1
|
Kottom TJ, Carmona EM, Schaefbauer K, Limper AH. CLEC4A and CLEC12B C-type lectin receptors mediate interactions with Pneumocystis cell wall components. J Med Microbiol 2023; 72. [PMID: 37294293 DOI: 10.1099/jmm.0.001714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Introduction. C-type lectin receptors (CLRs) are prominently expressed on myeloid cells where they perform multiple functions including serving as pattern recognition receptors (PRRs) to drive innate as well as adaptive immunity to pathogens. Depending on the presence of a tyrosine-based signalling motif, CLR-microbial pathogen engagement may result in either anti- or pro-inflammatory signalling.Impact statement. In this manuscript, we report our laboratory study of two novel CLRs that recognize Pneumocystis murina cell wall homogenates (CWH) and a purified Pneumocystis carinii cell wall fraction (CWF).Aim. To study the potential of newly generated hFc-CLR fusions on binding to Pneumocystis murina CWHs and P. carinii CWFs and subsequent downstream inflammatory signalling analysis.Methods. Newly generated hFc-CLR fusion CLEC4A and CLEC12B were screened against P. murina CWHs and P. carinii CWFs preparations via modified ELISA. Immunofluorescence assay (IFA) was utilized to visualize hFc-CLR fusion binding against intact fixed fungal life forms to verify results. Quantitative PCR (q-PCR) analysis of lung mRNA from the mouse immunosuppressed Pneumocystis pneumonia (PCP) model versus uninfected mice was employed to detect possible changes in the respective Clec4a and Clec12b transcripts. Lastly, siRNA technology of both CLRs was conducted to determine effects on downstream inflammatory events in mouse macrophages stimulated in the presence of P. carinii CWFs.Results. We determined that both CLEC4A and CLEC12B hFc-CLRs displayed significant binding with P. murina CWHs and P. carinii CWFs. Binding events showed significant binding to both curdlan and laminarin, both polysaccharides containing β-(1,3) glucans as well as N-acetylglucosamine (GlcNAc) residues and modest yet non-significant binding to the negative control carbohydrate dextran. IFA with both CLR hFc-fusions against whole P. murina life forms corroborated these findings. Lastly, we surveyed the mRNA expression profiles of both CLRs tested above in the mouse immunosuppressed Pneumocystis pneumonia (PCP) model and determined that both CLRs were significantly up regulated during infection. Lastly, siRNA of both CLRs in the mouse RAW macrophage cell line was conducted and results demonstrated that silencing of Clec4a resulted in no significant changes in TNF-alpha generation in P. carinii CWF stimulated macrophages. On the contrary, silencing of Clec12b CLR resulted in significant decreases in TNF-alpha in RAW cells stimulated with the same CWF.Conclusion. The data presented here provide new members of the CLRs family recognizing Pneumocystis. Future studies using CLEC4A and/or CLEC12B deficient mice in the PCP mouse model should provide further insights into the host immunological response to Pneumocystis.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Kyle Schaefbauer
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| |
Collapse
|
2
|
Abstract
The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.
Collapse
Affiliation(s)
- Lena J Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darin L Wiesner
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Aleith J, Brendel M, Weipert E, Müller M, Schultz D, Müller-Hilke B. Influenza A Virus Exacerbates Group A Streptococcus Infection and Thwarts Anti-Bacterial Inflammatory Responses in Murine Macrophages. Pathogens 2022; 11:1320. [PMID: 36365071 PMCID: PMC9699311 DOI: 10.3390/pathogens11111320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 09/30/2023] Open
Abstract
Seasonal influenza epidemics pose a considerable hazard for global health. In the past decades, accumulating evidence revealed that influenza A virus (IAV) renders the host vulnerable to bacterial superinfections which in turn are a major cause for morbidity and mortality. However, whether the impact of influenza on anti-bacterial innate immunity is restricted to the vicinity of the lung or systemically extends to remote sites is underexplored. We therefore sought to investigate intranasal infection of adult C57BL/6J mice with IAV H1N1 in combination with bacteremia elicited by intravenous application of Group A Streptococcus (GAS). Co-infection in vivo was supplemented in vitro by challenging murine bone marrow derived macrophages and exploring gene expression and cytokine secretion. Our results show that viral infection of mice caused mild disease and induced the depletion of CCL2 in the periphery. Influenza preceding GAS infection promoted the occurrence of paw edemas and was accompanied by exacerbated disease scores. In vitro co-infection of macrophages led to significantly elevated expression of TLR2 and CD80 compared to bacterial mono-infection, whereas CD163 and CD206 were downregulated. The GAS-inducible upregulation of inflammatory genes, such as Nos2, as well as the secretion of TNFα and IL-1β were notably reduced or even abrogated following co-infection. Our results indicate that IAV primes an innate immune layout that is inadequately equipped for bacterial clearance.
Collapse
Affiliation(s)
- Johann Aleith
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Maria Brendel
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Erik Weipert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany
| | - Ko-Infekt Study Group
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
4
|
Kottom TJ, Carmona EM, Limper AH. Gene Expression in Lung Epithelial Cells Following Interaction with Pneumocystis carinii and its Specific Life Forms Yields Insights into Host Gene Responses to Infection. Microbiol Immunol 2022; 66:238-251. [PMID: 35229348 PMCID: PMC9090966 DOI: 10.1111/1348-0421.12972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
Pneumocystis spp. interacts with epithelial cells in the alveolar spaces of the lung. It is thought that the binding of Pneumocystis to host cell epithelium is needed for life cycle completion and proliferation. The effect of this interaction on lung epithelial cells have previously shown that the trophic form of this organism greatly inhibits p34 cdc2 activity, a serine/threonine kinase required for transition from G2 to M phase in the cell cycle. To gain further insight into the host response during Pneumocystis pneumonia (PCP), we used microarray technology to profile epithelial cell (A549) gene expression patterns following Pneumocystis carinii interaction. Furthermore, we isolated separate populations of cyst and trophic forms of P. carinii, which were then applied to the lung epithelial cells. Differential expression of genes involved in various cellular functions dependent on the specific P. carinii life form in contact with the A549 cell were identified. The reliability of our data was further confirmed by Northern blot analysis on a number of selected up or down regulated transcripts. The transcriptional response to P. carinii was dominated by cytokines, apoptotic, and anti-apoptotic related genes. These results reveal several previously unknown effects of P. carinii on the lung epithelial cell and provide insight into the complex interactions of host and pathogen. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| |
Collapse
|
5
|
Yin X, Bai H, Mu L, Chen N, Qi W, Huang Y, Xu H, Jian J, Wang A, Ye J. Expression and functional characterization of the mannose receptor (MR) from Nile tilapia (Oreochromis niloticus) in response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104257. [PMID: 34530040 DOI: 10.1016/j.dci.2021.104257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Mannose receptor (MR) as a member of the pattern recognition receptors (PRRs) plays an important role in the immune response. In mammals, the role of MR in the regulation of phagocytosis is clarified; however, its contribution to opsonize phagocytosis remains unclear in bony fish. In this study, the expression pattern of Nile tilapia mannose receptor gene (OnMR) was investigated and its regulation of the phagocytosis of monocytes/macrophages to pathogenic bacteria was identified. The full-length of OnMR open reading frame is 4314 bp, encoding a peptide containing 1437 amino acid residues. The deduced amino acid sequence revealed that OnMR contained a cysteine-rich domain, a fibronectin type II domain, multiple C-type lectin-like domains, a transmembrane domain and a short cytoplasmic domain. Tissue distribution analysis showed the OnMR transcripts was widely distribute in the ten detected tissues, and highly expressed in head kidney, hind kidney, intestine and spleen. After S. agalactiae and A. hydrophila infection, the expression of OnMR in head kidney and spleen increased significantly. Moreover, the expression of OnMR in MO/Mø were also upregulated post the infection of bacteria and mannose solutions in vitro. This suggested that MR, as a mannose receptor on macrophage surface, could respond strongly to the stimulation of pathogenic bacteria. In addition, the (r)OnMR protein could effectively bind and agglutinate S. agalactiae and A. hydrophila, and regulate the phagocytic ability of monocytes/macrophages to pathogenic bacteria. These results suggest that OnMR is involved in response against bacterial infection in Nile tilapia, and this study will help us better understand the function of MR in teleost fish.
Collapse
Affiliation(s)
- Xiaoxue Yin
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China.
| | - Hao Bai
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Liangliang Mu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China.
| | - Nuo Chen
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Weiwei Qi
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Yu Huang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Heyi Xu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Jichang Jian
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Anli Wang
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China.
| |
Collapse
|
6
|
Kottom TJ, Carmona EM, Limper AH. Current State of Carbohydrate Recognition and C-Type Lectin Receptors in Pneumocystis Innate Immunity. Front Immunol 2021; 12:798214. [PMID: 34975910 PMCID: PMC8716372 DOI: 10.3389/fimmu.2021.798214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pneumocystis jirovecii is one of the most common fungal pathogens in immunocompromised individuals. Pneumocystis jirovecii pneumonia (PJP) causes a significant host immune response that is driven greatly by the organism’s cell wall components including β-glucans and major surface glycoprotein (Msg). These ligands interact with a number of C-type lectin receptors (CLRs) leading to downstream activation of proinflammatory signaling pathways. This minireview provides a brief overview summarizing known CLR/Pneumocystis interactions.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Theodore J. Kottom,
| | - Eva M. Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Andrew H. Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Kottom TJ, Carmona EM, Schaefbauer K, Limper AH. Additional C-type lectin receptors mediate interactions with Pneumocystis organisms and major surface glycoprotein. J Med Microbiol 2021; 70:001470. [PMID: 34889727 PMCID: PMC8744274 DOI: 10.1099/jmm.0.001470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction. Pathogen-associated molecular patterns' (PAMPs) are microbial signatures that are recognized by host myeloid C-type lectin receptors (CLRs). These CLRs interact with micro-organisms via their carbohydrate recognition domains (CRDs) and engage signalling pathways within the cell resulting in pro-inflammatory and microbicidal responses.Gap statement. In this article, we extend our laboratory study of additional CLRs that recognize fungal ligands against Pneumocystis murina and Pneumocystis carinii and their purified major surface glycoproteins (Msgs).Aim. To study the potential of newly synthesized hFc-CLR fusions on binding to Pneumocystis and its Msg.Methods. A library of new synthesized hFc-CLR fusions was screened against Pneumocystis murina and Pneumocystis carinii organisms and their purified major surface glycoproteins (Msgs) found on the respective fungi via modified ELISA. Immunofluorescence assay (IFA) was implemented and quantified to verify results. mRNA expression analysis by quantitative PCR (q-PCR) was employed to detect respective CLRs found to bind fungal organisms in the ELISA and determine their expression levels in the mouse immunosuppressed Pneumocystis pneumonia (PCP) model.Results. We detected a number of the CLR hFc-fusions displayed significant binding with P. murina and P. carinii organisms, and similarly to their respective Msgs. Significant organism and Msg binding was observed for CLR members C-type lectin domain family 12 member A (CLEC12A), Langerin, macrophage galactose-type lectin-1 (MGL-1), and specific intracellular adhesion molecule-3 grabbing non-integrin homologue-related 3 (SIGNR3). Immunofluorescence assay (IFA) with the respective CLR hFc-fusions against whole P. murina life forms corroborated these findings. Lastly, we surveyed the mRNA expression profiles of the respective CLRs tested above in the mouse immunosuppressed Pneumocystis pneumonia (PCP) model and determined that macrophage galactose type C-type lectin (Mgl-1), implicated in recognizing terminal N-acetylgalactosamine (GalNAc) found in the glycoproteins of microbial pathogens was significantly up-regulated during infection.Conclusion. The data herein add to the growing list of CLRs recognizing Pneumocystis and provide insights for further study of organism/host immune cell interactions.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, USA,*Correspondence: Theodore J. Kottom,
| | - Eva M. Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kyle Schaefbauer
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andrew H. Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
8
|
Bhandari S, Larsen AK, McCourt P, Smedsrød B, Sørensen KK. The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease. Front Physiol 2021; 12:757469. [PMID: 34707514 PMCID: PMC8542980 DOI: 10.3389/fphys.2021.757469] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to give an outline of the blood clearance function of the liver sinusoidal endothelial cells (LSECs) in health and disease. Lining the hundreds of millions of hepatic sinusoids in the human liver the LSECs are perfectly located to survey the constituents of the blood. These cells are equipped with high-affinity receptors and an intracellular vesicle transport apparatus, enabling a remarkably efficient machinery for removal of large molecules and nanoparticles from the blood, thus contributing importantly to maintain blood and tissue homeostasis. We describe here central aspects of LSEC signature receptors that enable the cells to recognize and internalize blood-borne waste macromolecules at great speed and high capacity. Notably, this blood clearance system is a silent process, in the sense that it usually neither requires or elicits cell activation or immune responses. Most of our knowledge about LSECs arises from studies in animals, of which mouse and rat make up the great majority, and some species differences relevant for extrapolating from animal models to human are discussed. In the last part of the review, we discuss comparative aspects of the LSEC scavenger functions and specialized scavenger endothelial cells (SECs) in other vascular beds and in different vertebrate classes. In conclusion, the activity of LSECs and other SECs prevent exposure of a great number of waste products to the immune system, and molecules with noxious biological activities are effectively “silenced” by the rapid clearance in LSECs. An undesired consequence of this avid scavenging system is unwanted uptake of nanomedicines and biologics in the cells. As the development of this new generation of therapeutics evolves, there will be a sharp increase in the need to understand the clearance function of LSECs in health and disease. There is still a significant knowledge gap in how the LSEC clearance function is affected in liver disease.
Collapse
Affiliation(s)
- Sabin Bhandari
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Anett Kristin Larsen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Bård Smedsrød
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Karen Kristine Sørensen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
C-Type Lectin Receptors in Antifungal Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:1-30. [PMID: 32152941 DOI: 10.1007/978-981-15-1580-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most fungal species are harmless to humans and some exist as commensals on mucocutaneous surfaces. Yet many fungi are opportunistic pathogens, causing life-threatening invasive infections when the immune system becomes compromised. The fungal cell wall contains conserved pathogen-associated molecular patterns (PAMPs), which allow the immune system to distinguish between self (endogenous molecular patterns) and foreign material. Sensing of invasive microbial pathogens is achieved through recognition of PAMPs by pattern recognition receptors (PRRs). One of the predominant fungal-sensing PRRs is the C-type lectin receptor (CLR) family. These receptors bind to structures present on the fungal cell wall, eliciting various innate immune responses as well as shaping adaptive immunity. In this chapter, we specifically focus on the four major human fungal pathogens, Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii, reviewing our current understanding of the CLRs that are involved in their recognition and protection of the host.
Collapse
|
10
|
Abstract
The respiratory tract is tasked with responding to a constant and vast influx of foreign agents. It acts as an important first line of defense in the innate immune system and as such plays a crucial role in preventing the entry of invading pathogens. While physical barriers like the mucociliary escalator exert their effects through the clearance of these pathogens, diverse and dynamic cellular mechanisms exist for the activation of the innate immune response through the recognition of pathogen-associated molecular patterns (PAMPs). These PAMPs are recognized by pattern recognition receptors (PRRs) that are expressed on a number of myeloid cells such as dendritic cells, macrophages, and neutrophils found in the respiratory tract. C-type lectin receptors (CLRs) are PRRs that play a pivotal role in the innate immune response and its regulation to a variety of respiratory pathogens such as viruses, bacteria, and fungi. This chapter will describe the function of both activating and inhibiting myeloid CLRs in the recognition of a number of important respiratory pathogens as well as the signaling events initiated by these receptors.
Collapse
|
11
|
Höft MA, Hoving JC, Brown GD. Signaling C-Type Lectin Receptors in Antifungal Immunity. Curr Top Microbiol Immunol 2020; 429:63-101. [PMID: 32936383 DOI: 10.1007/82_2020_224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We are all exposed to fungal organisms daily, and although many of these organisms are not harmful, billions of people a year contract a fungal infection. Most of these infections are not fatal and can be cleared by the host immune response. However, due to an increase in high-risk populations, the global fungal burden has increased, with more than 1.5 million deaths per year caused by invasive fungal infections. The fungal cell wall is an important surface for interacting with the host immune system as it contains pathogen-associated molecular patterns (PAMPs) which are detected as being foreign by the host pattern recognition receptors (PRRs). C-type lectin receptors are a group of PRRs that play a central role in the protection against invasive fungal infections. Following the recognition of fungal PAMPs, CLRs trigger various innate and adaptive immune responses. In this chapter, we specifically focus on C-type lectin receptors capable of activating downstream signaling pathways, resulting in protective antifungal immune responses. The current roles that these signaling CLRs play in protection against four of the most prevalent fungal infections affecting humans are reviewed. These include Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii.
Collapse
Affiliation(s)
- Maxine A Höft
- AFGrica Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM) at the University of Cape Town, Werner & Beit South Building, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - J Claire Hoving
- AFGrica Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM) at the University of Cape Town, Werner & Beit South Building, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, EX4 4QD, Exeter, UK.
| |
Collapse
|
12
|
Kottom TJ, Hebrink DM, Monteiro JT, Lepenies B, Carmona EM, Wuethrich M, Santo Dias LD, Limper AH. Myeloid C-type lectin receptors that recognize fungal mannans interact with Pneumocystis organisms and major surface glycoprotein. J Med Microbiol 2019; 68:1649-1654. [PMID: 31609198 DOI: 10.1099/jmm.0.001062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Myeloid C-type lectin receptors (CLRs) are innate immune recognition molecules that bind to microorganisms via their carbohydrate recognition domains. In this study, we utilized a library of CLRs that recognize fungal mannans. We used this library to screen against Pneumocystis carinii (Pc) homogenates or purified Pc major surface glycoprotein (Msg) present on Pneumocystis. The results demonstrated that all of the mammalian CLR hFc-fusions tested displayed significant interaction/binding with Pc organisms, and furthermore to isolated Msg. Highest Pc organism and Msg binding activities were with CLR members Mincle, Dectin-2, DC-SIGN and MCL. An immunofluorescence assay with the respective CLR hFc-fusions against whole Pc life forms corroborated these findings. Although some of these CLRs have been implicated previously as important for Pneumocystis pathogenesis (Dectin-1/Dectin-2/Mincle), this is the first analysis of head-to-head comparison of known fungal mannan binding CLR-hFc fusions with Pc. Lastly, heat treatment resulted in reducted CLR binding.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Deanne M Hebrink
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Joao T Monteiro
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Germany, Hannover
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Germany, Hannover
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Marcel Wuethrich
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Lucas Dos Santo Dias
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
13
|
Guo N, Bai Z, Jia W, Sun J, Wang W, Chen S, Wang H. Quantitative Analysis of Polysaccharide Composition in Polyporus umbellatus by HPLC-ESI-TOF-MS. Molecules 2019; 24:molecules24142526. [PMID: 31295903 PMCID: PMC6681038 DOI: 10.3390/molecules24142526] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022] Open
Abstract
Polyporus umbellatus is a well-known and important medicinal fungus in Asia. Its polysaccharides possess interesting bioactivities such as antitumor, antioxidant, hepatoprotective and immunomodulatory effects. A qualitative and quantitative method has been established for the analysis of 12 monosaccharides comprising polysaccharides of Polyporus umbellatus based on high-performance liquid chromatography coupled with electrospray ionization–ion trap–time of flight–mass spectrometry. The hydrolysis conditions of the polysaccharides were optimized by orthogonal design. The results of optimized hydrolysis were as follows: neutral sugars and uronic acids 4 mol/L trifluoroacetic acid (TFA), 6 h, 120 °C; and amino sugars 3 mol/L TFA, 3 h, 100 °C. The resulting monosaccharides derivatized with 1-phenyl-3-methyl-5-pyrazolone have been well separated and analyzed by the established method. Identification of the monosaccharides was carried out by analyzing the mass spectral behaviors and chromatography characteristics of 1-phenyl-3-methyl-5-pyrazolone labeled monosaccharides. The results showed that polysaccharides in Polyporus umbellatus were composed of mannose, glucosamine, rhamnose, ribose, lyxose, erythrose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, and fucose. Quantitative recoveries of these monosaccharides in the samples were in the range of 96.10–103.70%. This method is simple, accurate, and sensitive for the identification and quantification of monosaccharides, and can be applied to the quality control of Polyporusumbellatus as a natural medicine.
Collapse
Affiliation(s)
- Ning Guo
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zongli Bai
- Kangmei Pharmaceutical Co.Ltd, Puning 515300, China
| | - Weijuan Jia
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianhua Sun
- Kangmei Pharmaceutical Co.Ltd, Puning 515300, China
| | - Wanwan Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Hong Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
14
|
Nielsen MC, Andersen MN, Rittig N, Rødgaard-Hansen S, Grønbaek H, Moestrup SK, Møller HJ, Etzerodt A. The macrophage-related biomarkers sCD163 and sCD206 are released by different shedding mechanisms. J Leukoc Biol 2019; 106:1129-1138. [PMID: 31242338 DOI: 10.1002/jlb.3a1218-500r] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023] Open
Abstract
The hemoglobin receptor CD163 and the mannose receptor CD206 are both expressed on the surface of human macrophages. Upon inflammatory activation, the receptors are shed from the macrophage surface generating soluble products. The plasma concentration of both soluble CD163 (sCD163) and soluble CD206 (sCD206) are increased in several diseases, including inflammatory conditions and cancer. Here, we show that in contrast to CD163, LPS-mediated shedding of CD206 in humans is slow and a result of indirect signaling. Although both sCD163 and sCD206 were increased in response to LPS stimulation in vivo, only CD163 was shed from LPS-stimulated macrophages in vitro. Although both sCD163 and sCD206 were released from cultured macrophages stimulated with zymosan and PMA, shedding of CD206 was generally slower and less efficient and not reduced by inhibitors against the major protease classes. These data indicate that CD163 and CD206 are shed from the macrophages by very different mechanisms potentially involving distinctive inflammatory processes.
Collapse
Affiliation(s)
| | - Morten Nørgaard Andersen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Nikolaj Rittig
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Henning Grønbaek
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Kragh Moestrup
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Etzerodt
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Shrivastava R, Shukla N. Attributes of alternatively activated (M2) macrophages. Life Sci 2019; 224:222-231. [PMID: 30928403 DOI: 10.1016/j.lfs.2019.03.062] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/22/2023]
Abstract
Macrophages are cells of innate immunity and are derived from circulating monocytes and embryonic yolk sac. They exhibit high plasticity and polarize functionally in response to stimulus triggering it into classically activated M1 macrophages and alternatively activated M2 macrophages. This review summarizes markers of M2 macrophages like transmembrane surface receptors and signaling cascades initiated on their activation; cytokine and chemokine repertoires along with their receptors; and genetic markers and their involvement in immunomodulation. The detailed discussion emphasizes the role of these markers in imparting functional benefits to this subset of macrophages which define their venture in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan 333031, India.
| | - Nidhi Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| |
Collapse
|
16
|
Sassi M, Kutty G, Ferreyra GA, Bishop LR, Liu Y, Qiu J, Huang DW, Kovacs JA. The Major Surface Glycoprotein of Pneumocystis murina Does Not Activate Dendritic Cells. J Infect Dis 2018; 218:1631-1640. [PMID: 29868908 PMCID: PMC6173571 DOI: 10.1093/infdis/jiy342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/01/2018] [Indexed: 01/11/2023] Open
Abstract
The major surface glycoprotein (Msg) is the most abundant surface protein among Pneumocystis species. Given that Msg is present on both the cyst and trophic forms of Pneumocystis and that dendritic cells play a critical role in initiating host immune responses, we undertook studies to examine activation of bone marrow-derived myeloid dendritic cells by Msg purified from Pneumocystis murina. Incubation of dendritic cells with Msg did not lead to increased expression of CD40, CD80, CD86, or major histocompatibility complex class II or to increased secretion of any of 10 cytokines. Microarray analysis identified very few differentially expressed genes. In contrast, lipopolysaccharide-activated dendritic cells had positive results of all of these assays. However, Msg did bind to mouse mannose macrophage receptor and human DC-SIGN, 2 C-type lectins expressed by dendritic cells that are important in recognition of pathogen-associated high-mannose glycoproteins. Deglycosylation of Msg demonstrated that this binding was dependent on glycosylation. These studies suggest that Pneumocystis has developed a mechanism to avoid activation of dendritic cells, potentially by the previously identified loss of genes that are responsible for the high level of protein mannosylation found in other fungi.
Collapse
Affiliation(s)
- Monica Sassi
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda
| | - Geetha Kutty
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda
| | - Gabriela A Ferreyra
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda
| | - Lisa R Bishop
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda
| | - Yueqin Liu
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda
| | - Ju Qiu
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda
| | - Joseph A Kovacs
- Critical Care Medicine Department, National Institutes of Health (NIH) Clinical Center, Bethesda
| |
Collapse
|
17
|
Affiliation(s)
- Jennifer Claire Hoving
- Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
18
|
Hagert C, Sareila O, Kelkka T, Jalkanen S, Holmdahl R. The Macrophage Mannose Receptor Regulate Mannan-Induced Psoriasis, Psoriatic Arthritis, and Rheumatoid Arthritis-Like Disease Models. Front Immunol 2018; 9:114. [PMID: 29467756 PMCID: PMC5808283 DOI: 10.3389/fimmu.2018.00114] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/15/2018] [Indexed: 12/24/2022] Open
Abstract
The injection of mannan into mice can result in the development of psoriasis (Ps) and psoriatic arthritis (PsA), whereas co-injection with antibodies toward collagen type II leads to a chronic rheumatoid-like arthritis. The critical event in all these diseases is mannan-mediated activation of macrophages, causing more severe disease if the macrophages are deficient in neutrophil cytosolic factor 1 (Ncf1), i.e., lack the capacity to make a reactive oxygen species (ROS) burst. In this study, we investigated the role of one of the receptors binding mannan; the macrophage mannose receptor (MR, CD206). MR is a C-type lectin present on myeloid cells and lymphatics. We found that mice deficient in MR expression had more severe mannan-induced Ps, PsA as well as rheumatoid-like arthritis. Interestingly, the MR-mediated protection was partly lost in Ncf1 mutated mice and was associated with an type 2 macrophage expansion. In conclusion, these results show that MR protects against a pathogenic inflammatory macrophage response induced by mannan and is associated with induction of ROS.
Collapse
Affiliation(s)
- Cecilia Hagert
- Medicity Research Laboratory, University of Turku, Turku, Finland.,The National Doctoral Programme in Informational and Structural Biology (ISB), Turku, Finland
| | - Outi Sareila
- Medicity Research Laboratory, University of Turku, Turku, Finland.,Medical Inflammation Research, Karolinska Institutet, Stockholm, Sweden
| | - Tiina Kelkka
- Medicity Research Laboratory, University of Turku, Turku, Finland.,The Turku Doctoral Programme of Biomedical Sciences (TuBS), Turku, Finland
| | - Sirpa Jalkanen
- Medicity Research Laboratory, University of Turku, Turku, Finland
| | - Rikard Holmdahl
- Medicity Research Laboratory, University of Turku, Turku, Finland.,Medical Inflammation Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Zhou Y, Do DC, Ishmael FT, Squadrito ML, Tang HM, Tang HL, Hsu MH, Qiu L, Li C, Zhang Y, Becker KG, Wan M, Huang SK, Gao P. Mannose receptor modulates macrophage polarization and allergic inflammation through miR-511-3p. J Allergy Clin Immunol 2018; 141:350-364.e8. [PMID: 28629744 PMCID: PMC5944850 DOI: 10.1016/j.jaci.2017.04.049] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/10/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mannose receptor (MRC1/CD206) has been suggested to mediate allergic sensitization and asthma to multiple glycoallergens, including cockroach allergens. OBJECTIVE We sought to determine the existence of a protective mechanism through which MRC1 limits allergic inflammation through its intronic miR-511-3p. METHODS We examined MRC1-mediated cockroach allergen uptake by lung macrophages and lung inflammation using C57BL/6 wild-type (WT) and Mrc1-/- mice. The role of miR-511-3p in macrophage polarization and cockroach allergen-induced lung inflammation in mice transfected with adeno-associated virus (AAV)-miR-511-3p (AAV-cytomegalovirus-miR-511-3p-enhanced green fluorescent protein) was analyzed. Gene profiling of macrophages with or without miR-511-3p overexpression was also performed. RESULTS Mrc1-/- lung macrophages showed a significant reduction in cockroach allergen uptake compared with WT mice, and Mrc1-/- mice had an exacerbated lung inflammation with increased levels of cockroach allergen-specific IgE and TH2/TH17 cytokines in a cockroach allergen-induced mouse model compared with WT mice. Macrophages from Mrc1-/- mice showed significantly reduced levels of miR-511-3 and an M1 phenotype, whereas overexpression of miR-511-3p rendered macrophages to exhibit a M2 phenotype. Furthermore, mice transfected with AAV-miR-511-3p showed a significant reduction in cockroach allergen-induced inflammation. Profiling of macrophages with or without miR-511-3p overexpression identified 729 differentially expressed genes, wherein expression of prostaglandin D2 synthase (Ptgds) and its product PGD2 were significantly downregulated by miR-511-3p. Ptgds showed a robust binding to miR-511-3p, which might contribute to the protective effect of miR-511-3p. Plasma levels of miR-511-3p were significantly lower in human asthmatic patients compared with nonasthmatic subjects. CONCLUSION These studies support a critical but previously unrecognized role of MRC1 and miR-511-3p in protection against allergen-induced lung inflammation.
Collapse
Affiliation(s)
- Yufeng Zhou
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md; Children's Hospital and the Institute of Biomedical Sciences and, Fudan University, and Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| | - Danh C Do
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Faoud T Ishmael
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pa
| | - Mario Leonardo Squadrito
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ho Man Tang
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Ho Lam Tang
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md
| | - Man-Hsun Hsu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pa
| | - Lipeng Qiu
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Changjun Li
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Yongqing Zhang
- Gene Expression & Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Md
| | - Kevin G Becker
- Gene Expression & Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Md
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Shau-Ku Huang
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md; National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China.
| | - Peisong Gao
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
20
|
Hernández-Chávez MJ, Pérez-García LA, Niño-Vega GA, Mora-Montes HM. Fungal Strategies to Evade the Host Immune Recognition. J Fungi (Basel) 2017; 3:jof3040051. [PMID: 29371567 PMCID: PMC5753153 DOI: 10.3390/jof3040051] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022] Open
Abstract
The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.
Collapse
Affiliation(s)
- Marco J Hernández-Chávez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| | - Luis A Pérez-García
- Unidad Académica Multidisciplinaria Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fracc. Rafael Curiel, C.P., Cd. Valle SLP. 79060, México.
| | - Gustavo A Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| |
Collapse
|
21
|
Abstract
Lectins recognize a diverse array of carbohydrate structures and perform numerous essential biological functions. Here we focus on only two families of lectins, the Siglecs and C-type lectins. Triggering of intracellular signaling cascades following ligand recognition by these receptors can have profound effects on the induction and modulation of immunity. In this chapter, we provide a brief overview of each family and then focus on selected examples that highlight how these lectins can influence myeloid cell functioning in health and disease. Receptors that are discussed include Sn (Siglec-1), CD33 (Siglec-3), and Siglec-5, -7, -8, -9, -10, -11, -14, -15, -E, -F, and -G as well as Dectin-1, MICL, Dectin-2, Mincle/MCL, and the macrophage mannose receptor.
Collapse
|
22
|
Internalization of Collagen: An Important Matrix Turnover Pathway in Cancer. EXTRACELLULAR MATRIX IN TUMOR BIOLOGY 2017. [DOI: 10.1007/978-3-319-60907-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Jia H, Guo Y, Song X, Shao C, Wu J, Ma J, Shi M, Miao Y, Li R, Wang D, Tian Z, Xiao W. Elimination of N-glycosylation by site mutation further prolongs the half-life of IFN-α/Fc fusion proteins expressed in Pichia pastoris. Microb Cell Fact 2016; 15:209. [PMID: 27927205 PMCID: PMC5142404 DOI: 10.1186/s12934-016-0601-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022] Open
Abstract
Background Interferon (IFN)-α has been commonly used as an antiviral drug worldwide; however, its short half-life in circulation due to its low molecular weight and sensitivity to proteases impacts its efficacy and patient compliance. Results In this study, we present an IgG1 Fc fusion strategy to improve the circulation half-life of IFN-α. Three different forms of IgG1 Fc fragments, including the wild type, aglycosylated homodimer and aglycosylated single chain, were each fused with IFN-α and designated as IFN-α/Fc-WT, IFN-α/Fc-MD, and IFN-α/Fc-SC, respectively. The recombinant proteins were expressed in Pichia pastoris and tested using antiviral and pharmacokinetic assays in comparison with the commercial pegylated-IFN-α (PEG-IFN-α). The in vitro study demonstrated that IFN-α/Fc-SC has the highest antiviral activity, while IFN-α/Fc-WT and IFN-α/Fc-MD exhibited antiviral activities comparable to that of PEG-IFN-α. The in vivo pharmacokinetic assay showed that both IFN-α/Fc-WT and IFN-α/Fc-MD have a longer half-life than PEG-IFN-α in SD rats, but IFN-α/Fc-SC has the shortest half-life among them. Importantly, the circulating half-life of 68.3 h for IFN-α/Fc-MD was significantly longer than those of 38.2 h for IFN-α/Fc-WT and 22.2 h for PEG-IFN-α. Conclusions The results demonstrate that the elimination of N-glycosylation by mutation of putative N-glycosylation site further prolongs the half-life of the IFN-α/Fc fusion protein and could present an alternative strategy for extending the half-life of low-molecular-weight proteins expressed by P. pastoris for in vivo studies as well as for future clinical applications. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0601-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Jia
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yugang Guo
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Hefei National Laboratory for Physical Sciences at the Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China. .,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China.
| | - Xiaoping Song
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Department of Pharmacy, Anhui Medical College, Hefei, China
| | - Changsheng Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China.,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Jing Wu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China.,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Jiajia Ma
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China.,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Mingyang Shi
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yuhui Miao
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Rui Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Dong Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China.,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Weihua Xiao
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Hefei National Laboratory for Physical Sciences at the Microscale, Engineering Technology Research Center of Biotechnology Drugs, Anhui Province, University of Science and Technology of China, Hefei, China. .,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
24
|
Heinsbroek SEM, Squadrito ML, Schilderink R, Hilbers FW, Verseijden C, Hofmann M, Helmke A, Boon L, Wildenberg ME, Roelofs JJTH, Ponsioen CY, Peters CP, Te Velde AA, Gordon S, De Palma M, de Jonge WJ. miR-511-3p, embedded in the macrophage mannose receptor gene, contributes to intestinal inflammation. Mucosal Immunol 2016; 9:960-73. [PMID: 26530135 DOI: 10.1038/mi.2015.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 09/19/2015] [Indexed: 02/04/2023]
Abstract
MiR-511-3p is embedded in intron 5 of the CD206/MRC1 gene Mrc1, expressed by macrophage and dendritic cell populations. CD206 and miR-511-3p expression are co-regulated, and their contribution to intestinal inflammation is unclear. We investigated their roles in intestinal inflammation in both mouse and human systems. Colons of CD206-deficient mice displayed normal numbers of monocytes, macrophage, and dendritic cells. In experimental colitis, CD206-deficient mice had attenuated inflammation compared with wild-type (WT) mice. However, neither a CD206 antagonist nor a blocking antibody reproduced this phenotype, suggesting that CD206 was not involved in this response. Macrophages isolated from CD206-deficient mice had reduced levels of miR-511-3p and Tlr4 compared with WT, which was associated with reduced pro-inflammatory cytokine production upon lipopolysaccharides (LPS) and fecal supernatant stimulation. Macrophages overexpressing miR-511-3p showed 50% increase of Tlr4 mRNA, whereas knockdown of miR-511-3p reduced Tlr4 mRNA levels by 60%, compared with scrambled microRNA (miRNA)-transduced cells. Response to anti-tumor necrosis factor (TNF) treatment has been associated with elevated macrophage CD206 expression in the mucosa. However, in colon biopsies no statistically significant change in miR-511-3p was detected. Taken together, our data show that miR-511-3p controls macrophage-mediated microbial responses and is involved in the regulation of intestinal inflammation.
Collapse
Affiliation(s)
- S E M Heinsbroek
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - M L Squadrito
- The Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - R Schilderink
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - F W Hilbers
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - C Verseijden
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - M Hofmann
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - A Helmke
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - L Boon
- EPIRUS Biopharmaceuticals Netherlands BV, Utrecht, The Netherlands
| | - M E Wildenberg
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - J J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - C Y Ponsioen
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - C P Peters
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - A A Te Velde
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| | - S Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - M De Palma
- The Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - W J de Jonge
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AMC, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Siemsen DW, Dobrinen E, Han S, Chiocchi K, Meissner N, Swain SD. Vascular Dysfunction in Pneumocystis-Associated Pulmonary Hypertension Is Related to Endothelin Response and Adrenomedullin Concentration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:259-69. [PMID: 26687815 DOI: 10.1016/j.ajpath.2015.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Pulmonary hypertension subsequent to an infectious disease can be due to vascular structural remodeling or to functional alterations within various vascular cell types. In our previous mouse model of Pneumocystis-associated pulmonary hypertension, we found that vascular remodeling was not responsible for observed increases in right ventricular pressures. Here, we report that the vascular dysfunction we observed could be explained by an enhanced response to endothelin-1 (20% greater reduction in lumen diameter, P ≤ 0.05), corresponding to an up-regulation of similar magnitude (P ≤ 0.05) of the endothelin A receptor in the lung tissue. This effect was potentially augmented by a decrease in production of the pulmonary vasodilator adrenomedullin of almost 70% (P ≤ 0.05). These changes did not occur in interferon-γ knockout mice similarly treated, which do not develop pulmonary hypertension under these circumstances. Surprisingly, we did not observe any relevant changes in the vascular endothelial nitric oxide synthase vasodilatory response, which is a common potential site of inflammatory alterations to pulmonary vascular function. Our results indicate the diverse mechanisms by which inflammatory responses to prior infections can cause functionally relevant changes in vascular responses in the lung, promoting the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Dan W Siemsen
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Erin Dobrinen
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Soo Han
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Kari Chiocchi
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Nicole Meissner
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Steve D Swain
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.
| |
Collapse
|
26
|
Prigge JR, Hoyt TR, Dobrinen E, Capecchi MR, Schmidt EE, Meissner N. Type I IFNs Act upon Hematopoietic Progenitors To Protect and Maintain Hematopoiesis during Pneumocystis Lung Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:5347-57. [PMID: 26519535 DOI: 10.4049/jimmunol.1501553] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/02/2015] [Indexed: 01/22/2023]
Abstract
Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, few studies have considered contributing roles of innate immune deviations following otherwise innocuous infections as a cause underlying the immune defects that lead to BMF. Type I IFN signaling plays an important role in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis. During Pneumocystis lung infection, mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-)) develop rapidly progressing BMF associated with accelerated hematopoietic cell apoptosis. However, the communication pathway eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. We developed a conditional-null allele of Ifnar1 and used tissue-specific induction of the IFrag(-/-) state and found that, following Pneumocystis lung infection, type I IFNs act not only in the lung to prevent systemic immune deviations, but also within the progenitor compartment of the bone marrow to protect hematopoiesis. In addition, transfer of sterile-filtered serum from Pneumocystis-infected mice as well as i.p. injection of Pneumocystis into uninfected IFrag(-/-) mice induced BMF. Although specific cytokine deviations contribute to induction of BMF, immune-suppressive treatment of infected IFrag(-/-) mice ameliorated its progression but did not prevent loss of hematopoietic progenitor functions. This suggested that additional, noncytokine factors also target and impair progenitor functions; and interestingly, fungal β-glucans were also detected in serum. In conclusion, our data demonstrate that type 1 IFN signaling protects hematopoiesis within the bone marrow compartment from the damaging effects of proinflammatory cytokines elicited by Pneumocystis in the lung and possibly at extrapulmonary sites via circulating fungal components.
Collapse
Affiliation(s)
- Justin R Prigge
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718; and
| | - Teri R Hoyt
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718; and
| | - Erin Dobrinen
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718; and
| | - Mario R Capecchi
- Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112
| | - Edward E Schmidt
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718; and
| | - Nicole Meissner
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718; and
| |
Collapse
|
27
|
Kooij G, Braster R, Koning JJ, Laan LC, van Vliet SJ, Los T, Eveleens AM, van der Pol SMA, Förster-Waldl E, Boztug K, Belot A, Szilagyi K, van den Berg TK, van Buul JD, van Egmond M, de Vries HE, Cummings RD, Dijkstra CD, van Die I. Trichuris suis induces human non-classical patrolling monocytes via the mannose receptor and PKC: implications for multiple sclerosis. Acta Neuropathol Commun 2015. [PMID: 26205402 PMCID: PMC4513676 DOI: 10.1186/s40478-015-0223-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction The inverse correlation between prevalence of auto-immune disorders like the chronic neuro-inflammatory disease multiple sclerosis (MS) and the occurrence of helminth (worm) infections, suggests that the helminth-trained immune system is protective against auto-immunity. As monocytes are regarded as crucial players in the pathogenesis of auto-immune diseases, we explored the hypothesis that these innate effector cells are prime targets for helminths to exert their immunomodulatory effects. Results Here we show that soluble products of the porcine nematode Trichuris suis (TsSP) are potent in changing the phenotype and function of human monocytes by skewing classical monocytes into anti-inflammatory patrolling cells, which exhibit reduced trans-endothelial migration capacity in an in vitro model of the blood–brain barrier. Mechanistically, we identified the mannose receptor as the TsSP-interacting monocyte receptor and we revealed that specific downstream signalling occurs via protein kinase C (PKC), and in particular PKCδ. Conclusion This study provides comprehensive mechanistic insight into helminth-induced immunomodulation, which can be therapeutically exploited to combat various auto-immune disorders. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0223-1) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Hoyt TR, Dobrinen E, Kochetkova I, Meissner N. B cells modulate systemic responses to Pneumocystis murina lung infection and protect on-demand hematopoiesis via T cell-independent innate mechanisms when type I interferon signaling is absent. Infect Immun 2015; 83:743-58. [PMID: 25452554 PMCID: PMC4294237 DOI: 10.1128/iai.02639-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/26/2014] [Indexed: 12/20/2022] Open
Abstract
HIV infection results in a complex immunodeficiency due to loss of CD4(+) T cells, impaired type I interferon (IFN) responses, and B cell dysfunctions causing susceptibility to opportunistic infections such as Pneumocystis murina pneumonia and unexplained comorbidities, including bone marrow dysfunctions. Type I IFNs and B cells critically contribute to immunity to Pneumocystis lung infection. We recently also identified B cells as supporters of on-demand hematopoiesis following Pneumocystis infection that would otherwise be hampered due to systemic immune effects initiated in the context of a defective type I IFN system. While studying the role of type I IFNs in immunity to Pneumocystis infection, we discovered that mice lacking both lymphocytes and type I IFN receptor (IFrag(-/-)) developed progressive bone marrow failure following infection, while lymphocyte-competent type I IFN receptor-deficient mice (IFNAR(-/-)) showed transient bone marrow depression and extramedullary hematopoiesis. Lymphocyte reconstitution of lymphocyte-deficient IFrag(-/-) mice pointed to B cells as a key player in bone marrow protection. Here we define how B cells protect on-demand hematopoiesis following Pneumocystis lung infection in our model. We demonstrate that adoptive transfer of B cells into IFrag(-/-) mice protects early hematopoietic progenitor activity during systemic responses to Pneumocystis infection, thus promoting replenishment of depleted bone marrow cells. This activity is independent of CD4(+) T cell help and B cell receptor specificity and does not require B cell migration to bone marrow. Furthermore, we show that B cells protect on-demand hematopoiesis in part by induction of interleukin-10 (IL-10)- and IL-27-mediated mechanisms. Thus, our data demonstrate an important immune modulatory role of B cells during Pneumocystis lung infection that complement the modulatory role of type I IFNs to prevent systemic complications.
Collapse
Affiliation(s)
- Teri R Hoyt
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Erin Dobrinen
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Irina Kochetkova
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Nicole Meissner
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
29
|
Classical versus alternative macrophage activation: the Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunol 2014; 7:1023-35. [PMID: 25073676 DOI: 10.1038/mi.2014.65] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/21/2014] [Indexed: 02/04/2023]
Abstract
Macrophages are innate immune cells that possess unique abilities to polarize toward different phenotypes. Classically activated macrophages are known to have major roles in host defense against various microbial pathogens, including fungi, while alternatively activated macrophages are instrumental in immune-regulation and wound healing. Macrophages in the lungs are often the first responders to pulmonary fungal pathogens, and the macrophage polarization state has the potential to be a deciding factor in disease progression or resolution. This review discusses the distinct macrophage polarization states and their roles during pulmonary fungal infection. We focus primarily on Cryptococcus neoformans and Pneumocystis model systems as disease resolution of these two opportunistic fungal pathogens is linked to classically or alternatively activated macrophages, respectively. Further research considering macrophage polarization states that result in anti-fungal activity has the potential to provide a novel approach for the treatment of fungal infections.
Collapse
|
30
|
Expression of the mannose receptor CD206 in HIV and SIV encephalitis: a phenotypic switch of brain perivascular macrophages with virus infection. J Neuroimmune Pharmacol 2014; 9:716-26. [PMID: 25146376 DOI: 10.1007/s11481-014-9564-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/17/2014] [Indexed: 12/15/2022]
Abstract
We examined the expression of the mannose receptor CD206 by perivascular macrophages (PVM) in normal human and monkey brains and in brains of HIV-infected humans and of monkeys infected with simian immunodeficiency virus (SIV). Depletion of brain PVM in SIV-infected monkeys by intrathecal injection of liposome-encapsulated bisphosphonates eliminated CD206-expressing cells in the brain, confirming their perivascular location and phagocytic capacity. In vivo labeling with bromodeoxyuridine in normal uninfected and SIV-infected macaques in combination with CD206 immunostaining revealed a CD206+-to-CD206- shift within pre-existing PVM during SIV brain infection and neuroinflammation. These findings identify CD206 as a unique marker of human and macaque PVM, and underscore the utility of this marker in studying the origin, turnover and functions of these cells in AIDS.
Collapse
|
31
|
Ripamonti C, Bishop LR, Yang J, Lempicki RA, Kovacs JA. Clearance of Pneumocystis murina infection is not dependent on MyD88. Microbes Infect 2014; 16:522-7. [PMID: 24680862 PMCID: PMC4071138 DOI: 10.1016/j.micinf.2014.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 11/20/2022]
Abstract
To determine if myeloid differentiation factor 88 (MyD88), which is necessary for signaling by most TLRs and IL-1Rs, is necessary for control of Pneumocystis infection, MyD88-deficient and wild-type mice were infected with Pneumocystis by exposure to infected seeder mice and were followed for up to 106 days. MyD88-deficient mice showed clearance of Pneumocystis and development of anti-Pneumocystis antibody responses with kinetics similar to wild-type mice. Based on expression levels of select genes, MyD88-deficient mice developed immune responses similar to wild-type mice. Thus, MyD88 and the upstream pathways that rely on MyD88 signaling are not required for control of Pneumocystis infection.
Collapse
Affiliation(s)
- Chiara Ripamonti
- Critical Care Medicine Department, NIH Clinical Center, NIH, Building 10, Room 2C145, MSC 1662, Bethesda, MD 20892-1662, USA
| | - Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, NIH, Building 10, Room 2C145, MSC 1662, Bethesda, MD 20892-1662, USA
| | - Jun Yang
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Richard A Lempicki
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, NIH, Building 10, Room 2C145, MSC 1662, Bethesda, MD 20892-1662, USA.
| |
Collapse
|
32
|
Neither dectin-2 nor the mannose receptor is required for resistance to Coccidioides immitis in mice. Infect Immun 2013; 82:1147-56. [PMID: 24379281 DOI: 10.1128/iai.01355-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We investigated the roles of the mannose receptor (MR) and Dectin-2 in resistance to pulmonary coccidioidomycosis in C57BL/6 (B6) mice and in the interaction of myeloid cells with spherules, using B6 mice with targeted mutations in Mrc1 and Clec4n. Spherules are the tissue form of Coccidioides, and we determined that the MR on bone marrow-derived dendritic cells (BMDC) was important for recognition of spherules (formalin-killed spherules [FKS]) and for secretion of interleukin 10 (IL-10) and proinflammatory cytokines in response to FKS by both elicited macrophages and BMDC. Infected MR knockout (KO) mice produced more IL-10 in their lungs than did B6 mice, and MR KO mice also made more protective Th-17 cytokines. In contrast to the MR, Dectin-2 was not required for recognition of FKS by BMDC or for the production of cytokines by BMDC in response to FKS. However, Dectin-2 KO was required for stimulation of elicited peritoneal macrophages. Despite that, lung cytokine levels were not significantly different in Dectin-2 KO mice and B6 mice 14 days after infection, except for IL-1β, which was higher in Dectin-2 KO lungs. Although both Dectin-2(-/-) and MR(-/-) myeloid cells had reduced proinflammatory cytokine responses to FKS in vitro, neither MR nor Dectin-2 deficiency reduced the resistance of B6 mice to pulmonary coccidioidomycosis.
Collapse
|
33
|
Swain SD, Siemsen DW, Pullen RR, Han S. CD4+ T cells and IFN-γ are required for the development of Pneumocystis-associated pulmonary hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:483-93. [PMID: 24361497 DOI: 10.1016/j.ajpath.2013.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 09/11/2013] [Accepted: 10/23/2013] [Indexed: 12/24/2022]
Abstract
Pulmonary hypertension (PH) is a disease of diverse etiology. Although primary PH can develop in the absence of prior disease, PH more commonly develops in conjunction with other pulmonary pathologies. We previously reported a mouse model in which PH occurs as a sequela of Pneumocystis infection in the context of transient CD4 depletion. Here, we report that instead of the expected Th2 pathways, the Th1 cytokine IFN-γ is essential for the development of PH, as wild-type mice developed PH but IFN-γ knockout mice did not. Because gene expression analysis showed few strain differences that were not immune-function related, we focused on those responses as potential pathologic mechanisms. In addition to dependence on IFN-γ, we found that when CD4 cells were continuously depleted, but infection was limited by antibiotic treatment, PH did not occur, confirming that CD4 T cells are required for PH development. Also, although CD8 T-cells are implicated in the pathology of Pneumocystis pneumonia, they did not have a role in the onset of PH. Finally, we found differences in immune cell phenotypes that correlated with PH, including elevated CD204 expression in lung CD11c(+) cells, but their role remains unclear. Overall, we demonstrate that a transient, localized, immune response requiring IFN-γ and CD4-T cells can disrupt pulmonary vascular function and promote lingering PH.
Collapse
Affiliation(s)
- Steve D Swain
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana.
| | - Dan W Siemsen
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana
| | - Rebecca R Pullen
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana
| | - Soo Han
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana
| |
Collapse
|
34
|
Bello-Irizarry SN, Wang J, Johnston CJ, Gigliotti F, Wright TW. MyD88 signaling regulates both host defense and immunopathogenesis during pneumocystis infection. THE JOURNAL OF IMMUNOLOGY 2013; 192:282-92. [PMID: 24293628 DOI: 10.4049/jimmunol.1301431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune response protects against Pneumocystis infection but is also a key component of Pneumocystis pneumonia (PcP)-related immunopathogenesis. Signaling through myeloid differentiation factor 88 (MyD88) is critical for activation of immune pathways downstream of TLRs and IL-1R. To determine whether MyD88 regulates normal host defense against Pneumocystis, nonimmunosuppressed wild-type (WT) and MyD88-deficient mice were infected. MyD88(-/-) mice had higher early Pneumocystis burdens than did WT mice but mounted an effective adaptive immune response and cleared Pneumocystis similarly to WT. However, MyD88(-/-) mice displayed a more intense and prolonged pulmonary immune response than did WT mice. To determine the role of MyD88 in the development of PcP-related immunopathogenesis, WT and MyD88(-/-) mice were rendered susceptible to PcP by depletion of CD4(+) T cells. At 4 wk postinfection, CD4-depleted WT and MyD88(-/-) mice harbored similar organism burdens, but MyD88(-/-) mice were protected from the PcP-related respiratory impairment observed in WT mice. Improved pulmonary physiology in MyD88(-/-) mice correlated with lower lung CCL2 levels and reduced cell recruitment. However, by 5 wk postinfection, the overall health of MyD88(-/-) mice began to deteriorate rapidly relative to WT, with accelerated weight loss, impaired lung function, and exacerbated alveolar inflammation. This physiological decline of MyD88(-/-) mice was associated with increased TNF-α and IFN-γ in the lung, and by the inability to control Pneumocystis burden. Thus, MyD88 is not required for resistance to Pneumocystis infection, but limits the adaptive immune response in immunocompetent mice. In the setting of active PcP, MyD88 signaling contributes to both immunopathogenesis and control of fungal burden.
Collapse
Affiliation(s)
- Sheila N Bello-Irizarry
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | | | | | | | | |
Collapse
|
35
|
Searles S, Gauss K, Wilkison M, Hoyt TR, Dobrinen E, Meissner N. Modulation of inflammasome-mediated pulmonary immune activation by type I IFNs protects bone marrow homeostasis during systemic responses to Pneumocystis lung infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:3884-95. [PMID: 23975863 DOI: 10.4049/jimmunol.1301344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, possible innate immune defects as a cause for systemic immune deviations in response to otherwise innocuous infections have not been extensively explored. In this regard, we recently demonstrated an important role of type I IFNs in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis in lymphocyte-deficient mice. Mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-) mice) develop rapidly progressing BMF due to accelerated bone marrow (BM) cell apoptosis associated with innate immune deviations in the BM in response to Pneumocystis lung infection. However, the communication pathway between lung and BM eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. In this study, we report that absence of an intact type I IFN system during Pneumocystis lung infection not only causes BMF in lymphocyte-deficient mice but also transient BM stress in lymphocyte-competent mice. This is associated with an exuberant systemic IFN-γ response. IFN-γ neutralization prevented Pneumocystis lung infection-induced BM depression in type I IFN receptor-deficient mice and prolonged neutrophil survival time in BM from IFrag(-/-) mice. IL-1β and upstream regulators of IFN-γ, IL-12, and IL-18 were also upregulated in lung and serum of IFrag(-/-) mice. In conjunction, there was exuberant inflammasome-mediated caspase-1 activation in pulmonary innate immune cells required for processing of IL-18 and IL-1β. Thus, absence of type I IFN signaling during Pneumocystis lung infection may result in deregulation of inflammasome-mediated pulmonary immune activation, causing systemic immune deviations triggering BMF in this model.
Collapse
Affiliation(s)
- Steve Searles
- Department of Pathology, University of California School of Medicine, La Jolla, CA 92093
| | | | | | | | | | | |
Collapse
|
36
|
Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 2013; 31:317-43. [PMID: 23298208 DOI: 10.1146/annurev-immunol-032712-095906] [Citation(s) in RCA: 509] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The macrophage, a versatile cell type prominently involved in host defense and immunity, assumes a distinct state of alternative activation in the context of polarized type 2 immune responses such as allergic inflammation and helminth infection. This alternatively activated phenotype is induced by the canonical type 2 cytokines interleukin (IL)-4 and IL-13, which mediate expression of several characteristic markers along with a dramatic shift in macrophage metabolic pathways that influence surrounding cells and tissues. We discuss recent advances in the understanding of IL-4- and IL-13-mediated alternatively activated macrophages and type 2 immune responses; such advances have led to an expanded appreciation for functions of these cells beyond immunity, including maintenance of physiologic homeostasis and tissue repair.
Collapse
Affiliation(s)
- Steven J Van Dyken
- Departments of Medicine and Microbiology & Immunology, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
37
|
Abstract
Although the incidence of Pneumocystis pneumonia (PCP) has decreased since the introduction of combination antiretroviral therapy, it remains an important cause of disease in both HIV-infected and non-HIV-infected immunosuppressed populations. The epidemiology of PCP has shifted over the course of the HIV epidemic both from changes in HIV and PCP treatment and prevention and from changes in critical care medicine. Although less common in non-HIV-infected immunosuppressed patients, PCP is now more frequently seen due to the increasing numbers of organ transplants and development of novel immunotherapies. New diagnostic and treatment modalities are under investigation. The immune response is critical in preventing this disease but also results in lung damage, and future work may offer potential areas for vaccine development or immunomodulatory therapy. Colonization with Pneumocystis is an area of increasing clinical and research interest and may be important in development of lung diseases such as chronic obstructive pulmonary disease. In this review, we discuss current clinical and research topics in the study of Pneumocystis and highlight areas for future research.
Collapse
|
38
|
C-type lectin receptors and cytokines in fungal immunity. Cytokine 2012; 58:89-99. [DOI: 10.1016/j.cyto.2011.08.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/20/2011] [Indexed: 12/29/2022]
|
39
|
Swain SD, Meissner NN, Siemsen DW, McInnerney K, Harmsen AG. Pneumocystis elicits a STAT6-dependent, strain-specific innate immune response and airway hyperresponsiveness. Am J Respir Cell Mol Biol 2012; 46:290-8. [PMID: 21960549 PMCID: PMC3326431 DOI: 10.1165/rcmb.2011-0154oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022] Open
Abstract
It is widely held that exposure to pathogens such as fungi can be an agent of comorbidity, such as exacerbation of asthma or chronic obstructive pulmonary disease. Although many studies have examined allergic responses to fungi and their effects on pulmonary function, the possible pathologic implications of the early innate responses to fungal pathogens have not been explored. We examined early responses to the atypical fungus Pneumocystis in two common strains of mice in terms of overall immunological response and related pathology, such as cell damage and airway hyperresponsiveness (AHR). We found a strong strain-specific response in BALB/c mice that included recruitment of neutrophils, NK, NKT, and CD4 T cells. This response was accompanied by elevated indicators of lung damage (bronchoalveolar lavage fluid albumin and LDH) and profound AHR. This early response was absent in C57BL/6 mice, although both strains exhibited a later response associated with the clearance of Pneumocystis. We found that this AHR could not be attributed exclusively to the presence of recruited neutrophils, NKT, NK, or CD4 cells or to the actions of IFN-γ or IL-4. However, in the absence of STAT6 signaling, AHR and inflammatory cell recruitment were virtually absent. Gene expression analysis indicated that this early response included activation of several transcription factors that could be involved in pulmonary remodeling. These results show that exposure to a fungus such as Pneumocystis can elicit pulmonary responses that may contribute to morbidity, even without prior sensitization, in the context of certain genetic backgrounds.
Collapse
MESH Headings
- Albumins/metabolism
- Animals
- Antigens, CD1/genetics
- Antigens, CD1/metabolism
- Bronchial Hyperreactivity/genetics
- Bronchial Hyperreactivity/immunology
- Bronchial Hyperreactivity/metabolism
- Bronchial Hyperreactivity/microbiology
- Bronchial Hyperreactivity/physiopathology
- Bronchoalveolar Lavage Fluid/cytology
- Bronchoalveolar Lavage Fluid/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- Disease Models, Animal
- Gene Expression Regulation
- Immunity, Innate
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interleukin-4/metabolism
- L-Lactate Dehydrogenase/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/microbiology
- Lung/physiopathology
- Lung Diseases, Fungal/genetics
- Lung Diseases, Fungal/immunology
- Lung Diseases, Fungal/metabolism
- Lung Diseases, Fungal/microbiology
- Lung Diseases, Fungal/physiopathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Natural Killer T-Cells/microbiology
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/microbiology
- Pneumocystis Infections/genetics
- Pneumocystis Infections/immunology
- Pneumocystis Infections/metabolism
- Pneumocystis Infections/microbiology
- Pneumocystis Infections/physiopathology
- Receptors, Interleukin-4/deficiency
- Receptors, Interleukin-4/genetics
- Receptors, Interleukin-8B/deficiency
- Receptors, Interleukin-8B/genetics
- STAT6 Transcription Factor/deficiency
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- Signal Transduction
- Species Specificity
- Time Factors
- Transcriptional Activation
Collapse
Affiliation(s)
- Steve D Swain
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue.
Collapse
Affiliation(s)
- Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA.
| | | | | |
Collapse
|
41
|
Wei XQ, Lv GY, Jin HW, Cui Y, Zhao Y. Expression of DEC205 in the gastric mucosa of Helicobacter pylori-infected patients. Shijie Huaren Xiaohua Zazhi 2011; 19:3692-3695. [DOI: 10.11569/wcjd.v19.i36.3692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of DEC205 in the gastric mucosa of Helicobacter pylori (H. pylori)-infected patients.
METHODS: Thirteen H. pylori-positive patients with gastritis received eradication therapy. Gastroscopy was performed in all the 13 patients before eradication therapy and in 7 seven patients after treatment to take gastric mucosa samples, which were used to prepare frozen section to detect the expression of DEC205 and CD14 in human gastric mucosa by immunofluorescence.
RESULTS: Cells which were positive for both DEC205 and CD14 in the gastric mucosa significantly increased in H. pylori-infected patients. Furthermore, DEC205-positive macrophages invaded into gastric pits in the gastric mucosa of H. pylori-positive patients.
CONCLUSION: Macrophage expressing DEC205 in the gastric mucosa may play an immunological role in H. pylori infection.
Collapse
|
42
|
Figueiredo RT, Carneiro LAM, Bozza MT. Fungal surface and innate immune recognition of filamentous fungi. Front Microbiol 2011; 2:248. [PMID: 22194732 PMCID: PMC3242297 DOI: 10.3389/fmicb.2011.00248] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023] Open
Abstract
The innate immune system performs specific detection of molecules from infectious agents through pattern recognition receptors. This recognition triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. Infections caused by filamentous fungi have increased in incidence and represent an important cause of mortality and morbidity especially in individuals with immunosuppression. This review will discuss the innate immune recognition of filamentous fungi molecules and its importance to infection control and disease.
Collapse
Affiliation(s)
- Rodrigo T Figueiredo
- Instituto de Ciências Biomédicas/Pólo de Xerém, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | |
Collapse
|
43
|
Abstract
Fungal diseases have emerged as significant causes of morbidity and mortality, particularly in immune-compromised individuals, prompting greater interest in understanding the mechanisms of host resistance to these pathogens. Consequently, the past few decades have seen a tremendous increase in our knowledge of the innate and adaptive components underlying the protective (and nonprotective) mechanisms of antifungal immunity. What has emerged from these studies is that phagocytic cells are essential for protection and that defects in these cells compromise the host's ability to resist fungal infection. This review covers the functions of phagocytes in innate antifungal immunity, along with selected examples of the strategies that are used by fungal pathogens to subvert these defenses.
Collapse
Affiliation(s)
- Gordon D Brown
- Aberdeen Fungal Group, Section of Immunology and Infection, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, United Kingdom.
| |
Collapse
|
44
|
Guasconi L, Serradell MC, Garro AP, Iacobelli L, Masih DT. C-type lectins on macrophages participate in the immunomodulatory response to Fasciola hepatica products. Immunology 2011; 133:386-96. [PMID: 21595685 DOI: 10.1111/j.1365-2567.2011.03449.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fasciola hepatica releases excretory-secretory products (FhESP), and immunomodulatory properties have been described for the carbohydrates present in these parasite products. The interaction of FhESP with the innate immune cells, such as macrophages, is crucial in the early stage of infection. In this work we observed that peritoneal macrophages from naive BALB/c mice stimulated in vitro with FhESP presented: an increased arginase activity as well as Arginase I expression, and high levels of transforming growth factor-β and interleukin-10. A similar macrophage population was also observed in the peritoneum of infected mice. A partial inhibition of the immunomodulatory effects described above was observed when macrophages were pre-incubated with Mannan, anti-mannose receptor, Laminarin or anti-Dectin-1, and then stimulated with FhESP. In addition, we observed a partial inhibition of these effects in macrophages obtained from mice that were intraperitoneally injected with Mannan or Laminarin before being infected. Taken together, these results suggest the participation of at least two C-type lectin receptors, mannose receptor and Dectin-1, in the interaction of FhESP with macrophages, which allows this parasite to induce immunoregulatory effects on these important innate immune cells and may constitute a crucial event for extending its survival in the host.
Collapse
Affiliation(s)
- Lorena Guasconi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende y Haya de la Torre, Ciudad Universitaria, Argentina
| | | | | | | | | |
Collapse
|
45
|
Lugo-Villarino G, Hudrisier D, Tanne A, Neyrolles O. C-type lectins with a sweet spot for Mycobacterium tuberculosis. Eur J Microbiol Immunol (Bp) 2011; 1:25-40. [PMID: 24466434 PMCID: PMC3894812 DOI: 10.1556/eujmi.1.2011.1.6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The pattern of receptors sensing pathogens onto host cells is a key factor that can determine the outcome of the infection. This is particularly true when such receptors belong to the family of pattern recognition receptors involved in immunity. Mycobacterium tuberculosis, the etiologic agent of tuberculosis interacts with a wide range of pattern-recognition receptors present on phagocytes and belonging to the Toll-like, Nod-like, scavenger and C-type lectin receptor families. A complex scenario where those receptors can establish cross-talks in recognizing pathogens or microbial determinants including mycobacterial components in different spatial and temporal context starts to emerge as a key event in the outcome of the immune response, and thus, the control of the infection. In this review, we will focus our attention on the family of calcium-dependent carbohydrate receptors, the C-type lectin receptors, that is of growing importance in the context of microbial infections. Members of this family appear to be key innate immune receptors of mycobacteria, capable of cross-talk with other pattern recognition receptors to induce or modulate the inflammatory context upon mycobacterial infection.
Collapse
|
46
|
Pneumocystis infection in an immunocompetent host can promote collateral sensitization to respiratory antigens. Infect Immun 2011; 79:1905-14. [PMID: 21343358 DOI: 10.1128/iai.01273-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infection with the opportunistic fungal pathogen Pneumocystis is assumed to pass without persistent pathology in immunocompetent hosts. However, when immunocompetent BALB/c mice were inoculated with Pneumocystis, a vigorous Th2-like pulmonary inflammation ensued and peaked at 14 days postinfection. This coincided with a 10-fold increase in the number of antigen-presenting cells (APCs) in the lung, and these cells were capable of presenting antigen in vitro, as well as greater uptake of antigen in vivo. When mice were presented with exogenous antigen at the 14-day time point of the infection, they developed respiratory sensitization to that antigen, in the form of increased airway hyperresponsiveness upon a later challenge, whereas mice not infected but presented with antigen did not. Like other forms of collateral sensitization, this response was dependent on interleukin-4 receptor signaling. This ability to facilitate sensitization to exogenous antigen has been previously reported for other infectious disease agents; however, Pneumocystis appears to be uniquely capable in this respect, as a single intranasal dose without added adjuvant, when it was administered at the appropriate time, was sufficient to initiate sensitization. Pneumocystis infection probably occurs in most humans during the first few years of life, and in the vast majority of cases, it fails to cause any overt direct pathology. However, as we show here, Pneumocystis can be an agent of comorbidity at this time by facilitating respiratory sensitization that may relate to the later development or exacerbation of obstructive airway disease.
Collapse
|
47
|
Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin Dev Immunol 2011; 2010:547179. [PMID: 21331365 PMCID: PMC3038419 DOI: 10.1155/2010/547179] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/18/2010] [Accepted: 12/21/2010] [Indexed: 11/17/2022]
Abstract
Tumor-Associated Macrophages (TAMs) are abundantly present in the stroma of solid tumors and modulate several important biological processes, such as neoangiogenesis, cancer cell proliferation and invasion, and suppression of adaptive immune responses. Myeloid C-type lectin receptors (CLRs) constitute a large family of transmembrane carbohydrate-binding receptors that recognize pathogens as well as endogenous glycoproteins. Several lines of evidence demonstrate that some CLRs can inhibit the immune response. In this study we investigated TAM-associated molecules potentially involved in their immune suppressive activity. We found that TAMs isolated from human ovarian carcinoma samples predominantly express the CLRs Dectin-1, MDL-1, MGL, DCIR, and most abundantly the Mannose Receptor (MR). Components of carcinomatous ascites and purified tumoral mucins (CA125 and TAG-72) bound the MR and induced its internalization. MR engagement by tumoral mucins and by an agonist anti-MR antibody modulated cytokine production by TAM toward an immune-suppressive profile: increase of IL-10, absence of IL-12, and decrease of the Th1-attracting chemokine CCL3. This study highlights that tumoral mucin-mediated ligation of the MR on infiltrating TAM may contribute to their immune suppressive phenotype.
Collapse
|
48
|
Gazi U, Rosas M, Singh S, Heinsbroek S, Haq I, Johnson S, Brown GD, Williams DL, Taylor PR, Martinez-Pomares L. Fungal recognition enhances mannose receptor shedding through dectin-1 engagement. J Biol Chem 2011; 286:7822-7829. [PMID: 21205820 PMCID: PMC3048669 DOI: 10.1074/jbc.m110.185025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mannose receptor (MR) is an endocytic type I membrane molecule with a broad ligand specificity that is involved in both hemostasis and pathogen recognition. Membrane-anchored MR is cleaved by a metalloproteinase into functional soluble MR (sMR) composed of the extracellular domains of intact MR. Although sMR production was initially considered a constitutive process, enhanced MR shedding has been observed in response to the fungal pathogen Pneumocystis carinii. In this work, we have investigated the mechanism mediating enhanced MR shedding in response to fungi. We show that other fungal species, including Candida albicans and Aspergillus fumigatus, together with zymosan, a preparation of the cell wall of Saccharomyces cerevisiae, mimic the effect of P. carinii on sMR production and that this effect takes place mainly through β-glucan recognition. Additionally, we demonstrate that MR cleavage in response to C. albicans and bioactive particulate β-glucan requires expression of dectin-1. Our data, obtained using specific inhibitors, are consistent with the canonical Syk-mediated pathway triggered by dectin-1 being mainly responsible for inducing MR shedding, with Raf-1 being partially involved. As in the case of steady-state conditions, MR shedding in response to C. albicans and β-glucan particles requires metalloprotease activity. The induction of MR shedding by dectin-1 has clear implications for the role of MR in fungal recognition, as sMR was previously shown to retain the ability to bind fungal pathogens and can interact with numerous host molecules, including lysosomal hydrolases. Thus, MR cleavage could also impact on the magnitude of inflammation during fungal infection.
Collapse
Affiliation(s)
- Umut Gazi
- From the School of Molecular Medical Sciences,; Respiratory Biomedical Research Unit, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Marcela Rosas
- the Department of Infection, Immunity, and Biochemistry, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Sonali Singh
- From the School of Molecular Medical Sciences,; Respiratory Biomedical Research Unit, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Sigrid Heinsbroek
- the Department of Gastroenterology, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Imran Haq
- Respiratory Biomedical Research Unit, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom,; Division of Therapeutics and Molecular Medicine, and
| | - Simon Johnson
- Respiratory Biomedical Research Unit, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom,; Division of Therapeutics and Molecular Medicine, and
| | - Gordon D Brown
- the Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland, United Kingdom, and
| | - David L Williams
- the Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Philip R Taylor
- the Department of Infection, Immunity, and Biochemistry, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Luisa Martinez-Pomares
- From the School of Molecular Medical Sciences,; Respiratory Biomedical Research Unit, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom,.
| |
Collapse
|
49
|
Abstract
Th17 cells are a recently discovered subset of T helper cells characterised by the release of IL-17, and are thought to be important for mobilization of immune responses against microbial pathogens, but which also contribute to the development of autoimmune diseases. The identification of C-type lectin receptors which are capable of regulating the balance between Th1 and Th17 responses has been of particular recent interest, which they control, in part, though the release of Th17 inducing cytokines. Many of these receptors recognise fungi, and other pathogens, and play key roles in driving the development of protective anti-microbial immunity. Here we will review the C-type lectins that have been linked to Th17 type responses and will briefly examine the role of Th17 responses in murine and human anti-fungal immunity.
Collapse
Affiliation(s)
| | | | - Gordon D. Brown
- Aberdeen Fungal Group, Section of Infection and Immunity, Institute of Medical Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
50
|
Berger SP, Daha MR. Pattern recognition and renal defence in crescentic glomerulonephritis. Nephrol Dial Transplant 2010; 25:2876-8. [PMID: 20650906 DOI: 10.1093/ndt/gfq446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chavele et al. studied the role of the mannose receptor (MR) in crescentic nephritis. The accelerated nephrotoxic model of glomerulonephritis was induced on both wild-type (WT) and MR-deficient mice. The mice lacking the MR showed a markedly altered phenotype. They were largely protected against the development of glomerulonephritis with less affected glomeruli, less proteinuria and much better renal function when compared to the WT mice. Whilst more infiltrating macrophages were present in the WT animals, there was no difference in the deposition of sheep and mouse immunoglobulins. To elucidate the mechanism of MR-mediated damage, the authors additionally performed a series of in vitro experiments. They show that the Fab portion of sheep immunoglobulins binds to MR binding domains. Interestingly, the MR seems to interact with FcR-mediated cellular reactions. When MR-deficient macrophages and mesangial cells were treated with immune complexes, the macrophages showed a significantly poorer oxygen burst when compared with WT cells. In line with this possible interaction between Fc-receptors and MR, co-localization of Fcã-receptors and MR was demonstrated on macrophages. Additionally, the authors observed that MR-deficient mesangial cells in culture proliferated more abundantly and showed a markedly increased rate of spontaneous apoptosis compared with WT cells. These findings led the authors to test whether this increased apoptosis could play a role in the suppression of glomerular inflammation. Indeed, TNF-á production by LPS-stimulated macrophages was markedly reduced in the presence or apoptotic cells. The anti-inflammatory effect of apoptotic mesangial cells was increased when MR-deficient macrophages were used instead of WT cells (Figure 1). Fig. 1 Proposed role for mannose receptor in crescentic glomerulonephritis. (A) IgG may bind to the Fc receptor with the Fc domain and to the mannose receptor with the Fab portion leading to an increased oxygen burst (left). If the mannose receptor is absent, the oxygen burst is decreased (right). (B) Absence of the mannose receptor leads to an increased proliferation and apoptosis of mesangial cells. These apoptotic cells induce a non-inflammatory macrophage phenotype with IL-10 and TGF-beta production (right). If the mannose receptor is present, mesangial cells proliferate less and are less apoptotic, and a pro-inflammatory macrophage phenotype with TNF-alpha production prevails.
Collapse
Affiliation(s)
- Stefan P Berger
- Department of Nephrology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands.
| | | |
Collapse
|