1
|
Kim JO, Nothaft H, Moon Y, Jeong S, Vortherms AR, Song M, Szymanski CM, White J, Walker R. Shigella Mutant with Truncated O-Antigen as an Enteric Multi-Pathogen Vaccine Platform. Vaccines (Basel) 2025; 13:506. [PMID: 40432116 PMCID: PMC12115902 DOI: 10.3390/vaccines13050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Rising antibiotic resistance underscores the urgent need for effective vaccines against shigellosis. Our previous research identified the Shigella flexneri 2a truncated mutant (STM), a wzy gene knock-out strain cultivated in shake-flasks, as a promising broadly protective Shigella vaccine candidate. Expanding on this finding, our current study explores the feasibility of transitioning to a fermentor-grown STM as a vaccine candidate for further clinical development. Methods: The STM and STM-Cj, engineered to express the conserved Campylobacter jejuni N-glycan antigen, were grown in animal-free media, inactivated with formalin, and evaluated for key antigen retention and immunogenicity in mice. Results: The fermentor-grown STM exhibited significantly increased production yields and retained key antigens after inactivation. Immunization with the STM, particularly along with the double-mutant labile toxin (dmLT) adjuvant, induced robust immune responses to the conserved proteins IpaB, IpaC, and PSSP-1. Additionally, it provided protection against homologous and heterologous Shigella challenges in a mouse pulmonary model. The STM-Cj vaccine elicited antibody responses specific to the N-glycan while maintaining protective immune responses against Shigella. These findings underscore the potential of the fermentor-grown STM as a safe and immunogenic vaccine platform for combating shigellosis and possibly other gastrointestinal bacterial infections. Conclusions: Further process development to optimize growth and key antigen expression as well as expanded testing in additional animal models for the assessment of protection against Shigella and Campylobacter are needed to build on these encouraging initial results. Ultimately, clinical trials are essential to evaluate the efficacy and safety of STM-based vaccines in humans.
Collapse
Affiliation(s)
- Jae-Ouk Kim
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea (S.J.); (M.S.)
| | - Harald Nothaft
- VaxAlta Inc., Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.N.); (C.M.S.)
| | - Younghye Moon
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea (S.J.); (M.S.)
| | - Seonghun Jeong
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea (S.J.); (M.S.)
| | | | - Manki Song
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea (S.J.); (M.S.)
| | - Christine M. Szymanski
- VaxAlta Inc., Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.N.); (C.M.S.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
2
|
Nemati A, Gigliucci F, Morabito S, Badouei MA. Virulence plasmids in edema disease: Insights from whole-genome analysis of porcine O139:H1 Shiga toxin-producing Escherichia coli (STEC) strains. Front Cell Infect Microbiol 2025; 15:1528408. [PMID: 40182763 PMCID: PMC11965690 DOI: 10.3389/fcimb.2025.1528408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
This study investigates the plasmid sequences of porcine O139:H1 Shiga toxin-producing Escherichia coli (STEC) responsible for Edema Disease (ED). Whole-genome analysis reveals significant similarities between these strains and known plasmids, notably pW1316-2, which harbors key virulence genes like hemolysin (hlyA, hlyB) and adhesion factors (aidA-I, faeE). These genes contribute to the cytotoxicity and host colonization associated with ED. Additionally, similarities to plasmids from Shigella flexneri 2a highlight potential associations in virulence gene regulation, particularly via the Hha-H-NS complex. The identification of sequences resembling plasmid pB71 raises serious concerns about the emergence of highly pathogenic strains, as it includes tetracycline resistance genes (tetA, tetC, tetR). This research emphasizes the role of plasmid-like sequences in ED pathogenesis, indicating important implications for swine industry management and public health.
Collapse
Affiliation(s)
- Ali Nemati
- European Union Reference Laboratory (EURL) for Escherichia coli including Shiga toxin-producing E. coli (STEC), Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Federica Gigliucci
- European Union Reference Laboratory (EURL) for Escherichia coli including Shiga toxin-producing E. coli (STEC), Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Morabito
- European Union Reference Laboratory (EURL) for Escherichia coli including Shiga toxin-producing E. coli (STEC), Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Dif G, Djemouai N, Bouras N, Zitouni A. In-Depth Genome-Based Analysis of Shigella spp. and Escherichia spp.: Resolving Ambiguities and Unveiling Phylogenetic Relationships. Curr Microbiol 2025; 82:170. [PMID: 40045049 DOI: 10.1007/s00284-025-04158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Although traditionally classified as distinct genera, recent genomic analyses suggest that Shigella species may represent pathogenic clones of Escherichia coli. In this study, we investigated the genetic relationships between Shigella and Escherichia species through comprehensive phylogenomic and taxonomic analyses. Genomic datasets for all validly named species within both genera were retrieved from GenBank. Multiple methods, including 16S rRNA gene sequence analysis, digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), Genome BLAST Distance Phylogeny (GBDP), and percentage of conserved proteins (POCP), were employed. These results reveal a high genetic similarity between Shigella species and E. coli, with ANI values exceeding 96% and dDDH values above 70%, indicating that Shigella species fall within the same species as E. coli. Phylogenomic trees, generated from whole-genome sequences and core genes, further corroborated the close evolutionary relationship between these taxa. Furthermore, these analyses challenge the reclassification of Atlantibacter hermannii and Pseudescherichia vulneris, supporting their retention within the genus Escherichia. Based on these findings, we propose the reclassification of Shigella species as subspecies within E. coli and recommend revisiting the taxonomic status of other related species.
Collapse
Affiliation(s)
- Guendouz Dif
- Département des Sciences Naturelles, École Normale Supérieure Taleb Abderrahmane de Laghouat, BP 4033, 03000, Laghouat, Algeria.
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, Kouba, BP 92, Algiers, Algeria.
| | - Nadjette Djemouai
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, Kouba, BP 92, Algiers, Algeria
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, BP 455, 47000, Ghardaïa, Algeria
| | - Noureddine Bouras
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, Kouba, BP 92, Algiers, Algeria
- Laboratoire de Valorisation et Conservation des Ecosystèmes Arides (LVCEA), Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, B.P. 455, Ghardaïa, Algeria
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, Kouba, BP 92, Algiers, Algeria
| |
Collapse
|
4
|
Ojha R, Krug S, Jones P, Koestler BJ. Intact and mutated Shigella diguanylate cyclases increase c-di-GMP. J Biol Chem 2024; 300:107525. [PMID: 38960033 PMCID: PMC11327459 DOI: 10.1016/j.jbc.2024.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
The intracellular human pathogen Shigella invades the colonic epithelium to cause disease. Prior to invasion, this bacterium navigates through different environments within the human body, including the stomach and the small intestine. To adapt to changing environments, Shigella uses the bacterial second messenger cyclic di-GMP (c di-GMP) signaling system, synthesized by diguanylate cyclases (DGCs) encoding GGDEF domains. Shigella flexneri encodes a total of 9 GGDEF or GGDEF-EAL domain enzymes in its genome, but five of these genes have acquired mutations that presumably inactivated the c-di-GMP synthesis activity of these enzymes. In this study, we examined individual S. flexneri DGCs for their role in c-di-GMP synthesis and pathogenesis. We individually expressed each of the four intact DGCs in a S. flexneri strain, where these four DGCs had been deleted (Δ4DGC). We found that the 4 S. flexneri intact DGCs synthesize c-di-GMP at different levels in vitro and during infection of tissue-cultured cells. We also found that dgcF and dgcI expression significantly reduces invasion and plaque formation, and dgcF expression increases acid sensitivity, and that these phenotypes did not correspond with measured c-di-GMP levels. However, deletion of these four DGCs did not eliminate S. flexneri c-di-GMP, and we found that dgcE, dgcQ, and dgcN, which all have nonsense mutations prior to the GGDEF domain, still produce c-di-GMP. These S. flexneri degenerate DGC pseudogenes are expressed as multiple proteins, consistent with multiple start codons within the gene. We propose that both intact and degenerate DGCs contribute to S. flexneri c-di-GMP signaling.
Collapse
Affiliation(s)
- Ruchi Ojha
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - Stefanie Krug
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Prentiss Jones
- Department of Pathology, Western Michigan University Homer Stryker, M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - Benjamin J Koestler
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA.
| |
Collapse
|
5
|
Hanke DM, Wang Y, Dagan T. Pseudogenes in plasmid genomes reveal past transitions in plasmid mobility. Nucleic Acids Res 2024; 52:7049-7062. [PMID: 38808675 PMCID: PMC11229322 DOI: 10.1093/nar/gkae430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Evidence for gene non-functionalization due to mutational processes is found in genomes in the form of pseudogenes. Pseudogenes are known to be rare in prokaryote chromosomes, with the exception of lineages that underwent an extreme genome reduction (e.g. obligatory symbionts). Much less is known about the frequency of pseudogenes in prokaryotic plasmids; those are genetic elements that can transfer between cells and may encode beneficial traits for their host. Non-functionalization of plasmid-encoded genes may alter the plasmid characteristics, e.g. mobility, or their effect on the host. Analyzing 10 832 prokaryotic genomes, we find that plasmid genomes are characterized by threefold-higher pseudogene density compared to chromosomes. The majority of plasmid pseudogenes correspond to deteriorated transposable elements. A detailed analysis of enterobacterial plasmids furthermore reveals frequent gene non-functionalization events associated with the loss of plasmid self-transmissibility. Reconstructing the evolution of closely related plasmids reveals that non-functionalization of the conjugation machinery led to the emergence of non-mobilizable plasmid types. Examples are virulence plasmids in Escherichia and Salmonella. Our study highlights non-functionalization of core plasmid mobility functions as one route for the evolution of domesticated plasmids. Pseudogenes in plasmids supply insights into past transitions in plasmid mobility that are akin to transitions in bacterial lifestyle.
Collapse
Affiliation(s)
- Dustin M Hanke
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Yiqing Wang
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
6
|
Ojha R, Krug S, Jones P, Koestler BJ. Intact and Degenerate Diguanylate Cyclases regulate Shigella Cyclic di-GMP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588579. [PMID: 38645013 PMCID: PMC11030455 DOI: 10.1101/2024.04.08.588579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intracellular human pathogen Shigella invades the colonic epithelium to cause disease. Prior to invasion, this bacterium navigates through different environments within the human body, including the stomach and the small intestine. To adapt to changing environments, Shigella uses the bacterial second messenger c-di-GMP signaling system, synthesized by diguanylate cyclases (DGCs) encoding GGDEF domains. Shigella flexneri encodes a total of 9 GGDEF or GGDEF-EAL domain enzymes in its genome, but 5 of these genes have acquired mutations that presumably inactivated the c-di-GMP synthesis activity of these enzymes. In this study, we examined individual S. flexneri DGCs for their role in c-di-GMP synthesis and pathogenesis. We individually expressed each of the 4 intact DGCs in an S. flexneri strain where these 4 DGCs had been deleted (Δ4DGC). We found that the 4 S. flexneri intact DGCs synthesize c-di-GMP at different levels in vitro and during infection of tissue-cultured cells. We also found that dgcF and dgcI expression significantly reduces invasion and plaque formation, and dgcF expression increases acid sensitivity, and that these phenotypes did not correspond with measured c-di-GMP levels. However, deletion of these 4 DGCs did not eliminate S. flexneri c-di-GMP, and we found that dgcE, dgcQ, and dgcN , which all have nonsense mutations prior to the GGDEF domain, still produce c-di-GMP. These S. flexneri degenerate DGC genes are expressed as multiple proteins, consistent with multiple start codons within the gene. We propose that both intact and degenerate DGCs contribute to S. flexneri c-di-GMP signaling.
Collapse
|
7
|
Jakob S, Steinchen W, Hanßmann J, Rosum J, Langenfeld K, Osorio-Valeriano M, Steube N, Giammarinaro PI, Hochberg GKA, Glatter T, Bange G, Diepold A, Thanbichler M. The virulence regulator VirB from Shigella flexneri uses a CTP-dependent switch mechanism to activate gene expression. Nat Commun 2024; 15:318. [PMID: 38182620 PMCID: PMC10770331 DOI: 10.1038/s41467-023-44509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
The transcriptional antisilencer VirB acts as a master regulator of virulence gene expression in the human pathogen Shigella flexneri. It binds DNA sequences (virS) upstream of VirB-dependent promoters and counteracts their silencing by the nucleoid-organizing protein H-NS. However, its precise mode of action remains unclear. Notably, VirB is not a classical transcription factor but related to ParB-type DNA-partitioning proteins, which have recently been recognized as DNA-sliding clamps using CTP binding and hydrolysis to control their DNA entry gate. Here, we show that VirB binds CTP, embraces DNA in a clamp-like fashion upon its CTP-dependent loading at virS sites and slides laterally on DNA after clamp closure. Mutations that prevent CTP-binding block VirB loading in vitro and abolish the formation of VirB nucleoprotein complexes as well as virulence gene expression in vivo. Thus, VirB represents a CTP-dependent molecular switch that uses a loading-and-sliding mechanism to control transcription during bacterial pathogenesis.
Collapse
Affiliation(s)
- Sara Jakob
- Department of Biology, University of Marburg, Marburg, Germany
| | - Wieland Steinchen
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Juri Hanßmann
- Department of Biology, University of Marburg, Marburg, Germany
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Julia Rosum
- Department of Biology, University of Marburg, Marburg, Germany
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, Marburg, Germany
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Niklas Steube
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Pietro I Giammarinaro
- Department of Chemistry, University of Marburg, Marburg, Germany
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Georg K A Hochberg
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gert Bange
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Max Planck Fellow Group Molecular Physiology of Microbes, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
8
|
Grakh K, Mittal D, Prakash A, Kumar R, Jindal N. uspA gene-based phylogenetic analysis and antigenic epitope prediction for Escherichia coli strains of avian origin. Front Vet Sci 2023; 10:1183048. [PMID: 38188721 PMCID: PMC10767999 DOI: 10.3389/fvets.2023.1183048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pathogenic Escherichia coli (E. coli) is responsible for various local and systemic infections in animal and human populations. Conventional methods for the detection and identification of E. coli are time-consuming and less reliable for atypical strains. The uspA gene has been widely used as a target for the detection of E. coli. The present study was aimed at phylogenetic analysis of the uspA gene sequences to determine the evolutionary relationships between the strains and other members of the Enterobacteriaceae family. In addition, the unique differences in the sequences of the current study with Salmonella and Shigella species were tested using Tajima's molecular clock test. Antigenic epitope prediction was performed to locate the B-cell epitope region of the UspA protein. Two E. coli isolates of avian origin and strains from the National Center for Biotechnology Information (NCBI) database were used for prediction. The Immune Epitope Database (IEDB) server, Bepitope, ABCpred, SVMTrip, and ElliPro server were used to identify B-cell epitopes. The 3D structure was predicted using SWISS-MODEL. Phylogenetic analysis of the isolates from the current study revealed that both OM837340 and OM837341 sequences from the current study had maximum nucleotide homology (nt) of 99.87%-100% with E. coli isolates and minimum nt homology of 84.08% with Salmonella enteritidis and S. Hissar. The isolates in the current study had a homology of 98.87%, while the homology with Shigella species was 99.25%. Seven silent mutations were observed in the coding region of the UspA protein of ECO9LTBW (current study). Modeling of the UspA protein revealed a maximum homology of 67.86% with the Protein Data Bank in Europe (PDBe), also validated by the Ramachandran plot. No significant differences were found in the coding regions of uspA of Salmonella, Shigella, and E. coli with Tajima's test. For the E. coli isolates, a total of 24 linear B-cell and seven discontinuous epitopes were predicted using in-silico analysis. When the results of the predicted peptides were compared, two peptides, namely ARPYNA and YSDLYTGLIDVNLGDMQKRISEE, were found suitable candidates. In conclusion, the uspA gene appears to be conserved among E. coli isolates and can be used for molecular detection.
Collapse
Affiliation(s)
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | | | | | | |
Collapse
|
9
|
Gabor CE, Hazen TH, Delaine-Elias BC, Rasko DA, Barry EM. Genomic, transcriptomic, and phenotypic differences among archetype Shigella flexneri strains of serotypes 2a, 3a, and 6. mSphere 2023; 8:e0040823. [PMID: 37830809 PMCID: PMC10732043 DOI: 10.1128/msphere.00408-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Given the genomic diversity between S. flexneri serotypes and the paucity of data to support serotype-specific phenotypic differences, we applied in silico and in vitro functional analyses of archetype strains of 2457T (Sf2a), J17B (Sf3a), and CH060 (Sf6). These archetype strains represent the three leading S. flexneri serotypes recommended for inclusion in multivalent vaccines. Characterizing the genomic and phenotypic variation among these clinically prevalent serotypes is an important step toward understanding serotype-specific host-pathogen interactions to optimize the efficacy of multivalent vaccines and therapeutics. This study underpins the importance for further large-scale serotype-targeted analyses.
Collapse
Affiliation(s)
- Caitlin E. Gabor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tracy H. Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - BreOnna C. Delaine-Elias
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eileen M. Barry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Lim JA, Cha J, Choi S, Kim JH, Kim D. Early Colonization of the Intestinal Microbiome of Neonatal Piglets Is Influenced by the Maternal Microbiome. Animals (Basel) 2023; 13:3378. [PMID: 37958132 PMCID: PMC10650534 DOI: 10.3390/ani13213378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The intestinal microbiome plays a crucial role in animal health and growth by interacting with the host, inhibiting pathogenic microbial colonization, and regulating immunity. This study investigated dynamic changes in the fecal microbial composition of piglets from birth through weaning and the relationship between the piglet fecal microbiome and sows. Feces, skin, neonatal oral cavity, and vaginal samples were collected from eight sows and sixty-three piglets, and 16S genome sequencing was performed. The results revealed that Firmicutes, Bacteroidetes, and Proteobacteria dominated the piglet microbiome in the early stages, and Firmicutes and Bacteroidetes were crucial for maintaining a balance in the intestinal microbiome during nursing. The abundance of Christensenellaceae_R-7_group, Succinivibrio, and Prevotella increased in weaned piglets fed solid feed. Analysis of the microbiome from sows to piglets indicated a shift in the microbiome colonizing piglet intestines, which became a significant constituent of the piglet intestinal microbiome. This study supports the theory that the neonatal intestinal microbiome is vertically transmitted from the mother. Further research is required to integrate factors related to sows, piglets, and their environments to gain a better understanding of the early establishment of the intestinal microbiome in piglets.
Collapse
Affiliation(s)
| | | | | | | | - Dahye Kim
- Animal Genome and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (J.C.); (S.C.); (J.-H.K.)
| |
Collapse
|
11
|
Li L, Li S, Luo J, Chen T, Xi Q, Zhang Y, Sun J. The difference of intestinal microbiota composition between Lantang and Landrace newborn piglets. BMC Vet Res 2023; 19:174. [PMID: 37759242 PMCID: PMC10523759 DOI: 10.1186/s12917-023-03642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The early development of intestinal microbiota plays a fundamental role in host health and development. To investigate the difference in the intestinal microbial composition between Lantang and Landrace newborn piglets, we amplified and sequenced the V3-V4 region of 16 S rRNA gene in jejunal microbiota of Lantang and landrace newborn. RESULTS The findings revealed that the dominant phyla in the jejunum of Lantang piglets were Firmicutes, Actinobacteria and Bacteroidetes, while the dominant phyla of Landrace is Proteobacteria and Fusobacteria. Specifically, Corynebacterium_1, Lactobacillus, Rothia, Granulicatella, Corynebacteriales_unclassified, Corynebacterium, Globicatella and Actinomycetales_unclassified were found to be the dominant genera of Lantang group, while Clostridium_sensu_stricto_1, Escherichia-Shigella, Actinobacillus and Bifidobacterium were the dominant genera of Landrace. Based on the functional prediction of bacteria, we found that bacterial communities from Lantang samples had a significantly greater abundance pathways of fatty acid synthesis, protein synthesis, DNA replication, recombination, repair and material transport across membranes, while the carrier protein of pathogenic bacteria was more abundant in Landrace samples. CONCLUSIONS Overall, there was a tremendous difference in the early intestinal flora composition between Landang and Landrace piglets, which was related to the breed characteristics and may be one of the reasons affecting the growth characteristics. However, more further extensive studies should be included to reveal the underlying relationship between early intestinal flora composition in different breeds and pig growth characteristics.
Collapse
Affiliation(s)
- Ling Li
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuai Li
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Junyi Luo
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ting Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Jiajie Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
12
|
Abdelfattah A, Samir R, Amin HM. Production of highly immunogenic and safe Triton X-100 produced bacterial ghost vaccine against Shigella flexneri 2b serotype. Gut Pathog 2023; 15:41. [PMID: 37679798 PMCID: PMC10483756 DOI: 10.1186/s13099-023-00568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Bacterial ghost cells (BGCs) are cells were drained of their genetic and cytoplasmic components. This work aimed to develop vaccine candidates against the Shigella flexneri (S. flexneri) 2b serotype using the BGCs approach. For the first time, (S. flexneri) 2b serotype BGCs vaccine was prepared by incubation with Triton X-100 (TX100) for only 12 h. Its safety and immunogenicity were compared to another vaccine produced using a previously used surfactant, namely Tween 80 (TW80). Scanning electron microscopy (SEM), cellular DNA, protein contents measurements, and ghost cell re-cultivation were used to confirm the successful generation of the BGCs. Immunogenicity was assessed through mice's intraperitoneal (IP) immunization followed by infection with S. flexneri ATCC 12022. Finally, histopathological examination was carried out. RESULTS Viable colony forming units (CFUs) of S. flexneri were counted from stool samples as well as homogenized colon tissues of the non-immunized challenged group. Immunized mice sera showed a significant increase in serum bactericidal activity of both preparations (TX100 = 40% and TW80 = 56%) compared to the non-immunized challenged group (positive control). The IgG levels of the bacterial ghost-vaccinated groups were four and three times greater for the TX100 and TW80 ghost vaccines, respectively, compared to that of the positive control; both bacterial ghost vaccines (BGVs) were safe and effective, according to the results of the safety check tests and histopathological analysis. CONCLUSIONS When comparing the BGVs prepared using TX100 and TW80 methods, the use of TX100 as a new chemical treating agent for BGC production attained robust results in terms of shorter incubation time with the targeted cells and a strong immune response against S. flexneri 2b serotype ATCC 12022 in the IP challenge test. However, a clinical study is needed to confirm the efficacy and total safety of this novel vaccine.
Collapse
Affiliation(s)
- Amany Abdelfattah
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 26 July Mehwar Road Intersection With Wahat Road, 6Th of October, 12451 Giza Egypt
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Nile Corniche, El Sayeda Zeinab, Cairo, 11562 Egypt
| | - Heba M. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 26 July Mehwar Road Intersection With Wahat Road, 6Th of October, 12451 Giza Egypt
| |
Collapse
|
13
|
Wang KC, Lerche MH, Ardenkjær-Larsen JH, Jensen PR. Formate Metabolism in Shigella flexneri and Its Effect on HeLa Cells at Different Stages during the Infectious Process. Microbiol Spectr 2023; 11:e0063122. [PMID: 37042762 PMCID: PMC10269805 DOI: 10.1128/spectrum.00631-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
Shigellosis caused by Shigella is one of the most important foodborne illnesses in global health, but little is known about the metabolic cross talk between this bacterial pathogen and its host cells during the different stages of the infection process. A detailed understanding of the metabolism can potentially lead to new drug targets remedying the pressing problem of antibiotic resistance. Here, we use stable isotope-resolved metabolomics as an unbiased and fast method to investigate how Shigella metabolizes 13C-glucose in three different environments: inside the host cells, adhering to the host cells, and alone in suspension. We find that especially formate metabolism by bacteria is sensitive to these different environments. The role of formate in pathogen metabolism is sparsely described in the literature compared to the roles of acetate and butyrate. However, its metabolic pathway is regarded as a potential drug target due to its production in microorganisms and its absence in humans. Our study provides new knowledge about the regulatory effect of formate. Bacterial metabolism of formate is pH dependent when studied alone in culture medium, whereas this effect is less pronounced when the bacteria adhere to the host cells. Once the bacteria are inside the host cells, we find that formate accumulation is reduced. Formate also affects the host cells resulting in a reduced infection rate. This was correlated to an increased immune response. Thus, intriguingly formate plays a double role in pathogenesis by increasing the virulence of Shigella and at the same time stimulating the immune response of the host. IMPORTANCE Bacterial infection is a pressing societal concern due to development of resistance toward known antibiotics. Central carbon metabolism has been suggested as a potential new target for drug development, but metabolic changes upon infection remain incompletely understood. Here, we used a cellular infection model to study how the bacterial pathogen Shigella adapts its metabolism depending on the environment starting from the extracellular medium until Shigella successfully invaded and proliferated inside host cells. The mixed-acid fermentation of Shigella was the major metabolic pathway during the infectious process, and the glucose-derived metabolite formate surprisingly played a divergent role in the pathogen and in the host cell. Our data show reduced infection rate when both host cells and bacteria were treated with formate, which correlated with an upregulated immune response in the host cells. The formate metabolism in Shigella thus potentially provides a route toward alternative treatment strategies for Shigella prevention.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mathilde Hauge Lerche
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jan Henrik Ardenkjær-Larsen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pernille Rose Jensen
- Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Nguyen DT, Morita M, Ngo TC, Le TH, Le DH, Nguyen HT, Akeda Y, Ohnishi M, Izumiya H. Characterization of Shigella flexneri in northern Vietnam in 2012-2016. Access Microbiol 2023; 5:acmi000493.v4. [PMID: 37424561 PMCID: PMC10323796 DOI: 10.1099/acmi.0.000493.v4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Shigellosis remains a considerable public health concern in developing countries. Shigella flexneri and Shigella sonnei are prevalent worldwide and S. sonnei has been replacing S. flexneri . Gap Statement S. flexneri still causes outbreaks of shigellosis in northern Vietnam but limited information is available on its genetic characteristics. Aim This study aimed to characterize the genetic characteristics of S. flexneri strains from northern Vietnam. Methodology This study used 17 isolates from eight incidents, collected in northern Vietnam between 2012 and 2016. The samples were subjected to whole genome sequencing, molecular serotyping, cluster analysis and identification of antimicrobial resistance genes. Additionally, phylogenetic analysis was performed including isolates from previous studies. Results Clusters were identified according to spatiotemporal backgrounds. The results suggested that two incidents in Yen Bai province in 2015 and 2016 were derived from a very recent common ancestor. All isolates belonged to phylogroup (PG) 3, which was divided into two sub-lineages. Thirteen of 17 isolates, including those from the Yen Bai incidents, belonged to sub-lineage Sub-1 and were serotyped as 1a. The remaining four isolates belonged to sub-lineage Sub-2 and were the globally predominant serotype 2a. The Sub-1 S. flexneri isolates possessed the gtrI gene, which encodes the glycosyl transferase that determines serotype 1a, with bacteriophage elements in the vicinity. Conclusion This study revealed two PG3 sub-lineages of S. flexneri in northern Vietnam, of which Sub-1 might be specific to the region.
Collapse
Affiliation(s)
- Dong Tu Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tuan Cuong Ngo
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Thanh Huong Le
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Hoai Thu Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hidemasa Izumiya
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
15
|
Jenkins C, Griffith P, Hoban A, Brown C, Garner J, Bardsley M, Willis C, Jorgensen F, Bird M, Greig DR, Edmunds M, Beck C, Larkins L. Foodborne outbreak of extended spectrum beta lactamase producing Shigella sonnei associated with contaminated spring onions in the United Kingdom. J Food Prot 2023; 86:100074. [PMID: 37030629 DOI: 10.1016/j.jfp.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 04/10/2023]
Abstract
Globalization of the food supply chain has created conditions favourable for emergence and spread of multidrug resistant (MDR) foodborne pathogens. In November 2021, the UK Health Security Agency detected an outbreak of 17 cases infected with the same strain of MDR extended spectrum beta-lactamase (ESBL)-producing Shigella sonnei. Phylogenetic analysis of whole genome sequencing data revealed the outbreak was closely related to strains of S. sonnei isolated from travellers returning to the UK from Egypt. None of the outbreak cases reported travel and all 17 cases reported eating food from a restaurant/food outlet in the week prior to symptom onset, of which 11/17 (64.7%) ate at branches of the same national restaurant franchise. All 17 cases were adults and 14/17 (82.4%) were female. Ingredient-level analyses of the meals consumed by the cases identified spring onions as the common ingredient. Food chain investigations revealed that the spring onions served at the implicated restaurants could be traced back to a single Egyptian producer. The foodborne transmission of ESBL-producing bacteria is an emerging global health concern, and concerted action from all stakeholders is required to ensure an effective response to mitigate the risks to public health.
Collapse
Affiliation(s)
- Claire Jenkins
- Gastro and Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5AT.
| | | | - Anne Hoban
- Gastro and Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5AT
| | - Claire Brown
- Field Service South West, UK Health Security Agency
| | | | | | - Caroline Willis
- Food Water and Environmental Microbiology Laboratory Porton, UK Health Security Agency, Salisbury SP4 0JG, UK
| | - Frieda Jorgensen
- Food Water and Environmental Microbiology Laboratory Porton, UK Health Security Agency, Salisbury SP4 0JG, UK
| | - Matthew Bird
- Gastro and Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5AT
| | - David R Greig
- Gastro and Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5AT
| | - Matt Edmunds
- Field Service South West, UK Health Security Agency
| | - Charles Beck
- Field Service South West, UK Health Security Agency
| | - Lesley Larkins
- Gastro and Food Safety (One Health) Division, UK Health Security Agency, London, NW9 5AT
| |
Collapse
|
16
|
Sharma KK, Singh D, Mohite SV, Williamson PR, Kennedy JF. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases". Int J Biol Macromol 2023; 233:123534. [PMID: 36740121 DOI: 10.1016/j.ijbiomac.2023.123534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The chemistry of metal ions with human pathogens is essential for their survival, energy generation, redox signaling, and niche dominance. To regulate and manipulate the metal ions, various enzymes and metal chelators are present in pathogenic bacteria. Metalloenzymes incorporate transition metal such as iron, zinc, cobalt, and copper in their reaction centers to perform essential metabolic functions; however, iron and copper have gained more importance. Multicopper oxidases have the ability to perform redox reaction on phenolic substrates with the help of copper ions. They have been reported from Enterobacteriaceae, namely Salmonella enterica, Escherichia coli, and Yersinia enterocolitica, but their role in virulence is still poorly understood. Similarly, superoxide dismutases participate in reducing oxidative stress and allow the survival of pathogens. Their role in virulence and survival is well established in Salmonella typhimurium and Mycobacterium tuberculosis. Further, to ensure survival against stress, like metal starvation or metal toxicity, redox metalloenzymes and metal transportation systems of pathogens actively participate in metal homeostasis. Recently, the omics and protein structure biology studies have helped to predict new targets for regulation the colonization potential of the pathogenic strains. The current review is focused on the major roles of redox metalloenzymes, especially MCOs and SODs of human pathogenic bacteria.
Collapse
Affiliation(s)
- Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Deepti Singh
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 the Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
17
|
Systematic Discovery of a New Catalogue of Tyrosine-Type Integrases in Bacterial Genomic Islands. Appl Environ Microbiol 2023; 89:e0173822. [PMID: 36719242 PMCID: PMC9972944 DOI: 10.1128/aem.01738-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Site-specific recombinases (integrases) can mediate the horizontal transfer of genomic islands. The ability to integrate large DNA sequences into target sites is very important for genetic engineering in prokaryotic and eukaryotic cells. Here, we characterized an unprecedented catalogue of 530 tyrosine-type integrases by examining genes potentially encoding tyrosine integrases in bacterial genomic islands. The phylogeny of putative tyrosine integrases revealed that these integrases form an evolutionary clade that is distinct from those already known and are affiliated with novel integrase groups. We systematically searched for candidate integrase genes, and their integration activities were validated in a bacterial model. We verified the integration functions of six representative novel integrases by using a two-plasmid integration system consisting of a donor plasmid carrying the integrase gene and attP site and a recipient plasmid harboring an attB site in recA-deficient Escherichia coli. Further quantitative reverse transcription-PCR (qRT-PCR) assays validated that the six selected integrases can be expressed with their native promoters in E. coli. The attP region reductions showed that the extent of attP sites of integrases is approximately 200 bp for integration capacity. In addition, mutational analysis showed that the conserved tyrosine at the C terminus is essential for catalysis, confirming that these candidate proteins belong to the tyrosine-type recombinase superfamily, i.e., tyrosine integrases. This study revealed that the novel integrases from bacterial genomic islands have site-specific recombination functions, which is of physiological significance for their genomic islands in bacterial chromosomes. More importantly, our discovery expands the toolbox for genetic engineering, especially for efficient integration activity. IMPORTANCE Site-specific recombinases or integrases have high specificity for DNA large fragment integration, which is urgently needed for gene editing. However, known integrases are not sufficient for meeting multiple integrations. In this work, we discovered an array of integrases through bioinformatics analysis in bacterial genomes. Phylogeny and functional assays revealed that these new integrases belong to tyrosine-type integrases and have the ability to conduct site-specific recombination. Moreover, attP region extent and catalysis site analysis were characterized. Our study provides the methodology for discovery of novel integrases and increases the capacity of weapon pool for genetic engineering in bacteria.
Collapse
|
18
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
19
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
20
|
Insertion Sequence (IS)-Excision Enhancer (IEE)-Mediated IS Excision from the lacZ Gene Restores the Lactose Utilization Defect of Shiga Toxin-Producing Escherichia coli O121:H19 Strains and Is Responsible for Their Delayed Lactose Utilization Phenotype. Appl Environ Microbiol 2022; 88:e0076022. [PMID: 35913153 PMCID: PMC9397093 DOI: 10.1128/aem.00760-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactose utilization is one of the general biochemical characteristics of Escherichia coli, and the lac operon is responsible for this phenotype, which can be detected on lactose-containing media, such as MacConkey agar, after 24 h of incubation. However, some Shiga toxin-producing E. coli (STEC) O121:H19 strains exhibit an unusual phenotype called delayed lactose utilization (DLU), in which lactose utilization can be detected after 48 h of cultivation but not after only 24 h of cultivation. Insertion of an insertion sequence (IS), IS600, into the lacZ gene appears to be responsible for the DLU phenotype, and exposure to lactose has been reported to be necessary to observe this phenotype, but the mechanism underlying these phenomena remains to be elucidated. Here, we performed detailed analyses of the lactose utilization abilities of a set of O121:H19 strains and their mutants and found that IS-excision enhancer (IEE)-mediated excision of IS600 reactivates the lacZ gene and that the selective proliferation of IS-cured subclones in lactose-supplemented culture medium is responsible for the expression of the DLU phenotype. In addition, we analyzed the patterns of IS insertion into the lacZ and iee genes in the global O121:H19 population and revealed that while there are O121:H19 strains or lineage/sublineages that contain the IS insertion into iee or intact lacZ and thus do not show the DLU phenotype, most currently circulating O121:H19 strains contain IS600-inserted lacZ and intact iee and thus exhibit this phenotype. IMPORTANCE Insertion sequences (ISs) can modulate gene expression by gene inactivation or activation. While phenotypic changes due to IS insertion/transposition are frequently observed, gene reactivation by precise or simple IS excision rarely occurs. In this study, we show that IS600 is excised from the lacZ gene by IS-excision enhancer (IEE) during the cultivation of Shiga toxin-producing Escherichia coli (STEC) O121:H19 strains that show an unusual phenotype called delayed lactose utilization (DLU). This excision rescued their lactose utilization defect, and the subsequent selective proliferation of IS-cured subclones in lactose-containing medium resulted in the expression of the DLU phenotype. As we also show that most currently circulating O121:H19 strains exhibit this phenotype, this study not only provides information helpful for the isolation and identification of O121:H19 STEC but also offers novel insights into the roles of IS and IEE in the generation of phenotypic variation in bacterial populations.
Collapse
|
21
|
Bullones-Bolaños A, Bernal-Bayard J, Ramos-Morales F. The NEL Family of Bacterial E3 Ubiquitin Ligases. Int J Mol Sci 2022; 23:7725. [PMID: 35887072 PMCID: PMC9320238 DOI: 10.3390/ijms23147725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Some pathogenic or symbiotic Gram-negative bacteria can manipulate the ubiquitination system of the eukaryotic host cell using a variety of strategies. Members of the genera Salmonella, Shigella, Sinorhizobium, and Ralstonia, among others, express E3 ubiquitin ligases that belong to the NEL family. These bacteria use type III secretion systems to translocate these proteins into host cells, where they will find their targets. In this review, we first introduce type III secretion systems and the ubiquitination process and consider the various ways bacteria use to alter the ubiquitin ligation machinery. We then focus on the members of the NEL family, their expression, translocation, and subcellular localization in the host cell, and we review what is known about the structure of these proteins, their function in virulence or symbiosis, and their specific targets.
Collapse
Affiliation(s)
| | | | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (A.B.-B.); (J.B.-B.)
| |
Collapse
|
22
|
The AraC/XylS Protein MxiE and Its Coregulator IpgC Control a Negative Feedback Loop in the Transcriptional Cascade That Regulates Type III Secretion in Shigella flexneri. J Bacteriol 2022; 204:e0013722. [PMID: 35703565 DOI: 10.1128/jb.00137-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the AraC family of transcriptional regulators (AFTRs) control the expression of many genes important to cellular processes, including virulence. In Shigella species, the type III secretion system (T3SS), a key determinant for host cell invasion, is regulated by the three-tiered VirF/VirB/MxiE transcriptional cascade. Both VirF and MxiE belong to the AFTRs and are characterized as positive transcriptional regulators. Here, we identify a novel regulatory activity for MxiE and its coregulator IpgC, which manifests as a negative feedback loop in the VirF/VirB/MxiE transcriptional cascade. Our findings show that MxiE and IpgC downregulate the virB promoter and, hence, VirB protein production, thus decreasing VirB-dependent promoter activity at ospD1, one of the nearly 50 VirB-dependent genes. At the virB promoter, regions required for negative MxiE- and IpgC-dependent regulation were mapped and found to be coincident with regions required for positive VirF-dependent regulation. In tandem, negative MxiE- and IpgC-dependent regulation of the virB promoter only occurred in the presence of VirF, suggesting that MxiE and IpgC can function to counter VirF activation of the virB promoter. Lastly, MxiE and IpgC do not downregulate another VirF-activated promoter, icsA, demonstrating that this negative feedback loop targets the virB promoter. Our study provides insight into a mechanism that may reprogram Shigella virulence gene expression following type III secretion and provides the impetus to examine if MxiE and IpgC homologs in other important bacterial pathogens, such as Burkholderia pseudomallei and Salmonella enterica serovars Typhimurium and Typhi, coordinate similar negative feedback loops. IMPORTANCE The large AraC family of transcriptional regulators (AFTRs) control virulence gene expression in many bacterial pathogens. In Shigella species, the AraC/XylS protein MxiE and its coregulator IpgC positively regulate the expression of type III secretion system genes within the three-tiered VirF/VirB/MxiE transcriptional cascade. Our findings suggest a negative feedback loop in the VirF/VirB/MxiE cascade, in which MxiE and IpgC counter VirF-dependent activation of the virB promoter, thus making this the first characterization of negative MxiE- and IpgC-dependent regulation. Our study provides insight into a mechanism that likely reprograms Shigella virulence gene expression following type III secretion, which has implications for other important bacterial pathogens with functional homologs of MxiE and IpgC.
Collapse
|
23
|
Pilla G, Arcari G, Tang CM, Carattoli A. Virulence plasmid pINV as a genetic signature for Shigella flexneri phylogeny. Microb Genom 2022; 8. [PMID: 35759406 PMCID: PMC9455713 DOI: 10.1099/mgen.0.000846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella flexneri is a major health burden in low- and middle-income countries, where it is a leading cause of mortality associated with diarrhoea in children, and shows an increasing incidence among travellers and men having sex with men. Like all Shigella spp., S. flexneri has evolved from commensal Escherichia coli following the acquisition of a large plasmid pINV, which contains genes essential for virulence. Current sequence typing schemes of Shigella are based on combinations of chromosomal genetic loci, since pINV-encoded virulence genes are often lost during growth in the laboratory, making these elements inappropriate for sequence typing. By performing comparative analysis of pINVs from S. flexneri strains isolated from different geographical regions and belonging to different serotypes, we found that in contrast to plasmid-encoded virulence genes, plasmid maintenance genes are highly stable pINV-encoded elements. For the first time, to our knowledge, we have developed a S. flexneri plasmid multilocus sequence typing (pMLST) method based on different combinations of alleles of the vapBC and yacAB toxin–antitoxin (TA) systems, and the parAB partitioning system. This enables typing of S. flexneri pINV plasmids into distinct ‘virulence sequence types’ (vSTs). Furthermore, the phylogenies of vST alleles and bacterial host core genomes suggests an intimate co-evolution of pINV with the chromosome of its bacterial host, consistent with previous findings. This work demonstrates the potential of plasmid maintenance loci as genetic characteristics to study as well as to trace the molecular phylogenesis of S. flexneri pINV and the phylogenetic relationship of this plasmid with its bacterial host.
Collapse
Affiliation(s)
- Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
24
|
Ascari A, Tran ENH, Eijkelkamp BA, Morona R. Detection of a disulphide bond and conformational changes in Shigella flexneri Wzy, and the role of cysteine residues in polymerase activity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183871. [PMID: 35090897 DOI: 10.1016/j.bbamem.2022.183871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
Shigella flexneri utilises the Wzy-dependent pathway for the production of a plethora of complex polysaccharides, including the lipopolysaccharide O-antigen (Oag) component. The inner membrane protein WzySF polymerises Oag repeat units, whilst two co-polymerase proteins, WzzSF and WzzpHS-2, together interact with WzySF to regulate production of short- (S-Oag) and very long- (VL-Oag) Oag modal lengths, respectively. The 2D arrangement of WzySF transmembrane and soluble regions has been previously deciphered, however, attaining information on the 3D structural and conformational arrangement of WzySF, or any homologue, has proven difficult. For the first time, the current study detected insights into the in situ WzySF arrangement. In vitro assays using thiol-reactive PEG-maleimide were used to probe WzySF conformation, which additionally detected novel, unique conformational changes in response to interaction with intrinsic factors, including WzzSF and WzzpHS-2, and extrinsic factors, such as temperature. Site-directed mutagenesis of WzySF cysteine residues revealed the presence of a putative intramolecular disulphide bond, between cysteine moieties 13 and 60. Subsequent analyses highlighted both the structural and functional importance of WzySF cysteines. Substitution of WzySF cysteine residues significantly decreased biosynthesis of the VL-Oag modal length, without disruption to S-Oag production. This phenotype was corroborated in the absence of co-polymerase competition for WzySF interaction. These data suggest WzySF cysteine substitutions directly impair the interaction between Wzy/WzzpHS-2, without altering the Wzy/WzzSF interplay, and in combination with structural data, we propose that the N- and C-termini of WzySF are arranged in close proximity, and together may form the unique WzzpHS-2 interaction site.
Collapse
Affiliation(s)
- Alice Ascari
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, Australia.
| | - Elizabeth Ngoc Hoa Tran
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, Australia.
| | - Bart A Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide 5042, South Australia, Australia.
| | - Renato Morona
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
25
|
Abstract
Shigella flexneri is an intracellular human pathogen that invades colonic cells and causes bloody diarrhea. S. flexneri evolved from commensal Escherichia coli, and genome comparisons reveal that S. flexneri has lost approximately 20% of its genes through the process of pathoadaptation, including a disproportionate number of genes associated with the turnover of the nucleotide-based second messenger cyclic di-GMP (c-di-GMP); however, the remaining c-di-GMP turnover enzymes are highly conserved. c-di-GMP regulates many behavioral changes in other bacteria in response to changing environmental conditions, including biofilm formation, but this signaling system has not been examined in S. flexneri. In this study, we expressed VCA0956, a constitutively active c-di-GMP synthesizing diguanylate cyclase (DGC) from Vibrio cholerae, in S. flexneri to determine if virulence phenotypes were regulated by c-di-GMP. We found that expressing VCA0956 in S. flexneri increased c-di-GMP levels, and this corresponds with increased biofilm formation and reduced acid resistance, host cell invasion, and plaque size. We examined the impact of VCA0956 expression on the S. flexneri transcriptome and found that genes related to acid resistance were repressed, and this corresponded with decreased survival to acid shock. We also found that individual S. flexneri DGC mutants exhibit reduced biofilm formation and reduced host cell invasion and plaque size, as well as increased resistance to acid shock. This study highlights the importance of c-di-GMP signaling in regulating S. flexneri virulence phenotypes. IMPORTANCE The intracellular human pathogen Shigella causes dysentery, resulting in as many as one million deaths per year. Currently, there is no approved vaccine for the prevention of shigellosis, and the incidence of antimicrobial resistance among Shigella species is on the rise. Here, we explored how the widely conserved c-di-GMP bacterial signaling system alters Shigella behaviors associated with pathogenesis. We found that expressing or removing enzymes associated with c-di-GMP synthesis results in changes in Shigella's ability to form biofilms, invade host cells, form lesions in host cell monolayers, and resist acid stress.
Collapse
|
26
|
Bernaquez I, Gaudreau C, Pilon PA, Bekal S. Evaluation of whole-genome sequencing-based subtyping methods for the surveillance of Shigella spp. and the confounding effect of mobile genetic elements in long-term outbreaks. Microb Genom 2021; 7. [PMID: 34730485 PMCID: PMC8743557 DOI: 10.1099/mgen.0.000672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many public health laboratories across the world have implemented whole-genome sequencing (WGS) for the surveillance and outbreak detection of foodborne pathogens. PulseNet-affiliated laboratories have determined that most single-strain foodborne outbreaks are contained within 0–10 multi-locus sequence typing (MLST)-based allele differences and/or core genome single-nucleotide variants (SNVs). In addition to being a food- and travel-associated outbreak pathogen, most
Shigella
spp. cases occur through continuous person-to-person transmission, predominantly involving men who have sex with men (MSM), leading to long-term and recurrent outbreaks. Continuous transmission patterns coupled to genetic evolution under antibiotic treatment pressure require an assessment of existing WGS-based subtyping methods and interpretation criteria for cluster inclusion/exclusion. An evaluation of 4 WGS-based subtyping methods [SNVPhyl, coreMLST, core genome MLST (cgMLST) and whole-genome MLST (wgMLST)] was performed on 9 foodborne-, travel- and MSM-related retrospective outbreaks from a collection of 91
Shigella flexneri
and 232
Shigella sonnei
isolates to determine the methods’ epidemiological concordance, discriminatory power, robustness and ability to generate stable interpretation criteria. The discriminatory powers were ranked as follows: coreMLST<SNVPhyl<cgMLST<wgMLST (range: 0.970–1.000). The genetic differences observed for non-MSM-related
Shigella
spp. outbreaks respect the standard 0–10 allele/SNV guideline; however, mobile genetic element (MGE)-encoded loci caused inflated genetic variation and discrepant phylogenies for prolonged MSM-related
S. sonnei
outbreaks via wgMLST. The
S. sonnei
correlation coefficients of wgMLST were also the lowest at 0.680, 0.703 and 0.712 for SNVPhyl, coreMLST and cgMLST, respectively. Plasmid maintenance, mobilization and conjugation-associated genes were found to be the main source of genetic distance inflation in addition to prophage-related genes. Duplicated alleles arising from the repeated nature of IS elements were also responsible for many false cg/wgMLST differences. The coreMLST approach was shown to be the most robust, followed by SNVPhyl and wgMLST for inter-laboratory comparability. Our results highlight the need for validating species-specific subtyping methods based on microbial genome plasticity and outbreak dynamics in addition to the importance of filtering confounding MGEs for cluster detection.
Collapse
Affiliation(s)
- Isabelle Bernaquez
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
| | - Christiane Gaudreau
- Microbiologie médicale et infectiologie, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC, H2X 3E4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Pierre A. Pilon
- Direction régionale de santé publique, Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l’île-de-Montréal, Montreal, QC, H2L 4M1, Canada
- Département de médecine sociale et préventive, Université de Montréal, Montreal, QC, H3N 1X9, Canada
| | - Sadjia Bekal
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- *Correspondence: Sadjia Bekal,
| |
Collapse
|
27
|
Armbruster CR, Marshall CW, Garber AI, Melvin JA, Zemke AC, Moore J, Zamora PF, Li K, Fritz IL, Manko CD, Weaver ML, Gaston JR, Morris A, Methé B, DePas WH, Lee SE, Cooper VS, Bomberger JM. Adaptation and genomic erosion in fragmented Pseudomonas aeruginosa populations in the sinuses of people with cystic fibrosis. Cell Rep 2021; 37:109829. [PMID: 34686349 PMCID: PMC8667756 DOI: 10.1016/j.celrep.2021.109829] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022] Open
Abstract
Pseudomonas aeruginosa notoriously adapts to the airways of people with cystic fibrosis (CF), yet how infection-site biogeography and associated evolutionary processes vary as lifelong infections progress remains unclear. Here we test the hypothesis that early adaptations promoting aggregation influence evolutionary-genetic trajectories by examining longitudinal P. aeruginosa from the sinuses of six adults with CF. Highly host-adapted lineages harbored mutator genotypes displaying signatures of early genome degradation associated with recent host restriction. Using an advanced imaging technique (MiPACT-HCR [microbial identification after passive clarity technique]), we find population structure tracks with genome degradation, with the most host-adapted, genome-degraded P. aeruginosa (the mutators) residing in small, sparse aggregates. We propose that following initial adaptive evolution in larger populations under strong selection for aggregation, P. aeruginosa persists in small, fragmented populations that experience stronger effects of genetic drift. These conditions enrich for mutators and promote degenerative genome evolution. Our findings underscore the importance of infection-site biogeography to pathogen evolution.
Collapse
Affiliation(s)
- Catherine R Armbruster
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | - Arkadiy I Garber
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeffrey A Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Anna C Zemke
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - John Moore
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Paula F Zamora
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Ian L Fritz
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Christopher D Manko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Madison L Weaver
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jordan R Gaston
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Alison Morris
- Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Barbara Methé
- Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - William H DePas
- Department of Pediatrics, Children's Hospital of Pittsburgh and University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stella E Lee
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA.
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Center for Medicine and the Microbiome, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Pittsburgh Center for Evolutionary Biology & Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
28
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|
29
|
Luo X, Yin Z, Zeng L, Hu L, Jiang X, Jing Y, Chen F, Wang D, Song Y, Yang H, Zhou D. Chromosomal Integration of Huge and Complex bla NDM-Carrying Genetic Elements in Enterobacteriaceae. Front Cell Infect Microbiol 2021; 11:690799. [PMID: 34211858 PMCID: PMC8239412 DOI: 10.3389/fcimb.2021.690799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a detailed genetic dissection of the huge and complex blaNDM-carrying genetic elements and their related mobile genetic elements was performed in Enterobacteriaceae. An extensive comparison was applied to 12 chromosomal genetic elements, including six sequenced in this study and the other six from GenBank. These 12 genetic elements were divided into five groups: a novel IME Tn6588; two related IMEs Tn6523 (SGI1) and Tn6589; four related ICEs Tn6512 (R391), Tn6575 (ICEPvuChnBC22), Tn6576, and Tn6577; Tn7 and its derivatives Tn6726 and 40.7-kb Tn7-related element; and two related IMEs Tn6591 (GIsul2) and Tn6590. At least 51 resistance genes, involved in resistance to 18 different categories of antibiotics and heavy metals, were found in these 12 genetic elements. Notably, Tn6576 carried another ICE Tn6582. In particular, the six blaNDM-carrying genetic elements Tn6588, Tn6589, Tn6575, Tn6576, Tn6726, and 40.7-kb Tn7-related element contained large accessory multidrug resistance (MDR) regions, each of which had a very complex mosaic structure that comprised intact or residual mobile genetic elements including insertion sequences, unit or composite transposons, integrons, and putative resistance units. Core blaNDM genetic environments manifested as four different Tn125 derivatives and, notably, two or more copies of relevant Tn125 derivatives were found in each of Tn6576, Tn6588, Tn6589, and 40.7-kb Tn7-related element. The huge and complex blaNDM-carrying genetic elements were assembled from complex transposition and homolog recombination. Firstly identified were eight novel mobile elements, including three ICEs Tn6576, Tn6577, and Tn6582, two IMEs, Tn6588 and Tn6589, two composite transposons Tn6580a and Tn6580b, and one integron In1718.
Collapse
Affiliation(s)
- Xinhua Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lijun Zeng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,The Fifth Medical Center, Chinese Peoples Liberation Army General Hospital, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongguo Wang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated With Taizhou University, Taizhou, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
30
|
Large metabolic rewiring from small genomic changes between strains of Shigella flexneri. J Bacteriol 2021; 203:JB.00056-21. [PMID: 33753469 PMCID: PMC8117524 DOI: 10.1128/jb.00056-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The instability of Shigella genomes has been described, but how this instability causes phenotypic differences within the Shigella flexneri species is largely unknown and likely variable. We describe herein the genome of S. flexneri strain PE577, originally a clinical isolate, which exhibits several phenotypic differences compared to the model strain 2457T. Like many previously described strains of S. flexneri, PE577 lacks discernible, functional CRISPR and restriction-modification systems. Its phenotypic differences when compared to 2457T include lower transformation efficiency, higher oxygen sensitivity, altered carbon metabolism, and greater susceptibility to a wide variety of lytic bacteriophage isolates. Since relatively few Shigella phages have been isolated on 2457T or the previously characterized strain M90T, developing a more universal model strain for isolating and studying Shigella phages is critical to understanding both phages and phage-host interactions. In addition to phage biology, the genome sequence of PE577 was used to generate and test hypotheses of how pseudogenes in this strain-whether interrupted by degraded prophages, transposases, frameshifts, or point mutations-have led to metabolic rewiring compared to the model strain 2457T. Results indicate that PE577 can utilise the less-efficient pyruvate oxidase/acetyl-CoA synthetase (PoxB/Acs) pathway to produce acetyl-CoA, while strain 2457T cannot due to a nonsense mutation in acs, rendering it a pseudogene in this strain. Both strains also utilize pyruvate-formate lyase to oxidize formate but cannot survive with this pathway alone, possibly because a component of the formate-hydrogen lyase (fdhF) is a pseudogene in both strains.Importance Shigella causes millions of dysentery cases worldwide, primarily affecting children under five years old. Despite active research in developing vaccines and new antibiotics, relatively little is known about the variation of physiology or metabolism across multiple isolates. In this work, we investigate two strains of S. flexneri that share 98.9% genetic identity but exhibit drastic differences in metabolism, ultimately affecting the growth of the two strains. Results suggest additional strains within the S. flexneri species utilize different metabolic pathways to process pyruvate. Metabolic differences between these closely-related isolates suggest an even wider variety of differences in growth across S. flexneri and Shigella in general. Exploring this variation further may assist the development or application of vaccines and therapeutics to combat Shigella infections.
Collapse
|
31
|
Jia M, Geornaras I, Martin JN, Belk KE, Yang H. Comparative Whole Genome Analysis of Escherichia coli O157:H7 Isolates From Feedlot Cattle to Identify Genotypes Associated With the Presence and Absence of stx Genes. Front Microbiol 2021; 12:647434. [PMID: 33868205 PMCID: PMC8046923 DOI: 10.3389/fmicb.2021.647434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
A comparative whole genome analysis was performed on three newly sequenced Escherichia coli O157:H7 strains with different stx profiles, previously isolated from feedlot cattle [C1-010 (stx1-, stx2c+), C1-057 (stx-), and C1-067 (stx1+, stx2a+)], as well as five foodborne outbreak strains and six stx-negative strains from NCBI. Phylogenomic analysis demonstrated that the stx2c-carrying C1-010 and stx-negative C1-057 strains were grouped with the six NCBI stx-negative E. coli O157:H7 strains in Cluster 1, whereas the stx2a-carrying C1-067 and five foodborne outbreak strains were clustered together in Cluster 2. Based on different clusters, we selected the three newly sequenced strains, one stx2a-carrying strain, and the six NCBI stx-negative strains and identify their prophages at the stx insertion sites. All stx-carrying prophages contained both the three Red recombination genes (exo, bet, gam) and their repressor cI. On the other hand, the majority of the stx-negative prophages carried only the three Red recombination genes, but their repressor cI was absent. In the absence of the repressor cI, the consistent expression of the Red recombination genes in prophages might result in more frequent gene exchanges, potentially increasing the probability of the acquisition of stx genes. We further investigated each of the 10 selected E. coli O157:H7 strains for their respective unique metabolic pathway genes. Seven unique metabolic pathway genes in the two stx2a-carrying strains and one in the single stx2c-carrying and seven stx-negative strains were found to be associated with an upstream insertion sequence 629 within a conserved region among these strains. The presence of more unique metabolic pathway genes in stx2a-carrying E. coli O157:H7 strains may potentially increase their competitiveness in complex environments, such as feedlot cattle. For the stx2c-carrying and stx-negative E. coli O157:H7 strains, the fact that they were grouped into the same phylogenomic cluster and had the same unique metabolic pathway genes suggested that they may also share closely related evolutionary pathways. As a consequence, gene exchange between them is more likely to occur. Results from this study could potentially serve as a basis to help develop strategies to reduce the prevalence of pathogenic E. coli O157:H7 in livestock and downstream food production environments.
Collapse
Affiliation(s)
- Mo Jia
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Ifigenia Geornaras
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jennifer N Martin
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Keith E Belk
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hua Yang
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
32
|
Utility of whole-genome sequencing during an investigation of multiple foodborne outbreaks of Shigella sonnei. Epidemiol Infect 2021; 149:e71. [PMID: 33641696 PMCID: PMC8060841 DOI: 10.1017/s0950268821000509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In April 2018, Public Health England was notified of cases of Shigella sonnei who had eaten food from three different catering outlets in England. The outbreaks were initially investigated as separate events, but whole-genome sequencing (WGS) showed they were caused by the same strain. The investigation included analyses of epidemiological data, the food chain and microbiological examination of food samples. WGS was used to determine the phylogenetic relatedness and antimicrobial resistance profile of the outbreak strain. Ultimately, 33 cases were linked to this outbreak; the majority had eaten food from seven outlets specialising in Indian or Middle Eastern cuisine. Five outlets were linked to two or more cases, all of which used fresh coriander although a shared supplier was not identified. An investigation at one of the venues recorded that 86% of cases reported eating dishes with coriander as an ingredient or garnish. Four cases were admitted to hospital and one had evidence of treatment failure with ciprofloxacin. Phylogenetic analysis showed that the outbreak strain was part of a wider multidrug-resistant clade associated with travel to Pakistan. Poor hygiene practices during cultivation, distribution or preparation of fresh produce are likely contributing factors.
Collapse
|
33
|
Harutyunyan S, Neuhauser I, Mayer A, Aichinger M, Szijártó V, Nagy G, Nagy E, Girardi P, Malinoski FJ, Henics T. Characterization of ShigETEC, a Novel Live Attenuated Combined Vaccine against Shigellae and ETEC. Vaccines (Basel) 2020; 8:vaccines8040689. [PMID: 33207794 PMCID: PMC7712393 DOI: 10.3390/vaccines8040689] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Shigella spp. and enterotoxigenic Escherichia coli (ETEC) remain the two leading bacterial causes of diarrheal diseases worldwide. Attempts to develop preventive vaccines against Shigella and ETEC have not yet been successful. The major challenge for a broad Shigella vaccine is the serotype-specific immune response to the otherwise protective LPS O-antigen. ETEC vaccines mainly rely on the heat-labile enterotoxin (LT), while heat-stable toxin (ST) has also been shown to be an important virulence factor. Methods: We constructed a combined Shigella and ETEC vaccine (ShigETEC) based on a live attenuated Shigella strain rendered rough and non-invasive with heterologous expression of two ETEC antigens, LTB and a detoxified version of ST (STN12S). This new vaccine strain was characterized and tested for immunogenicity in relevant animal models. Results: Immunization with ShigETEC resulted in serotype independent protection in the mouse lung shigellosis model and induced high titer IgG and IgA antibodies against bacterial lysates, and anti-ETEC toxin antibodies with neutralizing capacity. Conclusions: ShigETEC is a promising oral vaccine candidate against Shigella and ETEC infections and currently in Phase 1 testing.
Collapse
Affiliation(s)
- Shushan Harutyunyan
- Eveliqure Biotechnologies GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria; (S.H.); (I.N.); (A.M.); (M.A.); (V.S.); (G.N.); (E.N.); (P.G.); (F.J.M.)
| | - Irene Neuhauser
- Eveliqure Biotechnologies GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria; (S.H.); (I.N.); (A.M.); (M.A.); (V.S.); (G.N.); (E.N.); (P.G.); (F.J.M.)
| | - Alexandra Mayer
- Eveliqure Biotechnologies GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria; (S.H.); (I.N.); (A.M.); (M.A.); (V.S.); (G.N.); (E.N.); (P.G.); (F.J.M.)
| | - Michael Aichinger
- Eveliqure Biotechnologies GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria; (S.H.); (I.N.); (A.M.); (M.A.); (V.S.); (G.N.); (E.N.); (P.G.); (F.J.M.)
| | - Valéria Szijártó
- Eveliqure Biotechnologies GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria; (S.H.); (I.N.); (A.M.); (M.A.); (V.S.); (G.N.); (E.N.); (P.G.); (F.J.M.)
| | - Gábor Nagy
- Eveliqure Biotechnologies GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria; (S.H.); (I.N.); (A.M.); (M.A.); (V.S.); (G.N.); (E.N.); (P.G.); (F.J.M.)
- CEBINA GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| | - Eszter Nagy
- Eveliqure Biotechnologies GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria; (S.H.); (I.N.); (A.M.); (M.A.); (V.S.); (G.N.); (E.N.); (P.G.); (F.J.M.)
- CEBINA GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| | - Petra Girardi
- Eveliqure Biotechnologies GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria; (S.H.); (I.N.); (A.M.); (M.A.); (V.S.); (G.N.); (E.N.); (P.G.); (F.J.M.)
| | - Frank J. Malinoski
- Eveliqure Biotechnologies GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria; (S.H.); (I.N.); (A.M.); (M.A.); (V.S.); (G.N.); (E.N.); (P.G.); (F.J.M.)
| | - Tamás Henics
- Eveliqure Biotechnologies GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria; (S.H.); (I.N.); (A.M.); (M.A.); (V.S.); (G.N.); (E.N.); (P.G.); (F.J.M.)
- Correspondence: ; Tel.: +43-1-909-2208-3313
| |
Collapse
|
34
|
Fitzgerald S, Kary SC, Alshabib EY, MacKenzie KD, Stoebel D, Chao TC, Cameron ADS. Redefining the H-NS protein family: a diversity of specialized core and accessory forms exhibit hierarchical transcriptional network integration. Nucleic Acids Res 2020; 48:10184-10198. [PMID: 32894292 PMCID: PMC7544231 DOI: 10.1093/nar/gkaa709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 12/27/2022] Open
Abstract
H-NS is a nucleoid structuring protein and global repressor of virulence and horizontally-acquired genes in bacteria. H-NS can interact with itself or with homologous proteins, but protein family diversity and regulatory network overlap remain poorly defined. Here, we present a comprehensive phylogenetic analysis that revealed deep-branching clades, dispelling the presumption that H-NS is the progenitor of varied molecular backups. Each clade is composed exclusively of either chromosome-encoded or plasmid-encoded proteins. On chromosomes, stpA and newly discovered hlpP are core genes in specific genera, whereas hfp and newly discovered hlpC are sporadically distributed. Six clades of H-NS plasmid proteins (Hpp) exhibit ancient and dedicated associations with plasmids, including three clades with fidelity for plasmid incompatibility groups H, F or X. A proliferation of H-NS homologs in Erwiniaceae includes the first observation of potentially co-dependent H-NS forms. Conversely, the observed diversification of oligomerization domains may facilitate stable co-existence of divergent homologs in a genome. Transcriptomic and proteomic analysis in Salmonella revealed regulatory crosstalk and hierarchical control of H-NS homologs. We also discovered that H-NS is both a repressor and activator of Salmonella Pathogenicity Island 1 gene expression, and both regulatory modes are restored by Sfh (HppH) in the absence of H-NS.
Collapse
Affiliation(s)
- Stephen Fitzgerald
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Stefani C Kary
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ebtihal Y Alshabib
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Keith D MacKenzie
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Daniel M Stoebel
- Department of Biology, Harvey Mudd College, Claremont, CA 91711, USA
| | - Tzu-Chiao Chao
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
35
|
The Antiactivator of Type III Secretion, OspD1, Is Transcriptionally Regulated by VirB and H-NS from Remote Sequences in Shigella flexneri. J Bacteriol 2020; 202:JB.00072-20. [PMID: 32123035 DOI: 10.1128/jb.00072-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Shigella species, the causal agents of bacillary dysentery, use a type III secretion system (T3SS) to inject two waves of virulence proteins, known as effectors, into the colonic epithelium to subvert host cell machinery. Prior to host cell contact and secretion of the first wave of T3SS effectors, OspD1, an effector and antiactivator protein, prevents premature production of the second wave of effectors. Despite this important role, regulation of the ospD1 gene is not well understood. While ospD1 belongs to the large regulon of VirB, a transcriptional antisilencing protein that counters silencing mediated by the histone-like nucleoid structuring protein H-NS, it remains unclear if VirB directly or indirectly regulates ospD1 Additionally, it is not known if ospD1 is regulated by H-NS. Here, we identify the primary ospD1 transcription start site (+1) and show that the ospD1 promoter is remotely regulated by both VirB and H-NS. Our findings demonstrate that VirB regulation of ospD1 requires at least one of the two newly identified VirB regulatory sites, centered at -978 and -1270 relative to the ospD1 +1. Intriguingly, one of these sites lies on a 193-bp sequence found in three conserved locations on the large virulence plasmids of Shigella The region required for H-NS-dependent silencing of ospD1 lies between -1120 and -820 relative to the ospD1 +1. Thus, our study provides further evidence that cis-acting regulatory sequences for transcriptional antisilencers and silencers, such as VirB and H-NS, can lie far upstream of the canonical bacterial promoter region (i.e., -250 to +1).IMPORTANCE Transcriptional silencing and antisilencing mechanisms regulate virulence gene expression in many important bacterial pathogens. In Shigella species, plasmid-borne virulence genes, such as those encoding the type III secretion system (T3SS), are silenced by the histone-like nucleoid structuring protein H-NS and antisilenced by VirB. Previous work at the plasmid-borne icsP locus revealed that VirB binds to a remotely located cis-acting regulatory site to relieve transcriptional silencing mediated by H-NS. Here, we characterize a second example of remote VirB antisilencing at ospD1, which encodes a T3SS antiactivator and effector. Our study highlights that remote transcriptional silencing and antisilencing occur more frequently in Shigella than previously thought, and it raises the possibility that long-range transcriptional regulation in bacteria is commonplace.
Collapse
|
36
|
Cervantes-Rivera R, Tronnet S, Puhar A. Complete genome sequence and annotation of the laboratory reference strain Shigella flexneri serotype 5a M90T and genome-wide transcriptional start site determination. BMC Genomics 2020; 21:285. [PMID: 32252626 PMCID: PMC7132871 DOI: 10.1186/s12864-020-6565-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
Background Shigella is a Gram-negative facultative intracellular bacterium that causes bacillary dysentery in humans. Shigella invades cells of the colonic mucosa owing to its virulence plasmid-encoded Type 3 Secretion System (T3SS), and multiplies in the target cell cytosol. Although the laboratory reference strain S. flexneri serotype 5a M90T has been extensively used to understand the molecular mechanisms of pathogenesis, its complete genome sequence is not available, thereby greatly limiting studies employing high-throughput sequencing and systems biology approaches. Results We have sequenced, assembled, annotated and manually curated the full genome of S. flexneri 5a M90T. This yielded two complete circular contigs, the chromosome and the virulence plasmid (pWR100). To obtain the genome sequence, we have employed long-read PacBio DNA sequencing followed by polishing with Illumina RNA-seq data. This provides a new hybrid strategy to prepare gapless, highly accurate genome sequences, which also cover AT-rich tracks or repetitive sequences that are transcribed. Furthermore, we have performed genome-wide analysis of transcriptional start sites (TSS) and determined the length of 5′ untranslated regions (5′-UTRs) at typical culture conditions for the inoculum of in vitro infection experiments. We identified 6723 primary TSS (pTSS) and 7328 secondary TSS (sTSS). The S. flexneri 5a M90T annotated genome sequence and the transcriptional start sites are integrated into RegulonDB (http://regulondb.ccg.unam.mx) and RSAT (http://embnet.ccg.unam.mx/rsat/) databases to use their analysis tools in the S. flexneri 5a M90T genome. Conclusions We provide the first complete genome for S. flexneri serotype 5a, specifically the laboratory reference strain M90T. Our work opens the possibility of employing S. flexneri M90T in high-quality systems biology studies such as transcriptomic and differential expression analyses or in genome evolution studies. Moreover, the catalogue of TSS that we report here can be used in molecular pathogenesis studies as a resource to know which genes are transcribed before infection of host cells. The genome sequence, together with the analysis of transcriptional start sites, is also a valuable tool for precise genetic manipulation of S. flexneri 5a M90T. Further, we present a new hybrid strategy to prepare gapless, highly accurate genome sequences. Unlike currently used hybrid strategies combining long- and short-read DNA sequencing technologies to maximize accuracy, our workflow using long-read DNA sequencing and short-read RNA sequencing provides the added value of using non-redundant technologies, which yield distinct, exploitable datasets.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden.,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Sophie Tronnet
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden.,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), 901 87 Umeå, Sweden. .,Umeå Centre for Microbial Research (UCMR), 901 87, Umeå, Sweden. .,Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
37
|
Sen T, Verma NK. Functional Annotation and Curation of Hypothetical Proteins Present in A Newly Emerged Serotype 1c of Shigella flexneri: Emphasis on Selecting Targets for Virulence and Vaccine Design Studies. Genes (Basel) 2020; 11:genes11030340. [PMID: 32210046 PMCID: PMC7141135 DOI: 10.3390/genes11030340] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/28/2023] Open
Abstract
Shigella flexneri is the principal cause of bacillary dysentery, contributing significantly to the global burden of diarrheal disease. The appearance and increase in the multi-drug resistance among Shigella strains, necessitates further genetic studies and development of improved/new drugs against the pathogen. The presence of an abundance of hypothetical proteins in the genome and how little is known about them, make them interesting genetic targets. The present study aims to carry out characterization of the hypothetical proteins present in the genome of a newly emerged serotype of S. flexneri (strain Y394), toward their novel regulatory functions using various bioinformatics databases/tools. Analysis of the genome sequence rendered 4170 proteins, out of which 721 proteins were annotated as hypothetical proteins (HPs) with no known function. The amino acid sequences of these HPs were evaluated using a combination of latest bioinformatics tools based on homology search against functionally identified proteins. Functional domains were considered as the basis to infer the biological functions of HPs in this case and the annotation helped in assigning various classes to the proteins such as signal transducers, lipoproteins, enzymes, membrane proteins, transporters, virulence, and binding proteins. This study contributes to a better understanding of growth, survival, and disease mechanism at molecular level and provides potential new targets for designing drugs against Shigella infection.
Collapse
|
38
|
Benoit SL, Maier RJ, Sawers RG, Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol Biol Rev 2020; 84:e00092-19. [PMID: 31996394 PMCID: PMC7167206 DOI: 10.1128/mmbr.00092-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
39
|
Abstract
Shigella species, which are closely related to Escherichia coli, can easily be maintained and stored in the laboratory. This article includes protocols for preparation of routine growth conditions and media, for storage of the bacteria, and for monitoring of the presence of the virulence plasmid. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Growth of S. flexneri from frozen stocks or agar stabs Basic Protocol 2: Growth of S. flexneri in rich liquid medium Alternate Protocol 1: Growth of S. flexneri in rich defined medium Alternate Protocol 2: Growth of S. flexneri in minimal medium Basic Protocol 3: Storage of S. flexneri in frozen stocks Alternate Protocol 3: Storage of S. flexneri in agar stabs.
Collapse
Affiliation(s)
- Shelley M Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas
| |
Collapse
|
40
|
Talaat KR, Bourgeois AL, Frenck RW, Chen WH, MacLennan CA, Riddle MS, Suvarnapunya AE, Brubaker JL, Kotloff KL, Porter CK. Consensus Report on Shigella Controlled Human Infection Model: Conduct of Studies. Clin Infect Dis 2019; 69:S580-S590. [PMID: 31816068 PMCID: PMC6901126 DOI: 10.1093/cid/ciz892] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Shigella causes morbidity and mortality worldwide, primarily affecting young children living in low-resource settings. It is also of great concern due to increasing antibiotic resistance, and is a priority organism for the World Health Organization. A Shigella vaccine would decrease the morbidity and mortality associated with shigellosis, improve child health, and decrease the need for antibiotics. Controlled human infection models (CHIMs) are useful tools in vaccine evaluation for early up- or down-selection of vaccine candidates and potentially useful in support of licensure. Over time, the methods employed in these models have become more uniform across sites performing CHIM trials, although some differences in conduct persist. In November 2017, a Shigella CHIM workshop was convened in Washington, District of Columbia. Investigators met to discuss multiple aspects of these studies, including study procedures, clinical and immunological endpoints, and shared experiences. This article serves as a uniform procedure by which to conduct Shigella CHIM studies.
Collapse
Affiliation(s)
- Kawsar R Talaat
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Robert W Frenck
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Wilbur H Chen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore
| | | | - Mark S Riddle
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda
| | - Akamol E Suvarnapunya
- Department of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring
| | - Jessica L Brubaker
- Global Disease Epidemiology and Control Program, Department of International Health, Johns Hopkins Bloomberg School of Public Health
| | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Chad K Porter
- Enteric Disease Department, Naval Medical Research Center, Silver Spring, Maryland
| |
Collapse
|
41
|
Muthuirulandi Sethuvel DP, Veeraraghavan B, Vasudevan K, Devanga Ragupathi NK, Murugan D, Walia K, Anandan S. Complete genome analysis of clinical Shigella strains reveals plasmid pSS1653 with resistance determinants: a triumph of hybrid approach. Gut Pathog 2019; 11:55. [PMID: 31709015 PMCID: PMC6836418 DOI: 10.1186/s13099-019-0334-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
Shigella is ranked as the second leading cause of diarrheal disease worldwide. Though infection occurs in people of all ages, most of the disease burden constitutes among the children less than 5 years in low and middle income countries. Recent increasing incidence of drug resistant strains make this as a priority pathogen under the antimicrobial resistance surveillance by WHO. Despite this, only limited genomic studies on drug resistant Shigella exists. Here we report the first complete genome of clinical S. flexneri serotype 2a and S. sonnei strains using a hybrid approach of both long-read MinION (Oxford Nanopore Technologies) and short-read Ion Torrent 400 bp sequencing platforms. The utilization of this novel approach in the present study helped to identify the complete plasmid sequence of pSS1653 with structural genetic information of AMR genes such as sulII, tetA, tetR, aph(6)-Id and aph(3'')-Ib. Identification of AMR genes in mobile elements in this human-restricted enteric pathogen is a potential threat for dissemination to other gut pathogens. The information on Shigella at genome level could help us to understand the genome dynamics of existing and emerging resistant clones.
Collapse
Affiliation(s)
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | | | - Dhivya Murugan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, 110 029 India
| | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu 632004 India
| |
Collapse
|
42
|
Jo SH, Lee J, Park E, Kim DW, Lee DH, Ryu CM, Choi D, Park JM. A human pathogenic bacterium Shigella proliferates in plants through adoption of type III effectors for shigellosis. PLANT, CELL & ENVIRONMENT 2019; 42:2962-2978. [PMID: 31250458 DOI: 10.1111/pce.13603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Shigella, which infects primates, can be transmitted via fresh vegetables; however, its molecular interactions with plants have not been elucidated. Here, we show that four Shigella strains, Shigella boydii, Shigella sonnei, Shigella flexneri 2a, and S. flexneri 5a, proliferate at different levels in Arabidopsis thaliana. Microscopic studies revealed that these bacteria were present inside leaves and damaged plant cells. Green fluorescent protein (GFP)-tagged S. boydii and S. flexneri 5a colonized leaves only, whereas S. flexneri 2a colonized both leaves and roots. Using Shigella mutants lacking type III secretion systems (T3SSs), we found that T3SSs that regulate the pathogenesis of shigellosis in humans also play a central role in bacterial proliferation in Arabidopsis. Strikingly, the immunosuppressive activity of two T3S effectors, OspF and OspG, was required for proliferation of Shigella in Arabidopsis. Of note, delivery of OspF or OspG effectors inside plant cells upon Shigella inoculation was confirmed using a split GFP system. These findings demonstrate that the human pathogen Shigella can proliferate in plants by adapting immunosuppressive machinery used in the original host human.
Collapse
Affiliation(s)
- Sung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Jiyoung Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Biological Resource Center, KRIBB, Jeongeup, 56212, South Korea
| | - Eunsook Park
- Plant Immunity Research Center, Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, South Korea
- Institute of Pharmacological Research, Hanyang University, Ansan, 15588, South Korea
| | - Dae Hee Lee
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Choong Min Ryu
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Doil Choi
- Plant Immunity Research Center, Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, South Korea
| |
Collapse
|
43
|
Han SR, Kim DW, Kim B, Chi YM, Kang S, Park H, Jung SH, Lee JH, Oh TJ. Complete genome sequencing of Shigella sp. PAMC 28760: Identification of CAZyme genes and analysis of their potential role in glycogen metabolism for cold survival adaptation. Microb Pathog 2019; 137:103759. [PMID: 31560973 DOI: 10.1016/j.micpath.2019.103759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 11/17/2022]
Abstract
Shigella sp. PAMC 28760 (isolated from Himantormia sp. lichen in Antarctica) is a gram-negative, non-sporulating bacterium that has cellulolytic and amylolytic characteristics as well as glycogen metabolic pathways. In this study, we isolated S. sp. PAMC 28760 from Antarctic lichen, and present the complete genome sequence with annotations describing its unique features. The genome sequence has 58.85% GC content, 4,278 coding DNA sequences, 85 tRNAs, and 22 rRNA operons. 16S rRNA gene sequence analyses revealed strain PAMC 28760 as a potentially new species of genus Shigella, showing various differences from pathogenic bacteria reported previously. dbCAN2 analyses revealed 91 genes related to carbohydrate-metabolizing enzymes. S. sp. PAMC 28760 likely degrades polysaccharide starch to obtain glucose for energy conservation. This study provides a foundation for understanding Shigella survival adaptation mechanisms under extremely cold Antarctic conditions.
Collapse
Affiliation(s)
- So-Ra Han
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, South Korea
| | - Do Wan Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Byeollee Kim
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, South Korea
| | - Young Min Chi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seunghyun Kang
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, South Korea
| | - Sang-Hee Jung
- Department of Dental Hygiene, Gangneung Yeongdong University, Gangneung, South Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, South Korea.
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, South Korea; Genome-based BioIT Convergence Institute, Asan, South Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, South Korea.
| |
Collapse
|
44
|
Ahamed ST, Roy B, Basu U, Dutta S, Ghosh AN, Bandyopadhyay B, Giri N. Genomic and Proteomic Characterizations of Sfin-1, a Novel Lytic Phage Infecting Multidrug-Resistant Shigella spp. and Escherichia coli C. Front Microbiol 2019; 10:1876. [PMID: 31507544 PMCID: PMC6714547 DOI: 10.3389/fmicb.2019.01876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
Shigellosis is a public health threat in developed as well as developing countries like “India.” While antibiotic therapy is the mainstay of treatment for shigellosis, current emergence of multidrug-resistant strains of Shigella spp. has posed the problem more challenging. Lytic bacteriophages which destroy antibiotic resistant Shigella spp. have great potential in this context and hence their identification and detailed characterization is necessary. In this study we presented the isolation and a detailed characterization of a novel bacteriophage Sfin-1, which shows potent lytic activity against multidrug-resistant isolates of Shigella flexneri, Shigella dysenteriae, Shigella sonnei obtained from clinical specimens from shigellosis patients. It is also active against Escherichia coli C. The purified phage is lytic in nature, exhibited absorption within 5–10 min, a latent period of 5–20 min and burst size of ∼28 to ∼146 PFU/cell. The isolated phage shows stability in a broad pH range and survives an hour at 50°C. Genome sequencing and phylogenetic analyses showed that Sfin-1 is a novel bacteriophage, which is very closely related to T1-like phages (89.59% identity with Escherichia virus T1). In silico analysis indicates that Sfin-1 genome consists of double stranded linear DNA of 50,403 bp (GC content of 45.2%) encoding 82 potential coding sequences, several potential promoters and transcriptional terminators. Under electron microscopy, Sfin-1 shows morphology characteristics of the family Siphoviridae with an isometric head (61 nm) and a non-contractile tail (155 nm). This is most likely the first report of a lytic bacteriophage that is active against three of the most virulent multidrug-resistant Shigella species and therefore might have a potential role in phage therapy of patients infected with these organisms.
Collapse
Affiliation(s)
- Sk Tousif Ahamed
- Department of Microbiology, Acharya Prafulla Chandra College, Kolkata, India
| | - Banibrata Roy
- Department of Microbiology, Acharya Prafulla Chandra College, Kolkata, India
| | - Utpal Basu
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - A N Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Nabanita Giri
- Department of Microbiology, Acharya Prafulla Chandra College, Kolkata, India
| |
Collapse
|
45
|
Morero NR, Zuliani C, Kumar B, Bebel A, Okamoto S, Guynet C, Hickman AB, Chandler M, Dyda F, Barabas O. Targeting IS608 transposon integration to highly specific sequences by structure-based transposon engineering. Nucleic Acids Res 2019; 46:4152-4163. [PMID: 29635476 PMCID: PMC5934647 DOI: 10.1093/nar/gky235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Transposable elements are efficient DNA carriers and thus important tools for transgenesis and insertional mutagenesis. However, their poor target sequence specificity constitutes an important limitation for site-directed applications. The insertion sequence IS608 from Helicobacter pylori recognizes a specific tetranucleotide sequence by base pairing, and its target choice can be re-programmed by changes in the transposon DNA. Here, we present the crystal structure of the IS608 target capture complex in an active conformation, providing a complete picture of the molecular interactions between transposon and target DNA prior to integration. Based on this, we engineered IS608 variants to direct their integration specifically to various 12/17-nt long target sites by extending the base pair interaction network between the transposon and the target DNA. We demonstrate in vitro that the engineered transposons efficiently select their intended target sites. Our data further elucidate how the distinct secondary structure of the single-stranded transposon intermediate prevents extended target specificity in the wild-type transposon, allowing it to move between diverse genomic sites. Our strategy enables efficient targeting of unique DNA sequences with high specificity in an easily programmable manner, opening possibilities for the use of the IS608 system for site-specific gene insertions.
Collapse
Affiliation(s)
- Natalia Rosalía Morero
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Banushree Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Aleksandra Bebel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sachi Okamoto
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, Toulouse Cedex 31062, France
| | - Alison Burgess Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, Toulouse Cedex 31062, France
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
46
|
|
47
|
Somasiri P, Behm CA, Adamski M, Wen J, Verma NK. Transcriptional response of Caenorhabditis elegans when exposed to Shigella flexneri. Genomics 2019; 112:774-781. [PMID: 31125598 DOI: 10.1016/j.ygeno.2019.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/15/2019] [Accepted: 05/19/2019] [Indexed: 12/25/2022]
Abstract
In recent years, researchers have begun to use Caenorhabditis elegans as a potential animal model to study Shigella pathogenesis. This study aims to further develop this model using RNA-sequencing to understand which pathways/cellular characteristics are affected and potentially cause death in Shigella-exposed worms. We identified 1631 differentially expressed genes in Shigella-exposed worms (6 h exposure). A number of these genes encode proteins involved in fatty-acid β-oxidation (FAO), antioxidant defense and autophagy. The down-regulation of acyl-CoA dehydrogenases would impede FAO, reducing the overall energy to combat Shigella in the worm's intestinal tract. This is potentially coupled with the production of reactive oxygen species (ROS) that may not be fully quenched by antioxidant defense proteins, leading to damaged cellular organelles in the worm's intestinal cells. These cells may undergo autophagy to remove the mounting damage, but may eventually undergo cell death.
Collapse
Affiliation(s)
- Pamodha Somasiri
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | - Carolyn A Behm
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | - Marcin Adamski
- Computational Biology and Bioinformatics Unit, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | - Jiayu Wen
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| | - Naresh K Verma
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
48
|
Abstract
The history of Shigella, the causative agent of bacillary dysentery, is a long and fascinating one. This brief historical account starts with descriptions of the disease and its impact on human health from ancient time to the present. Our story of the bacterium starts just before the identification of the dysentery bacillus by Kiyoshi Shiga in 1898 and follows the scientific discoveries and principal scientists who contributed to the elucidation of Shigella pathogenesis in the first 100 years. Over the past century, Shigella has proved to be an outstanding model of an invasive bacterial pathogen and has served as a paradigm for the study of other bacterial pathogens. In addition to invasion of epithelial cells, some of those shared virulence traits include toxin production, multiple-antibiotic resistance, virulence genes encoded on plasmids and bacteriophages, global regulation of virulence genes, pathogenicity islands, intracellular motility, remodeling of host cytoskeleton, inflammation/polymorphonuclear leukocyte signaling, apoptosis induction/inhibition, and "black holes" and antivirulence genes. While there is still much to learn from studying Shigella pathogenesis, what we have learned so far has also contributed greatly to our broader understanding of bacterial pathogenesis.
Collapse
|
49
|
Rapid identification and phylogenetic classification of diverse bacterial pathogens in a multiplexed hybridization assay targeting ribosomal RNA. Sci Rep 2019; 9:4516. [PMID: 30872641 PMCID: PMC6418090 DOI: 10.1038/s41598-019-40792-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/18/2019] [Indexed: 01/05/2023] Open
Abstract
Rapid bacterial identification remains a critical challenge in infectious disease diagnostics. We developed a novel molecular approach to detect and identify a wide diversity of bacterial pathogens in a single, simple assay, exploiting the conservation, abundance, and rich phylogenetic content of ribosomal RNA in a rapid fluorescent hybridization assay that requires no amplification or enzymology. Of 117 isolates from 64 species across 4 phyla, this assay identified bacteria with >89% accuracy at the species level and 100% accuracy at the family level, enabling all critical clinical distinctions. In pilot studies on primary clinical specimens, including sputum, blood cultures, and pus, bacteria from 5 different phyla were identified.
Collapse
|
50
|
Q.S. Medeiros PH, Ledwaba SE, Bolick DT, Giallourou N, Yum LK, Costa DV, Oriá RB, Barry EM, Swann JR, Lima AÂM, Agaisse H, Guerrant RL. A murine model of diarrhea, growth impairment and metabolic disturbances with Shigella flexneri infection and the role of zinc deficiency. Gut Microbes 2019; 10:615-630. [PMID: 30712505 PMCID: PMC6748602 DOI: 10.1080/19490976.2018.1564430] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigella is one of the major enteric pathogens worldwide. We present a murine model of S. flexneri infection and investigate the role of zinc deficiency (ZD). C57BL/6 mice fed either standard chow (HC) or ZD diets were pretreated with an antibiotic cocktail and received S. flexneri strain 2457T orally. Antibiotic pre-treated ZD mice showed higher S. flexneri colonization than non-treated mice. ZD mice showed persistent colonization for at least 50 days post-infection (pi). S. flexneri-infected mice showed significant weight loss, diarrhea and increased levels of fecal MPO and LCN in both HC and ZD fed mice. S. flexneri preferentially colonized the colon, caused epithelial disruption and inflammatory cell infiltrate, and promoted cytokine production which correlated with weight loss and histopathological changes. Infection with S. flexneri ΔmxiG (critical for type 3 secretion system) did not cause weight loss or diarrhea, and had decreased stool shedding duration and tissue burden. Several biochemical changes related to energy, inflammation and gut-microbial metabolism were observed. Zinc supplementation increased weight gains and reduced intestinal inflammation and stool shedding in ZD infected mice. In conclusion, young antibiotic-treated mice provide a new model of oral S. flexneri infection, with ZD promoting prolonged infection outcomes.
Collapse
Affiliation(s)
- Pedro Henrique Q.S. Medeiros
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA,Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil,CONTACT Pedro Henrique Q.S. Medeiros Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, 345 Crispell Drive, MR6 Room 2711, Charlottesville, VA, USA
| | - Solanka E. Ledwaba
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA
| | - David T. Bolick
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA
| | - Natasa Giallourou
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Lauren K. Yum
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA
| | - Deiziane V.S. Costa
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA,Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Reinaldo B. Oriá
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA,Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Eileen M. Barry
- Center for Vaccine Development, University of Maryland, Baltimore, USA
| | - Jonathan R. Swann
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Hervé Agaisse
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, USA
| | - Richard L. Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, USA
| |
Collapse
|