1
|
Olanlokun JO, Abiodun OW, Adegbuyi AT, Koorbanally NA, Olorunsogo OO. Mefloquine-curcumin combinations improve host mitochondrial respiration and decrease mitotoxic effects of mefloquine in Plasmodium berghei-infected mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100180. [PMID: 38725654 PMCID: PMC11081784 DOI: 10.1016/j.crphar.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Plasmodium infection is a health challenge. Although, antiplasmodial drugs kill the parasites, information on the effects of infection and drugs on the expression of some genes is limited. Malaria was induced in two different studies using NK65 (chloroquine-susceptible, study 1), and ANKA (chloroquine-resistant, study 2) strains of Plasmodium berghei in 30 male Swiss mice (n = 5) in each study. Mice orally received 10 mL/kg distilled water, (infected control), Mefloquine (MF) (10 mg/kg), MF and Curcumin (CM) (25 mg/kg), MF and CM (50 mg/kg), CM (25 mg/kg) and CM (50 mg/kg). Five mice (un-infected) were used as the control. After treatment, total Ribonucleic acid (RNA) was isolated from liver and erythrocytes while Deoxyribonucleic acid (DNA)-free RNA were converted to cDNA. Polymerase Chain Reaction (PCR) amplification was performed and relative expressions of FIKK12, AQP3, P38 MAPK, NADH oxidoreductase, and cytochrome oxidase expressions were determined. Markers of glycolysis, toxicity and antioxidants were determined using ELISA assays. While the expression of FIKK12 was blunted by MF in the susceptible study, co-treatment with curcumin (25 mg/kg) yielded the same results in the chloroquine-resistant study. Similar results were obtained on AQP3 in both studies. Curcumin decreased P38 MAPK in both studies. Plasmodium infection decreased NADH oxidoreductase and cytochrome oxidase but mefloquine-curcumin restored the expression of these genes. While glycolysis and toxicity were inhibited, antioxidant systems improved in the treated groups. Curcumin is needed for effective therapeutic efficacy and prevention of toxicity. Plasmodium infection and treatment modulate the expressions of some genes in the host. Curcumin combination with mefloquine modulates the expression of some genes in the host.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomemebrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oshireku Wisdom Abiodun
- Laboratories for Biomemebrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Neil Anthony Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomemebrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Kotepui KU, Mahittikorn A, Wilairatana P, Masangkay FR, Kotepui M. Association between Plasmodium Infection and Nitric Oxide Levels: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2023; 12:1868. [PMID: 37891947 PMCID: PMC10604424 DOI: 10.3390/antiox12101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Nitric oxide (NO) has been implicated in the pathology of malaria. This systematic review and meta-analysis describe the association between NO levels and malaria. Embase, Ovid, PubMed, Scopus, and Google Scholar were searched to identify studies evaluating NO levels in malaria patients and uninfected controls. Meta-regression and subgroup analyses were conducted to discern differences in NO levels between the groups. Of the 4517 records identified, 21 studies were included in the systematic review and meta-analysis. The findings illustrated significant disparities in NO levels based on geographic location and study time frames. Despite the fluctuations, such as higher NO levels in adults compared to children, no significant differences in mean NO levels between patients and uninfected controls (p = 0.25, Hedge's g: 0.35, 95% confidence interval (CI): -0.25-0.96, I2: 97.39%) or between severe and non-severe malaria cases (p = 0.09, Hedge's g: 0.71, 95% CI: -0.11-1.54, I2: 96.07%) were detected. The systematic review and meta-analysis highlighted inconsistencies in NO levels in malaria patients. Given the high heterogeneity of the results, further studies using standardized metrics for NO measurements and focusing on biochemical pathways dictating NO responses in malaria are imperative to understand the association between NO and malaria.
Collapse
Affiliation(s)
- Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand;
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand;
| |
Collapse
|
3
|
Kinetic and Cross-Sectional Studies on the Genesis of Hypoargininemia in Severe Pediatric Plasmodium falciparum Malaria. Infect Immun 2019; 87:IAI.00655-18. [PMID: 30718287 DOI: 10.1128/iai.00655-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022] Open
Abstract
The low bioavailability of nitric oxide (NO) and its precursor, arginine, contributes to the microvascular pathophysiology of severe falciparum malaria. To better characterize the mechanisms underlying hypoargininemia in severe malaria, we measured the plasma concentrations of amino acids involved in de novo arginine synthesis in children with uncomplicated falciparum malaria (UM; n = 61), children with cerebral falciparum malaria (CM; n = 45), and healthy children (HC; n = 109). We also administered primed infusions of l-arginine uniformly labeled with 13C6 and 15N4 to 8 children with severe falciparum malaria (SM; age range, 4 to 9 years) and 7 healthy children (HC; age range, 4 to 8 years) to measure the metabolic flux of arginine, hypothesizing that arginine flux is increased in SM. Using two different tandem mass spectrometric methods, we measured the isotopic enrichment of arginine in plasma obtained at 0, 60, 90, 120, 150, and 180 min during the infusion. The plasma concentrations of glutamine, glutamate, proline, ornithine, citrulline, and arginine were significantly lower in UM and CM than in HC (P ≤ 0.04 for all pairwise comparisons). Of these, glutamine concentrations were the most markedly decreased: median, 457 μM (interquartile range [IQR], 400 to 508 μM) in HC, 300 μM (IQR, 256 to 365 μM) in UM, and 257 μM (IQR, 195 to 320 μM) in CM. Arginine flux during steady state was not significantly different in SM than in HC by the respective mass spectrometric methods: 93.2 μmol/h/kg of body weight (IQR, 84.4 to 129.3 μmol/h/kg) versus 88.0 μmol/h/kg (IQR, 73.0 to 102.2 μmol/h/kg) (P = 0.247) by the two mass spectrometric methods in SM and 93.7 μmol/h/kg (IQR, 79.1 to 117.8 μmol/h/kg) versus 81.0 μmol/h/kg (IQR, 75.9 to 88.6 μmol/h/kg) (P = 0.165) by the two mass spectrometric methods in HC. A limited supply of amino acid precursors for arginine synthesis likely contributes to the hypoargininemia and NO insufficiency in falciparum malaria in children.
Collapse
|
4
|
Corbett Y, D'Alessandro S, Parapini S, Scaccabarozzi D, Kalantari P, Zava S, Giavarini F, Caruso D, Colombo I, Egan TJ, Basilico N. Interplay between Plasmodium falciparum haemozoin and L-arginine: implication for nitric oxide production. Malar J 2018; 17:456. [PMID: 30522493 PMCID: PMC6282336 DOI: 10.1186/s12936-018-2602-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023] Open
Abstract
Background Plasmodium falciparum haemozoin, a detoxification product of digested haemoglobin from infected erythrocytes, is released into the bloodstream upon schizont rupture and accumulates in leukocytes. High levels of haemozoin correlate with disease severity. Some studies have shown that concentrations of the substrate of inducible nitric oxide synthase (iNOS), l-arginine, as well as nitric oxide are low in patients infected with P. falciparum malaria. The present study investigates, in vitro, the role of P. falciparum haemozoin on nitric oxide production, iNOS expression in macrophages, and the possible interaction between l-arginine and haemozoin. Methods Plasmodium falciparum haemozoin was obtained from in vitro cultures through magnetic isolation. Phagocytosis of haemozoin by immortalized bone marrow derived macrophages was detected by confocal reflection combined with fluorescence microscopy. Nitrite concentrations in the supernatants was evaluated by Griess assay as a standard indication of nitric oxide production, while iNOS expression was detected on cell extracts by western blotting. Detection of l-arginine in haemozoin-treated or untreated media was achieved by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Results Haemozoin synergizes in vitro with interferon-gamma to produce nitric oxide. However, when mouse macrophages were stimulated with haemozoin, a proportional increase of nitric oxide was observed up to 25 μM of haemozoin, followed by a decrease with doses up to 100 μM, when nitric oxide release was completely abrogated. This was not due to reactive oxygen species production, nor to an effect on iNOS activity. Interestingly, when at 24 h, haemozoin-treated macrophages were washed and incubated in fresh medium for further 24 h, the nitric oxide production was restored in a dose–response manner. Similar results were seen when l-arginine-enriched media was used in the stimulation. Moreover, muramyldipeptide, a strong nitric oxide inducer, was unable to activate macrophages to release nitric oxide in the presence of haemozoin-treated medium. By LC–MS/MS a complete depletion of l-arginine was observed in this haemozoin-treated, conditioned medium. Conclusions It is proposed that haemozoin interacts with l-arginine reducing its availability for iNOS, and thus decreasing nitric oxide production. The clinical (or pathological) implications of these results are discussed. Electronic supplementary material The online version of this article (10.1186/s12936-018-2602-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yolanda Corbett
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, MI, Italy. .,Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, MI, Italy.
| | - Sarah D'Alessandro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, MI, Italy.,Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, 20133, Milan, MI, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, MI, Italy.,Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, 20133, Milan, MI, Italy
| | - Diletta Scaccabarozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, MI, Italy
| | - Parisa Kalantari
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Stefania Zava
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, MI, Italy
| | - Flavio Giavarini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, MI, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, MI, Italy
| | - Irma Colombo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, MI, Italy
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, 20133, Milan, MI, Italy
| |
Collapse
|
5
|
Dzodzomenyo M, Ghansah A, Ensaw N, Dovie B, Bimi L, Quansah R, Gyan BA, Gyakobo M, Amoani B. Inducible nitric oxide synthase 2 promoter polymorphism and malaria disease severity in children in Southern Ghana. PLoS One 2018; 13:e0202218. [PMID: 30118498 PMCID: PMC6097674 DOI: 10.1371/journal.pone.0202218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
Objective We assessed the association of mutant allele frequencies of nitric oxide synthase 2 (NOS2) gene at two SNPs (-954 and -1173) with malaria disease severity in children from a malaria endemic area in Southern Ghana. Method Using children recruited at the hospital, assigned into clinical subgroups of uncomplicated and severe malaria and matching with their “healthy control” counterparts, we designed a case control study. Genomic DNA was extracted and genotyping using Restriction Fragment Polymorphism was done. Result A total of 123 malaria cases (91 uncomplicated, 32 severe) and 100 controls were sampled. Their corresponding mean Hbs were 9.6, 9.3 and 11.2g/dl and geometric mean parasite densities of 32097, 193252 and 0 parasites/ml respectively. Variant allele frequencies varied from 0.09 through 0.03 to 0.12 for G-954C and 0.06 through 0.03 to 0.07 for C-1173T in the uncomplicated, severe and healthy control groups respectively. There was a strong linkage disequilibrium between the two alleles (p<0.001). For the -954 position, the odds of developing severe malaria was found to be 2.5 times lower with the carriage of a C allele compared to those without severe malaria (χ2; p< 0.05) though this isn’t the case with -1173. Conclusion The carriage of a mutant allele in the -954 NOS2 gene may have a protective effect on malaria among Southern Ghanaian children.
Collapse
Affiliation(s)
- Mawuli Dzodzomenyo
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, Ghana
- * E-mail:
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Benjamin Dovie
- Department of Geography, University of Ghana, Legon, Ghana
| | - Langbong Bimi
- Department of Animal Biology and Conservation Sciences, University of Ghana, Legon, Ghana
| | - Reginald Quansah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, Ghana
| | - Ben A. Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Mawuli Gyakobo
- Tetteh Quarshie Memorial Hospital, Mampong Akwapim, Ghana
| | - Benjamin Amoani
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
6
|
Kumar A, Singh KP, Bali P, Anwar S, Kaul A, Singh OP, Gupta BK, Kumari N, Noor Alam M, Raziuddin M, Sinha MP, Gourinath S, Sharma AK, Sohail M. iNOS polymorphism modulates iNOS/NO expression via impaired antioxidant and ROS content in P. vivax and P. falciparum infection. Redox Biol 2017; 15:192-206. [PMID: 29268202 PMCID: PMC5738204 DOI: 10.1016/j.redox.2017.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023] Open
Abstract
Nitric oxide (NO) has dicotomic influence on modulating host-parasite interplay, synchronizing physiological orchestrations and diagnostic potential; instigated us to investigate the plausible association and genetic regulation among NO level, components of oxidative stress, iNOS polymorphisms and risk of malaria. Here, we experimentally elucidate that iNOS promoter polymorphisms are associated with risk of malaria; employing mutation specific genotyping, functional interplay using western blot and RT-PCR, quantitative estimation of NO, total antioxidant content (TAC) and reactive oxygen species (ROS). Genotyping revealed significantly associated risk of P. vivax (adjusted OR = 1.92 and 1.72) and P. falciparum (adjusted OR = 1.68 and 1.75) infection with SNP at iNOS-954G/C and iNOS-1173C/T positions, respectively; though vivax showed higher risk of infection. Intriguingly, mutation and infection specific differential upregulation of iNOS expression/NO level was observed and found to be significantly associated with mutant genotypes. Moreover, P. vivax showed pronounced iNOS protein (2.4 fold) and mRNA (2.5 fold) expression relative to healthy subjects. Furthermore, TAC and ROS were significantly decreased in infection; and differentially decreased in mutant genotypes. Our findings endorse polymorphic regulation of iNOS expression, altered oxidant-antioxidant components and evidences of risk association as the hallmark of malaria pathogenesis. iNOS/NO may serve as potential diagnostic marker in assessing clinical malaria. Polymorphism of iNOS revealed significantly associated risk of P. vivax and P. falciparum malaria and vivax showed higher risk of infection. We observed mutation and infection specific differential expression of iNOS/NO cascade. We investigated mutation specific antioxidant and ROS orchestration and observed lower TAC and ROS content in infection. Evaluated the clinical correlation among stratified axillary temperature, NO and haemoglobin content during infection.
Collapse
Affiliation(s)
- Amod Kumar
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Krishn Pratap Singh
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Prerna Bali
- National Institute of Malaria Research, Dawarka, Delhi, India
| | - Shadab Anwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Asha Kaul
- National Institute of Malaria Research, Dawarka, Delhi, India
| | - Om P Singh
- National Institute of Malaria Research, Dawarka, Delhi, India
| | - Birendra Kumar Gupta
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Nutan Kumari
- Department of Physiology, Patna Medical College and Hospital, Patna, India
| | - Md Noor Alam
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | - Mohammad Raziuddin
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India
| | | | | | - Ajay Kumar Sharma
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India.
| | - Mohammad Sohail
- University Department of Zoology, Vinoba Bhave University, Hazaribag, Jharkhand, India.
| |
Collapse
|
7
|
Galatas B, Bassat Q, Mayor A. Malaria Parasites in the Asymptomatic: Looking for the Hay in the Haystack. Trends Parasitol 2015; 32:296-308. [PMID: 26708404 DOI: 10.1016/j.pt.2015.11.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022]
Abstract
With malaria elimination back on the international agenda, programs face the challenge of targeting all Plasmodium infections, not only symptomatic cases. As asymptomatic individuals are unlikely to seek treatment, they are missed by passive surveillance while remaining infectious to mosquitoes, thus acting as silent reservoirs of transmission. To estimate the risk of asymptomatic infections in various phases of malaria elimination, we need a deeper understanding of the underlying mechanisms favoring carriage over disease, which may involve both pathogen and host factors. Here we review our current knowledge on the determinants leading to Plasmodium falciparum symptomless infections. Understanding the host-pathogen interactions that are most likely to affect transitions between malaria disease states could guide the development of tools to tackle asymptomatic carriers in elimination settings.
Collapse
Affiliation(s)
- Beatriz Galatas
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| |
Collapse
|
8
|
Rubach MP, Mukemba J, Florence S, Lopansri BK, Hyland K, Volkheimer AD, Yeo TW, Anstey NM, Weinberg JB, Mwaikambo ED, Granger DL. Impaired systemic tetrahydrobiopterin bioavailability and increased oxidized biopterins in pediatric falciparum malaria: association with disease severity. PLoS Pathog 2015; 11:e1004655. [PMID: 25764173 PMCID: PMC4357384 DOI: 10.1371/journal.ppat.1004655] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022] Open
Abstract
Decreased bioavailability of nitric oxide (NO) is a major contributor to the pathophysiology of severe falciparum malaria. Tetrahydrobiopterin (BH4) is an enzyme cofactor required for NO synthesis from L-arginine. We hypothesized that systemic levels of BH₄ would be decreased in children with cerebral malaria, contributing to low NO bioavailability. In an observational study in Tanzania, we measured urine levels of biopterin in its various redox states (fully reduced [BH₄] and the oxidized metabolites, dihydrobiopterin [BH₂] and biopterin [B₀]) in children with uncomplicated malaria (UM, n = 55), cerebral malaria (CM, n = 45), non-malaria central nervous system conditions (NMC, n = 48), and in 111 healthy controls (HC). Median urine BH4 concentration in CM (1.10 [IQR:0.55-2.18] μmol/mmol creatinine) was significantly lower compared to each of the other three groups - UM (2.10 [IQR:1.32-3.14];p<0.001), NMC (1.52 [IQR:1.01-2.71];p = 0.002), and HC (1.60 [IQR:1.15-2.23];p = 0.005). Oxidized biopterins were increased, and the BH4:BH2 ratio markedly decreased in CM. In a multivariate logistic regression model, each Log10-unit decrease in urine BH4 was independently associated with a 3.85-fold (95% CI:1.89-7.61) increase in odds of CM (p<0.001). Low systemic BH4 levels and increased oxidized biopterins contribute to the low NO bioavailability observed in CM. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria.
Collapse
Affiliation(s)
- Matthew P. Rubach
- Department of Medicine, Duke University and VA Medical Centers, Durham, North Carolina, United States of America
| | - Jackson Mukemba
- Department of Pediatrics, Hubert Kairuki Memorial University, Dar es Salaam, United Republic of Tanzania
| | - Salvatore Florence
- Department of Pediatrics, Hubert Kairuki Memorial University, Dar es Salaam, United Republic of Tanzania
| | - Bert K. Lopansri
- Department of Medicine, Intermountain Healthcare, Salt Lake City, Utah, United States of America
- Department of Medicine, University of Utah School of Medicine and VA Medical Center, Salt Lake City, Utah, United States of America
| | - Keith Hyland
- Neurochemistry Division, Medical Neurogenetics, Atlanta, Georgia, United States of America
| | - Alicia D. Volkheimer
- Department of Medicine, Duke University and VA Medical Centers, Durham, North Carolina, United States of America
| | - Tsin W. Yeo
- Global and Tropical Health Division, Menzies School for Health Research and Charles Darwin University, Darwin, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
- Department of Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School for Health Research and Charles Darwin University, Darwin, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - J. Brice Weinberg
- Department of Medicine, Duke University and VA Medical Centers, Durham, North Carolina, United States of America
| | - Esther D. Mwaikambo
- Department of Pediatrics, Hubert Kairuki Memorial University, Dar es Salaam, United Republic of Tanzania
| | - Donald L. Granger
- Department of Medicine, University of Utah School of Medicine and VA Medical Center, Salt Lake City, Utah, United States of America
| |
Collapse
|
9
|
Thomas AC, Mattila JT. "Of mice and men": arginine metabolism in macrophages. Front Immunol 2014; 5:479. [PMID: 25339954 PMCID: PMC4188127 DOI: 10.3389/fimmu.2014.00479] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/19/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Anita C Thomas
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Joshua T Mattila
- Department of Microbiology and Molecular Genetics, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
10
|
Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L. The silent threat: asymptomatic parasitemia and malaria transmission. Expert Rev Anti Infect Ther 2014; 11:623-39. [PMID: 23750733 DOI: 10.1586/eri.13.45] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Scale-up of malaria control interventions has resulted in a substantial decline in global malaria morbidity and mortality. Despite this achievement, there is evidence that current interventions alone will not lead to malaria elimination in most malaria-endemic areas and additional strategies need to be considered. Use of antimalarial drugs to target the reservoir of malaria infection is an option to reduce the transmission of malaria between humans and mosquito vectors. However, a large proportion of human malaria infections are asymptomatic, requiring treatment that is not triggered by care-seeking for clinical illness. This article reviews the evidence that asymptomatic malaria infection plays an important role in malaria transmission and that interventions to target this parasite reservoir may be needed to achieve malaria elimination in both low- and high-transmission areas.
Collapse
Affiliation(s)
- Kim A Lindblade
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, MS A-06, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
11
|
Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, Joshi H. The complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar J 2012; 11:29. [PMID: 22289302 PMCID: PMC3342920 DOI: 10.1186/1475-2875-11-29] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/31/2012] [Indexed: 12/02/2022] Open
Abstract
Malaria is a serious parasitic disease in the developing world, causing high morbidity and mortality. The pathogenesis of malaria is complex, and the clinical presentation of disease ranges from severe and complicated, to mild and uncomplicated, to asymptomatic malaria. Despite a wealth of studies on the clinical severity of disease, asymptomatic malaria infections are still poorly understood. Asymptomatic malaria remains a challenge for malaria control programs as it significantly influences transmission dynamics. A thorough understanding of the interaction between hosts and parasites in the development of different clinical outcomes is required. In this review, the problems and obstacles to the study and control of asymptomatic malaria are discussed. The human and parasite factors associated with differential clinical outcomes are described and the management and treatment strategies for the control of the disease are outlined. Further, the crucial gaps in the knowledge of asymptomatic malaria that should be the focus of future research towards development of more effective malaria control strategies are highlighted.
Collapse
Affiliation(s)
- Dolie D Laishram
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Oxidative and Nitrosative Stress on Phagocytes’ Function: from Effective Defense to Immunity Evasion Mechanisms. Arch Immunol Ther Exp (Warsz) 2011; 59:441-8. [DOI: 10.1007/s00005-011-0144-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/27/2011] [Indexed: 12/12/2022]
|
13
|
Levesque MC, Hobbs MR, O'Loughlin CW, Chancellor JA, Chen Y, Tkachuk AN, Booth J, Patch KB, Allgood S, Pole AR, Fernandez CA, Mwaikambo ED, Mutabingwa TK, Fried M, Sorensen B, Duffy PE, Granger DL, Anstey NM, Weinberg JB. Malaria severity and human nitric oxide synthase type 2 (NOS2) promoter haplotypes. Hum Genet 2009; 127:163-82. [PMID: 19859740 DOI: 10.1007/s00439-009-0753-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Abstract
Nitric oxide (NO) mediates host resistance to severe malaria and other infectious diseases. NO production and mononuclear cell expression of the NO producing enzyme-inducible nitric oxide synthase (NOS2) have been associated with protection from severe falciparum malaria. The purpose of this study was to identify single nucleotide polymorphisms (SNPs) and haplotypes in the NOS2 promoter, to identify associations of these haplotypes with malaria severity and to test the effects of these polymorphisms on promoter activity. We identified 34 SNPs in the proximal 7.3 kb region of the NOS2 promoter and inferred NOS2 promoter haplotypes based on genotyping 24 of these SNPs in a population of Tanzanian children with and without cerebral malaria. We identified 71 haplotypes; 24 of these haplotypes comprised 82% of the alleles. We determined whether NOS2 promoter haplotypes were associated with malaria severity in two groups of subjects from Dar es Salaam (N = 185 and N = 250) and in an inception cohort of children from Muheza-Tanga, Tanzania (N = 883). We did not find consistent associations of NOS2 promoter haplotypes with malaria severity or malarial anemia, although interpretation of these results was potentially limited by the sample size of each group. Furthermore, cytokine-induced NOS2 promoter activity determined using luciferase reporter constructs containing the proximal 7.3 kb region of the NOS2 promoter and the G-954C or C-1173T SNPs did not differ from NOS2 promoter constructs that lacked these polymorphisms. Taken together, these studies suggest that the relationship between NOS2 promoter polymorphisms and malaria severity is more complex than previously described.
Collapse
|
14
|
|
15
|
Nahrevanian H, Gholizadeh J, Farahmand M, Assmar M, Sharifi K, Ayatollahi Mousavi SA, Abolhassani M. Nitric oxide induction as a novel immunoepidemiological target in malaria‐infected patients from endemic areas of the Islamic Republic of Iran. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 66:201-9. [PMID: 16714249 DOI: 10.1080/00365510600565011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Malaria has been prevalent for a long time in Iran and continues to be a health problem despite substantial control programs. In addition to numerous cytokines, nitric oxide (NO) is thought to be a key molecule and a novel target of malaria immunopathology. MATERIAL AND METHODS The objective of this research was to measure reactive nitrogen intermediates (RNI) as stable metabolites of NO induction in plasma of malaria-infected patients in Iran. In this study, 235 blood samples from malaria patients and 80 blood samples from healthy controls were randomly collected from different malarial endemic provinces of Iran, located in southeastern (Sistan & Balouchestan, Hormozgan, Kerman) and northwestern (Ardabil) areas. The involvement of NO in malaria patients has been investigated by statistical analysis of RNI values. Griess micro assay (GMA) was used during Plasmodium vivax, P. falciparum and mixed infections, in order to evaluate whether RNI changes are related to the provincial areas, parasite strains, clinical symptoms and age and gender parameters. RESULTS The results showed a significant increase of RNI level in malaria patients compared with the control groups of Ardabil (p<0.01), Sistan & Balouchestan, Hormozgan and Kerman (p<0.001) provinces. The level of RNI was higher in mixed plasmodial infection than in single infection. CONCLUSIONS The high level of RNI was dependent on the type of infection, the plasmodia strain, the clinical symptoms, the age groups and the endemic provinces. Although, this study did not clarify the pathogenic and/or protective role of NO in malaria, our findings provide a novel immunoepidemiological aspect of basal NO production in patients with malaria in endemic areas in Iran.
Collapse
Affiliation(s)
- H Nahrevanian
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nahrevanian H, Gholizadeh J, Farahmand M, Assmar M. Patterns of co-association of C-reactive protein and nitric oxide in malaria in endemic areas of Iran. Mem Inst Oswaldo Cruz 2008; 103:39-44. [PMID: 18368235 DOI: 10.1590/s0074-02762008000100006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 12/26/2007] [Indexed: 11/22/2022] Open
Abstract
In addition to numerous immune factors, C-reactive protein (CRP) and nitric oxide (NO) are believed to be molecules of malaria immunopathology. The objective of this study was to detect CRP and NO inductions by agglutination latex test and Griess microassay respectively in both control and malaria groups from endemic areas of Iran, including Southeastern (SE) (Sistan & Balouchestan, Hormozgan, Kerman) and Northwestern (NW) provinces (Ardabil). The results indicated that CRP and NO are produced in all malaria endemic areas of Iran. In addition, more CRP and NO positive cases were observed amongst malaria patients in comparison with those in control group. A variable co-association of CRP/NO production were detected between control and malaria groups, which depended upon the malaria endemic areas and the type of plasmodia infection. The percentage of CRP/NO positive cases was observed to be lower in NW compare to SE region, which may be due to the different type of plasmodium in the NW (Plasmodium vivax) with SE area (P. vivax, Plasmodium falciparum, mixed infection). The fluctuations in CRP/NO induction may be consistent with genetic background of patients. Although, CRP/NO may play important role in malaria, their actual function and interaction in clinical forms of disease remains unclear.
Collapse
|
17
|
|
18
|
Boutlis CS, Yeo TW, Anstey NM. Malaria tolerance--for whom the cell tolls? Trends Parasitol 2006; 22:371-7. [PMID: 16784889 PMCID: PMC2766419 DOI: 10.1016/j.pt.2006.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 05/04/2006] [Accepted: 06/02/2006] [Indexed: 01/01/2023]
Abstract
How is it that individuals exposed to intense malaria transmission can tolerate the presence of malaria parasites in their blood at levels that would produce fever in others? In light of evidence discounting a role for nitric oxide or antibodies to plasmodial glycosylphosphatidylinositols in maintaining this tolerant state, refractoriness to toxin-induced Toll-like receptor-mediated signalling has emerged as a likely explanation that links malarial and bacterial endotoxin tolerance. Understanding the mechanisms underlying tolerance and the potential for cross-tolerization has significant implications for understanding the potential for antitoxic vaccine strategies, as well as interactions between different malaria species and between malaria and other human parasites.
Collapse
Affiliation(s)
- Craig S Boutlis
- Division of Tropical and Emerging Infectious Diseases, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT 0811, Australia.
| | | | | |
Collapse
|
19
|
Lopansri BK, Anstey NM, Stoddard GJ, Mwaikambo ED, Boutlis CS, Tjitra E, Maniboey H, Hobbs MR, Levesque MC, Weinberg JB, Granger DL. Elevated plasma phenylalanine in severe malaria and implications for pathophysiology of neurological complications. Infect Immun 2006; 74:3355-9. [PMID: 16714564 PMCID: PMC1479261 DOI: 10.1128/iai.02106-05] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral malaria is associated with decreased production of nitric oxide and decreased levels of its precursor, l-arginine. Abnormal amino acid metabolism may thus be an important factor in malaria pathogenesis. We sought to determine if other amino acid abnormalities are associated with disease severity in falciparum malaria. Subjects were enrolled in Dar es Salaam, Tanzania (children) (n = 126), and Papua, Indonesia (adults) (n = 156), in two separate studies. Plasma samples were collected from subjects with WHO-defined cerebral malaria (children), all forms of severe malaria (adults), and uncomplicated malaria (children and adults). Healthy children and adults without fever or illness served as controls. Plasma amino acids were measured using reverse-phase high-performance liquid chromatography with fluorescence detection. Several plasma amino acids were significantly lower in the clinical malaria groups than in healthy controls. Despite the differences, phenylalanine was the only amino acid with mean levels outside the normal range (40 to 84 microM) and was markedly elevated in children with cerebral malaria (median [95% confidence interval], 163 [134 to 193] microM; P < 0.0001) and adults with all forms of severe malaria (median [95% confidence interval], 129 [111 to 155] microM; P < 0.0001). In adults who survived severe malaria, phenylalanine levels returned to normal, with clinical improvement (P = 0.0002). Maintenance of plasma phenylalanine homeostasis is disrupted in severe malaria, leading to significant hyperphenylalaninemia. This is likely a result of an acquired abnormality in the function of the liver enzyme phenylalanine hydroxylase. Determination of the mechanism of this abnormality may contribute to the understanding of neurological complications in malaria.
Collapse
Affiliation(s)
- Bert K Lopansri
- Division of Infectious Diseases, VA and University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana IM, Miu J, Ball HJ. Immunopathogenesis of cerebral malaria. Int J Parasitol 2006; 36:569-82. [PMID: 16678181 DOI: 10.1016/j.ijpara.2006.02.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 02/09/2006] [Accepted: 02/17/2006] [Indexed: 01/20/2023]
Abstract
Malaria is one of the most important global health problems, potentially affecting more than one third of the world's population. Cerebral malaria (CM) is a deadly complication of Plasmodium falciparum infection, yet its pathogenesis remains incompletely understood. In this review, we discuss some of the principal pathogenic events that have been described in murine models of the disease and relate them to the human condition. One of the earliest events in CM pathogenesis appears to be a mild increase in the permeability to protein of the blood-brain barrier. Recent studies have shown a role for CD8+T cells in mediating damage to the microvascular endothelium and this damage can result in the leakage of cytokines, malaria antigens and other potentially harmful molecules across the blood-brain barrier into the cerebral parenchyma. We suggest that this, in turn, leads to the activation of microglia and the activation and apoptosis of astrocytes. The role of hypoxia in the pathogenesis of cerebral malaria is also discussed, with particular reference to the local reduction of oxygen consumption in the brain as a consequence of vascular obstruction, to cytokine-driven changes in glucose metabolism, and to cytopathic hypoxia. Interferon-gamma, a cytokine known to be produced in malaria infection, induces increased expression, by microvascular endothelial cells, of the haem enzyme indoleamine 2,3-dioxygenase, the first enzyme in the kynurenine pathway of tryptophan metabolism. Enhanced indoleamine 2,3-dioxygenase expression leads to increased production of a range of biologically active metabolites that may be part of a tissue protective response. Damage to astrocytes may result in reduced production of the neuroprotectant molecule kynurenic acid, leading to a decrease in its ratio relative to the neuroexcitotoxic molecule quinolinic acid, which might contribute to some of the neurological symptoms of cerebral malaria. Lastly, we discuss the role of other haem enzymes, cyclooxygenase-2, inducible nitric oxide synthase and haem oxygenase-1, as potentially being components of mechanisms that protect host tissue against the effects of cytokine- and leukocyte-mediated stress induced by malaria infection.
Collapse
Affiliation(s)
- Nicholas H Hunt
- Molecular Immunopathology Unit, Institute for Biomedical Research, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Engwerda C, Belnoue E, Grüner AC, Rénia L. ExperimentalModels of Cerebral Malaria. Curr Top Microbiol Immunol 2005. [DOI: 10.1007/3-540-29967-x_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Sobolewski P, Gramaglia I, Frangos J, Intaglietta M, van der Heyde HC. Nitric oxide bioavailability in malaria. Trends Parasitol 2005; 21:415-22. [PMID: 16039159 DOI: 10.1016/j.pt.2005.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 05/17/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
Rational development of adjunct or anti-disease therapy for severe Plasmodium falciparum malaria requires cellular and molecular definition of malarial pathogenesis. Nitric oxide (NO) is a potential target for such therapy but its role during malaria is controversial. It has been proposed that NO is produced at high levels to kill Plasmodium parasites, although the unfortunate consequence of elevated NO levels might be impaired neuronal signaling, oxidant damage and red blood cell damage that leads to anemia. In this case, inhibitors of NO production or NO scavengers might be an effective adjunct therapy. However, increasing amounts of evidence support the alternate hypothesis that NO production is limited during malaria. Furthermore, the well-documented NO scavenging by cell-free plasma hemoglobin and superoxide, the levels of which are elevated during malaria, has not been considered. Low NO bioavailability in the vasculature during malaria might contribute to pathologic activation of the immune system, the endothelium and the coagulation system: factors required for malarial pathogenesis. Therefore, restoring NO bioavailability might represent an effective anti-disease therapy.
Collapse
Affiliation(s)
- Peter Sobolewski
- La Jolla Bioengineering Institute, 505 Coast Boulevard, Suite 405, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
23
|
Sobolewski P, Gramaglia I, Frangos JA, Intaglietta M, van der Heyde HC. Hemoglobin Serves to Protect Plasmodium Parasites from Nitric Oxide and Reactive Oxygen Species. J Investig Med 2005; 53:246-52. [PMID: 16042958 DOI: 10.2310/6650.2005.53507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our understanding of how the host immune response kills Plasmodium, the causative agent of malaria, is limited and controversial. One widely held belief is that reactive oxygen species are crucial for controlling parasite replication. One of the hallmarks of blood-stage malaria is the cyclic rupture of erythrocytes by the parasite, which releases free hemoglobin into the circulation. We propose that this free hemoglobin, as well as the hemoglobin within the erythrocyte and surrounding the parasite, effectively shields Plasmodium from reactive oxygen species well in excess of those achievable in vivo.
Collapse
|
24
|
Good MF, Xu H, Wykes M, Engwerda CR. DEVELOPMENT AND REGULATION OF CELL-MEDIATED IMMUNE RESPONSES TO THE BLOOD STAGES OF MALARIA: Implications for Vaccine Research. Annu Rev Immunol 2005; 23:69-99. [PMID: 15771566 DOI: 10.1146/annurev.immunol.23.021704.115638] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immune response to the malaria parasite is complex and poorly understood. Although antibodies and T cells can control parasite growth in model systems, natural immunity to malaria in regions of high endemicity takes several years to develop. Variation and polymorphism of antibody target antigens are known to impede immune responses, but these factors alone cannot account for the slow acquisition of immunity. In human and animal model systems, cell-mediated responses can control parasite growth effectively, but such responses are regulated by parasite load via direct effects on dendritic cells and possibly on T and B cells as well. Furthermore, high parasite load is associated with pathology, and cell-mediated responses may also harm the host. Inflammatory cytokines have been implicated in the pathogenesis of cerebral malaria, anemia, weight loss, and respiratory distress in malaria. Immunity without pathology requires rapid parasite clearance, effective regulation of the inflammatory anti-parasite effects of cellular responses, and the eventual development of a repertoire of antibodies effective against multiple strains. Data suggest that this may be hastened by exposure to malaria antigens in low dose, leading to augmented cellular immunity and rapid parasite clearance.
Collapse
Affiliation(s)
- Michael F Good
- The Queensland Institute of Medical Research, Brisbane, 4029, Australia.
| | | | | | | |
Collapse
|
25
|
Boutlis CS, Riley EM, Anstey NM, de Souza JB. Glycosylphosphatidylinositols in malaria pathogenesis and immunity: potential for therapeutic inhibition and vaccination. Curr Top Microbiol Immunol 2005; 297:145-85. [PMID: 16265905 DOI: 10.1007/3-540-29967-x_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycosylphosphatidylinositols (GPIs) are found in the outer cell membranes of all eukaryotes. GPIs anchor a diverse range of proteins to the surface of Plasmodium falciparum, but may also exist free of protein attachment. In vitro and in vivo studies have established GPIs as likely candidate toxins in malaria, consistent with the prevailing paradigm that attributes induction of inflammatory cytokines, fever and other pathology to parasite toxins released when schizonts rupture. Although evolutionarily conserved, sufficient structural differences appear to exist that impart upon plasmodial GPIs the ability to activate second messengers in mammalian cells and elicit immune responses. In populations exposed to P. falciparum, the antibody response to purified GPIs is characterised by a predominance of immunoglobulin (Ig)G over IgM and an increase in the prevalence, level and persistence of responses with increasing age. It remains unclear, however, if these antibodies or other cellular responses to GPIs mediate anti-toxic immunity in humans; anti-toxic immunity may comprise either reduction in the severity of disease or maintenance of the malaria-tolerant state (i.e. persistent asymptomatic parasitaemia). P. falciparum GPIs are potentially amenable to specific therapeutic inhibition and vaccination; more needs to be known about their dual roles in malaria pathogenesis and protection for these strategies to succeed.
Collapse
Affiliation(s)
- C S Boutlis
- International Health Program, Infectious Diseases Division, Menzies School of Health Research, P.O. Box 41096, 0811 Casuarina, NT, Australia.
| | | | | | | |
Collapse
|
26
|
Boutlis CS, Weinberg JB, Baker J, Bockarie MJ, Mgone CS, Cheng Q, Anstey NM. Nitric oxide production and nitric oxide synthase activity in malaria-exposed Papua New Guinean children and adults show longitudinal stability and no association with parasitemia. Infect Immun 2004; 72:6932-8. [PMID: 15557614 PMCID: PMC529162 DOI: 10.1128/iai.72.12.6932-6938.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individuals in areas of intense malaria transmission exhibit resistance (or tolerance) to levels of parasitemia in their blood that would normally be associated with febrile illness in malaria-naive subjects. The resulting level of parasitemia associated with illness (the pyrogenic threshold) is highest in childhood and lowest in adulthood. Clinical parallels between malarial and bacterial endotoxin tolerance have led to the supposition that both share common physiological processes, with nitric oxide (NO) proposed as a candidate mediator. The hypotheses that NO mediates tolerance and blood stage parasite killing in vivo were tested by determining its relationship to age and parasitemia cross-sectionally and longitudinally in a population of 195 children and adults from Papua New Guinea encountering intense malaria exposure. Despite pharmacological clearance of asymptomatic parasitemia, NO production and mononuclear cell NO synthase (NOS) activity were remarkably stable within individuals over time, were not influenced by parasitemia, and varied little with age. These results contrast with previous smaller cross-sectional studies. Baseline NO production and NOS activity did not protect against recurrent parasitemia, consistent with previous data suggesting that NO does not have antiparasitic effects against blood stage infection in vivo. The NO indices studied were markedly higher in specimens from study subjects than in samples from Australian controls, and NOS activity was significantly associated with plasma immunoglobulin E levels, consistent with induction of NO by chronic exposure to other infections and/or host genetic factors. These results suggest that NO is unlikely to mediate killing of blood stage parasites in this setting and is unlikely to be the primary mediator in the acquisition or maintenance of malarial tolerance.
Collapse
Affiliation(s)
- Craig S Boutlis
- Menzies School of Health Research, P.O. Box 41096, Casuarina, NT 0811, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Parris GE. Hypothesis links emergence of chloroquine-resistant malaria and other intracellular pathogens and suggests a new strategy for treatment of diseases caused by intracellular parasites. Med Hypotheses 2004; 62:354-7. [PMID: 14975502 PMCID: PMC7130919 DOI: 10.1016/j.mehy.2003.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Accepted: 12/09/2003] [Indexed: 01/18/2023]
Abstract
Chloroquine and related anti-malarial drugs appear to promote apoptosis in T-cells by suppressing NF-kappa-B, which enhances the expression of anti-apoptotic proteins (e.g., Bcl-2). Thus, chloroquine has found applications in autoimmune diseases where it apparently facilitates apoptosis of abnormally persistent T-cell clones. The mode of action of chloroquine in prevention of malaria is not known, but it may be to minimize replication of the parasite in the liver cells, which occurs before invasion of the erythrocytes, by facilitating premature apoptosis of the infected host cells. After introduction of chloroquine in the 1950s world-wide for prophylactic use, chloroquine-resistant malaria emerged. Here it is hypothesized that concurrent with emergence of chloroquine-resistant malaria (presumably with enhanced anti-apoptotic capabilities), other intracellular parasites have evolved to enhance their ability to prevent apoptosis in host cells. Two examples of viral diseases that have emerged from areas of high incidence of chloroquine-resistant malaria are AIDS from HIV and SARS from coronavirus. The hypothesis holds that prophylactic exposure to pro-apoptotic chloroquine drugs caused natural selection for strains of viruses and other parasites that have enhanced anti-apoptotic abilities. When transmitted to host organisms that are not under the influence of the pro-apoptotic drug, the new "anti-apoptotic" strains may cause unexpected diseases. In the case of SARS, the coronavirus appears to have accessed a new niche where it proves to be lethal to its host. In the case of AIDS, the HIV (which has had a long-term symbiotic relationship with primates) has run amuck because the infected cells are now substantially more tolerant to the toxins (i.e., resistant to apoptosis) that they secrete than the uninfected bystander cells, which are not unusually resistant to apoptosis. A corollary to the hypothesis is that if the level of resistance to apoptosis in the infected cells were no higher than the level of resistance in the bystander cells, then the infected cells would preferentially kill themselves through apoptosis. It appears that in the case of HIV, the increased resistance to apoptosis is provided by expression of Bcl-2 and suppression of p53. Hence, drugs that suppresses Bcl-2 or restore p53 function might be effective in restoring the parity of resistance to apoptosis between infected and uninfected cells. Currently, an antisense drug targeting Bcl-2 (G3139/Genasense(TM), Genta, Inc.) is in late-stage cancer trials and may be on the market for those indications in months. It would be interesting to try these drugs against various intracellular parasites including HIV. This approach to prevent or eliminate active infections might be particularly attractive against a range of parasites (virus, bacteria, protozoa, fungus) when safe and effective vaccines are not available.
Collapse
|
28
|
Clark IA, Alleva LM, Mills AC, Cowden WB. Pathogenesis of malaria and clinically similar conditions. Clin Microbiol Rev 2004; 17:509-39, table of contents. [PMID: 15258091 PMCID: PMC452556 DOI: 10.1128/cmr.17.3.509-539.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is now wide acceptance of the concept that the similarity between many acute infectious diseases, be they viral, bacterial, or parasitic in origin, is caused by the overproduction of inflammatory cytokines initiated when the organism interacts with the innate immune system. This is also true of certain noninfectious states, such as the tissue injury syndromes. This review discusses the historical origins of these ideas, which began with tumor necrosis factor (TNF) and spread from their origins in malaria research to other fields. As well the more established proinflammatory mediators, such as TNF, interleukin-1, and lymphotoxin, the roles of nitric oxide and carbon monoxide, which are chiefly inhibitory, are discussed. The established and potential roles of two more recently recognized contributors, overactivity of the enzyme poly(ADP-ribose) polymerase 1 (PARP-1) and the escape of high-mobility-group box 1 (HMGB1) protein from its normal location into the circulation, are also put in context. The pathogenesis of the disease caused by falciparum malaria is then considered in the light of what has been learned about the roles of these mediators in these other diseases, as well as in malaria itself.
Collapse
Affiliation(s)
- Ian A Clark
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
29
|
Boutlis CS, Lagog M, Chaisavaneeyakorn S, Misukonis MA, Bockarie MJ, Mgone CS, Wang Z, Morahan G, Weinberg JB, Udhayakumar V, Anstey NM. Plasma interleukin-12 in malaria-tolerant papua new guineans: inverse correlation with Plasmodium falciparum parasitemia and peripheral blood mononuclear cell nitric oxide synthase activity. Infect Immun 2003; 71:6354-7. [PMID: 14573655 PMCID: PMC219590 DOI: 10.1128/iai.71.11.6354-6357.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-12 (IL-12) has been inversely associated with disease severity in human and murine malaria, and a polymorphism in the IL-12 p40 subunit gene (IL12B) has been associated with susceptibility to human cerebral malaria and reduced nitric oxide (NO) production. To better define the relationships between IL-12, NO, malaria parasitemia, and IL12B polymorphisms during malarial tolerance, plasma IL-12 levels and peripheral blood mononuclear cell NO synthase (NOS) activity were measured in asymptomatic Papua New Guineans exposed to intense malaria transmission. The IL-12 level was strongly inversely correlated with the density of Plasmodium falciparum parasitemia (rho = -0.45; P < 0.001) and was predicted to decrease by 19% (95% confidence interval [CI], 10 to 27%) for each twofold increase in P. falciparum parasitemia. This is consistent with a suppressive effect of parasitemia on IL-12 production, an effect previously shown in vitro and in rodent models of disease. The IL-12 level was inversely correlated with NOS activity (r = -0.22; P = 0.007), with each twofold increase in NOS activity being predictive of a 25% (95% CI, 7 to 38%) decrease in plasma IL-12 levels. This probably reflects additional down-regulation of IL-12 by the high basal NO production and monocyte NOS expression found in the malaria-tolerant state. Neither the IL-12 level nor NOS activity was associated with either of two IL12B polymorphisms, reflecting the diversity of genetic control over immune responses in different populations.
Collapse
Affiliation(s)
- Craig S Boutlis
- International Health Program, Division of Infectious Diseases, Menzies School of Health Research, Northern Territory University, Flinders University Northern Territory Clinical School, Darwin, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|