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
14
|
Li X, Lv X, Lin Y, Zhen J, Ruan C, Duan W, Li Y, Xie J. Role of two-component regulatory systems in intracellular survival of Mycobacterium tuberculosis. J Cell Biochem 2019; 120:12197-12207. [PMID: 31026098 DOI: 10.1002/jcb.28792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/06/2022]
Abstract
The typical two-component regulatory systems (TCSs), consisting of response regulator and histidine kinase, play a central role in survival of pathogenic bacteria under stress conditions such as nutrient starvation, hypoxia, and nitrosative stress. A total of 11 complete paired two-component regulatory systems have been found in Mycobacterium tuberculosis, including a few isolated kinase and regulatory genes. Increasing evidence has shown that TCSs are closely associated with multiple physiological process like intracellular persistence, pathogenicity, and metabolism. This review gives the two-component signal transduction systems in M. tuberculosis and their signal transduction roles in adaption to the environment.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xi Lv
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yanping Lin
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Junfeng Zhen
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Cao Ruan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Wei Duan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yue Li
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Boncan DAT, David AME, Lluisma AO. A CAZyme-Rich Genome of a Taxonomically Novel Rhodophyte-Associated Carrageenolytic Marine Bacterium. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:685-705. [PMID: 29936557 DOI: 10.1007/s10126-018-9840-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Carbohydrate-active enzymes (CAZymes) have significant biotechnological potential as agents for degradation or modification of polysaccharides/glycans. As marine macroalgae are known to be rich in various types of polysaccharides, seaweed-associated bacteria are likely to be a good source of these CAZymes. A genomics approach can be used to explore CAZyme abundance and diversity, but it can also provide deep insights into the biology of CAZyme producers and, in particular, into molecular mechanisms that mediate their interaction with their hosts. In this study, a Gram-negative, aerobic, rod-shaped, carrageenolytic, and culturable marine bacterium designated as AOL6 was isolated from a diseased thallus of a carrageenan-producing farmed rhodophyte, Kappaphycus alvarezii (Gigartinales, Rhodophyta). The whole genome of this bacterium was sequenced and characterized. Sequence reads were assembled producing a high-quality genome assembly. The estimated genome size of the bacterium is 4.4 Mb and a G+C content of 52%. Molecular phylogenetic analysis based on a complete sequence of 16S rRNA, rpoB, and a set of 38 single-copy genes suggests that the bacterium is an unknown species and represents a novel genus in the family Cellvibrionaceae that is most closely related to the genera Teredinibacter and Saccharophagus. Genome comparison with T. turnerae T7901 and S. degradans 2-40 reveals several features shared by the three species, including a large number of CAZymes that comprised > 5% of the total number of protein-coding genes. The high proportion of CAZymes found in the AOL6 genome exceeds that of other known carbohydrate degraders, suggesting a significant capacity to degrade a range of polysaccharides including κ-carrageenan; 34% of these CAZymes have signal peptide sequences for secretion. Three putative κ-carrageenase-encoding genes were identified from the genome of the bacterium via in silico analysis, consistent with the results of the zymography assay (with κ-carrageenan as substrate). Genome analysis also indicated that AOL6 relies exclusively on type 2 secretion system (T2SS) for secreting proteins (possibly including glycoside hydrolases). In relation to T2SS, the product of the pilZ gene was predicted to be highly expressed, suggesting specialization for cell adhesion and secretion of virulence factors. The assignment of proteins to clusters of orthologous groups (COGs) revealed a pattern characteristic of r-strategists. Majority of two-component system proteins identified in the AOL6 genome were also predicted to be involved in chemotaxis and surface colonization. These genomic features suggest that AOL6 is an opportunistic pathogen, adapted to colonizing polysaccharide-rich hosts, including carrageenophytes.
Collapse
Affiliation(s)
- Delbert Almerick T Boncan
- Marine Science Institute, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Anne Marjorie E David
- Marine Science Institute, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
- Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Arturo O Lluisma
- Marine Science Institute, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines.
| |
Collapse
|
16
|
Maarsingh JD, Haydel SE. Mycobacterium smegmatis PrrAB two-component system influences triacylglycerol accumulation during ammonium stress. Microbiology (Reading) 2018; 164:1276-1288. [DOI: 10.1099/mic.0.000705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Jason D. Maarsingh
- 1School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Shelley E. Haydel
- 2Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA
- 1School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
17
|
Kundu M. The role of two-component systems in the physiology of Mycobacterium tuberculosis. IUBMB Life 2018; 70:710-717. [PMID: 29885211 DOI: 10.1002/iub.1872] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 12/14/2022]
Abstract
Tuberculosis is a global health problem, with a third of the world's population infected with the bacillus, Mycobacterium tuberculosis. The problem is exacerbated by the emergence of multidrug resistant and extensively drug resistant strains. The search for new drug targets is therefore a priority for researchers in the field. The two-component systems (TCSs) are central to the ability of the bacterium to sense and to respond appropriately to its environment. Here we summarize current knowledge on the paired TCSs of M. tuberculosis. We discuss what is currently understood regarding the signals to which each of the sensor kinases responds, and the regulons of each of the cognate response regulators. We also discuss what is known regarding attempts to inhibit the TCSs by small molecules and project their potential as pharmacological targets for the development of novel antimycobacterial agents. © 2018 IUBMB Life, 70(8):710-717, 2018.
Collapse
|
18
|
Dual phosphorylation in response regulator protein PrrA is crucial for intracellular survival of mycobacteria consequent upon transcriptional activation. Biochem J 2017; 474:4119-4136. [PMID: 29101285 DOI: 10.1042/bcj20170596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/05/2023]
Abstract
The remarkable ability of Mycobacterium tuberculosis (Mtb) to survive inside human macrophages is attributed to the presence of a complex sensory and regulatory network. PrrA is a DNA-binding regulatory protein, belonging to an essential two-component system (TCS), PrrA/B, which is required for early phase intracellular replication of Mtb. Despite its importance, the mechanism of PrrA/B-mediated signaling is not well understood. In the present study, we demonstrate that the binding of PrrA on the promoter DNA and its consequent activation is cumulatively controlled via dual phosphorylation of the protein. We have further characterized the role of terminal phospho-acceptor domain in the physical interaction of PrrA with its cognate kinase PrrB. The genetic deletion of prrA/B in Mycobacterium smegmatis was possible only in the presence of ectopic copies of the genes, suggesting the essentiality of this TCS in fast-growing mycobacterial strains as well. The overexpression of phospho-mimetic mutant (T6D) altered the growth of M. smegmatis in an in vitro culture and affected the replication of Mycobacterium bovis BCG in mouse peritoneal macrophages. Interestingly, the Thr6 site was found to be conserved in Mtb complex, whereas it was altered in some fast-growing mycobacterial strains, indicating that this unique phosphorylation might be predominant in employing the regulatory circuit in M. bovis BCG and presumably also in Mtb complex.
Collapse
|
19
|
Fernandes GFDS, Man Chin C, Dos Santos JL. Advances in Drug Discovery of New Antitubercular Multidrug-Resistant Compounds. Pharmaceuticals (Basel) 2017; 10:ph10020051. [PMID: 28587160 PMCID: PMC5490408 DOI: 10.3390/ph10020051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB), a disease caused mainly by the Mycobacterium tuberculosis (Mtb), is according to the World Health Organization (WHO) the infectious disease responsible for the highest number of deaths worldwide. The increased number of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains, and the ineffectiveness of the current treatment against latent tuberculosis are challenges to be overcome in the coming years. The scenario of drug discovery becomes alarming when it is considered that the number of new drugs does not increase proportionally to the emergence of drug resistance. In this review, we will demonstrate the current advances in antitubercular drug discovery, focusing on the research of compounds with potent antituberculosis activity against MDR-TB strains. Herein, active compounds against MDR-TB with minimum inhibitory concentrations (MICs) less than 11 µM and low toxicity published in the last 4 years in the databases PubMed, Web of Science and Scopus will be presented and discussed.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| |
Collapse
|
20
|
Gonzalez-Perez M, Murcia M, Parra-Lopez C, Blom J, Tauch A. Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense. New Microbes New Infect 2016; 14:98-105. [PMID: 27818776 PMCID: PMC5072152 DOI: 10.1016/j.nmni.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/02/2016] [Accepted: 09/06/2016] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium avium complex (MAC) contains clinically important nontuberculous mycobacteria worldwide and is the second largest medical complex in the Mycobacterium genus after the Mycobacterium tuberculosis complex. MAC comprises several species that are closely phylogenetically related but diverse regarding their host preference, course of disease, virulence and immune response. In this study we provided immunologic and virulence-related insights into the M. colombiense genome as a model of an opportunistic pathogen in the MAC. By using bioinformatic tools we found that M. colombiense has deletions in the genes involved in p-HBA/PDIM/PGL, PLC, SL-1 and HspX production, and loss of the ESX-1 locus. This information not only sheds light on our understanding the virulence mechanisms used by opportunistic MAC pathogens but also has great potential for the designing of species-specific diagnostic tools.
Collapse
Affiliation(s)
- M.N. Gonzalez-Perez
- Microbiology Department, School of Medicine, National University of Colombia, Bogotá, Colombia
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Corresponding author: M. N. Gonzalez-Perez, Microbiology Department, School of Medicine, National University of Colombia, Bogotá, ColombiaMicrobiology DepartmentSchool of MedicineNational University of ColombiaBogotáColombia
| | - M.I. Murcia
- Microbiology Department, School of Medicine, National University of Colombia, Bogotá, Colombia
| | - C. Parra-Lopez
- Microbiology Department, School of Medicine, National University of Colombia, Bogotá, Colombia
| | - J. Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - A. Tauch
- Microbiology Department, School of Medicine, National University of Colombia, Bogotá, Colombia
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
21
|
Saini DK, Tyagi JS. High-Throughput Microplate Phosphorylation Assays Based on DevR-DevS/Rv2027c 2-Component Signal Transduction Pathway to Screen for Novel Antitubercular Compounds. ACTA ACUST UNITED AC 2016; 10:215-24. [PMID: 15809317 DOI: 10.1177/1087057104272090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DevR-DevS (Rv3133c-Rv3132c) and DevR-Rv2027c have been established through their autophosphorylation and phospho-transfer properties to constitute bonafide regulatory 2-component systems of Mycobacterium tuberculosis. DevR has also been shown by others to play a key regulatory role in the expression of M. tuberculosis genes comprising the dormancy regulon. The authors describe high-throughput phosphorylation assays in a microplate format using DevS and Rv2027c histidine kinases and DevR response regulator proteins from M. tuberculosis. The assays were designed to measure [γ-32P]ATP-dependent autophosphorylation of DevS/Rv2027c and also the phosphotransfer reaction to DevR. First, the optimal reaction conditions were established using the conventional method of radiolabeling the 2-component proteins by [γ-32P]ATP and followed by gel electrophoresis-based analysis. Next, the assays were converted to a high-throughput format in which the radiolabeled protein retained on a filter using mixed cellulose ester-based 96-well filter plates was analyzed for radioactivity retention by scintillation counting. The utility of these assays to screen for inhibitors is illustrated using 2-mercaptobenzimidazole, ethidium bromide, and EDTA. The high quality and flexibility of these assays will enable their use in high-throughput screening for new antitubercular compounds directed against 2-component systems that comprise a novel target in dormant mycobacteria.
Collapse
Affiliation(s)
- Deepak Kumar Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110-029, India
| | | |
Collapse
|
22
|
Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks. J Bacteriol 2016; 198:1360-73. [PMID: 26883824 DOI: 10.1128/jb.00935-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress,M. tuberculosis is prepared for battle against the host defense and able to persist within the human population.
Collapse
|
23
|
Abstract
Two-component regulatory systems (2CRSs) are widely used by bacteria to sense and respond to environmental stimuli with coordinated changes in gene expression. Systems are normally comprised of a sensory kinase protein that activates a transcriptional regulator by phosphorylation. Mycobacteria have few 2CRSs, but they are of key importance for bacterial survival and play important roles in pathogenicity. Mycobacterium tuberculosis has 12 paired two-component regulatory systems (which include a system with two regulators and one sensor, and a split sensor system), as well as four orphan regulators. Several systems are involved in virulence, and disruption of different systems leads to attenuation or hypervirulence. PhoPR plays a major role in regulating cell wall composition, and its inactivation results in sufficient attenuation of M. tuberculosis that deletion strains are live vaccine candidates. MprAB controls the stress response and is required for persistent infections. SenX3-RegX3 is required for control of aerobic respiration and phosphate uptake, and PrrAB is required for adaptation to intracellular infection. MtrAB is an essential system that controls DNA replication and cell division. The remaining systems (KdpDE, NarL, TrcRS, TcrXY, TcrA, PdtaRS, and four orphan regulators) are less well understood. The structure and binding motifs for several regulators have been characterized, revealing variations in function and operation. The sensors are less well characterized, and stimuli for many remain to be confirmed. This chapter reviews our current understanding of the role of two-component systems in mycobacteria, in particular M. tuberculosis.
Collapse
|
24
|
Salina EG, Waddell SJ, Hoffmann N, Rosenkrands I, Butcher PD, Kaprelyants AS. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states. Open Biol 2014; 4:140106. [PMID: 25320096 PMCID: PMC4221891 DOI: 10.1098/rsob.140106] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022] Open
Abstract
Dormancy in non-sporulating bacteria is an interesting and underexplored phenomenon with significant medical implications. In particular, latent tuberculosis may result from the maintenance of Mycobacterium tuberculosis bacilli in non-replicating states in infected individuals. Uniquely, growth of M. tuberculosis in aerobic conditions in potassium-deficient media resulted in the generation of bacilli that were non-culturable (NC) on solid media but detectable in liquid media. These bacilli were morphologically distinct and tolerant to cell-wall-targeting antimicrobials. Bacterial counts on solid media quickly recovered after washing and incubating bacilli in fresh resuscitation media containing potassium. This resuscitation of growth occurred too quickly to be attributed to M. tuberculosis replication. Transcriptomic and proteomic profiling through adaptation to, and resuscitation from, this NC state revealed a switch to anaerobic respiration and a shift to lipid and amino acid metabolism. High concordance with mRNA signatures derived from M. tuberculosis infection models suggests that analogous NC mycobacterial phenotypes may exist during disease and may represent unrecognized populations in vivo. Resuscitation of NC bacilli in potassium-sufficient media was characterized by time-dependent activation of metabolic pathways in a programmed series of processes that probably transit bacilli through challenging microenvironments during infection.
Collapse
Affiliation(s)
- Elena G Salina
- Institution of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry RAS, Moscow, Russia
| | - Simon J Waddell
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Nadine Hoffmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Philip D Butcher
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Arseny S Kaprelyants
- Institution of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry RAS, Moscow, Russia
| |
Collapse
|
25
|
Bellale E, Naik M, VB V, Ambady A, Narayan A, Ravishankar S, Ramachandran V, Kaur P, McLaughlin R, Whiteaker J, Morayya S, Guptha S, Sharma S, Raichurkar A, Awasthy D, Achar V, Vachaspati P, Bandodkar B, Panda M, Chatterji M. Diarylthiazole: An Antimycobacterial Scaffold Potentially Targeting PrrB-PrrA Two-Component System. J Med Chem 2014; 57:6572-82. [DOI: 10.1021/jm500833f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eknath Bellale
- Department
of Medicinal Chemistry, IMED Infection, AstraZeneca, Bellary
Road, Hebbal, Bangalore 560024, India
| | - Maruti Naik
- Department
of Medicinal Chemistry, IMED Infection, AstraZeneca, Bellary
Road, Hebbal, Bangalore 560024, India
| | - Varun VB
- Department
of Medicinal Chemistry, IMED Infection, AstraZeneca, Bellary
Road, Hebbal, Bangalore 560024, India
| | - Anisha Ambady
- Department
of Biosciences, IMED Infection, AstraZeneca, Bellary Road, Hebbal, Bangalore 560024, India
| | - Ashwini Narayan
- Department
of Biosciences, IMED Infection, AstraZeneca, Bellary Road, Hebbal, Bangalore 560024, India
| | - Sudha Ravishankar
- Department
of Biosciences, IMED Infection, AstraZeneca, Bellary Road, Hebbal, Bangalore 560024, India
| | - Vasanthi Ramachandran
- Department
of Biosciences, IMED Infection, AstraZeneca, Bellary Road, Hebbal, Bangalore 560024, India
| | - Parvinder Kaur
- Department
of Biosciences, IMED Infection, AstraZeneca, Bellary Road, Hebbal, Bangalore 560024, India
| | - Robert McLaughlin
- Infection
IMED, AstraZeneca, GHP, Waltham, Massachusetts 02451, United States
| | - James Whiteaker
- Infection
IMED, AstraZeneca, GHP, Waltham, Massachusetts 02451, United States
| | - Sapna Morayya
- Department
of Biosciences, IMED Infection, AstraZeneca, Bellary Road, Hebbal, Bangalore 560024, India
| | - Supreeth Guptha
- Department
of Biosciences, IMED Infection, AstraZeneca, Bellary Road, Hebbal, Bangalore 560024, India
| | - Sreevalli Sharma
- Department
of Biosciences, IMED Infection, AstraZeneca, Bellary Road, Hebbal, Bangalore 560024, India
| | - Anandkumar Raichurkar
- Department
of Medicinal Chemistry, IMED Infection, AstraZeneca, Bellary
Road, Hebbal, Bangalore 560024, India
| | - Disha Awasthy
- Department
of Biosciences, IMED Infection, AstraZeneca, Bellary Road, Hebbal, Bangalore 560024, India
| | - Vijayshree Achar
- Department
of Medicinal Chemistry, IMED Infection, AstraZeneca, Bellary
Road, Hebbal, Bangalore 560024, India
| | - Prakash Vachaspati
- DMPK
and Animal Sciences, IMED Infection, AstraZeneca, Bellary Road, Hebbal, Bangalore 560024, India
| | - Balachandra Bandodkar
- Department
of Medicinal Chemistry, IMED Infection, AstraZeneca, Bellary
Road, Hebbal, Bangalore 560024, India
| | - Manoranjan Panda
- Department
of Medicinal Chemistry, IMED Infection, AstraZeneca, Bellary
Road, Hebbal, Bangalore 560024, India
| | - Monalisa Chatterji
- Department
of Biosciences, IMED Infection, AstraZeneca, Bellary Road, Hebbal, Bangalore 560024, India
| |
Collapse
|
26
|
Kwok AHY, Li Y, Jiang J, Jiang P, Leung FC. Complete genome assembly and characterization of an outbreak strain of the causative agent of swine erysipelas--Erysipelothrix rhusiopathiae SY1027. BMC Microbiol 2014; 14:176. [PMID: 24993343 PMCID: PMC4105556 DOI: 10.1186/1471-2180-14-176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 06/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background Erysipelothrix rhusiopathiae is the causative agent of animal erysipelas and, to a fewer occurrences, human erysipeloid. It is ubiquitous in nature and commensal in diverse species of animals, wild or domestic, from mammals and birds to reptiles and fish. Mechanisms of its virulence and pathogenicity are poorly understood. Results Making use of the complete genome sequencing of E. rhusiopathiae strain SY1027 and comparative genome analysis between the three highly pathogenic strains (SY1027, Fujisawa and ATCC19414), the genomic structure and putative functional elements, such as pathogenicity island (PAI)-like regions, potential virulence factors and horizontal transferring genes of the bacteria are identified. Strain SY1027 genome is 1,752,910 base pairs long, just 30 kilobases smaller than strain Fujisawa, with the same GC level of 36.36%. It contains 1,845 open reading frames (ORF) predicted by GLIMMER 3.02, of which 1,775 were annotated by PGAAP, 1,757 (~95.23%) were annotated by NCBI nr blast, 1,209 by COG database and 1,076 by KEGG database. 37 potential virulence factors were annotated in strain SY1027 by VFDB, while 19 (~51.35%) of them are common in the 2 strains, 7 of which are potentially related to antibiotic resistance and highly conserved (~98-100% match identity (ID)) amongst the three strains of E. rhusiopathiae and modestly homologous to other gastrointestinal tract-inhabiting Firmicutes (~40% match ID), e.g. Clostridium spp., Enterococcus spp. Genomic island- and pathogenicity island-like regions were also predicted, in which some showed association with tRNA and potential virulence factors. Conclusion Complete genome sequencing of Erysipelothrix rhusiopathiae, the causative agent of animal erysipelas, was performed. Molecular identification of various genomic elements pave the way to the better understanding of mechanisms underlying metabolic capabilities, pathogenicity of swine erysipelas and prospective vaccine targets besides the widely used SpaA antigens.
Collapse
Affiliation(s)
| | | | | | | | - Frederick C Leung
- Bioinformatics Center, Nanjing Agricultural University, F202, South Block, Faculty of Science Complex, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
27
|
Chandolia A, Rathor N, Sharma M, Saini NK, Sinha R, Malhotra P, Brahmachari V, Bose M. Functional analysis of mce4A gene of Mycobacterium tuberculosis H37Rv using antisense approach. Microbiol Res 2014; 169:780-7. [PMID: 24556072 DOI: 10.1016/j.micres.2013.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/17/2013] [Accepted: 12/28/2013] [Indexed: 01/21/2023]
Abstract
Antisense strategy is an attractive substitute for knockout mutations created for gene silencing. mce genes have been shown to be involved in mycobacterial uptake and intracellular survival. Here we report reduced expression of mce4A and mce1A genes of Mycobacterium tuberculosis using antisense technology. For this, 1.1 kb region of mce4A and mce1A was cloned in reverse orientation in pSD5 shuttle vector, resulting into antisense constructs pSD5-4AS and pSD5-1AS, respectively. In M. tuberculosis H37Rv approximately 60% reduction in Mce4A and 66% reduction in expression of Mce1A protein were observed. We also observed significantly reduced intracellular survival ability of both antisense strains in comparison to M. tuberculosis containing pSD5 alone. RT-PCR analysis showed antisense did not alter the transcription of upstream and downstream of mceA genes of the respective operon. The colony morphology, in vitro growth characteristics and drug susceptibility profile of the antisense construct remained unchanged. These results demonstrate that antisense can be a promising approach to assign function of a gene in a multiunit operon and could be suitably applied as a strategy.
Collapse
Affiliation(s)
- Amita Chandolia
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| | - Nisha Rathor
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| | - Monika Sharma
- Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| | - Neeraj Kumar Saini
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| | - Rajesh Sinha
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| | - Pawan Malhotra
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Vani Brahmachari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | - Mridula Bose
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| |
Collapse
|
28
|
Jung JY, Madan-Lala R, Georgieva M, Rengarajan J, Sohaskey CD, Bange FC, Robinson CM. The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect Immun 2013; 81:3198-209. [PMID: 23774601 PMCID: PMC3754229 DOI: 10.1128/iai.00611-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) is a diffusible radical gas produced from the activity of nitric oxide synthase (NOS). NOS activity in murine macrophages has a protective role against mycobacteria through generation of reactive nitrogen intermediates (RNIs). However, the production of NO by human macrophages has remained unclear due to the lack of sensitive reagents to detect NO directly. The purpose of this study was to investigate NO production and the consequence to mycobacteria in primary human macrophages. We found that Mycobacterium bovis BCG or Mycobacterium tuberculosis infection of human macrophages induced expression of NOS2 and NOS3 that resulted in detectable production of NO. Treatment with gamma interferon (IFN-γ), l-arginine, and tetrahydrobiopterin enhanced expression of NOS2 and NOS3 isoforms, as well as NO production. Both of these enzymes were shown to contribute to NO production. The maximal level of NO produced by human macrophages was not bactericidal or bacteriostatic to M. tuberculosis or BCG. The number of viable mycobacteria was increased in macrophages that produced NO, and this requires expression of nitrate reductase. An narG mutant of M. tuberculosis persisted but was unable to grow in human macrophages. Taken together, these data (i) enhance our understanding of primary human macrophage potential to produce NO, (ii) demonstrate that the level of RNIs produced in response to IFN-γ in vitro is not sufficient to limit intracellular mycobacterial growth, and (iii) suggest that mycobacteria may use RNIs to enhance their survival in human macrophages.
Collapse
Affiliation(s)
- Joo-Yong Jung
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina, USA
| | | | | | - Jyothi Rengarajan
- Emory Vaccine Center
- Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Charles D. Sohaskey
- Tuberculosis Research Laboratory, Department of Veterans Affairs Medical Center, Long Beach, California, USA
| | | | - Cory M. Robinson
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
29
|
Miotto P, Forti F, Ambrosi A, Pellin D, Veiga DF, Balazsi G, Gennaro ML, Di Serio C, Ghisotti D, Cirillo DM. Genome-wide discovery of small RNAs in Mycobacterium tuberculosis. PLoS One 2012; 7:e51950. [PMID: 23284830 PMCID: PMC3526491 DOI: 10.1371/journal.pone.0051950] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/06/2012] [Indexed: 01/29/2023] Open
Abstract
Only few small RNAs (sRNAs) have been characterized in Mycobacterium tuberculosis and their role in regulatory networks is still poorly understood. Here we report a genome-wide characterization of sRNAs in M. tuberculosis integrating experimental and computational analyses. Global RNA-seq analysis of exponentially growing cultures of M. tuberculosis H37Rv had previously identified 1373 sRNA species. In the present report we show that 258 (19%) of these were also identified by microarray expression. This set included 22 intergenic sRNAs, 84 sRNAs mapping within 5′/3′ UTRs, and 152 antisense sRNAs. Analysis of promoter and terminator consensus sequences identified sigma A promoter consensus sequences for 121 sRNAs (47%), terminator consensus motifs for 22 sRNAs (8.5%), and both motifs for 35 sRNAs (14%). Additionally, 20/23 candidates were visualized by Northern blot analysis and 5′ end mapping by primer extension confirmed the RNA-seq data. We also used a computational approach utilizing functional enrichment to identify the pathways targeted by sRNA regulation. We found that antisense sRNAs preferentially regulated transcription of membrane-bound proteins. Genes putatively regulated by novel cis-encoded sRNAs were enriched for two-component systems and for functional pathways involved in hydrogen transport on the membrane.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, S. Raffaele Scientific Institute, Milan, Italy
| | - Francesca Forti
- Dipartimento di BioScienze, University of Milan, Milan, Italy
| | - Alessandro Ambrosi
- University Statistical Center for Biomedical Sciences – Università Vita-Salute S. Raffaele, Milan, Italy
| | - Danilo Pellin
- University Statistical Center for Biomedical Sciences – Università Vita-Salute S. Raffaele, Milan, Italy
| | - Diogo F. Veiga
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gabor Balazsi
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Maria L. Gennaro
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Clelia Di Serio
- University Statistical Center for Biomedical Sciences – Università Vita-Salute S. Raffaele, Milan, Italy
| | | | - Daniela M. Cirillo
- Emerging Bacterial Pathogens Unit, S. Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
30
|
James JN, Hasan ZU, Ioerger TR, Brown AC, Personne Y, Carroll P, Ikeh M, Tilston-Lunel NL, Palavecino C, Sacchettini JC, Parish T. Deletion of SenX3-RegX3, a key two-component regulatory system of Mycobacterium smegmatis, results in growth defects under phosphate-limiting conditions. MICROBIOLOGY-SGM 2012; 158:2724-2731. [PMID: 22956756 DOI: 10.1099/mic.0.060319-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two component regulatory systems are key elements in the control of bacterial gene expression in response to environmental perturbations. The SenX3-RegX3 system is implicated in the control of phosphate uptake in Mycobacterium smegmatis and Mycobacterium tuberculosis. regX3 is reported to be essential in M. smegmatis, but not in M. tuberculosis. We attempted to construct complete senX3-regX3 operon deletion strains of M. smegmatis; initially we found that the operon could only be deleted when another functional copy was provided. Using a strain in which the only functional copy of the operon was present on an integrating plasmid, we attempted to replace the functional copy with an empty vector. Surprisingly, we obtained strains in which the functional copy had been deleted from the chromosome at a low frequency. We deleted the senX3 gene in a similar fashion, but it was not possible to delete regX3 alone. To identify possible compensatory mutations we sequenced the whole genome of two deletion strains and the wild-type. A synonymous single nucleotide polymorphism (SNP) in a lipoprotein was found in all deletion strains, but not the parental strains, and a frameshift mutation in nhaA was identified in three of the four deletion strains. Operon deletion strains were more sensitive to phosphate limitation, showing a reduced ability to grow at lower phosphate concentrations. The M. tuberculosis operon was able to functionally complement the growth phenotype in M. smegmatis under phosphate-replete conditions, but not under low phosphate conditions, reinforcing the difference between the two species. Our data show that, in contrast with previous reports, it is possible to delete the operon in M. smegmatis, possibly due to the accumulation of compensatory mutations, and that the deletion does affect growth in phosphate.
Collapse
Affiliation(s)
- Jade N James
- Queen Mary University of London, Barts and the London, London, UK
| | | | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Amanda C Brown
- Queen Mary University of London, Barts and the London, London, UK
| | - Yoann Personne
- Queen Mary University of London, Barts and the London, London, UK
| | - Paul Carroll
- Queen Mary University of London, Barts and the London, London, UK
| | - Melanie Ikeh
- Queen Mary University of London, Barts and the London, London, UK
| | | | | | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, Seattle, WA, USA.,Queen Mary University of London, Barts and the London, London, UK
| |
Collapse
|
31
|
Choi JS, Kim RY, Rho S, Ewann F, Mielcarek N, Song MK, Czerkinsky C, Kim JO. Effect of maternal immune status on responsiveness of bacillus calmette-gurin vaccination in mouse neonates. Osong Public Health Res Perspect 2012; 3:68-73. [PMID: 24159493 PMCID: PMC3747646 DOI: 10.1016/j.phrp.2012.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Bacillus Calmette-Guérin (BCG) vaccination has proven to be efficient in immunologically naïve infants; however, it has not been investigated that maternal natural exposure to Mycobacterium and/or BCG vaccine could influence the characteristics of immune responses to BCG in newborns. In this study, we analyzed whether the maternal immune status to M tuberculosis (M tb) can affect neonatal immunity to BCG using a mouse model. METHODS Neonates were obtained from mice that were previously exposed to live BCG, to live M avium, or to heat-killed M tb H37Rv, and from naïve control mothers. One week after birth, the neonates were divided into two subgroups: one group immunized with live BCG via the subcutaneous route and the other group of neonates sham-treated. Interferon-gamma (IFNγ) secretion in response to in vitro stimulation with heat-killed BCG or purified protein derivative (PPD) was examined. Protection against M tb infection was evaluated by challenging mice nasally with live M tb H37Rv followed by counting colonies from spleen and lung homogenates. RESULTS BCG-immunized neonates showed increased IFNγ secretion in response to heat-killed BCG or PPD. All mice in BCG-immunized neonates subgroups showed reduced bacterial burden (colony forming unit) in the lungs when compared with control naive neonate mice. However, no statistically significant difference was observed when comparing BCG-immunized mice born from mothers previously exposed to M avium or immunized with either heat-killed H37Rv or live BCG and mice born from naïve mothers. CONCLUSION The maternal immune status to M tb does not appear to impact on the immunogenicity of BCG vaccine in their progeny in our experimental conditions.
Collapse
Affiliation(s)
- Jong Su Choi
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Ryang Yeo Kim
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
- Institut Pasteur Korea, Soengnam, Korea
| | - Semi Rho
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | | | - Nathalie Mielcarek
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
- Inserm, Lille, France
| | - Man Ki Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Cecil Czerkinsky
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Jae-Ouk Kim
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| |
Collapse
|
32
|
Bretl DJ, Demetriadou C, Zahrt TC. Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis. Microbiol Mol Biol Rev 2011; 75:566-82. [PMID: 22126994 PMCID: PMC3232741 DOI: 10.1128/mmbr.05004-11] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis.
Collapse
Affiliation(s)
| | | | - Thomas C. Zahrt
- Center for Infectious Disease Research and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| |
Collapse
|
33
|
The prrAB two-component system is essential for Mycobacterium tuberculosis viability and is induced under nitrogen-limiting conditions. J Bacteriol 2011; 194:354-61. [PMID: 22081401 DOI: 10.1128/jb.06258-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis prrA-prrB (Rv0903c-Rv0902c) two-component regulatory system is expressed during intracellular growth in human macrophages and is required for early intracellular multiplication in murine macrophages, suggesting its importance in establishing infection. To better understand the function of the prrA-prrB two-component system, we defined the transcriptional characteristics of the prrA and prrB genes during exponential and stationary growth and upon exposure to different environmental stresses and attempted to generate a prrA-prrB deletion mutant. The prrA and prrB genes constitute an operon and are cotranscribed during logarithmic growth, with transcriptional levels decreasing in stationary phase and during hypoxia. Despite the transcriptional differences, PrrA protein levels remained relatively stable throughout growth and in hypoxia. Under conditions of nitrogen limitation, prrAB transcription was induced, while acidic pH stress and carbon starvation did not significantly alter transcript levels. Deletion of the prrAB operon on the chromosome of M. tuberculosis H37Rv occurred only in the presence of an episomal copy of the prrAB genes, indicating that this two-component system is essential for viability. Characterization of the prrAB locus in M. tuberculosis Mt21D3, a previously described prrA transposon mutant, revealed that this strain is not a true prrA knockout mutant. Rather, Tn5367 transposon insertion into the prrA promoter only decreased prrA and prrB transcription and PrrA levels in Mt21D3 compared to those in the parental Mt103 clinical strain. These data provide the first report describing the essentiality of the M. tuberculosis prrAB two-component system and reveal insights into its potential role in mycobacterial growth and metabolism.
Collapse
|
34
|
Roberts G, Vadrevu IS, Madiraju MV, Parish T. Control of CydB and GltA1 expression by the SenX3 RegX3 two component regulatory system of Mycobacterium tuberculosis. PLoS One 2011; 6:e21090. [PMID: 21698211 PMCID: PMC3116866 DOI: 10.1371/journal.pone.0021090] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 05/20/2011] [Indexed: 01/05/2023] Open
Abstract
Two component regulatory systems are used widely by bacteria to coordinate changes in global gene expression profiles in response to environmental signals. The SenX3-RegX3 two component system of Mycobacterium tuberculosis has previously been shown to play a role in virulence and phosphate-responsive control of gene expression. We demonstrate that expression of SenX3-RegX3 is controlled in response to growth conditions, although the absolute changes are small. Global gene expression profiling of a RegX3 deletion strain and wild-type strain in different culture conditions (static, microaerobic, anaerobic), as well as in an over-expressing strain identified a number of genes with changed expression patterns. Among those were genes previously identified as differentially regulated in aerobic culture, including ald (encoding alanine dehydrogenase) cyd,encoding a subunit of the cytochrome D ubiquinol oxidase, and gltA1, encoding a citrate synthase. Promoter activity in the upstream regions of both cydB and gltA1 was altered in the RegX3 deletion strain. DNA-binding assays confirmed that RegX3 binds to the promoter regions of ald, cydB and gltA1 in a phosphorylation-dependent manner. Taken together these data suggest a direct role for the SenX-RegX3 system in modulating expression of aerobic respiration, in addition to its role during phosphate limitation.
Collapse
Affiliation(s)
- Gretta Roberts
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Indumathi S. Vadrevu
- Biomedical Research, The University of Texas Health Center, Tyler, Texas, United States of America
| | - Murty V. Madiraju
- Biomedical Research, The University of Texas Health Center, Tyler, Texas, United States of America
| | - Tanya Parish
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, United Kingdom
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
35
|
Menon S, Wang S. Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. Biochemistry 2011; 50:5948-57. [PMID: 21634789 DOI: 10.1021/bi2005575] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The PhoP protein from Mycobacterium tuberculosis is a response regulator of the OmpR/PhoB subfamily, whose structure consists of an N-terminal receiver domain and a C-terminal DNA-binding domain. How the DNA-binding activities are regulated by phosphorylation of the receiver domain remains unclear due to a lack of structural information on the full-length proteins. Here we report the crystal structure of the full-length PhoP of M. tuberculosis. Unlike other known structures of full-length proteins of the same subfamily, PhoP forms a dimer through its receiver domain with the dimer interface involving α4-β5-α5, a common interface for activated receiver domain dimers. However, the switch residues, Thr99 and Tyr118, are in a conformation resembling those of nonactivated receiver domains. The Tyr118 side chain is involved in the dimer interface interactions. The receiver domain is tethered to the DNA-binding domain through a flexible linker and does not impose structural constraints on the DNA-binding domain. This structure suggests that phosphorylation likely facilitates/stabilizes receiver domain dimerization, bringing the DNA-binding domains to close proximity, thereby increasing their binding affinity for direct repeat DNA sequences.
Collapse
Affiliation(s)
- Smita Menon
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | | |
Collapse
|
36
|
Muttucumaru DN, Smith DA, McMinn EJ, Reese V, Coler RN, Parish T. Mycobacterium tuberculosis Rv0198c, a putative matrix metalloprotease is involved in pathogenicity. Tuberculosis (Edinb) 2011; 91:111-6. [DOI: 10.1016/j.tube.2010.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/11/2010] [Accepted: 11/27/2010] [Indexed: 11/25/2022]
|
37
|
MacArthur I, Parreira VR, Lepp D, Mutharia LM, Vazquez-Boland JA, Prescott JF. The sensor kinase MprB is required for Rhodococcus equi virulence. Vet Microbiol 2011; 147:133-41. [DOI: 10.1016/j.vetmic.2010.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/12/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
|
38
|
Stallings CL, Glickman MS. Is Mycobacterium tuberculosis stressed out? A critical assessment of the genetic evidence. Microbes Infect 2010; 12:1091-101. [PMID: 20691805 PMCID: PMC3587153 DOI: 10.1016/j.micinf.2010.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 07/27/2010] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis is an obligate human intracellular pathogen which remains a major killer worldwide. A remarkable feature of M. tuberculosis infection is the ability of the pathogen to persist within the host for decades despite an impressive onslaught of stresses. In this review we seek to outline the host-inflicted stresses experienced by M. tuberculosis, the bacterial strategies used to withstand these stresses, and how this information should guide our efforts to combat this global pathogen.
Collapse
Affiliation(s)
- Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
39
|
Li Y, Zeng J, Zhang H, He ZG. The characterization of conserved binding motifs and potential target genes for M. tuberculosis MtrAB reveals a link between the two-component system and the drug resistance of M. smegmatis. BMC Microbiol 2010; 10:242. [PMID: 20843371 PMCID: PMC2945938 DOI: 10.1186/1471-2180-10-242] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/16/2010] [Indexed: 01/18/2023] Open
Abstract
Background The two-component systems of Mycobacterium tuberculosis are apparently required for its growth and resistance in hostile host environments. In such environments, MtrAB has been reported to regulate the expression of the M. tuberculosis replication initiator gene, dnaA. However, the dnaA promoter binding sites and many potential target genes for MtrA have yet to be precisely characterized. Results In this study, a 7 bp sequence motif in the dnaA promoter region was identified for MtrA binding using DNaseI footprinting assays and surface plasmon resonance (SPR) analysis. Approximately 420 target genes potentially regulated by MtrA, including the isoniazid inducible gene iniB, were further characterized from M. tuberculosis and M. smegmatis genomes. When assayed using quantitative real-time PCR (qRT-PCR), many of the target genes demonstrated significant expression changes when the antisense mRNA of the mtrA gene was expressed in M. smegmatis. The recombinant mycobacteria grew in length and were more sensitive to two anti-tuberculosis drugs, isoniazid and streptomycin. Conclusions These findings yield critical information about the regulatory mechanisms of the MtrAB two-component system and its role in the drug resistance of M. smegmatis.
Collapse
Affiliation(s)
- Yuqing Li
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | |
Collapse
|
40
|
Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155. BMC Microbiol 2010; 10:121. [PMID: 20412585 PMCID: PMC2867950 DOI: 10.1186/1471-2180-10-121] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 04/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background The usually non-pathogenic soil bacterium Mycobacterium smegmatis is commonly used as a model mycobacterial organism because it is fast growing and shares many features with pathogenic mycobacteria. Proteomic studies of M. smegmatis can shed light on mechanisms of mycobacterial growth, complex lipid metabolism, interactions with the bacterial environment and provide a tractable system for antimycobacterial drug development. The cell wall proteins are particularly interesting in this respect. The aim of this study was to construct a reference protein map for these proteins in M. smegmatis. Results A proteomic analysis approach, based on one dimensional polyacrylamide gel electrophoresis and LC-MS/MS, was used to identify and characterize the cell wall associated proteins of M. smegmatis. An enzymatic cell surface shaving method was used to determine the surface-exposed proteins. As a result, a total of 390 cell wall proteins and 63 surface-exposed proteins were identified. Further analysis of the 390 cell wall proteins provided the theoretical molecular mass and pI distributions and determined that 26 proteins are shared with the surface-exposed proteome. Detailed information about functional classification, signal peptides and number of transmembrane domains are given next to discussing the identified transcriptional regulators, transport proteins and the proteins involved in lipid metabolism and cell division. Conclusion In short, a comprehensive profile of the M. smegmatis cell wall subproteome is reported. The current research may help the identification of some valuable vaccine and drug target candidates and provide foundation for the future design of preventive, diagnostic, and therapeutic strategies against mycobacterial diseases.
Collapse
|
41
|
Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederweis M. Physiology of mycobacteria. Adv Microb Physiol 2009; 55:81-182, 318-9. [PMID: 19573696 DOI: 10.1016/s0065-2911(09)05502-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is a prototrophic, metabolically flexible bacterium that has achieved a spread in the human population that is unmatched by any other bacterial pathogen. The success of M. tuberculosis as a pathogen can be attributed to its extraordinary stealth and capacity to adapt to environmental changes throughout the course of infection. These changes include: nutrient deprivation, hypoxia, various exogenous stress conditions and, in the case of the pathogenic species, the intraphagosomal environment. Knowledge of the physiology of M. tuberculosis during this process has been limited by the slow growth of the bacterium in the laboratory and other technical problems such as cell aggregation. Advances in genomics and molecular methods to analyze the M. tuberculosis genome have revealed that adaptive changes are mediated by complex regulatory networks and signals, resulting in temporal gene expression coupled to metabolic and energetic changes. An important goal for bacterial physiologists will be to elucidate the physiology of M. tuberculosis during the transition between the diverse conditions encountered by M. tuberculosis. This review covers the growth of the mycobacterial cell and how environmental stimuli are sensed by this bacterium. Adaptation to different environments is described from the viewpoint of nutrient acquisition, energy generation, and regulation. To gain quantitative understanding of mycobacterial physiology will require a systems biology approach and recent efforts in this area are discussed.
Collapse
Affiliation(s)
- Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
42
|
Awasthy D, Gaonkar S, Shandil RK, Yadav R, Bharath S, Marcel N, Subbulakshmi V, Sharma U. Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino acid auxotrophy and attenuation of virulence in mice. MICROBIOLOGY-SGM 2009; 155:2978-2987. [PMID: 19542000 DOI: 10.1099/mic.0.029884-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthesis pathway in bacteria. Bioinformatics analysis revealed that the Mycobacterium tuberculosis genome contains four genes (ilvB1, ilvB2, ilvG and ilvX) coding for the large catalytic subunit of AHAS, whereas only one gene (ilvN or ilvH) coding for the smaller regulatory subunit of this enzyme was found. In order to understand the physiological role of AHAS in survival of the organism in vitro and in vivo, we inactivated the ilvB1 gene of M. tuberculosis. The mutant strain was found to be auxotrophic for all of the three branched-chain amino acids (isoleucine, leucine and valine), when grown with either C(6) or C(2) carbon sources, suggesting that the ilvB1 gene product is the major AHAS in M. tuberculosis. Depletion of these branched chain amino acids in the medium led to loss of viability of the DeltailvB1 strain in vitro, resulting in a 4-log reduction in colony-forming units after 10 days. Survival kinetics of the mutant strain cultured in macrophages maintained with sub-optimal concentrations of the branched-chain amino acids did not show any loss of viability, indicating either that the intracellular environment was rich in these amino acids or that the other AHAS catalytic subunits were functional under these conditions. Furthermore, the growth kinetics of the DeltailvB1 strain in mice indicated that although this mutant strain showed defective growth in vivo, it could persist in the infected mice for a long time, and therefore could be a potential vaccine candidate.
Collapse
Affiliation(s)
- Disha Awasthy
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | | | - R K Shandil
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | - Reena Yadav
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | - Sowmya Bharath
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | - Nimi Marcel
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | | | - Umender Sharma
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| |
Collapse
|
43
|
Intra- and intermolecular domain interactions among novel two-component system proteins coded by Rv0600c, Rv0601c and Rv0602c of Mycobacterium tuberculosis. Microbiology (Reading) 2009; 155:772-779. [DOI: 10.1099/mic.0.019059-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component signal transduction pathways comprising a histidine kinase and its cognate response regulator play a dominant role in the adaptation of Mycobacterium tuberculosis to its host, and its virulence, pathogenicity and latency. Autophosphorylation occurs at a conserved histidine of the histidine kinase and subsequently the phosphoryl group is transferred to the conserved aspartate of its cognate response regulator. Among the twelve two-component systems of M. tuberculosis, Rv0600c (HK1), Rv0601c (HK2) and Rv0602c (TcrA) are annotated as a unique three-protein two-component system. HK1 contains an ATP-binding domain, and HK2, a novel Hpt mono-domain protein, contains the conserved phosphorylable histidine residue. HK1 and HK2 complement each other's functions. Interactions among different domains of the HK1, HK2 and TcrA proteins were studied using a yeast two-hybrid system. Self-interaction was observed for HK2 but not for HK1 or TcrA. HK2 was found to interact reasonably well with both HK1 and TcrA, but HK1 interacted weakly with TcrA. The conserved aspartate-containing receiver domain of TcrA interacted well with HK2 but not with HK1. These results suggest the existence of a novel signalling mechanism amongst HK1–HK2–TcrA, and a model for this mechanism is proposed.
Collapse
|
44
|
Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 2008; 72:126-56, table of contents. [PMID: 18322037 DOI: 10.1128/mmbr.00028-07] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Mycobacterium is best known for its two major pathogenic species, M. tuberculosis and M. leprae, the causative agents of two of the world's oldest diseases, tuberculosis and leprosy, respectively. M. tuberculosis kills approximately two million people each year and is thought to latently infect one-third of the world's population. One of the most remarkable features of the nonsporulating M. tuberculosis is its ability to remain dormant within an individual for decades before reactivating into active tuberculosis. Thus, control of cell division is a critical part of the disease. The mycobacterial cell wall has unique characteristics and is impermeable to a number of compounds, a feature in part responsible for inherent resistance to numerous drugs. The complexity of the cell wall represents a challenge to the organism, requiring specialized mechanisms to allow cell division to occur. Besides these mycobacterial specializations, all bacteria face some common challenges when they divide. First, they must maintain their normal architecture during and after cell division. In the case of mycobacteria, that means synthesizing the many layers of complex cell wall and maintaining their rod shape. Second, they need to coordinate synthesis and breakdown of cell wall components to maintain integrity throughout division. Finally, they need to regulate cell division in response to environmental stimuli. Here we discuss these challenges and the mechanisms that mycobacteria employ to meet them. Because these organisms are difficult to study, in many cases we extrapolate from information known for gram-negative bacteria or more closely related GC-rich gram-positive organisms.
Collapse
|
45
|
Rohde KH, Abramovitch RB, Russell DG. Mycobacterium tuberculosis Invasion of Macrophages: Linking Bacterial Gene Expression to Environmental Cues. Cell Host Microbe 2007; 2:352-64. [DOI: 10.1016/j.chom.2007.09.006] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/17/2007] [Accepted: 09/18/2007] [Indexed: 12/31/2022]
|
46
|
Glover RT, Kriakov J, Garforth SJ, Baughn AD, Jacobs WR. The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J Bacteriol 2007; 189:5495-503. [PMID: 17526710 PMCID: PMC1951828 DOI: 10.1128/jb.00190-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phosphate import is required for the growth of mycobacteria and is regulated by environmental inorganic phosphate (P(i)) concentrations, although the mechanism of this regulation has not been characterized. The expression of genes involved in P(i) acquisition is frequently regulated by two-component regulatory systems (2CRs) consisting of a sensor histidine kinase and a DNA-binding response regulator. In this work, we have identified the senX3-regX3 2CR as a P(i)-dependent regulator of genes involved in phosphate acquisition in Mycobacterium smegmatis. Characterization of senX3 mutants with different PhoA phenotypes suggests a dual role for SenX3 as a phosphatase or a phosphodonor for the response regulator RegX3, depending upon P(i) availability. Expression of PhoA activity required phosphorylation of RegX3, consistent with a role for phosphorylated RegX3 (RegX3 approximately P) as a transcriptional activator of phoA. Furthermore, purified RegX3 approximately P bound to promoter sequences from phoA, senX3, and the high-affinity phosphate transporter component pstS, demonstrating direct transcriptional control of all three genes. DNase I footprinting and primer extension analyses have further defined the DNA-binding region and transcriptional start site within the phoA promoter. A DNA motif consisting of an inverted repeat was identified in each of the promoters bound by RegX3 approximately P. Based upon our findings, we propose a model for P(i)-regulated gene expression mediated by SenX3-RegX3 in mycobacteria.
Collapse
Affiliation(s)
- Robert T Glover
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
47
|
Festa RA, Pearce MJ, Darwin KH. Characterization of the proteasome accessory factor (paf) operon in Mycobacterium tuberculosis. J Bacteriol 2007; 189:3044-50. [PMID: 17277063 PMCID: PMC1855869 DOI: 10.1128/jb.01597-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous screen for Mycobacterium tuberculosis mutants that are hypersusceptible to reactive nitrogen intermediates (RNI), two genes associated with the M. tuberculosis proteasome were identified. One of these genes, pafA (proteasome accessory factor A), encodes a protein of unknown function. In this work, we determined that pafA is in an operon with two additional genes, pafB and pafC. In order to assess the contribution of these genes to RNI resistance, we isolated mutants with transposon insertions in pafB and pafC. In contrast to the pafA mutant, the pafB and pafC mutants were not severely sensitized to RNI, but pafB and pafC were nonetheless required for full RNI resistance. We also found that PafB and PafC interact with each other and that each is likely required for the stability of the other protein in M. tuberculosis. Finally, we show that the presence of PafA, but not PafB or PafC, regulates the steady-state levels of three proteasome substrates. Taken together, these data demonstrate that PafA, but not PafB or PafC, is critical for maintaining the steady-state levels of known proteasome substrates, whereas all three proteins appear to play a role in RNI resistance.
Collapse
Affiliation(s)
- Richard A Festa
- New York University School of Medicine, Department of Microbiology, 550 First Avenue, Medical Sciences Building Room 236, New York, NY 10016, USA
| | | | | |
Collapse
|
48
|
Tucker PA, Nowak E, Morth JP. Two-component systems of Mycobacterium tuberculosis: structure-based approaches. Methods Enzymol 2007; 423:479-501. [PMID: 17609147 DOI: 10.1016/s0076-6879(07)23023-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis contains few two-component systems compared to many other bacteria, possibly because it has more serine/threonine signaling pathways. Even so, these two-component systems appear to play an important role in early intracellular survival of the pathogen as well as in aspects of virulence. In this chapter, we discuss what has been learned about the mycobacterial two-component systems, with particular emphasis on knowledge gained from structural genomics projects.
Collapse
Affiliation(s)
- Paul A Tucker
- Hamburg Outstation, European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | | | | |
Collapse
|
49
|
Gupta S, Sinha A, Sarkar D. Transcriptional autoregulation byMycobacterium tuberculosisPhoP involves recognition of novel direct repeat sequences in the regulatory region of the promoter. FEBS Lett 2006; 580:5328-38. [PMID: 16979633 DOI: 10.1016/j.febslet.2006.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/22/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
The PhoP-PhoR two-component system is essential for virulence and intracellular growth of Mycobacterium tuberculosis (MTB) in human and mouse macrophages or in mice. Here, PhoP and truncated PhoR sensor proteins were shown to participate in phosphotransfer reactions using conserved residues characteristic of two-component signaling systems. beta-Galactosidase activity originating from phoP promoter-lacZ construct was inhibited in presence of PhoP, suggesting transcriptional auto-inhibition by the response regulator. In vitro binding of PhoP is consistent with the in vivo transcriptional repression, indicating phosphorylation-independent assembly of the transcription initiation complex at elevated concentrations of PhoP. DNaseI protection studies reveal a consensus recognition sequence within the phoP promoter that includes three 9-bp direct repeat units. Each repeat unit adjusts to the consensus (1)AC(T)/(G)(T)/(G)(T)/(G)P(y)AP(u)C(9). Alteration in the sequence of the newly-identified direct repeat units relieved phoP transcriptional repression in presence of PhoP, suggesting that PhoP represses its own expression by sequence-specific interaction(s) with the repeat units. Together, these results identify so far unknown PhoP-regulated genetic determinants in the regulatory region of the phoP promoter that are central to understanding of how PhoP may possibly function as a global regulator in MTB.
Collapse
Affiliation(s)
- Sankalp Gupta
- Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | | | | |
Collapse
|
50
|
Fol M, Chauhan A, Nair NK, Maloney E, Moomey M, Jagannath C, Madiraju MVVS, Rajagopalan M. Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol Microbiol 2006; 60:643-57. [PMID: 16629667 DOI: 10.1111/j.1365-2958.2006.05137.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paired two-component regulatory systems consisting of a sensor kinase and a response regulator are the major means by which bacteria sense and respond to different stimuli. The role of essential response regulator, MtrA, in Mycobacterium tuberculosis proliferation is unknown. We showed that elevating the intracellular levels of MtrA prevented M. tuberculosis from multiplying in macrophages, mice lungs and spleens, but did not affect its growth in broth. Intracellular trafficking analysis revealed that a vast majority of MtrA overproducing merodiploids were associated with lysosomal associated membrane protein (LAMP-1) positive vacuoles, indicating that intracellular growth attenuation is, in part, due to an impaired ability to block phagosome-lysosome fusion. A merodiploid strain producing elevated levels of phosphorylation-defective MtrA (MtrA(D53N)) was partially replicative in macrophages, but was attenuated in mice. Quantitative real-time PCR analyses revealed that expression of dnaA, an essential replication gene, was sharply upregulated during intramacrophage growth in the MtrA overproducer in a phosphorylation-dependent manner. Chromatin immunoprecipitation using anti-MtrA antibodies provided direct evidence that MtrA regulator binds to dnaA promoter in vivo indicating that dnaA promoter is a MtrA target. Simultaneous overexpression of mtrA regulator and its cognate mtrB kinase neither inhibited growth nor sharply increased the expression levels of dnaA in macrophages. We propose that proliferation of M. tuberculosis in vivo depends, in part, on the optimal ratio of phosphorylated to non-phosphorylated MtrA response regulator.
Collapse
Affiliation(s)
- Marek Fol
- Biomedical Research, The University of Texas Health Center at Tyler, 11937 U.S. Hwy @271, Tyler, TX 75708-3154, USA
| | | | | | | | | | | | | | | |
Collapse
|